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Polymorphic Type Inference for Dynamic Languages
Reconstructing Types for Systems Combining Parametric, Ad-Hoc, and Subtyping Polymorphism

GIUSEPPE CASTAGNA, CNRS, Université Paris Cité, France
MICKAËL LAURENT, Université Paris Cité, France
KIM NGUYỄN, Université Paris-Saclay, France

We present a type system that combines, in a controlled way, first-order polymorphism with intersection
types, union types, and subtyping, and prove its safety. We then define a type reconstruction algorithm that is
sound and terminating. This yields a system in which unannotated functions are given polymorphic types
(thanks to Hindley-Milner) that can express the overloaded behavior of the functions they type (thanks to
the intersection introduction rule) and that are deduced by applying advanced techniques of type narrowing
(thanks to the union elimination rule). This makes the system a prime candidate to type dynamic languages.

CCS Concepts: • Theory of computation → Type structures; Program analysis; • Software and its

engineering → Functional languages; Polymorphism.

Additional Key Words and Phrases: polymorphism, union types, intersection types, type reconstruction.

1 INTRODUCTION

Typing dynamic languages is a challenging endeavour even for very simple pieces of code.
For instance, JavaScript’s logical or operator “||” behaves like the following function (also in
JavaScript):1

1 function lOr (x, y) {
2 if (x) { return x; } else { return y; }
3 }

A naive type for this function is (Bool,Bool) → Bool, which states that lOr is a function that
takes two Boolean arguments and returns a Boolean result. This however is an overly restrictive
type, that does not account for the fact that in JavaScript logical operators such as lOR can be
applied to any pairs of arguments, not just to Boolean ones. JavaScript distinguishes two kinds
of values: eight “falsy” values (i.e., false, "", 0, −0, 0n, undefined, null, and NaN) and the “truthy”
values (all the others). The expression if executes the else code if and only if the tested value is
falsy. If we want to change the previous type to account for this fact, then we should give lOr the
type (Any,Any) → Any (where Any is the type of all values), which is a rather useless type since
it essentially states that lOr is a binary function. To give lOr a more informative type, we need
union and intersection types (which are already integrated in typed versions of JavaScript such as
TypeScript [Microsoft] and Flow [Facebook]): we define the type Falsy as the following union type
false ∨ "" ∨ 0 ∨ −0 ∨ 0n ∨ undefined ∨ null ∨ NaN, where each value denotes here the singleton
type containing that value, and the type Truthy to be its complement, ¬Falsy, that is, the type of
all values that are not of type Falsy. Then we can deduce for lOr the following more precise type

((Truthy,Any) → Truthy) ∧ ((Falsy, Truthy) → Truthy) ∧ ((Falsy, Falsy) → Falsy) (1)

1This definition does not capture the short-circuit evaluation of “||”.
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In this type, ∧ is a type combinator denoting intersection and meaning that the function has all the
types given in the intersection: that is, in words, if the first argument of a function of this type is a
Truthy, then the function returns a Truthy regardless of the second argument (first arrow type),
while if the first argument is a Falsy, then the result is of the same type as the second argument’s
type (second and third arrow type). Notice how the use of an intersection of arrow types corresponds
to the typing of an “overloading” behavior (also known as, ad hoc polymorphism [Strachey 1967]),
insofar as the result of an application depends on the type of the input.

In order to derive such a type, the type system must deduce that whenever the condition tested
by the if holds, then x is of type Truthy and, therefore, (𝑖) that all occurrences of x in the “then”
branch (here just one) have type Truthy and (𝑖𝑖) that all the occurrences of the same variable x in
the branch “else” (here none) have thus type Falsy. This kind of deduction is usually referred as
type narrowing or occurrence typing since it requires to “narrow” the type of a variable x differently
for its different occurrences. A type system such as the one for Typed Racket—defined in [Tobin-
Hochstadt and Felleisen 2010] where the term occurrence typing was first introduced—is able to
check that lOr has the type in (1), meaning that the deduction requires the programmer to explicitly
specify the type in the code. The system by Castagna et al. [2022b] makes a step further, since not
only it can check that lOr has the type in (1), but also it can reconstruct for lOr the intersection
type ((Truthy,Any) → Truthy) ∧ ((Falsy,Any) → Any) which, although it is less precise a type
than (1), it is inferred from the code of lOr as is, without needing any type annotation. This latter
work constitutes the state of the art of this kind of inference, since it is the only system that can
reconstruct intersections of arrow types.
In this work we go a step further, and show how to infer (i.e., reconstruct) intersections of

polymorphic function types. In particular, the system we present here reconstructs for lOr the
following first order polymorphic type (where 𝛼 and 𝛽 are type variables):2

∀𝛼, 𝛽 . ((𝛼∧Truthy,Any) → 𝛼∧Truthy) ∧ ((Falsy, 𝛽) → 𝛽) (2)

This type completely specifies the semantics of the function lOR: it states that if the first argument
is a Truthy, then the application of the function returns the first argument,3 otherwise it returns
the second argument. This type is more precise than the one in (1), since it allows the system to
deduce that, say, if the first argument of lOR is an object, then the result will be an object of the
same type (rather than just a truthy value). Not only does the system we present here infers such
a precise type, but this kind of precision is compositional, yielding an accurate type also for the
expressions in which the function is used. For instance, if we define the following function:

4 function id (x) {
5 return lOR(x, x)
6 }

then, as we explain later on, our system infers that id has type ∀𝛼.𝛼 → 𝛼 , viz., that id is indeed
the polymorphic identity function.
This is clearly better than the current state of the art. Still, it does not seem too hard a feat to

deduce that if we are testing whether x is a truthy value, then when the test succeeds we can assume
that x is of type Truthy. To show the more advanced capabilities of our system let us have a look
at how ECMAScript specifies the semantics of JavaScript logical operators, as defined in the 2021

2This type can be considered as an encoding of ∀(𝛼 ≤ Truthy) .∀(𝛽) . ( (𝛼,Any) → 𝛼) ∧ ( (Falsy, 𝛽) → 𝛽) a type expressed
in so-called bounded polymorphism: see Castagna [2023a, Section 2].
3Strictly speaking, the type states that the function returns a result of the same type as the first argument, but by parametricity
we can deduce that the result will be the first argument. Likewise for the second argument. A simple way to understand it,
is by instantiating both type variables in (2) with the singleton type of the (value result of the) argument.
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version of the specification [Ecma 2021, Section 13.13.1]. Since in JavaScript there are no union or
intersection types, then the falsy and truthy values are defined via an (abstract) function ToBoolean
which simply checks whether its argument is one of the 8 falsy values and returns false, otherwise
it returns true (see its definition in row 1 of Table 1 in Section 5). In our system, ToBoolean has
type (Truthy → true) ∧ (Falsy → false). All logical operators are then defined by ECMAScript
in terms of this function: this has the advantage that any change to the specification of falsy (e.g.,
the addition of a new falsy value, like the addition of the built-in bigint type and its constant 0n
in ES2020) requires only the modification of this function, and is automatically propagated to all
operators. So the actual definition of lOr for ECMAScript is the following one:
7 function lOr (x, y) {
8 if (ToBoolean(x)) { return x; } else { return y; }
9 }

If we feed this function to our system, then it infers for it the type in (2), that is, the same type
it already deduced for the simpler version of lOr defined in lines 1-3. But here the deduction
needed to perform type narrowing is more challenging, since the system must deduce from the
type (Truthy → true) ∧ (Falsy → false) of ToBoolean that when the application in line 8 returns
a truthy value, then the argument of ToBoolean is of type Truthy, and it is of type Falsy otherwise.
More generally, we need a system which, when a test is performed on an arbitrarily complex
application, can narrow the type of all the variables occurring in the application by exploiting
the information provided by the overloaded behavior of the functions therein. Achieving such a
degree of precision is a hard feat but, we argue, it is necessary if we want to reconstruct types for
dynamic languages, that is, if we want to type their programs as they are, without requiring the
addition of any type annotations. Indeed, the core operators of these languages (e.g., JavaScript’s
“||”, “&&”, “typeof”, . . . ) are characterized by an “overloaded” behavior, which is then passed over
to the functions that use them. So for instance a simple use of JavaScript logical or “||” such as
in (x => x || 42) results in a function whose precise type, as reconstructed by our system, is
(Falsy → 42) ∧ (Truthy ∧ 𝛼 → Truthy ∧ 𝛼). JavaScript functions also routinely perform dynamic
checks against constants (notably null and undefined), which our system also handles as part of
its more general approach to type narrowing of arbitrary expressions.

1.1 Outline
Type System (Section 2). So, how can we achieve all this? Conceptually, it is quite simple: we

just merge together three of the most expressive type systems studied in the literature, namely the
Hindley-Milner (HM) polymorphic types [Hindley 1969; Milner 1978], intersection types [Coppo
et al. 1981], and union types [Barbanera et al. 1995; MacQueen et al. 1986]. We achieve it simply by
putting together in a controlled way the deduction rules characteristic of each of these systems
(see Figure 2 in Section 2) and proving that the resulting system is sound (cf., Theorem 2.2).

More precisely, the type system we describe in Section 2 is pretty straightforward. Its core
is a classic HM system with first order polymorphism: a program is a list of let-bindings that
define polymorphic functions; these are typed by inferring a type for the expressions that define
them, this type is then generalized, yielding a prenex polymorphic type for the function. As usual,
the deduction of the type of each of these expressions is performed in a type environment that
records the generic types for the previously-defined polymorphic functions, and the type system
can instantiate these types differently for each use of the polymorphic functions in the expression.
The novelty of our system is that when deducing the types of the expressions that define the
polymorphic functions, the type system can use not only instantiations of polymorphic types
(rule [Inst] in Figure 2), but also intersection and union types. More precisely, to type these
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expressions the type system can decide to use the classic rules of intersection introduction (rule
[∧]) and union elimination (rule [∨]) given in Figure 2. For instance, the intersection introduction
rule is used by the system to deduce that since the function lOr (either versions) has both type
((𝛼∧Truthy,Any) → 𝛼∧Truthy) and type ((Falsy, 𝛽) → 𝛽), then it has their intersection, too; this
intersection type is then generalized (when lOr is defined at top-level) yielding the polymorphic type
in (2). The union elimination rule is essentially used to fine-grainedly type branching expressions
and tests involving applications of overloaded functions: for instance, to deduce that the function id
in lines 4–6 has type 𝛼 → 𝛼 , the system can assume that x has type 𝛼 and separately infer the type
of the body for x : (𝛼∧Truthy) and for x : (𝛼∧¬Truthy); since the first deduction yields (𝛼∧Truthy)
and the second yields (𝛼∧¬Truthy), then the system deduces that under the hypothesis x : 𝛼 ,
the body has the union of these two types, that is 𝛼 . Furthermore, as observed by Castagna et al.
[2022b], the combination of the union elimination with the rules of type-cases given in Figure 2
constitutes the essence of narrowing and occurrence typing.
The declarative type system given in Section 2 is all well and good, but how can we define

an algorithm that infers whether a given expression can be typed in this system? Rules such as
union elimination and intersection introduction are easy to understand, but they do not easily lend
themselves to an implementation. In order to arrive to an effective implementation of the type
system specified in Section 2 we proceed in two steps: (𝑖) the definition of an algorithmic system
and (𝑖𝑖) the definition of a reconstruction algorithm.

Algorithmic System (Section 3). The first step towards an effective implementation of our type
system is taken in Section 3 where we define an algorithmic system that is sound and complete with
respect to the system of Section 2. The system is algorithmic since it is composed only by syntax-
directed and analytic rules4 and, as such, is immediately implementable. It is sound and complete
since an expression is typable in it if and only if it is typable in the system of Section 2. To obtain this
results the system is defined on pairs formed by an MSC-form (Maximal Sharing Canonical form)
and an annotation tree. MSC-forms are A-normal forms [Sabry and Felleisen 1992] on steroids: they
are lists of bindings associating variables to expressions in which every proper subexpression is a
variable. Their characteristic is that they encode expressions and preserve typability in the sense
that every expression is typable if and only if its unique MSC-form is typable. MSC-forms were
introduced by Castagna et al. [2022b] to drastically reduce the range of possible applications of
the union elimination rule; here we improve their definition to deal with our polymorphic setting
and use them for exactly the same reason as in [Castagna et al. 2022b]. Annotation trees encode
canonical derivations of the system of Section 2 for the MSC-form they are paired with. They are a
generalization of type annotations inserted in the code. Instead of annotating directly an MSC-form
with type-annotations we used a separate annotation tree because of the union elimination rule
which types several times the same expression under different type environments; this would, thus,
require different annotations for the same subexpressions, each annotation depending on the typing
context: this naturally yields to tree-shaped annotations in which each branching corresponds either
to the different deductions performed by a union elimination rule or to the different deductions
performed by an intersection introduction rule. The soundness and completeness properties of the
algorithmic systems are thus stated in terms of MSC-forms and annotation trees. They essentially
state that an expression 𝑒 has type 𝑡 in the declarative system of Section 2 if and only if there exists
a tree annotation for the (unique) MSC-form of 𝑒 that is typable in the algorithmic system with (a
subtype of) 𝑡 : see Theorem 3.4.

4A rule is analytic (as opposed to synthetic) when the input (i.e., Γ and 𝑒) of the judgment at the conclusion is sufficient to
determine the inputs of the judgments at the premises (cf. [Martin-Löf 1994; Types 2019]).
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Reconstruction Algorithm (Section 4). The second of the two steps to achieve an effective imple-
mentation for the type system of Section 2 is to define a reconstruction algorithm for the previous
algorithmic system, which we do in Section 4. The statements of the soundness and completeness
properties of the algorithmic system clearly suggest what this algorithm is expected to do: given
an expression that defines a polymorphic function, the algorithm must transform it into its unique
MSC-form and then try to reconstruct an annotation tree for it so that the pair MSC-form and
annotation tree is typable in the algorithmic system of Section 3.
The reconstruction is performed by a system of deduction rules that incrementally refines an

annotation tree (initially composed of a single node “infer”) while exploring the list of bindings of
the MSC-form of the expression to type. It mixes two independent mechanisms: one that infers the
domain(s) of 𝜆-terms, and the other that performs type narrowing when a typecase is encountered.
The first mechanism is inspired by the algorithm W by Damas and Milner [1982]: whenever

the application of a destructor (e.g., a function application) is encountered, an algorithm finds a
substitution (if any) that makes this application well-typed. In the context of a HM type system,
the algorithm at issue needs to solve a unification problem (i.e., whether for two given types 𝑠
and 𝑡 there exists a substitution 𝜎 such as 𝑠𝜎 = 𝑡𝜎) which, if solvable, has a principal solution
given by a single substitution [Robinson 1965]. In our system, which is based on subtyping, the
algorithm at issue needs to solve a tallying problem (i.e., whether for two given types 𝑠 and 𝑡 there
exists a substitution 𝜎 such as 𝑠𝜎 ≤ 𝑡𝜎) which, if solvable, has a principal solution given by a

finite set of substitutions [Castagna et al. 2015]. When multiple substitutions are found, they are
all considered and explored in different branches by adding an intersection branching node in the
current annotation tree.

The second mechanism gets inspiration from Castagna et al. [2022b] and refines decompositions
made by the union-elimination rule in order to narrow the types of variables in the branches of a
typecase expression. When the system encounters a typecase that tests whether some expression 𝑒
has type 𝑡 , then the type 𝑠 of the variable bound to 𝑒 (recall that an MSC-form is a list of bindings) is
split into 𝑠∧𝑡 and 𝑠∧¬𝑡 , and these splits are in turn propagated recursively in order to generate new
splits for the types of the variables associated with the subexpressions composing 𝑒 . For instance,
when the algorithm encounters the test “if (ToBoolean(x))...” at line 8, it splits the type of (the
variable bound to) ToBoolean(x) in two, by intersecting it with true and ¬true, and this split in
turn generates a new split Truthy and Falsy for the type of the variable x.
The reconstruction algorithm we present in Section 4 is sound: if it returns an annotation tree

for an MSC-form, then the pair is typable in the algorithmic system, whose soundness implies that
the expression at the origin of the MSC-form is typable in the system of Section 2. At this point,
however, it should be pretty obvious that such a reconstruction algorithm cannot be complete.
Our system merges three well known systems: first-order parametric polymorphism, intersection
types, union elimination. Now, even if parametric polymorphism is decidable, in our system we can
encode (and type, via intersection types) polymorphic fixed-point combinators, yielding a system
with polymorphic recursion whose inference has been long known to be undecidable [Henglein
1993; Kfoury et al. 1993]. Worse, our system includes union elimination, which is one of the most
problematic rules from an algorithmic viewpoint, not only because it is neither syntax directed
nor analytic, but also because determining an inversion (a.k.a., generation) lemma for this rule is
considered by experts the most important open problem in the research on union and intersection
types [Dezani 2020], and an inversion lemma is somehow the first step to define a type-inference
algorithm, since it tells us when and how to apply the rule. We discuss in detail the reasons and
implications of incompleteness in Section 4.4.

Despite being incomplete, our reconstruction algorithm is powerful enough to handle both com-
plicated typing use-cases and common programming patterns of dynamic languages. For instance,
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for the 𝑍 fixed-point combinator for strict languages 𝑍 = 𝜆𝑓 .(𝜆𝑥.𝑓 (𝜆𝑣.𝑥𝑥𝑣)) (𝜆𝑥.𝑓 (𝜆𝑣.𝑥𝑥𝑣)) our
algorithm reconstructs the type ∀𝛼, 𝛽,𝛾 .((𝛼→𝛽) → ((𝛼→𝛽)∧𝛾)) → ((𝛼→𝛽)∧𝛾)) (i.e., in bounded
polymorphic notation ∀(𝛼) (𝛽) (𝛾 ≤ 𝛼→𝛽).((𝛼→𝛽) → 𝛾) → 𝛾 , cf. Footnote 2). The combinator
can then be used as is, to define and infer the type of classic polymorphic functions such as map,
fold, concat, reverse, etc., often yielding types more precise than in HM: for instance if we use
[𝛼∗] to denote the type of the lists whose elements have type 𝛼 , then the type inferred for (a
curried version of) fold_r is ∀𝛼, 𝛽,𝛾 .((𝛼→𝛽→𝛽) → 𝛽 → [𝛼∗] → 𝛽) ∧ (Any → 𝛾 → [ ] → 𝛾)
where the second type in the intersection states that if the third argument is an empty list, then
the result will be the second argument, whatever the type of the first argument is. Finally, we
designed our algorithm so that it can take into account explicit type annotations to help it in the
inference process. As an example, our algorithm can check that the classic filter function has
type ∀𝛼, 𝛽,𝛾 .((𝛼∧𝛽→Bool) ∧ (𝛼∧¬𝛽→False)) → [𝛼∗] → [(𝛼∧𝛽)∗], stating that if we pass to
filter a predicate that returns false for the elements of 𝛼 that are not in 𝛽 , then filtering a list of
𝛼 ’s will return only elements also in 𝛽 .

Sections 2, 3, and 4 outlined above constitute the core of our contribution. Section 5 presents our
implementation. In Section 6 we discuss related work and Section 7 concludes our presentation.
For space reasons we omitted in the main text some rules of the algorithmic and reconstruction
systems, as well as all proofs: they are all given in the appendix, available on line as supplemental
material.

1.2 Discussion, Contributions, and Limitations
Intersections vs. Hindley-Milner. It is a truth universally acknowledged that intersection type

systems are more powerful than HM systems: for that, one does not even need full intersections,
since Rank 2 intersections suffice. Rank 2 intersection types are types that may contain intersections
only to the left of a single arrow and the system of Rank 2 intersection types is able to type all ML
programs (i.e., all program typable by HM), has principal typings, decidable type inference, and the
complexity of type inference is of the same order as in ML [Leivant 1983].

However, intersection type systems are not compositional, and this hinders their use in a modular
setting. A program that uses the polymorphic identity function to apply it to, say, an integer
and a Boolean, type checks since we can infer that the polymorphic identity function has type
(Int→Int)∧(Bool→Bool). But if we want to export this polymorphic identity function to use it in
other unforeseen contexts, then we need for it a type that covers all its admissible usages, without
the need of retype-checking the function every time it is applied to an argument of a new type. In
other words, in a modular usage, parametric polymorphism has an edge over intersection/ad-hoc
polymorphism despite being less powerful, since a type such as ∀𝛼.𝛼→𝛼 synthesizes the infinitely
many combinations of intersection types that can be deduced for the identity function; however
in a local setting, everything that does not need to be exported can be finer-grainedly typed by
intersection types. This division of roles and responsibilities is at the core of our approach. As
we show in the next section, programs are lists of bindings from variables to expressions. These
expressions are typed in a type environment (generated by the preceding bindings) which binds
variables to polymorphic types. These expressions are typed by using instantiation, intersection
introduction, and union elimination, but not generalization. Generalization is performed only at
top level, that is at the level of programs and reserved to expressions to be used in other contexts.

Parametricity vs. type cases. A parametric polymorphic function (a.k.a., a generic function) is a
function that behaves uniformly for all possible types of its arguments, that is, whose behavior
does not depend on the type of its arguments. A common way to characterize a generic function is
that it is a function that cannot inspect the parametric parts of its input, that is, those parts that are
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typed by a type variable: these parts can only be either returned as they are, or discarded, or passed
to another generic function. Our approach suggests refining this characterization by shifting the
attention from inputs as a whole to some particular values among all the possible inputs. This can
be seen by comparing the following two function definitions:

𝜆𝑥 .(𝑥∈Int) ?𝑥 :𝑥 𝜆𝑥 .(𝑥∈Int) ?𝑥 + 1 :𝑥
Both functions test whether their input is an integer. The function on the right-hand side returns
the successor of the argument when this is true and the argument itself otherwise; the one on the
left-hand side returns its argument in both cases, that is, it is the identity function.
Our system deduces for the function on the left the type 𝛼 → 𝛼 .5 For the function on the

right it returns the type (Int → Int) ∧ (𝛼∖Int → 𝛼∖Int), where 𝑠∖𝑡 denotes the set-theoretic
difference of the two types, that is, 𝑠∧¬𝑡 . These two types suggest how we can refine the intuitive
characterization of parametricity. A generic function can inspect the parametric part of its input
(as the function on the left-hand side shows) and its output can depend on this inspection (as
the function on the right-hand side shows), but the parts of its output that are typed by a type
variable—i.e., the “parametric” parts—cannot depend on it. We can speak of “partial” parametricity,
and say that a function is parametric “only” for the inputs (or parts thereof) that are either returned
unchanged or discarded: the type variables in its type describe such inputs. For instance, the domain
of both the functions above is Any: they both can be applied to any argument. But the first function
is parametric for all possible inputs, since the result of the inspection is not used to produce any
particular output (it has type ∀𝛼.𝛼 → 𝛼), while the second function is parametric only for the
values of its domain that are not in Int, since it uses the result of the inspection to generate the
result for the integer inputs (by subsumption, the second function has type ∀𝛼. 𝛼 → Int∨(𝛼∖Int):
parametricity holds only for the arguments not in Int).

Contributions. The general contribution of our work is twofold. First, it proposes a way to mix
parametric and intersection/ad-hoc polymorphism which, in hindsight, is natural: parametric
polymorphism for everything defined at top-level and that can thus be used in other contexts
(modularity); intersection polymorphism for everything that remains local (for which we can thus
use more precise non-modular typing). Second, it proposes an effective way to implement this
type discipline by defining a reconstruction algorithm; with respect to that, a fundamental role is
played by the analysis of the (type-)tests performed by the expressions, since they drive the way in
which types are split: externally, to split the domain of functions yielding intersection of arrows
(intersection introduction); internally, to split the type of tested expressions, yielding a precise
typing of branching (union elimination). In doing so, it provides the first system that reconstructs
types that oncombine parametric and ad hoc polymorphism.
The technical contributions of the work can be summarized as follows:
(1) We define a type system that combines parametric polymorphism with union and intersec-

tion types for a functional calculus with type-cases and prove its soundness.
(2) We define an algorithmic system that we prove sound and complete with respect to the

previous system.
(3) We define an algorithm to reconstruct the type annotations of the previous algorithmic

system and prove it sound and terminating.
The reconstruction algorithm is fully implemented. A prototype which also implements optional
type annotations and pattern matching (presented in Appendix A) is available on-line at https:
//www.cduce.org/dynlang, and whose sources are on Zenodo: [Castagna et al. 2023b].

5Precisely, it deduces for it the type (𝛼∧Int → 𝛼∧Int) ∧ (𝛽∖Int → 𝛽∖Int) . Instantiating 𝛽 to 𝛼 yields a subtype of 𝛼 → 𝛼 .

https://www.cduce.org/dynlang
https://www.cduce.org/dynlang
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Limitations. The system we present here has some limitations. Foremost, the reconstruction
algorithm of Section 4 uses backtracking, and at each of its passes it may try to type the same piece
of code several times. Backtracking is inherent to our algorithm, since it proceeds by successively
refining in different passes, the annotation tree of an MSC-form. The checking of a same piece
of code several times at each pass is inherent to the use of unions and intersections: the union-
elimination rule repeatedly type-checks the same expression, using different type hypotheses for a
given sub-expression; the intersection-introduction rule verifies that an expression has all the types
of an intersection, by checking each of them separately. Both features are very penalizing in terms of
performance, and any naive implementation of the reconstruction described in Section 4 would yield
type-inference times that grow exponentially with the size of the program. Clearly, this is an issue
that must be addressed if we want to apply our system to real-world dynamic languages, and further
work is needed to frame and/or constrain the current system so that its performance becomes
acceptable. Fortunately, the room for improvement is significant: our prototype is an unoptimized
proof of concept whose implementation was defined to faithfully simulate the reconstruction
inference rules, rather than to obtain an efficient execution; but the simple addition of textbook
memoization techniques improved its performance by an order of magnitude (cf. Section 5).
A second limitation of our system is that it is not sound in the presence of side-effects. The

algorithm transforms an initial expression into its Maximal Sharing Canonical form, which is a list
of bindings, one for each sub-expression of the initial expression. As we explain in Section 3.1.2,
these forms are called “maximal sharing” since all equivalent sub-expressions (in the sense stated by
Definition 3.1) of the initial expression must be bound by the same variable, so that any refinement
of the type of one sub-expression (e.g., as a consequence of a type-case) is passed-through to
all equivalent sub-expressions. However, this is sound only if all evaluations of equivalent sub-
expressions return results that have the same types. While this is true for pure expressions, this can
be invalidated by the presence of side-effects. In Section 7 we suggest some research directions on
how to modify the equivalence relation of Definition 3.1 to make our system work in the presence
of side-effects. Nevertheless, the work presented here is closer to be adapted/adaptable to pure
functional languages such as Erlang and Elixir, than to languages such as JavaScript or Python.

Finally, it may be worth pointing out that our approach works only for strict languages, since it
uses a semantic subtyping relation that is unsound for call-by-name evaluation strategies [Petruc-
ciani et al. 2018].

2 SOURCE LANGUAGE AND TYPE SYSTEM
2.1 Syntax and Semantics
Our core language is fully defined in Figure 1. Expressions are an untyped 𝜆-calculus with constants
𝑐 , pairs (𝑒, 𝑒), pair projections 𝜋𝑖𝑒 , and type-cases. A type-case (𝑒0∈𝜏) ? 𝑒1 : 𝑒2 is a dynamic type
test that first evaluates 𝑒0 and, then, if 𝑒0 reduces to a value 𝑣 , evaluates 𝑒1 if 𝑣 has type 𝜏 or 𝑒2
otherwise. Type-cases cannot test arbitrary types but just ground types (i.e., types without type
variables occurring in them) of the form 𝜏 where the only arrow type that can occur in them is
0 → 1, the type of all functions. This means that type-cases can distinguish functions from other
values but they cannot distinguish, say, functions that have type Int→Int from those that do not.

Programs are sequences of top-level definitions, ending with an expression that can be seen as
the main entry. This notion of program is useful to capture the modularity of our type system.
Indeed, top-level definitions are typed sequentially: the type we obtain for a top-level definition is
considered definitive and will not be challenged by a later definition.

The reduction semantics for expressions is the one of call-by-value pure 𝜆-calculus with products
andwith a type-case expression, together with the context rules that implement a leftmost outermost
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Syntax

Test Type 𝜏 ::= 𝑏 | 0 → 1 | 𝜏 × 𝜏 | 𝜏 ∨ 𝜏 | ¬𝜏 | 0

Expression 𝑒 ::= 𝑐 | 𝑥 | 𝜆𝑥 .𝑒 | 𝑒𝑒
| (𝑒, 𝑒) | 𝜋𝑖𝑒 | (𝑒∈𝜏) ? 𝑒 : 𝑒

Value 𝑣 ::= 𝑐 | 𝜆𝑥 .𝑒 | (𝑣, 𝑣)
Program 𝑝 ::= let𝑥 = 𝑒 ;𝑝 | 𝑒

Reduction rules

(𝜆𝑥 .𝑒)𝑣 { 𝑒{𝑣/𝑥}
𝜋1 (𝑣1, 𝑣2) { 𝑣1
𝜋2 (𝑣1, 𝑣2) { 𝑣2

(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒1 if 𝑣 ∈ 𝜏
(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒2 if 𝑣 ∈ ¬𝜏
let𝑥 = 𝑣 ;𝑝 {Pr 𝑝{𝑣/𝑥}

Dynamic type test

𝑣 ∈ 𝜏 ⇔ typeof (𝑣) ≤ 𝜏 , where


typeof (𝑐) = b𝑐

typeof ((𝑣1, 𝑣2)) = typeof (𝑣1) × typeof (𝑣2)
typeof (𝜆𝑥 .𝑒) =0 → 1

Evaluation Contexts

𝐸 ::= [ ] | 𝐸𝑒 | 𝑣𝐸 | (𝐸, 𝑒) | (𝑣, 𝐸) | 𝜋𝑖𝐸 | (𝐸∈𝜏) ? 𝑒 : 𝑒
𝑃 ::= [ ] | let𝑥 = [] ; 𝑝

𝑒 { 𝑒 ′

𝐸 [𝑒] { 𝐸 [𝑒 ′]
𝑒 { 𝑒 ′

𝑃 [𝑒] {Pr 𝑃 [𝑒 ′]

Fig. 1. Syntax and semantics of the source language

reduction strategy. We use the standard substitution operation 𝑒{𝑒 ′/𝑥} that denotes the capture
avoiding substitution of 𝑒 ′ for 𝑥 in 𝑒 , whose definition we recall in Appendix B. The relation 𝑣 ∈ 𝜏
determines whether a value is of a given type or not and holds true if and only if typeof (𝑣) ≤ 𝜏 ,
where ≤ is the subtyping relation defined by Castagna and Xu [2011] (we recall its definition in
Appendix C). Note that typeof (𝑣) maps every 𝜆-abstraction to 0 → 1 and, thus, dynamic type tests
do not depend on static type inference. This approximation is allowed by the restriction on arrow
types in typecases. Finally, the reduction semantics for programs sequentially reduces top-level
definitions, together with a context rule that allows reducing the expression of the first definition.

2.2 Types
Types are those by Castagna and Xu [2011] who add type variables to the semantic subtyping
framework of Frisch et al. [2002, 2008].

Definition 2.1 (Types). The set of types Types is formed by the terms 𝑡 coinductively produced

by the grammar:

Types 𝑡, 𝑠 ::= 𝑏 | 𝛼 | 𝜶 | 𝑡 → 𝑡 | 𝑡 × 𝑡 | 𝑡 ∨ 𝑡 | ¬𝑡 | 0

and that satisfy the following conditions: (𝑖) every term has a finite number of different sub-terms

(regularity) and (𝑖𝑖) every infinite branch of a term contains an infinite number of occurrences of the

arrow or product type constructors (contractivity).

We use the abbreviations 𝑡1 ∧ 𝑡2 =
def ¬(¬𝑡1 ∨¬𝑡2), 𝑡1 ∖ 𝑡2 =

def
𝑡1 ∧ (¬𝑡2), and 1 =

def ¬0. Basic types (e.g.,
Int, Bool) are ranged over by 𝑏, 0 and 1 respectively denote the empty (that types no value) and
top (that types all values) types. Coinduction accounts for recursive types and the condition on
infinite branches bars out ill-formed types such as 𝑡 = 𝑡 ∨ 𝑡 (which does not carry any information
about the set denoted by the type) or 𝑡 = ¬𝑡 (which cannot represent any set).
For what concerns type variables, we choose not to use type-schemes but rather distinguish

two kinds of type variables. Polymorphic type variables ranged over by 𝛼 , are type variables that
have been generalized and can therefore be instantiated. In a more traditional presentation, such
variables are bound by the ∀ of a type-scheme ; the set of polymorphic variables isV𝑃 .Monomorphic

type variables, ranged over by 𝜶 (with bold font), are variables that are not generalized and
therefore cannot be instantiated; the set of monomorphic variables is V𝑀 . Types that only contain
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monomorphic variables are dubbed monomorphic types6:
Monomorphic types u, v ::= 𝑏 | 𝜶 | u → u | u × u | u ∨ u | ¬u | 0

Our choice of using two disjoint sets for polymorphic and monomorphic type variables, instead
of the classical approach of using type schemes ∀𝛼1...𝛼𝑛 .𝑡 , is justified by two reasons. First, type
schemes are expected to be equivalent modulo 𝛼-renaming. In our case however, we do not want
polymorphic type variables to be freely renamed because of the use, in the algorithmic type system
of Section 3, of external annotations containing explicit substitutions over some polymorphic type
variables of the context. Secondly, introducing type schemes would require redefining many of the
usual set-theoretic type-related definitions, such as the subtyping relation ≤, and the type operators
for application ◦ and projections 𝜋𝑖 . Instead, we obtain a more streamlined theory by making
subtyping and these operators ignore whether a variable is polymorphic or monomorphic in the
current context, and by explicitly performing instantiations in the type system when required.
The subtyping relation for these types, noted ≤, is the one defined by Castagna and Xu [2011],

to which the reader may refer for the formal definition (cf. Appendix C). For this presentation, it
suffices to consider that ground types (i.e., types with no variables) are interpreted as sets of values
that have that type, and that subtyping is set containment (i.e., a type 𝑠 is a subtype of a type 𝑡 if and
only if 𝑡 contains all the values of type 𝑠). In particular, 𝑠 → 𝑡 contains all 𝜆-abstractions that when
applied to a value of type 𝑠 , if their computation terminates, then they return a result of type 𝑡 (e.g.,
0 → 1 is the set of all functions and 1 → 0 is the set of functions that diverge on every argument).
Type connectives (i.e., union, intersection, negation) are interpreted as the corresponding set-
theoretic operators. For what concerns non-ground types (i.e., types with variables occurring in
them) all the reader needs to know for this work is that the subtyping relation of Castagna and Xu
[2011] is preserved by type-substitutions. Namely, if 𝑠 ≤ 𝑡 , then 𝑠𝜎 ≤ 𝑡𝜎 for every type-substitution
𝜎 . We use ≃ to denote the symmetric closure of ≤, thus 𝑠 ≃ 𝑡 (read, 𝑠 is equivalent to 𝑡 ) means that
𝑠 and 𝑡 denote the same set of values and, as such, they are semantically the same type.

2.3 Type System
Our type system is given in full in Figure 2. The typing rules for expressions are, to some extent,
the usual ones. Constants and variables are typed by the corresponding axioms [Const] and
[Ax]. The arrow and product constructors have introduction and elimination rules. Notably, in the
case of rule [→I] the type of the argument is monomorphic. The rules for intersection ([∧]) and
subtyping ([≤]) are the classical ones, and so is the rule for instantiation ([Inst]) where 𝜎 denotes
a substitution from polymorphic variables to types. The type-case construction is handled by three
rules: [0]; [∈1]; [∈2] . Rule [0] handles the case where the tested expression is known to have the
empty type. The other two are symmetric and handle the case when the tested expression is known
to have either the type 𝜏 or its negation, in which case the corresponding branch is typed. These
rules work together with Rule [∨], which we describe in detail next.

At first sight, the formulation of rule [∨] seems odd, since the ∨ connector does not appear in it.
To understand it, consider the classic union elimination rule by MacQueen et al. [1986]:

[∨E]
Γ ⊢ 𝑒 ′ : 𝑠1∨𝑠2 Γ, 𝑥 : 𝑠1 ⊢ 𝑒 : 𝑡 Γ, 𝑥 : 𝑠2 ⊢ 𝑒 : 𝑡

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡
6The term polytypes and monotypes can be found (albeit inconsistently) in the literature: in particular, Milner [1978] uses
the latter to denote types with no type variables and the former when he wishes to imply that a type may, or does, contain
a variable. We avoided using them to prevent any confusion with our monomorphic types. While our types are indeed
polytypes, our monomorphic types are not monotypes: monotypes do not have type variables while monomorphic types
may have type variables, though only monomorphic ones. So we used instead types (which may have type variables), ground
types (which cannot have any type variable), and monomorphic types (which may have monomorphic type variables, only).
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[Const]
Γ ⊢ 𝑐 : b𝑐

[Ax]
Γ ⊢ 𝑥 : Γ(𝑥)

[→I]
Γ, 𝑥 : u ⊢ 𝑒 : 𝑡

Γ ⊢ 𝜆𝑥.𝑒 : u → 𝑡
[→E]

Γ ⊢ 𝑒1 : 𝑡1 → 𝑡2 Γ ⊢ 𝑒2 : 𝑡1
Γ ⊢ 𝑒1𝑒2 : 𝑡2

[×I]
Γ ⊢ 𝑒1 : 𝑡1 Γ ⊢ 𝑒2 : 𝑡2

Γ ⊢ (𝑒1, 𝑒2) : 𝑡1 × 𝑡2
[×E1]

Γ ⊢ 𝑒 : 𝑡1 × 𝑡2
Γ ⊢ 𝜋1𝑒 : 𝑡1

[×E2]
Γ ⊢ 𝑒 : 𝑡1 × 𝑡2
Γ ⊢ 𝜋2𝑒 : 𝑡2

[0]
Γ ⊢ 𝑒 : 0

Γ ⊢ (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 0
[∈1]

Γ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝑒1 : 𝑡1
Γ ⊢ (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡1

[∈2]
Γ ⊢ 𝑒 : ¬𝜏 Γ ⊢ 𝑒2 : 𝑡2
Γ ⊢ (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡2

[∨]
Γ ⊢ 𝑒 ′ : 𝑠 Γ, 𝑥 : 𝑠 ∧ u ⊢ 𝑒 : 𝑡 Γ, 𝑥 : 𝑠 ∧ ¬u ⊢ 𝑒 : 𝑡

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡
[∧]

Γ ⊢ 𝑒 : 𝑡1 Γ ⊢ 𝑒 : 𝑡2
Γ ⊢ 𝑒 : 𝑡1 ∧ 𝑡2

[Inst]
Γ ⊢ 𝑒 : 𝑡
Γ ⊢ 𝑒 : 𝑡𝜎

[≤]
Γ ⊢ 𝑒 : 𝑡
Γ ⊢ 𝑒 : 𝑡 ′

𝑡 ≤ 𝑡 ′

Fig. 2. Declarative Type System

Rule [∨E] types an expression that contains occurrences of an expression 𝑒 ′ that has a union type
𝑠1 ∨ 𝑠2; the rule substitutes in this expression some occurrences of 𝑒 ′ by the variable 𝑥 yielding
an expression 𝑒 , and then types 𝑒 first under the hypothesis that 𝑥 has type 𝑠1 and then under
the hypothesis that 𝑥 has type 𝑠2. If both succeed, then the common type is returned for the
expression at issue. As shown by Castagna et al. [2022b], this rule, together with the rules for
type-cases, allows the system to perform occurrence typing. For instance, consider the expression
(𝑓 𝑦∈Int) ? (𝑓 𝑦) + 1 : false, in the context where 𝑓 has type Any→Any and 𝑦 is of type Any. This
expression can be typed thanks to the rule [∨E], by considering the sub-expression 𝑓 𝑦. This sub-
expression has type Any, which can be seen as the union type Any ≃ Int∨¬Int. We can then replace
𝑥 for 𝑓 𝑦 and type, using [∈1], the expression (𝑥∈Int) ?𝑥 + 1 : false, with 𝑥 : Int. This yields a
type Int (rule [∈1] ignores the second branch) and by subtyping, the expression has type Int∨False.
Likewise for the choice 𝑥 : ¬Int, using rule [∈2] the second branch has type False and therefore
Int∨False (again via subtyping). The whole expression has thus the desired type Int∨False.
A key element is that rule [∨E] guessed how to split the type Any of 𝑓 𝑦 into Int ∨ ¬Int. In

a non-polymorphic setting, this is perfectly fine. But in a type-system featuring polymorphism,
particular care must be taken when introducing (fresh) type variables. As it is stated, MacQueen et
al.’s [∨E] rule could choose to split, say, 1 into a union 𝛼 ∨ ¬𝛼 , with 𝛼 a polymorphic type variable.
If so, then the rule becomes unsound. As a matter of fact, the premises of the [∨E] behave as in
rule [→I], in that they introduce in the typing environment a fresh type whose variables must not
be instantiated. In our example, however, in one premise, the rule introduces 𝑥 : 𝛼 in the typing
environment which can, for instance, be instantiated by the [Inst] rule. In the second premise, it
introduces 𝑥 : ¬𝛼 which can also be instantiated in a completely different way. In other words,
the correlation between the two occurrences of the same variable 𝛼 is lost, which amounts to
commuting the (implicit) universal quantification with the ∨ type connective, yielding a non-prenex
polymorphic type (∀𝛼.𝛼) ∨ (∀𝛼.¬𝛼). To avoid this unsound situation, we need to ensure that when
a type is split between two components of a union, no polymorphic variable is introduced. This is
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achieved by rule [∨] which requires the type 𝑠 of 𝑒 ′ to be split as 𝑠 ≡ (𝑠 ∧ u) ∨ (𝑠 ∧ ¬u) (here is
our hidden union).

The top-level definitions of a program are typed sequentially by two specific rules:

[TopLevel-Expr]
Γ ⊢ 𝑒 : 𝑡

Γ ⊢Pr 𝑒 : 𝑡𝜙
𝜙#Γ [TopLevel-Let]

Γ ⊢Pr 𝑒 : 𝑡 Γ, 𝑥 : 𝑡 ⊢Pr 𝑝 : 𝑡 ′

Γ ⊢Pr let𝑥 = 𝑒 ;𝑝 : 𝑡 ′

where 𝜙 denotes a generalization, that is a substitution transforming monomorphic variables into
polymorphic ones and where 𝜙#Γ ⇐⇒def dom(𝜙) ∩ vars(Γ) = ∅.

After typing an expression used for a definition, its type is generalized (Rule [Toplevel-Expr])
before being added in the environment (Rule [Toplevel-Let]). Note that this is the only place
where generalization takes place: no rule in the type system for expressions (Figure 2) allows the
generalization of a type variable. As explained at the beginning of Section 1.2, this is not a limitation,
since intersection types are more powerful than HM polymorphism, and top-level generalization
is of practical importance since it is necessary to the modularity of type-checking. Nevertheless,
the core of our inference system is given only by the rules in Figure 2 for expressions: the above
“TopLevel” rules are only useful to inhabit variables of the typing environments used in the rules for
expressions, and this makes it possible to close the expressions being typed. For instance, if a typing
derivation for an expression 𝑒 is deduced, say, under the hypothesis 𝑥 : 𝛼→𝛼 (with 𝛼 polymorphic),
then it is possible to obtain a closed program by inhabiting 𝑥 by a definition like let𝑥 = 𝜆𝑦.𝑦 ;... ; 𝑒 .
This is the reason why, henceforth, we mainly focus on the typing of expressions.

The type system is sound (all proofs for this work are given in Appendix I):

Theorem 2.2 (Soundess). If ∅ ⊢Pr 𝑝 : 𝜏 , then either 𝑝 diverges or 𝑝 {Pr 𝑣 with 𝑣 ∈ 𝜏 .

3 ALGORITHMIC SYSTEM
As discussed in the introduction, the declarative type system is not syntax directed and some rules
are not analytic. In order to make it algorithmic, we first introduce in Section 3.1 a canonical form
for expressions that adds syntactic constructions (bindings) to indicate when to apply the union
elimination rule and on which sub-expression. Then, in Section 3.2, we define a fully algorithmic
type system that takes a canonical form together with an annotation and produces a type.

3.1 MSC Forms
3.1.1 Canonical Forms. The [∨] rule is not syntax directed since it can be applied on any expression
and can split the type of any of its subexpressions. If we want an algorithmic type system, we need
a syntactic way to determine when to apply this rule, and which subexpression to split. In order to
achieve this, we represent our terms with a syntax called Maximal Sharing Canonical Form (MSC
Form) introduced by Castagna et al. [2022b]. Let us start by defining the canonical forms, which are
expressions produced by the following grammar:

Atomic expressions 𝑎 ::= 𝑐 | 𝑥 | 𝜆𝑥.𝜅 | (x, x) | xx | 𝜋𝑖x | (x∈𝜏) ? x : x
Canonical Forms 𝜅 ::= x | bind x =𝑎 in𝜅

Canonical forms, ranged over by 𝜅 , are binding variables (noted x, y, or z) possibly preceded by a list
of definitions (from binding variables to atoms). Atoms are either a variable from a 𝜆-abstraction
(noted 𝑥 , 𝑦, or 𝑧), or a constant, or a 𝜆-abstraction whose body is a canonical form, or any other
expression in which all proper sub-expressions are binding variables. An expression in canonical
formwithout any free binding variable can be transformed into an expression of the source language
using the unwinding operator ⌈.⌉ that basically inlines bindings: ⌈bind x =𝑎 in𝜅 ⌉ = ⌈𝜅⌉{⌈𝑎⌉/x}
(see Appendix E.1 for the full definition). The inverse direction, that is, producing from a source
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language expression a canonical form that unwinds to it, is straightforward (see Appendix E.2).
However for each expression of the source language there are several canonical forms that unwind
to it. For our algorithmic type system we need to associate each source language expression to a
unique canonical form, as we define next.

3.1.2 Maximal Sharing Canonical Forms. We define a congruence on canonical forms and atoms:

Definition 3.1 (Canonical eqivalence). We denote by ≡𝜅 the smallest congruence on canonical

forms and atoms that is closed by 𝛼-conversion and such that

bind x1 =𝑎1 in bind x2 =𝑎2 in𝜅 ≡𝜅 bind x2 =𝑎2 in bind x1 =𝑎1 in𝜅 x1∉fv(𝑎2), x2∉fv(𝑎1)

To infer types for the source language, we single out canonical forms satisfying three properties:

Definition 3.2 (MSC Forms). A maximal sharing canonical form (abbreviated as MSC-form) is

(any canonical form 𝛼-equivalent to) a canonical form 𝜅 such that:

(1) if bind x1 =𝑎1 in𝜅1 and bind x2 =𝑎2 in𝜅2 are distinct sub-expressions of 𝜅, then 𝑎1 ̸≡𝜅 𝑎2
(2) if 𝜆𝑥.𝜅1 is a sub-expression of 𝜅 and bind y =𝑎 in𝜅2 a sub-expression of 𝜅1, then fv(𝑎) ⊈ fv(𝜆𝑥.𝜅1)
(3) if bind x =𝑎 in𝜅 ′ is a sub-expression of 𝜅, then x ∈ fv(𝜅 ′).

MSC-forms are defined modulo 𝛼-conversion.7 The first condition states that distinct variables
denote different definitions, that is, it enforces the maximal sharing of common sub-expressions.
The second condition requires bindings to extrude 𝜆-abstractions whenever possible. The third
condition states that there is no useless bind (bound variables must occur in the body of the binds).
The key property of MSC-forms is that given an expression 𝑒 of the source language, all its

MSC-forms (i.e., all MSC-form whose unwinding is 𝑒) are equivalent:

Proposition 3.3. If 𝜅1 and 𝜅2 are two MSC-forms and ⌈𝜅1⌉ ≡𝛼 ⌈𝜅2⌉, then 𝜅1 ≡𝜅 𝜅2.

We denote the unique MSC-form whose unwinding is 𝑒 by MSC(𝑒). It is easy to transform a
canonical form into a MSC-form that has the same unwinding. The reader can refer to Appendix E
for a set of rewriting rules implementing this operation.

3.2 Algorithmic Typing Rules
MSC-forms tell us when to apply the [∨] rule: a term bind x =𝑎 in𝜅 means (roughly) that it must be
typed by applying the union rule to the expression 𝜅{𝑎/x}. Putting an expression into its MSC-form
to type it, thus corresponds to applying the [∨] rule on every occurrence of every subexpression of
the original expression. This is a step toward a syntax-directed type system. However, there are
still two issues to solve before obtaining an algorithmic type system: (𝑖) rules [∧], [Inst], and [≤]
are still not syntax-directed, and (𝑖𝑖) rules [∨], [Inst], [→I], and [≤] are not analytic, meaning that
some of their premises cannot be deduced just by looking at the conclusion: the [∨] rule requires
guessing a type decomposition (i.e., the monomorphic type u in the premises), the [Inst] rule
requires guessing a substitution, the [→I] rule requires guessing the domain u of the function, and
the [≤] rule requires guessing the type 𝑡 ′ to subsume to.

The issue of [Inst] and [≤] not being syntax directed can be solved by embedding them in some
structural rules (in particular, in the rules for destructors). Moreover, as we will see later, the rules
in which we embed [≤] can be made analytic by using some type operators. As for rule [∧], making
it syntax-directed, is trickier. Indeed, the usual approach of merging rules [→I] and [∧] does not
work here, since terms in MSC-forms may hoist a bind definition outside the function where they
7For instance, both 𝜆𝑥.bind x =𝑥 in bind z = xy in bind z′ = zy in z′ and 𝜆𝑥.bind x =𝑥 in bind z = xy in z are two distinct
atoms that can occur in the same MSC-form, even though the atom xy appears in both: an 𝛼-renaming of x makes the first
MSC-property hold.
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are used, causing rule [∧] to be needed on a term that is not, syntactically, a 𝜆-abstraction. Lastly,
there is no easy way to guess the substitutions used by [Inst] rules, or the domain used in [→I]
rules, or the decompositions performed by [∨] rules. To tackle these issues, our algorithmic type
system will not only take a canonical form as input, but also an annotation that will (𝑖) indicate
when to apply an intersection, and (𝑖𝑖) indicate which type decomposition (for [∨] rules) and which
type substitutions (for [Inst] rules) to use. Formally, our algorithmic system uses judgements of
the form Γ ⊢A [𝜅 | k] : 𝑡 for a canonical form 𝜅, and Γ ⊢A [𝑎 | a] : 𝑡 for an atom 𝑎 where k and a
are respectively form annotations and atom annotations defined as follows:

Atom annots a ::= ∅ | 𝜆(u, k) | (𝜌, 𝜌) | @(Σ, Σ) | 𝜋 (Σ) | 0(Σ) | ∈1 (Σ) | ∈2 (Σ) |
∧({a, ... , a})

Form annots k ::= 𝜌 | keep (a, {(u, k), . . . , (u, k)}) | skip k | ∧({k, . . . , k})
where 𝜌 ranges over renamings of polymorphic variables, that is, injective substitutions fromV𝑃 to
V𝑃 , and Σ ranges over instantiations, that is, sets of substitutions fromV𝑃 to Types. We chose to
keep annotations separate from the terms, instead of embedding them in the canonical forms, since
in the latter case it would be more complicated to capture the tree structure of the derivations.
The algorithmic system is defined by the rules given in Appendix G. Below we comment the

most interesting rules (we just omit the rules for constants, variables and two rules for type-cases).
Essentially, there is one typing rule for each annotation, the only exception being the ∅ annotation
that is used both in the rule to type constants and in the two rules for variables.

[→I-Alg]
Γ, 𝑥 : u ⊢A [𝜅 | k] : 𝑡

Γ ⊢A [𝜆𝑥 .𝜅 | 𝜆(u, k)] : u → 𝑡

To type the atom 𝜆𝑥 .𝜅, the annotation 𝜆(u, k) provides the domain u of the function, and the
annotation k for its body.

[→E-Alg]
Γ ⊢A [x1x2 | @(Σ1, Σ2)] : 𝑡1 ◦ 𝑡2

𝑡1 = Γ(x1)Σ1, 𝑡2 = Γ(x2)Σ2
𝑡1 ≤ 0 → 1, 𝑡2 ≤ dom(𝑡1)

To type an application one must apply an instantiation and a subsumption to both the type of the
function and the type of the argument. Instantiations (i.e., Σ1 and Σ2) are sets of type substitutions;
their application to a type 𝑡 is defined as 𝑡Σ =

def ∧
𝜎 ∈Σ 𝑡𝜎 . Since they cannot be directly guessed,

they are given by the annotation. Subsumption instead is embedded in two type operators. A first
operator, dom(), computes the domain of the arrow and is used to check that the application is
well-typed. A second type operator, ◦, computes the type of the result of the application. These type
operators are defined as follows: dom(𝑡) =

def max{𝑢 | 𝑡 ≤ 𝑢 → 1} and 𝑡 ◦ 𝑠 =
def min{𝑢 | 𝑡 ≤ 𝑠 → 𝑢}.

[×E1-Alg]
Γ ⊢A [𝜋1x | 𝜋 (Σ)] : 𝝅1 (𝑡)

𝑡 = Γ(x)Σ
𝑡 ≤ (1×1) [×E2-Alg]

Γ ⊢A [𝜋2x | 𝜋 (Σ)] : 𝝅2 (𝑡)
𝑡 = Γ(x)Σ
𝑡 ≤ (1×1)

The rules for projections [×E1-Alg] and [×E2-Alg] follow the same idea as the rule for application
[→E-Alg], with the use of two type operators 𝝅1 (𝑡) =

def min{𝑢 | 𝑡 ≤ 𝑢×1} and 𝝅2 (𝑡) =
def min{𝑢 | 𝑡 ≤

1 × 𝑢}. All these type operators can be effectively computed (cf. Appendix F).

[×I-Alg]
Γ ⊢A [(x1, x2) | (𝜌1, 𝜌2)] : 𝑡1 × 𝑡2

𝑡1 = Γ(x1)𝜌1, 𝑡2 = Γ(x2)𝜌2

To type a pair (x1, x2) it is not necessary to instantiate Γ(x1) or Γ(x2). However, to avoid unwanted
correlations, it is necessary to rename the polymorphic type variables of its components. For
instance, when typing the pair (x, x) with x : 𝛼 → 𝛼 , it is better to type it with (𝛼 → 𝛼, 𝛽 → 𝛽)
rather than (𝛼 → 𝛼, 𝛼 → 𝛼), since the former type has strictly more instances than the latter.
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[∈1-Alg]
Γ ⊢A [(x∈𝜏) ? x1 : x2 | ∈1 (Σ)] : Γ(x1)

Γ(x)Σ ≤ 𝜏

To type type-cases, the annotation indicates which of the three rules must be applied (here [∈1]) and
how to instantiate the polymorphic type variables occurring in the type of the tested expression, so
that it satisfies the side condition of the applied rule (see also [∈2-Alg] and [0-Alg] in Appendix G).

[Bind1-Alg]
Γ ⊢A [𝜅 | k] : 𝑡

Γ ⊢A [bind x =𝑎 in𝜅 | skip k] : 𝑡
x ∉ dom(Γ)

In rule [Bind1-Alg] the annotation indicates to skip the definition of the current binding. This rule
is used when the binding variable is not required for typing the body 𝜅 under the current context Γ.
For instance, this is the case when x only appears in a branch of a typecase that cannot be taken
under Γ. The side condition 𝑥 ∉ Γ prevents a potential unsound name conflict between binding
variables: as occurrences of x in 𝜅 denote the x binding variable that is being skipped, having the
type of a former binding variable x in our environment when typing 𝜅 would be unsound.

[Bind2-Alg]
Γ ⊢A [𝑎 | a] : 𝑠 (∀𝑖 ∈ 𝐼 ) Γ, x : 𝑠 ∧ u𝑖 ⊢A [𝜅 | k𝑖 ] : 𝑡𝑖
Γ ⊢A [bind x =𝑎 in𝜅 | keep (a, {(u𝑖 , k𝑖 )}𝑖∈𝐼 )] :

∨
𝑖∈𝐼 𝑡𝑖

∨
𝑖∈𝐼 u𝑖 ≃ 1

This rule tries to type the bound atom and then decomposes its type according to the annotation.
This decomposition corresponds to an application of the [∨] rule of the declarative type system
with the only difference that the type 𝑠 of the atom is split in several summands by intersecting it
with the various u𝑖 (instead of just two summands as in the rule [∨]) whose union covers 1.

Finally, two annotations indicate when and how to apply rule [∧] to atoms and canonical forms:

[∧-Alg]
(∀𝑖 ∈ 𝐼 ) Γ ⊢A [𝑎 | a𝑖 ] : 𝑡𝑖

Γ ⊢A [𝑎 | ∧({a𝑖 }𝑖∈𝐼 )] :
∧
𝑖∈𝐼 𝑡𝑖

𝐼 ≠ ∅ [∧-Alg]
(∀𝑖 ∈ 𝐼 ) Γ ⊢A [𝜅 | k𝑖 ] : 𝑡𝑖

Γ ⊢A [𝜅 | ∧({k𝑖 }𝑖∈𝐼 )] :
∧
𝑖∈𝐼 𝑡𝑖

𝐼 ≠ ∅

An expression 𝑒 is typable if and only if its unique (modulo ≡𝜅 ) MSC-form is typable, too:

Theorem 3.4 (Soundness and Completeness). For every term 𝑒 of the source language

⊢ 𝑒 : 𝑡 ⇒ ∃k ⊢A [MSC(𝑒) | k] : 𝑡 ′ ≤ 𝑡 (completeness)

⊢ 𝑒 : 𝑡 ⇐ ⊢A [MSC(𝑒) | k] : 𝑡 (soundness)

It is easy to generate the unique MSC-form associated to a source language expression 𝑒 (cf.
Appendix E). Theorem 3.4 states that this MSC-form is typable if and only if 𝑒 is: we reduced
the problem of typing 𝑒 to the one of finding an annotation that makes the unique MSC-form
of 𝑒 typeable with the algorithmic type system.8 Figure 3 gives an example of an MSC-form
and two possible annotations for it. The term “𝜆𝑥 .(𝑓 𝑥∈Int) ?𝑔(𝑓 𝑥) :𝑥” (where 𝑓 : ∀𝛼.𝛼→𝛼 and
𝑔 : Int→Int) is put in MSC-form (on the left). In the first annotation, the function is typed with
a single 𝜆 annotation (line 3). The interesting part is the annotation of the binding for u (line 5):
the corresponding keep annotation represents an application of the union elimination rule on the
occurrences of the expression 𝑓 𝑥 whose type 𝜷 is split into 𝜷∧Int (line 6) and 𝜷∖Int (line 9). Each
subcase is annotated accordingly. Notice in the second subcase that the annotation for v is skip
(line 10) which indicates that this particular variable must not be used (as 𝑔(𝑓 𝑥) cannot be typed
since in the “else” branch, 𝑓 𝑥 has type ¬Int). A different annotation, yielding a better type, is the
8As stated by Theorem 3.4 the transformation of an expression into its MSC-form preserves typing. However, intuitively, it
does not preserve the reduction semantics, since bindings regroup different occurrences of some sub-expression that in
the original expression might be evaluated at different stages of the reduction or not evaluated at all. We said “intuitively”
because no operational semantics is defined for canonical forms (this was alredy the case for [Castagna et al. 2022b]).
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Γ = {𝑓 : 𝛼 → 𝛼, 𝑔 : Int → Int}

1 bind z = keep( keep(
2

∧({
3 𝜆𝑥 . 𝜆(𝜷, 𝜆(Int, 𝜆(𝜷 ∖ Int,
4 bind x =𝑥 in keep(∅, {(1, keep(∅, {(1, keep(∅, {(1,
5 bind u = 𝑓 x in keep(@({{𝛼 { 𝜷}}, {∅}), keep(@({{𝛼 { Int}}, keep(@({{𝛼 { 𝜷 ∖ Int}},

6

7

8

9

10

bind v = g u in
bindw =
(u∈Int) ? v : x
inw

{(Int,
keep(@({∅}, {∅}), {(1,
keep (∈1 ({∅}), {(1,∅)}))}),
(¬Int,
skip(

{∅}),

{(1,
keep(@({∅}, {∅}), {(1,
keep(∈1 ({∅}),
{(1,∅)}))}))}))}

{∅}),

{(1,
skip(
keep(∈2 ({∅}),
{(1,∅)})))}))}

11 keep (∈2 ({∅}), {(1,∅)}))}
12 ))})), }),
13 in z {(1,∅)}) {(1,∅)})

Final Type: 𝜷 → 𝜷 ∨ Int (Int → Int) ∧ ((𝜷∖Int) → (𝜷∖Int))

Fig. 3. MSC-form and two annotations for 𝜆𝑥 .(𝑓 𝑥∈Int) ?𝑔(𝑓 𝑥) :𝑥

one on the right. This intersection annotation (line 2) separates the domain of the 𝜆-abstraction
into two cases, each typed independently, yielding for the whole function an intersection type.
The example in Figure 3 also shows why the condition of maximal sharing for our forms is

necessary, not only for their uniqueness, but also for the completeness of the algorithmic system: if
the two occurrences of 𝑓 𝑥 in “𝜆𝑥.(𝑓 𝑥∈Int) ?𝑔(𝑓 𝑥) :𝑥” were not bound by the same variable (as in
the leftmost column of line 5 in Figure 3), viz., if the sharing were not maximal, then it would not
be possible to deduce that 𝑔(𝑓 𝑥) is well typed: 𝑔 expects an integer, but without maximal sharing it
is not possible to deduce that the occurrence of 𝑓 𝑥 in the first branch is indeed of type Int.

The problem of inferring an annotation for anMSC-form as the above—in particular the rightmost
(more precise) annotation in Figure 3—is tackled in the next section.

4 RECONSTRUCTION
This section describes an algorithm to find an annotation for an expression in MSC-form, such that
the pair expression and annotation is typable in the algorithmic system. Though this algorithm is
not complete, it is sound and terminating (see Section 4.4 for the formal statements and a discussion
about incompleteness). Experimental results are presented in Section 5.
The annotation reconstruction algorithm is composed of two systems of deduction rules: the

main reconstruction algorithm (Section 4.2) which produces intermediate annotations containing
information about the domains of 𝜆-abstractions and the type decompositions to use in bindings, and
the auxiliary reconstruction algorithm (Section 4.3) which converts these intermediate annotations
into annotations for the algorithmic type system, by computing instantiations Σ for destructors.

4.1 The Tallying Algorithm
One key ingredient used by the reconstruction algorithm is the tallying algorithm. Roughly, tallying
is the equivalent of the unification used in algorithmW [Damas and Milner 1982], but for a type
system with subtyping. The tallying algorithm was introduced by Castagna et al. [2015] to solve
the following problem: given a set of pairs {(𝑡𝑖 , 𝑡 ′𝑖 )}𝑖∈𝐼 and a set of type variables Δ representing
the monomorphic type variables, find all substitutions 𝜎 whose domain is disjoint from Δ (noted
𝜎#Δ) and that satisfy ∀𝑖 ∈ 𝐼 . 𝑡𝑖𝜎 ≤ 𝑡 ′𝑖𝜎 . Castagna et al. [2015] show that this problem is decidable
and give an algorithm to characterize all solutions. As for unification, for each instance of the



40:17

tallying problem there is either no solution or several substitutions each of which is a solution
of the problem. The difference is that while with unification all solutions are characterized by a
principal substitution, with tallying they are characterized by a principal finite set of substitutions.9
More precisely, all substitutions that are solutions to a tallying instance are characterized by a
principal set Σ of substitutions, such that every 𝜎 ∈ Σ is a solution, and for any solution 𝜎 , we
have ∃𝜎1∈Σ. ∃𝜎2. 𝜎2#Δ and 𝜎 ≃ 𝜎2 ◦ 𝜎1, where ◦ denotes the composition of substitutions and ≃ is
pointwise type equivalence.
In this work, all tallying instances use a single constraint, and we will note tally({𝑡1 ¤≤ 𝑡2})

the set of substitutions Σ characterizing all the solutions of the tallying instance {(𝑡1, 𝑡2)}, where
Δ = V𝑀 and thus ∀𝜎 ∈ Σ. dom(𝜎) ⊆ V𝑃 (we use the symbol ¤≤, rather than ≤ to stress that it
denotes a constraint to be solved, rather than a pair in the subtyping relation).
The tallying function tally() finds substitutions for polymorphic type variables, but in order

to infer the domain of 𝜆-abstractions, we may need to find substitutions for monomorphic type
variables. We thus introduce an additional tallying function, tally_infer({𝑡1 ¤≤ 𝑡2}):

Definition 4.1. Let 𝜎
��
𝑋
denote the restriction of the substitution 𝜎 to the domain 𝑋 . We define

tally_infer({𝑡1 ¤≤ 𝑡2}) = {(𝜎 ◦ 𝜎 ′ ◦ 𝜙)
��
V𝑀

| 𝜎 ′ ∈ tally({fresh(𝑡1)𝜙 ¤≤ fresh(𝑡2)𝜙})}

where fresh(𝑡) denotes the type 𝑡 where polymorphic type variables have been substituted by fresh

ones; 𝜙 is a renaming from (vars(𝑡1) ∪ vars(𝑡2)) ∩ V𝑀 to fresh polymorphic variables; and 𝜎 is a

substitution mapping polymorphic variables appearing in the image of 𝜎 ′ ◦ 𝜙 to fresh monomorphic

variables.

In a nutshell, polymorphic type variables in 𝑡1 and 𝑡2 are refreshed in order to decorrelate
them, and monomorphic type variables are generalized using 𝜙 so that tally() is allowed to find
solutions for them. Each solution 𝜎 ′ is composed with 𝜙 in order to restore the connection with
the initial monomorphic type variables, and the polymorphic type variables in the image of the
resulting substitution are transformed into monomorphic ones by composing 𝜎 with it. Finally, the
substitution is restricted to V𝑀 (i.e., to the domain of 𝜙).
For example, an instance such as tally_infer({Int∧𝛼 → Int∧𝛼 ¤≤ 𝜷 → 𝛼}) can be generated

during reconstruction, when a function of type Int∧𝛼 → Int∧𝛼 is applied to an argument of type
𝜷 , but the 𝛼 on the right-hand of ¤≤ is unrelated to the one on the left-hand side. Decorrelating them
yields a unique solution {𝜷 { 𝜷 ′∧Int}, that is, 𝜷 must be substituted by 𝜷 ′∧Int in our context for
the application to be typeable.

4.2 Main Reconstruction Algorithm
The main reconstruction algorithm, defined in this section, infers the domains of 𝜆-abstractions
and the decompositions of types into disjoint unions to use for bindings. It works by successively
refining intermediate annotations defined below. These intermediate annotations store information
about the domains of 𝜆-abstractions and the decompositions of bindings. However, the instantiations
Σ used to type destructors (i.e., applications, projections, and typecases) in the algorithmic type
system are not stored in intermediate annotations, because they might get invalidated as the
reconstruction progresses: when new information is found about the domain of a lambda or the
decomposition of a binding, the algorithm will retype some intermediate definitions of the MSC-
form, thus invalidating the instantiations Σ of later definitions. Thus, these instantiations Σ will be

9This is due to the presence of the empty type. For instance, the principal solution of unifying 𝛼 × 𝛽 with 𝑠 × 𝑡 is the
substitution {𝛼 { 𝑠, 𝛽 { 𝑡 }, while all substitutions that make the former type become a subtype of the latter are
characterized by a set containing three distinct substitutions: {𝛼 { 0}, {𝛽 { 0}, and {𝛼 { 𝑠, 𝛽 { 𝑡 }.
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recomputed whenever needed, using the auxiliary system (Section 4.3) that converts intermediate
annotations into annotations for the algorithmic type system.

Atom and form intermediate annotations are defined by the grammar below:

Split annotations S ::= {(u,K), . . . , (u,K)}
Atom intermediate annot. A ::= infer | untyp | typ | ∧({A, . . . ,A}, {A, . . . ,A})

| ∈1 | ∈2 | 𝜆(u,K)
Form intermediate annot. K ::= infer | untyp | typ | ∧({K, . . . ,K}, {K, . . . ,K})

| try-skip (K) | try-keep (A,K,K)
| propagate (A,L,S,S) | skip (K) | keep (A,S,S)

In the following, we use the metavariable 𝜂 to range over both atoms and expressions (i.e., 𝜂 ::= 𝑎 | 𝜅).
Similarly, themetavariable h ranges over atom annotations a and form annotations k (i.e., h ::= a | k);
while the metavariableH ranges over atom intermediate annotations A and form intermediate
annotations K (i.e. H ::= A | K).
Let 𝜓 range over monomorphic substitution, that is, substitutions from V𝑀 to monomorphic

types, and Ψ range over finite sets of monomorphic substitutions (Ψ ::= {𝜓, . . . ,𝜓 }). The main
reconstruction algorithm is presented as a deduction rule system, for judgments of the form
Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R, where R is a result defined as follows:

Result R ::= Ok(H) | Fail | Split(Γ,H ,H) | Subst(Ψ,H ,H) | Var (x,H ,H)

Let us see what each result for Γ ⊢∗R ⟨𝜂 | H⟩ means:
Ok(H ′): the reconstruction was successful and 𝜂 can be typed by the algorithmic type system using
the annotationH ′ (after converting it into an annotation h using the auxiliary reconstruction
system). This result is terminal (i.e., it is a definitive answer that cannot be further refined).

Fail: the reconstruction has failed. The algorithm was not able to find an annotation that makes 𝜂
typable with the algorithmic system. This result is terminal.

Subst(Ψ,H1,H2): the reconstruction found a set of substitutions Ψ that if applied to Γ may make
𝜂 typable. In practice, for each substitution 𝜓 ∈ Ψ, the reconstruction will be called again on
the environment Γ𝜓 and annotation H1𝜓 . However, this does not necessarily mean that the
reconstruction will fail on the current environment Γ: 𝜂 might still be typeable but with a less
precise type (e.g., it could yield an arrow type with a smaller domain). Thus, this default case
which does not instantiate Γ is also explored, using the annotationH2 instead ofH1.

Split(Γ′,H1,H2): the reconstruction found some splits for the variables in dom(Γ′) that if applied
to Γ may make 𝜂 typable. In practice, the system generates several new environments: one is
obtained by (pointwise) intersecting Γ with Γ′ and then it is used to retype 𝜂 with the annotation
H1; the others are obtained by intersecting Γ with all the possible pointwise negations of Γ′ and
then they are used to retype 𝜂 with the annotation H2.

Var (x,H1,H2): the reconstruction found that in order to type 𝜂, the definition of the bind-
abstracted variable x should be typed. Any branch that successfully types it continues with
the annotationH1, otherwise it continues with the annotation H2.

Initially, any form or atom 𝜂 is annotated with infer, and this annotation is then refined until
it yields a terminal result (i.e., either Ok() or Fail). The rules below are presented by decreasing
priority (i.e., the first rule that applies is used). Some rules have been omitted for concision, but the
reader can find the full reconstruction system in Appendix H.1.

There are two different forms of judgments: Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R and Γ ⊢R ⟨𝜂 | H⟩ ⇒ R. We first
define rules for the judgment ⊢R for every canonical form and atom. The results of these judgments
are not necessarily terminal and, therefore, it may be necessary to call the reconstruction again in
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order to refine them. This is the purpose of ⊢∗R judgments which call repetitively ⊢R judgments
when relevant, so that in the end we get a terminal result. Let us first focus on ⊢R judgments.

[Ok]
Γ ⊢R ⟨𝜂 | typ⟩ ⇒ Ok(typ)

[Fail]
Γ ⊢R ⟨𝜂 | untyp⟩ ⇒ Fail

If a canonical form or atom 𝜂 is annotated with typ, then reconstruction is finished for 𝜂, and it is
typeable in the current context Γ. The annotation typ is never used on 𝜆-abstractions and bindings
because the system needs to store more information for them. Likewise, if a form or atom 𝜂 is
annotated with untyp, then reconstruction is finished for 𝜂 by failing in the current context.

[AxOk]
𝑥 ∈ dom(Γ)

Γ ⊢R ⟨𝑥 | infer⟩ ⇒ Ok(typ)
[AxFail]

Γ ⊢R ⟨𝑥 | infer⟩ ⇒ Fail

If a 𝜆-abstracted variable 𝑥 is in the environment, then it is typeable and thus the algorithm returns
Ok(typ). Otherwise, 𝑥 is undefined and Fail is returned.

[AppVar𝑖 ]
x𝑖 ∉ dom(Γ)

Γ ⊢R ⟨x1x2 | infer⟩ ⇒ Var (x𝑖 , infer, untyp)

To type the application x1x2, we must first ensure that {x1, x2} ⊆ dom(Γ). If it is not the case,
then the two rules [AppVar𝑖] (for 𝑖 = 1, 2) try to remedy it by returning Var (x𝑖 , infer, untyp),
which is the result that asks the system to try to type the atom bound to x𝑖 for x𝑖 ∉ dom(Γ). If
the attempt is successful, then the algorithm will continue the reconstruction for the application
with the annotation infer and x𝑖 ∈ dom(Γ), otherwise it will continue with the annotation untyp
making the reconstruction fail on this application.

[AppInfer]
Ψ = tally_infer({Γ(x1) ¤≤ Γ(x2) → 𝛼})

Γ ⊢R ⟨x1x2 | infer⟩ ⇒ Subst(Ψ, typ, untyp)
𝛼 ∈ V𝑃 fresh

If {x1, x2} ⊆ dom(Γ), then the rule [AppInfer] tries to find all instances of the current context in
which the application x1x2 is typeable, by subsuming Γ(x1) (the type of the function) to Γ(x2)→𝛼

(a function type whose domain is the type of the argument). For that, it calls the tallying algorithm
which returns a set of substitutions Ψ. Then, Subst(Ψ, typ, untyp) is returned, meaning that this
application should be typeable under every instance Γ𝜓 of the current context Γ (with𝜓 ∈ Ψ). The
default case (i.e., when the current context is unchanged, for example, when Ψ = ∅) cannot be
typed, so it is annotated with untyp (see rule [Iterate2] later on). The rules for pairs are similar
and have been omitted.

[CaseSplit]
Γ(x) ≰ 𝜏 Γ(x) ≰ ¬𝜏

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | infer⟩ ⇒ Split({(x : 𝜏)}, infer, infer)

The key rule for type-cases is [CaseSplit], corresponding to the case where x is in Γ, but with a
type that does not allow the selection of a specific branch. Thus, we need to partition the type of x
in two, one part being a subtype of 𝜏 and the other a subtype of ¬𝜏 . This is achieved by returning
Split({(x : 𝜏)}, infer, infer): this result is backtracked up to the binding of x, where it will split
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the associated type, accordingly.

[CaseThen]
Γ(x) ≤ 𝜏 Ψ = tally_infer({Γ(x) ¤≤ 0})

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | infer⟩ ⇒ Subst(Ψ, typ, ∈1)

[CaseElse]
Γ(x) ≤ ¬𝜏 Ψ = tally_infer({Γ(x) ¤≤ 0})

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | infer⟩ ⇒ Subst(Ψ, typ, ∈2)

[CaseVar𝑖 ]
x𝑖 ∉ dom(Γ)

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | ∈𝑖⟩ ⇒ Var (x𝑖 , typ, untyp)

When the type of x allows the selection of a branch, then either the rule [CaseThen] or the rule
[CaseElse] applies. If we are in the case of [CaseThen], that is Γ(x) ≤ 𝜏 , then we have to determine
whether we will apply the algorithmic rule [0-Alg] or the algorithmic rule [∈1-Alg]. To determine
it, the [CaseThen] rule calls tally_infer({Γ(x) ¤≤ 0}) which returns the set of contexts Γ𝜓 (for
𝜓 ∈ Ψ) under which the algorithmic rule [0-Alg] is to be applied, that is, the contexts under which
the tested expression x has an empty type. The default case, corresponding to the case in which the
type of Γ(x) is not guaranteed to be empty and, thus, in which the algorithmic rule [∈1-Alg] must
be applied, is annotated with ∈1. This annotation is handled by the rule [CaseVar1] which forces
the system to type x1, the binding variable associated to the first branch. The case for [CaseElse]
and [CaseVar2] is analogous.
We omitted the remaining rules for type-cases since they are straightforward: the rule for

x ∉ dom(Γ), which triggers a Var (x, infer, untyp) result; two rules similar to [CaseVar𝑖], but
where x𝑖 ∈ dom(Γ), which simply return Ok(typ).

[LambdaInfer]
Γ ⊢R ⟨𝜆𝑥.𝜅 | 𝜆(𝜶 , infer)⟩ ⇒ R

Γ ⊢R ⟨𝜆𝑥.𝜅 | infer⟩ ⇒ R
𝜶 ∈ V𝑀 fresh

[Lambda]
Γ, 𝑥 : u ⊢∗R ⟨𝜅 | K⟩ ⇒ R

Γ ⊢R ⟨𝜆𝑥 .𝜅 | 𝜆(u,K)⟩ ⇒ map(𝑋 ↦→ 𝜆(u, 𝑋 ), R)

The rules for 𝜆-abstractions mimic algorithmW. Rule [LambdaInfer] transforms the initial infer
annotation into a 𝜆(𝜶 , infer) annotation. As in W, 𝜆-abstracted variables are initially given a
fresh type variable, which will then be substituted as needed while reconstructing the type of
the body; here we use a fresh monomorphic variable, but tally_infer() will transform it into a
polymorphic—thus, instantiable—one, just for the reconstruction in the body. Rule [Lambda] adds
the 𝜆-abstracted variable to the environment with the type specified in the annotation, recursively
calls reconstruction on the body, and reestablishes the variable type annotation on the result. The
notation map(𝑋 ↦→𝑓 (𝑋 ), R) denotes the result R where 𝑓 has been applied to every annotation 𝑋 .

[BindInfer]
Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-skip (infer)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | infer⟩ ⇒ R

The [BindInfer] rule transforms an initial infer annotation into a try-skip (infer) annotation
which skips the binding and annotates the body 𝜅 with infer. We do not try to type the definition
of a binding until it is actually used, because its variable might appear only in unreachable positions
(e.g., in an unreachable branch of a type-case). In other words, we implement a lazy typing discipline
for bind-abstracted variables. If the variable is used at some point, then an attempt to type it will
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be initiated by the [BindTrySkip1] rule below:

[BindTrySkip1]

Γ ⊢∗R ⟨𝜅 | K⟩ ⇒ Var (x,K1,K2)
Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-keep (infer,K1,K2)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-skip (K)⟩ ⇒ R

This rule tries to type the body of the binding, starting with the annotation K (initially, infer). If
the result is Var (x,K1,K2), then it means that the current binding is used in the body 𝜅 and, thus,
the system should try to type it. Consequently, the annotation for the current binding is changed
into a try-keep (infer,K1,K2) so that, at the next iteration, its definition will be reconstructed.

If typing the body of the binding yields a result different from Var (x,K1,K2), then this result is
just propagated as in [Lambda] (the corresponding rules have been omitted).

[BindTryKeep1]

Γ ⊢∗R ⟨𝑎 | A⟩ ⇒ Ok(A ′)
Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A ′, {(1,K1)},∅)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-keep (A,K1,K2)⟩ ⇒ R

[BindTryKeep2]
Γ ⊢∗R ⟨𝑎 | A⟩ ⇒ Fail Γ ⊢R ⟨bind x =𝑎 in𝜅 | skip (K2)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-keep (A,K1,K2)⟩ ⇒ R

As expected, if the current annotation for the binding is a try-keep (A,K1,K2), then the system
tries to reconstruct the annotation for the definition. If it succeeds, then it becomes possible to type
the definition and to continue the reconstruction of the body usingK1. This is what [BindTryKeep1]
does by changing the current annotation to keep (A ′, {(1,K1)},∅) (more details below). If the
reconstruction of the definition fails (rule [BindTryKeep2]), then we have no choice but to skip
this definition and use the default annotation K2 to type the body.

In an annotation keep (A,S,S′) for the binding of a variable x, A is the annotation for typing
the definition of x, while the two other arguments describe the type decomposition to use for x and,
for each part of the decomposition, the annotation to use for the body. More precisely, S contains
the parts of the type decomposition that have yet to be explored, and S′ contains the parts that
have already been fully explored. In particular, the annotation keep (A ′, {(1,K1)},∅) used in rule
[BindTryKeep1] means that the type of the definition does not need to be partitioned: there is only
one part, covering 1, associated with an annotation K1 for typing the body.

[BindOk]
Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A,∅,S)⟩ ⇒ Ok(keep (A,∅,S))

If all the parts of the type decomposition have already been explored (i.e., ∅ in the annotation in
the rule above), then the reconstruction is successful. Otherwise, the following rules are applied:

[BindKeep1]

Γ ⊢P ⟨𝑎 | A⟩ ⇒ a Γ ⊢A [𝑎 | a] : 𝑠 Γ, x : 𝑠 ∧ u ⊢∗R ⟨𝜅 | K⟩ ⇒ Ok(K ′)
Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A,S, {(u,K ′)} ∪ S′)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A, {(u,K)} ∪ S,S′)⟩ ⇒ R

[BindKeep2]

Γ ⊢P ⟨𝑎 | A⟩ ⇒ a
Γ ⊢A [𝑎 | a] : 𝑠 Γ, x : 𝑠 ∧ u ⊢∗R ⟨𝜅 | K⟩ ⇒ Split(Γ′,K1,K2)

x ∈ dom(Γ′) Γ ⊢E (𝑎 : ¬(u ∧ Γ′(x))) ⇒ L
1 Γ ⊢E (𝑎 : ¬(u ∖ Γ′(x))) ⇒ L

2

Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A, {(u,K)} ∪ S,S′)⟩ ⇒ Split(Γ′ ∖ x,K ′
1,K ′

2)
with, in the last rule,K ′

1 = propagate (A,L1 ∪
L

2, {(u∧ Γ′(x),K1), (u ∖ Γ′(x),K2)} ∪ S,S′) and
K ′

2 = keep (A, {(u,K2)} ∪ S,S′)
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In both rules, the definition of the binding is typed using the annotation A. For that, it is first
converted into an annotation a of the algorithmic type system, using the deduction rules for the
judgment Γ ⊢P ⟨𝑎 | A⟩ ⇒ a, defined in Section 4.3. Then, the type 𝑠 obtained for the definition
is intersected with one of the parts of the type decomposition, according to the second argument
of the keep() annotation (i.e., {(u,K)} ∪ S in both rules), and the corresponding annotation for
the body is reconstructed recursively. Note that, since split annotations are sets, then the order in
which the parts are explored is arbitrary.

The rule [BindKeep1] for an annotation keep (A,S,S′) is responsible for moving a branch
from S to S′ when the result for the branch is Ok(). If instead the reconstruction of the body
requires to further split the type of x, then the rule [BindKeep2] splits the current branch into two
branches. However, before exploring these two branches, some information about the split needs
to be propagated, to ensure that when a split is explored, it is under a context as precise as possible.

Let us explain this by an example. Assume we have a polymorphic primitive function id of type
𝛼 → 𝛼 and an initial environment Γ = {𝑥 : Bool}. We want to type the following canonical form,
and deduce for it the type True (since x and y are always bound to the same value):

bind x =𝑥 in bind y = id x in bind z = (y∈True) ? x : true in z
At some point, the partition associated to y will change from {1} to {True,¬True} because of
the type-case (rule [CaseSplit]). However, if the case corresponding to (y : True) is immediately
explored, it will yield for the body the type Bool, because x still has the type Bool in the environment.
In order to obtain the more precise type True, we must deduce, before exploring the case (y : True),
that when id x (the definition of y) has type True, then x also has type True. Knowing that, the
type of x should be split accordingly into {True,¬True}.

This mechanism of backward propagation of splits is initiated in the [BindKeep2] rule with the
two premises Γ ⊢E (𝑎 : ¬(u ∧ Γ′(x))) ⇒ L

1 and Γ ⊢E (𝑎 : ¬(u ∖ Γ′(x))) ⇒ L
2. This auxiliary

judgment Γ ⊢E (𝑎 : u) ⇒ L
, defined in Appendix H.3, can be read as follows: refining the current

environment Γ with one of the Γ′ ∈ L
ensures that the atom 𝑎 will have type u. The refinements we

obtain are stored in the annotation of the binding, using an annotation propagate (A,L,S,S′).
This annotation is handled by two other rules (omitted here) whose role is to propagate these
refinements one after the other using successive Split(Γ′,K1,K2) results (with Γ′ ∈ L

), before
finally restoring a keep (A,S,S′) annotation.

[InterEmpty]
Γ ⊢R ⟨𝜂 | ∧(∅,∅)⟩ ⇒ Fail

[InterOk]
Γ ⊢R ⟨𝜂 | ∧(∅, 𝑆)⟩ ⇒ Ok(∧(∅, 𝑆))

[Inter1]
Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ Ok(H ′) Γ ⊢R ⟨𝜂 | ∧(𝑆, {H ′} ∪ 𝑆 ′)⟩ ⇒ R

Γ ⊢R ⟨𝜂 | ∧({H} ∪ 𝑆, 𝑆 ′)⟩ ⇒ R

[Inter2]
Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ Fail Γ ⊢R ⟨𝜂 | ∧(𝑆, 𝑆 ′)⟩ ⇒ R

Γ ⊢R ⟨𝜂 | ∧({H} ∪ 𝑆, 𝑆 ′)⟩ ⇒ R

[Inter3]
Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R

Γ ⊢R ⟨𝜂 | ∧({H} ∪ 𝑆, 𝑆 ′)⟩ ⇒ map(𝑋 ↦→ (∧({𝑋 } ∪ 𝑆, 𝑆 ′)), R)
Intersection annotations are introduced by the ⊢∗R judgments defined below. In an intersection

annotation
∧(𝑆, 𝑆 ′), the annotations in 𝑆 ′ are fully processed (i.e., the associated reconstruction

returned Ok()), while the annotations in 𝑆 are not: they still have to be refined one after the other
(rule [Inter3]). If one of them becomes fully processed, it is moved in 𝑆 ′ (rule [Inter1]). Conversely,
if one of them fails, it is removed (rule [Inter2]). The process stops when 𝑆 is empty: then, the
reconstruction fails if 𝑆 ′ is empty (rule [InterEmpty]), and succeed otherwise (rule [InterOk]).
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Finally, we formalize the rules for the judgments ⊢∗R . As said earlier, the purpose of ⊢∗R is to
repeatedly call ⊢R judgments so that, in the end, we obtain a terminal result.

[Iterate1]
Γ ⊢R ⟨𝜂 | H⟩ ⇒ Split(Γ′,H1,H2) Γ ⊢∗R ⟨𝜂 | H1⟩ ⇒ R

Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R
Γ′ = ∅

[Iterate2]

Γ ⊢R ⟨𝜂 | H⟩ ⇒ Subst({𝜓𝑖 }𝑖∈𝐼 ,H1,H2)
Γ ⊢∗R ⟨𝜂 | ∧({H1𝜓𝑖 }𝑖∈𝐼 ∪ {H2},∅)⟩ ⇒ R

Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R
∀𝑖 ∈ 𝐼 . 𝜓𝑖#Γ

The iteration continues as long as it yields non-terminal results that are immediately usable, that
is, either they return a trivial split (i.e., Γ′ = ∅) as in rule [Iterate1], or they return substitutions
that do not affect the current environment (i.e.,𝜓𝑖#Γ) as in rule [Iterate2]. For the latter rule, the
iteration may need to introduce an intersection annotation (useless when 𝐼 is empty) in order to
explore all the cases of a Subst({𝜓𝑖 }𝑖∈𝐼 ,H1,H2) result (whereH𝜓 is the intermediate annotation
H in which the substitution 𝜓 has been applied recursively to every type in it). An important
special case of the [Iterate2] rule is when 𝐼 = ∅: in that case the iteration continues by trying to
type 𝜂 with the default annotation H2 and the current environment Γ. For instance, this special
case triggers a [CaseVar1] after a [CaseThen] and a [CaseVar2] after a [CaseElse].
If the result is already terminal or if it is not immediately usable, then it is directly returned:

[Stop]
Γ ⊢R ⟨𝜂 | H⟩ ⇒ R

Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R

In particular, if R = Split(Γ′,H1,H2) where Γ′ ≠ ∅ (i.e., [Iterate1] does not apply), then [Stop]
backtracks until Γ′ becomes empty; likewise if R = Subst({𝜓𝑖 }𝑖∈𝐼 ,H1,H2) and Γ𝜓𝑖 ; Γ for some 𝑖
(i.e. [Iterate2] does not apply), then [Stop] backtracks until it exits the scope of the binders of the
variables that make the side condition of [Iterate2] fail.

4.3 Auxiliary Reconstruction Algorithm
The auxiliary reconstruction algorithm defined in this section converts an intermediate annotation
of the main reconstruction system into an annotation for the algorithmic type system. For that, it
needs to retrieve the polymorphic substitutions Σ needed to type the atoms.
Formally, the algorithm takes as input an environment Γ, an atom or canonical form 𝜂, and an

intermediate annotationH , and produces an annotation h for the algorithmic type system. It is
presented as a deduction rule system for judgments of the form Γ ⊢P ⟨𝜂 | H⟩ ⇒ h. Some rules have
been omitted for concision (they can be found in Appendix H.2): for instance, the rules for constants
and axioms are omitted since straightforward, as they just transform an intermediate annotation
typ into an annotation ∅ for the algorithmic type system; likewise, the rules for 𝜆-abstractions and
intersections are straightforward and have been omitted, since they just proceed recursively on
their children annotations. The most important rule for this system is the one for applications:

[App]

𝑡1 = Γ(x1) 𝑡2 = Γ(x2)
𝜌1 = refresh(𝑡1) 𝜌2 = refresh(𝑡2) Σ = tally({𝑡1𝜌1 ¤≤ 𝑡2𝜌2 → 𝛼})

Γ ⊢P ⟨x1x2 | typ⟩ ⇒ @({𝜎 ◦ 𝜌1 | 𝜎 ∈ Σ}, {𝜎 ◦ 𝜌2 | 𝜎 ∈ Σ})
Σ ≠ ∅
𝛼 ∈ V𝑃 fresh

where refresh(𝑡) returns a renaming from vars(𝑡) ∩ V𝑃 to fresh polymorphic variables.
For applications, an annotation of the form @(Σ1, Σ2) must be produced. In order to find some

instantiations Σ1 and Σ2 (for x1 and x2 respectively) that make the application typable, the [App] rule
solves the tallying instance tally({𝑡1𝜌1 ¤≤ 𝑡2𝜌2 → 𝛼}). The purpose of 𝜌1 and 𝜌2 is to decorrelate
type variables in Γ(x1) and in Γ(x2). For instance, assume we want to reconstruct the instantiations
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for the atom “x x” with Γ(x) = 𝛽 → 𝛽 . The tallying instance tally({𝛽 → 𝛽 ¤≤ (𝛽 → 𝛽) → 𝛼})
yields only a very specific, uninteresting solution (i.e., 𝛼 = 𝛽 = 𝜇𝑋 .𝑋 → 𝑋 )10 because of the use
of the same type variable 𝛽 on both sides of ¤≤. But each occurrence of x has a polymorphic type
that can be instantiated independently. Thus, we remove this useless and constraining dependency
by refreshing the generic type variables yielding tally({𝛽 ′ → 𝛽 ′ ¤≤ (𝛽 → 𝛽) → 𝛼}) which has
interesting solutions, in particular {𝛽 ′ { 𝛽 → 𝛽 ; 𝛼 { 𝛽 → 𝛽}. The side-condition Σ ≠ ∅ ensures
that the tallying instance has at least one solution (otherwise the annotation produced would be
invalid). The rules for projections, pairs, and type-cases are similar and, thus, omitted.

[BindKeep]
Γ ⊢P ⟨𝑎 | A⟩ ⇒ a Γ ⊢A [𝑎 | a] : 𝑠 (∀𝑖 ∈ 𝐼 ) Γ, x : 𝑠 ∧ u𝑖 ⊢P ⟨𝜅 | K𝑖⟩ ⇒ k𝑖

Γ ⊢P ⟨bind x =𝑎 in𝜅 | keep (A,∅, {(u𝑖 ,K𝑖 )}𝑖∈𝐼 )⟩ ⇒ keep (a, {(u𝑖 , k𝑖 )}𝑖∈𝐼 )
(∗)

(where (∗) is
∨
𝑖∈𝐼 u𝑖 ≃ 1). The rule [BindKeep] takes as input an intermediate annotation

keep (A,S,S′), with S = ∅, since all branches must have been fully explored by the main
reconstruction algorithm. The rule recursively transforms the intermediate annotation A for the
definition 𝑎 into an annotation a for the algorithmic type system, and uses it to type 𝑎. It can then
update the environment and proceed recursively on the body 𝜅, for each branch in S′.

4.4 Properties of the Reconstruction Algorithm
As recalled at the beginning of the section, reconstruction is sound, terminating, but incomplete.

Theorem 4.2 (Soundness). If Γ ⊢P ⟨𝜅 | K⟩ ⇒ k, then ∃𝑡 . Γ ⊢A [𝜅 | k] : 𝑡 .

Theorem 4.3 (Termination). The deduction rules ⊢∗R and ⊢R define a terminating algorithm: it

can either fail (if no rule applies at some point) or return a result R.

The incompleteness of the reconstruction algorithm is inherent to our system and derives from
the lack of principal typing. A simple example is the curried function map defined in the third row
of Table 1 in the next section. Our reconstruction deduces for it the type (𝛼 → 𝛽) → [𝛼∗] → [𝛽∗]
(actually, a slightly more precise type), where [𝛼∗] is the type of the lists of elements of type 𝛼 .
This states that an application of map yields a function that maps lists of 𝛼 ’s into lists of 𝛽’s. But
for every natural number 𝑛, the declarative system can also deduce that the result maps lists of
𝛼 ’s of length 𝑛 into lists of 𝛽’s of the same length 𝑛. Our algorithm can check each of these types,
but none of them can be deduced from the type reconstructed by the algorithm. And since we
do not have dependent types or infinite intersections, then the declarative system cannot have a
principal type expressing all these different derivations. In other terms, incompleteness stems from
the fact that the declarative system can use all the infinitely many decompositions of unions in the
union elimination rule, and the infinitely many decompositions of the domain of a function when
reconstructing its type as an intersection of arrows. The algorithmic counterpart of this, is that
there are infinitely many annotations that the algorithmic system can use to type these expressions
and that these infinite choices cannot be summarized by a notion of principal annotation: the
reconstruction chooses one particular annotation, and therefore it will miss some solutions.
There is a second source of incompleteness for reconstruction, which is not inherent to the

system, but a design choice, instead: the fact that reconstruction does not perform the so-called
“expansion” of intersection types. This is shown by the rule [App] in Section 4.3, where tally is
applied without expanding the types in the constraint (e.g., if tally({𝑡1𝜌1 ¤≤ 𝑡2𝜌2 → 𝛼}) fails we
can expand the type of the function and try tally({𝑡1𝜌1 ∧ 𝑡1𝜌3 ¤≤ 𝑡2𝜌2 → 𝛼}), and so on and so
forth by alternating expansions on the function and on the argument types: see [Castagna et al.
10The solution is not interesting since it is the one that allows any simply typed system to type all pure lambda terms. We
do not need this recursive type to type, say, the application of the polymorphic identity function to itself.
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Table 1. Types inferred by the implementation (times are in ms)

Code Inferred type Time
1 type Falsy = False | "" | 0
type Truthy = ~Falsy

let toBoolean x =
if x is Truthy then true else false

let lOr (x,y) =
if toBoolean x then x else y

let id x = lOr (x,x)

(Falsy → False) ∧ (Truthy → True)

( ( (𝛼 ∧ Truthy) × 1) → 𝛼 ∧ Truthy)∧
( (Falsy × 𝛽) → 𝛽)

𝛼 → 𝛼

3.42

13.31

8.46

2 let fixpoint = fun f ->
let delta = fun x ->

f ( fun v -> ( x x v ))
in delta delta

( (𝛽 → 𝛼) → (𝛽 → 𝛼) ∧ 𝛾 ) → (𝛽 → 𝛼) ∧ 𝛾 15.37

3 let map_stub map f lst =
if lst is Nil then nil
else (f (fst lst), map f (snd lst))

let map = fixpoint map_stub

. . .

( (𝛼 → 𝛽) → ( [𝛼∗] → [𝛽∗])) ∧ (1 → [] → [])

33.03

84.75

4 let filter_stub filter
(f: ('a->Any) & ('b -> ~True))
(l: [('a|'b)*]) =

if l is Nil then nil
else if f(fst(l)) is True
then (fst(l),filter f (snd(l)))
else filter f (snd(l))

let filter = fixpoint filter_stub

. . .

( (𝛼 → 1)∧(𝛽 → ¬True)) → [(𝛼 ∨ 𝛽)∗]→[(𝛼∖𝛽)∗]

21.19

13.83
5 let rec flatten x = match x with

| [] -> []
| h::t -> concat (flatten h) (flatten t)
| _ -> [x]

(Tree → [(𝛼∖[1∗])∗]) ∧ (𝛽∖[1∗] → [ 𝛽∖[1∗] ])
where Tree = [Tree∗] ∨ (𝛼∖[1+])

374.41

2015, Section 3.2.3] for more details). The consequence of this is that if you take the definition of
the function filter given in row 4 of Table 1, and you remove all type annotations, then the type
reconstructed by the algorithm for it is less precise than the one specified by the annotations, which
could have been reconstructed if the algorithm had instead expanded the type of the parameter f.

Despite incompleteness, the declarative rules of Figure 2 form a reliable guide to which programs
are accepted, provided we bear in mind that the algorithm approximates data structures according
to the tests performed on them. So, typically, the type reconstructed for a function on lists, will
probably differentiate the cases for empty and not-empty lists, but not for, say, lists of size 42, unless
the function contains an explicit test for it. This (and to a lesser extent, expansion) is essentially
the main difference with the declarative system, which has the liberty to deduce the type for the
case of lists of size 42, even if this property is not tested in the body of the function. In that case,
the programmer can still use an explicit type annotation to check that the specific type works.

5 IMPLEMENTATION
We have implemented the reconstruction algorithm presented in Section 4, using the CDuce [CDuce
] API for the subtyping and the tallying algorithms. The prototype is 4500 lines of OCaml code and
features several extensions such as optional type annotations, pattern matching (cf. Appendix A),
records, and a more user-friendly syntax. It implements some optimizations, briefly discussed at the
end of this section, for instance memoization and a mechanism to avoid typing redundant branches
when inferring the domains of 𝜆-abstractions. We give in Table 1 the code of several functions,
using a syntax similar to OCaml, where uppercase identifiers (e.g., True, Truthy) denote types and
lowercase identifiers denote variables or constants. For each function we report its inferred type
and the time used to infer it. To enhance readability we manually curated the types which, thus,
may be syntactically different from (but are semantically equivalent to) the types printed by the
prototype. The experiments were performed on an Intel Core i9-10900KF 3.70GHz CPU. The code
was compiled natively using OCaml 4.14.1. All these examples (and more) can be tested on the
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web-based interactive prototype hosted at https://www.cduce.org/dynlang. The web version is
compiled to JavaScript using js_of_ocaml [Ocsigen], and is about 8 times slower than the native
version.

Code 1 features the examples used in the introduction.
Code 2 implements Curry’s fix-point combinator in a call-by-value setting. Though it is tradi-

tionally given the type ((𝛽 → 𝛼) → (𝛽 → 𝛼)) → (𝛽 → 𝛼), our prototype infers a slightly more
precise type by intersecting the co-domain of the argument with 𝛾 .
Code 3 shows how to use the fix-point combinator to type recursive functions. The map_stub

function implements a step of the traditional map function. The type inferred for this function
has been omitted for simplicity. Then, map is obtained by applying the fixed-point combinator to
map_stub. Note that [𝛼∗] denotes a list of elements of type 𝛼 , and [] denotes an empty list. The
branch 1 → [] → [] may be surprising, but it is correct since the map function does not use its
first argument if the second argument is an empty list.

Code 4 shows how type annotations (cf. Appendix A.2) can be used to infer more precise types:
when the filter function is applied to a characteristic function for the set 𝛼∨𝛽 whose type precises
that the elements in 𝛽 do not satisfy the predicate, then the inferred type has these elements removed
from the type of the result.
The grammar for expressions in Figure 1 does not include recursive functions, since from a

theoretical viewpoint they are useless: Milner [1978, page 356] justifies the addition of a “fix𝑥 .𝑒”
expression by the fact that his system cannot type Curry’s fixpoint combinator, but, as explained
in Section 1.1 and shown by Code 2 above, our system can. However, from a practical viewpoint,
the use of let rec definitions instead of fixed-points combinators may dramatically improve the
speed of reconstruction, which is why the previous definitions of map and filter with a fixed-
point combinator must be considered just as stress tests for our reconstruction algorithm. For
recursive functions we implemented classic let rec definitions, for which the reconstruction takes
the arity of the function into account. Code 5 shows the use of let rec and of pattern matching (cf.
Appendix A.3) and is an example of the improvement brought by let rec definitions: reconstruction
for the same definition but with a fixpoint combinator is four times slower. The code defines the
deep flatten function that transforms arbitrary nested lists into the list of their elements (where
concat is a function of type [𝛼∗] → [𝛽∗] → [(𝛼∗)(𝛽∗)], the result being the type of lists starting
with 𝛼 elements and ending with 𝛽 ones). Greenberg [2019] considers this function to be the
ultimate test for any type system: as he explains, this simple polymorphic function defies all type
systems since of all existing languages, none can reconstruct a type for it and only a couple of
languages can check its explicitly typed version: CDuce and Haskell (the latter by resorting to
complex metaprogramming constructions). Our system reconstructs a precise type for flatten as
shown by the first arrow in its intersection type, which states that flatten is a function that takes
a tree (i.e., either a list of elements that are trees, or a value different from a list) and returns the list
of elements of the tree that are not lists; the other arrow of the intersection states that when flatten
is applied to an element different from a list, then it returns the list containing only that element.
Our prototype focuses on proximity with the inference system for reconstruction, rather than

on performance: we used it mainly to explore and test our system, which is why it is implemented
in a purely functional style with persistent data structures (so as to simulate the reconstruction
inference rules). Nonetheless, a few optimizations were implemented in order to mitigate the cost
of backtracking and branching. One source of inefficiency comes from the intersection nodes that
are generated when a destructor is reconstructed. This generation can lead to an explosion of
the number of branches to explore, even though many of these branches are redundant. In the
prototype, this is mitigated by recording, for each 𝜆-abstraction, the domains already explored for
it, and by trimming branches that do not explore new combinations of domains.

https://www.cduce.org/dynlang
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Another source of inefficiency comes from the type decompositions performed after each binding.
Although these type decompositions are usually small (e.g., the type of a binding is seldom split in
more than two parts), it becomes an issue when typing large expressions with multiple type-cases.
For instance, a preliminary and unoptimized implementation of the reconstruction algorithm took
about 40 seconds to type the bal(ance) function used in the module Map of the OCaml standard
library, that contains 6 different pattern matches and 4 type-cases [OCaml 2023]. Adding a simple
memoization mechanism that prevents the reconstruction from retyping an atom several times for
equivalent contexts, decreased the inference time down to 4 seconds.

While these simple optimizations significantly improve performance, they are still far from what
would be considered acceptable for real applications. To be used in mainstream languages, the type
system will have to be adapted and restricted so as to ensure better and uniform performance. To
this purpose, we believe that some more language-oriented optimization techniques could be of
help. An example is what the development team of Luau [Luau] did on the occasion of its recent
switch to semantic subtyping [Jeffrey 2022]. The developers did this switch by implementing a
two-phase approach: first, a sound syntactic system, fast but imprecise, is used to try to prove
subtyping, and only if it fails, the computationally expensive semantic subtyping inference is used.
We think not only that such a staged approach could be applied in our case, but also that the partial
results of the first phase could be used to improve the performance of the later phases, as in the case
of the let rec, where knowing the arity of the defined function improves the performance of the
reconstruction. This could be further coupled with slicing, meaning that our type reconstruction
could be applied to very delimited regions that would bound the possibility of backtracking. These
techniques are language-dependent, and quite different from the algorithmic aspects developed
here, though they will completely rely on it. We plan to explore them in future work.

6 RELATEDWORK
This work can be seen as a polymorphic extension of [Castagna et al. 2022b] from which it borrows
some key notions, such as (𝑖) the combination of the union elimination rule (from [Barbanera
et al. 1995]) with three rules for type-cases, in order to capture the essence of occurrence typing
([Tobin-Hochstadt and Felleisen 2008]), (𝑖𝑖) the use of MSC forms to drive the application of the
union elimination rule, and (𝑖𝑖𝑖) the use of annotations in the algorithmic type system. However,
the introduction of polymorphic types greatly modifies the meta-theory. Besides its influence on
the union elimination rule, the interplay between intersection, union elimination and instantiation
suggests a different style of type annotations, to be amenable to type inference. We use external
annotations while [Castagna et al. 2022b] annotates terms. Further, the presence of type variables
imposes to use tallying in an inference algorithm inspired by W by Damas and Milner [1982] and
from [Castagna et al. 2015], where tallying was first introduced to type polymorphic applications.
This yields a clear improvement over [Castagna et al. 2022b] which is unable to infer higher-order
types for function arguments, while our algorithm is able to do so even for recursive functions.

The use of trees to annotate calculi with full-fledged intersection types is common. In the presence
of explicitly-typed overloaded functions, one must be able to precisely describe how the types of
nested 𝜆-abstractions relate to the various “branches” of the outermost function. The work most
similar to ours is [Liquori and Ronchi Della Rocca 2007], since the deductions are performed on
pairs of marked term and proof term. A marked term is an untyped term where variables are
marked with integers and a proof term is a tree that encodes the structure of the typing derivation
and relates marks to types. Other approaches, such as [Bono et al. 2008; Ronchi Della Rocca 2002;
Wells et al. 2002], duplicate the term typed with an intersection, such that each copy corresponds
exactly to one member of the intersection. Lastly, the work of [Wells and Haack 2002] does not
duplicate terms but rather decorate 𝜆-abstractions with a richer concept of branching shape which
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essentially allows one to give names to the various branches of an overloaded function and to use
these names in the annotations of nested 𝜆-abstraction. Note that none of these works features
type reconstruction, which was our main motivation to eschew annotations within terms, since
the backtracking nature of our reconstruction would imply rewriting terms over and over.

Inference for ML systems with subtyping, unions, and intersections has been studied in MLsub
[Dolan andMycroft 2017] and extended with richer types and a limited form of negation in MLstruct
[Parreaux and Chau 2022]. Both works trade expressivity for principality. They define a lattice of
types and an algebraic subtyping relation that ensures principality, but forbids the intersection
of arrow types. This precludes them from expressing overloaded functions, but allows them to
define a principal polymorphic type inference with unions and intersections. We justify our choice
of set-theoretic types, with no type principality and a complex inference, by our aim to type
dynamic languages, such as Erlang or JavaScript, where overloading plays an important role. We
favour the expressivity necessary to type many idioms of these languages, and rely on user-defined
annotations when necessary to compensate for the incompleteness of type inference. Lastly, both
works implement some form of type simplifications (e.g., Dolan and Mycroft [2017] use automata
techniques to simplify types), a problem of practical importance that we did not tackle, yet.
Ângelo and Florido [2022] provide a principal type inference for a type system with rank-2

intersection types. In their work, overloaded behaviors are expressible using intersection types, but
they are limited by the rank-2 restriction. Union types are not supported, nor are equi-recursive
types (actually, it does not feature a general notion of subtyping between two arbitrary types).
Their inference does not require backtracking: it generates a set of constraints that are then solved
using a set unification algorithm. This approach for inference has some similarities with the one
by Castagna et al. [2016] improved and further developed by Petrucciani [2019] in a context with
set-theoretic types, where the set unification algorithm is replaced by tallying in the presence of
subtyping. However, while [Petrucciani 2019] does support intersection types with no ranking
limitation, it is not able to infer intersection types for overloaded functions. Our work aims to
improve this aspect, as well as providing a more precise typing of type-cases (occurrence typing).

Work by Oliveira et al. [2016] and Rioux et al. [2023] study disjoint intersection and union types.
They allow expressing overloaded behaviors by a general deterministic merge operator. In our work,
we do not have a general merge operator: overloaded behaviors only emerge through the use of
type-case expressions (or the application of an overloaded function). Our work can be extended with
pattern-matching, in which case the first matching branch is selected. This is a different approach
than the one used with disjoint intersection types, where branches are disjoint and have no priority
and where ambiguous programs are rejected using a notion of mergeability and distinguishability,
allowing to define a general merge operator and to support nested composition, which may be
useful in some contexts such as compositional programming [Zhang et al. 2021].
Jim [2000] presents a polar type system which features intersections and parametric polymor-

phism. In Jim’s type system, quantifiers may appear only in positive positions in types, while
intersections may only appear in negative positions. This yields a system that is more expressive
than rank-2 intersection types, and therefore more expressive than ML. Furthermore, the system
features principal types, and a decidable type inference. Some aspects of this work are similar
to ours, in particular the use of MGS, an algorithm to compute the most general solution of a
(syntactic) sub-typing problem, that plays the same role as our tallying algorithm. Despite these
similarities, the approaches differ in the kind of programs they handle: in [Jim 2000], intersections
are only deduced by applying higher-order function parameters to arguments of distinct types
within the body of a function, while in our approach, they can also be caused by a type-case.

Finally, set-theoretic types are starting to be integrated into real-world languages, for instance by
Schimpf et al. [2023] for Erlang, by Jeffrey [2022] for Luau, and by Castagna et al. [2023a] for Elixir.
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We believe that, in the future, our work could be used in these systems in order to benefit from a
more precise typing of type-cases and pattern matching, as well as by providing an optional type
inference that can be used in conjunction with explicit type annotations.

7 CONCLUSION
This work aims at providing a formal and expressive type system for dynamic languages, where
type-cases can be used to give functions an overloaded behavior. It features a type inference that
mixes both parametric polymorphism (for modularity) and intersection polymorphism (to capture
overloaded behaviors). In that sense, our work is more than a simple study on typability: as a matter
of fact, monomorphic intersection and union types are sufficient to type a closed program where
all function applications are known (cf., Section 1.2), but this would be bad from a language design
point of view, and it is the reason why people program using ML-style programming languages
rather than intersection based ones. Separate compilation and modular definitions are requirements
of any reasonable programming language. The essence of this work is thus to challenge the limits
of how much precision one can obtain (through intersection types)—ideally precise enough to type
idioms of dynamic languages—while preserving modularity (thanks to let-polymorphism).
While we believe our work to be an important step towards a better static typing of dynamic

languages, several key features are still missing. First, the presence of side effects may invalidate
our approach: if the [∨] rule in Figure 2 is applied to two different occurrences of an expression
𝑒 ′ that is not pure, then the rule may type an expression that yields a run-time type error. This
can be seen on the algorithmic system, where the transformation into an MSC-form binds the two
occurrences of 𝑒 ′ to the same variable, thus wrongly assuming that they both yield the same result.
Strictly speaking, our algorithmic approach does not require expressions to be pure; it just needs
that when two occurrences of an expression may produce two distinct values that may change the
result of a dynamic test, then these two occurrences must be bound by two different binds. Having
only pure expressions is a straightforward way to satisfy this property. Having each subexpression
bound to a distinct variable (i.e., no sharing, that is, a less precise system, in which the union rule is
never used) is a way to retain safety in the presence of side-effects. But between these two extrema,
there is a whole palette of less coarse solutions that make it possible to apply our approach in the
presence of side-effects, and that we plan to study in future work. This poses two main challenges:
(𝑖) how to separate problematic expressions from non-problematic ones (e.g., a gen_id: Unit→Int
function performs side-effects, but if its result is tested only against Int, then it is sound to have all
occurrences of gen_id bound by the same bind during typing) which, in terms of the type system,
corresponds to characterize a class of subexpressions 𝑒 ′ that can be safely used in rule [∨]; and
(𝑖𝑖) how to do so before our type inference, at a point when type information is not available, yet.
Second, while the performance of our prototype is reasonable, it can certainly be improved by

using more sophisticated implementations techniques and heuristics on the lines we outlined at
the end of Section 5.
Third, the interactions between code that is exported and code that is local must be better

studied and understood: using intersection for local polymorphic functions and generalization for
global ones, may not always be entirely satisfactory since the types of the global functions may be
“polluted” by the types of the local applications, yielding less a precise reconstruction for the former.
One solution can be to hoist the definition of polymorphic functions at toplevel whenever possible.
Lastly, an important future work is the support of row-polymorphism: while records can be

easily added to the present work, the precise typing of functions operating on records requires row-
polymorphism. This is especially important for dynamic languages where records are seamlessly
used to encode both objects and dictionaries. A first step in that direction may be to integrate the
work by Castagna [2023b], which unifies dictionaries and records.
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A EXTENSIONS
In this appendix, we present some extensions for the source language, in particular let-bindings (not
to be coufounded with the top-level definitions composing a program: the let-bindings presented
in this section can be used anywhere in an expression and do not generalize the type of their
definition) and pattern matching.

This section gives an overview of these extensions together with some explanations, but the full
semantics and typing rules can be found in the next appendices.

A.1 Let Bindings
A.1.1 Declarative Type System. Let bindings can be added to the syntax of our language:

Expressions 𝑒 ::= · · · | let𝑥 = 𝑒 in 𝑒

with the following notion of reduction:

let𝑥 = 𝑣 in 𝑒 { 𝑒{𝑣/𝑥}

At first sight, we could think of adding this typing rule to the declarative type system:

[Let]
Γ ⊢ 𝑒1 : 𝑡1 Γ, 𝑥 : 𝑡1 ⊢ 𝑒2 : 𝑡2

Γ ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝑡2

However, this extension of the declarative type system has one issue: let-bindings can introduce
aliasing, preventing in some cases the [∨] rule from applying. For instance, consider the following
expression:

𝜆𝑥 . let𝑦 =𝑥 in (𝑓 𝑥∈Int) ? 𝑓 𝑦 : 42

with 𝑓 : 1 → 1.
Though for any argument 𝑥 this function yields an integer, it is not possible to derive for it

the type 1 → Int using this extension of the declarative type system. Indeed, 𝑓 𝑥 and 𝑓 𝑦 are
not syntactically equivalent and thus the [∨] rule can only decompose their types independently,
loosing the correlation between these two expressions.

One way to fix this issue is to remove this kind of aliasing before applying the declarative type
system. For that, we can introduce an intermediate language featuring an alternative version of
let-bindings:

Expressions 𝑒 ::= · · · | let 𝑒 in 𝑒

Let-bindings of the source language can be transformed into this alternative version using a
transformation L.M defined as follows (the other cases are straightforward):

Llet𝑥 = 𝑒1 in 𝑒2 M = let L𝑒1M in L𝑒2M{L𝑒1M/𝑥}

Finally, the declarative type system can be extended with this rule:

[Let]
Γ ⊢ 𝑒1 : 𝑡1 Γ ⊢ 𝑒2 : 𝑡2
Γ ⊢ let 𝑒1 in 𝑒2 : 𝑡2
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A.1.2 Algorithmic Type System. Let-bindings are added to MSC forms as a new atom construction:

Atomic expr 𝑎 ::= · · · | let x in x
The intuition is the same as for the declarative type system: we want to get rid of the aliasing caused
by let-bindings, while still using bindings to factorize each subexpression. Indeed, to produce an
atom for the expression let𝑥 = 𝑒1 in 𝑒2 we must replace each subexpression by a binding variable,
which would yield something of the form let𝑥 = x1 in x2 . Since the body of the let-expression is a
variable, then the variable 𝑥 is only an alias for x1 and thus is undesirable. Consequently, only the
other two variables are specified, which yields let x1 in x2 and which explains the definition of
the atom for let expressions.

For instance, the expression let𝑥 = 𝜆𝑦.𝑦 in (𝑥, 𝑥) has the following canonical form:

bind x1 = (𝜆𝑦.bind y =𝑦 in y ) in
bind x2 = (x1, x1) in
bind x3 = (let x1 in x2 ) in
x3

Note that, as explained above, the variable 𝑥 is no longer present in the canonical form.
The algorithmic type system can then be extended with the following rule:

[Let-Alg]
Γ ⊢A [let x1 in x2 | ∅] : Γ(x2)

x1 ∈ dom(Γ)

It is straightforward to extend the reconstruction with additional rules in order to support this
new construction (c.f. appendix H).

A.2 Type Constraints
A new construction (𝑒 : 𝜏) can be added to our source language. This construction acts as a type
constraint: if the expression 𝑒 does not reduce to a value of type 𝜏 (and does not diverge), then the
reduction will be stuck. In a sense, it could be seen as a cast, but we will not use this terminology
in order to avoid confusions with gradual typing. Actually, we only introduce this construction
because it will be used later to encode more general type-cases.

We add the following construction to our source language:

Expressions 𝑒 ::= · · · | (𝑒 : 𝜏)
with the following notion of reduction:

(𝑣 : 𝜏) { 𝑣 if 𝑣 ∈ 𝜏
The declarative type system can trivially be extended by adding this rule:

[Constr]
Γ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝑒 : 𝑡

Γ ⊢ (𝑒 : 𝜏) : 𝑡

The same construction is added to the atoms of canonical forms:

Atomic expr 𝑎 ::= · · · | x : 𝜏

The annotations of the algorithmic type system also need to be extended:

Atoms annotations a ::= · · · | :(Σ)
and the algorithmic type system is extended with the following rule:

[Constr-Alg]
Γ ⊢A [x : 𝜏 | :(Σ)] : Γ(x)

Γ(x)Σ ≤ 𝜏
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It is also straightforward to extend the reconstruction with additional rules in order to support
this new construction (c.f. appendix H).

A.3 Pattern Matching
Pattern matching is a fundamental feature of functional languages, and even some dynamic lan-
guages such as Python have started to implement it. In this section, we show how this feature can
be added in our source language. We proceed in two steps: first, a more general typecase construct
with arbitrary arity is introduced, and secondly, this construct is generalized again so that branches
can be decorated with patterns instead of just types.

A.3.1 Extended Typecases. We start by adding a generalized version of the typecase, that can have
any number of branches:

Expressions 𝑒 ::= · · · | (tcase 𝑒 of𝜏 → 𝑒 | . . . | 𝜏 → 𝑒)

with the following notion of reduction:

tcase 𝑣 of𝜏1 → 𝑒1 | . . . | 𝜏𝑛 → 𝑒𝑛 { 𝑒𝑘
if 𝑣 : 𝜏𝑘 ∖ (∨𝑖∈1. .𝑘−1 𝜏𝑖 )
for any 𝑘 ∈ 1 . . 𝑛

In terms of typing, however, we choose not to extend the type system with additional rules in
order to preserve its minimality. Instead, we transform expressions with extended typecases into
expressions of the source langauge presented in section 2, with the let-binding and type constraints
extensions (A.1 and A.2). For that, we use the following transformation:

L𝑐M = 𝑐
L𝑥M = 𝑥

L𝜆𝑥.𝑒M = 𝜆𝑥.L𝑒M
L𝜋𝑖𝑒M = 𝜋𝑖L𝑒M
L𝑒1𝑒2M = L𝑒1ML𝑒2M

L(𝑒1, 𝑒2)M = (L𝑒1M, L𝑒2M)
L(𝑒∈𝜏) ? 𝑒1 : 𝑒2M = (L𝑒M∈𝜏) ? L𝑒1M : L𝑒2M

Llet𝑥 = 𝑒1 in 𝑒2 M = let𝑥 = L𝑒1M in L𝑒2M
L𝑒 : 𝜏M = L𝑒M : 𝜏

Ltcase 𝑒 of𝜏1 → 𝑒1 | . . . | 𝜏𝑛 → 𝑒𝑛M =
let𝑥 = (L𝑒M :

∨
𝑖∈1. .𝑛 𝜏𝑖 ) in

c𝑥 (𝜏1 → L𝑒1M ; . . . ; 𝜏𝑛 → L𝑒𝑛M)
with 𝑥 fresh

c𝑥 (𝜏 → 𝑒) = 𝑒
c𝑥 (𝜏 → 𝑒 ; 𝐶) = (𝑥∈𝜏) ? 𝑒 : c𝑥 (𝐶)

A.3.2 Pattern Matching. Now, we introduce patterns and a pattern matching construct in the
source language:

Patterns 𝑝 ::= 𝜏 | 𝑥 | 𝑝&𝑝 | 𝑝|𝑝 | (𝑝, 𝑝) | 𝑥 := 𝑐
Expressions 𝑒 ::= · · · | (match 𝑒 with𝑝 → 𝑒 | . . . | 𝑝 → 𝑒)

The associated reduction rule can be found in Appendix B.
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In terms of typing, we proceed as before by transforming an expression with pattern matching
into an expression without pattern matching (but with extended typecases and let-bindings), using
the following transformation:

L𝑐M = 𝑐
L𝑥M = 𝑥

L𝜆𝑥 .𝑒M = 𝜆𝑥 .L𝑒M
L𝜋𝑖𝑒M = 𝜋𝑖L𝑒M
L𝑒1𝑒2M = L𝑒1ML𝑒2M

L(𝑒1, 𝑒2)M = (L𝑒1M, L𝑒2M)
L(𝑒∈𝜏) ? 𝑒1 : 𝑒2M = (L𝑒M∈𝜏) ? L𝑒1M : L𝑒2M

Llet𝑥 = 𝑒1 in 𝑒2 M = let𝑥 = L𝑒1M in L𝑒2M
L𝑒 : 𝜏M = L𝑒M : 𝜏

Ltcase 𝑒 of𝜏1 → 𝑒1 | . . . | 𝜏𝑛 → 𝑒𝑛M = tcase L𝑒M of𝜏1 → L𝑒1M | . . . | 𝜏𝑛 → L𝑒𝑛M

Lmatch 𝑒 with 𝑝1 → 𝑒1 | . . . | 𝑝𝑛 → 𝑒𝑛M = let𝑥 = L𝑒M in tcase𝑥 of
*𝑝1+ → 𝑒 ′1
| . . .
| * 𝑝𝑛+ → 𝑒 ′𝑛

with 𝑥 fresh,

*𝜏+ = 𝜏

*𝑥+ = 1

*𝑝1&𝑝2+ = *𝑝1 + ∧ * 𝑝2+
*𝑝1|𝑝2+ = *𝑝1 + ∨ * 𝑝2+

*(𝑝1, 𝑝2)+ = *𝑝1 + × * 𝑝2+
*𝑥 := 𝑐+ = 1

and where for every 𝑖 ∈ 1 . . 𝑚:
𝑒 ′𝑖 = let𝑥1 = d𝑥1 (𝑝𝑖 , 𝑥) in . . . let𝑥𝑚 = d𝑥𝑚 (𝑝𝑖 , 𝑥) in L𝑒𝑖M for {𝑥1, ..., 𝑥𝑚} = vars(𝑝𝑖 ) with

d𝑥 (𝑥, 𝑒) = 𝑒
d𝑥 (𝑥 := 𝑐, 𝑒) = 𝑐

d𝑥 ((𝑝1, 𝑝2), 𝑒) = d𝑥 (𝑝𝑖 , 𝜋𝑖𝑒) if 𝑥 ∈ vars(𝑝𝑖 )
d𝑥 (𝑝1&𝑝2, 𝑒) = d𝑥 (𝑝𝑖 , 𝑒) if 𝑥 ∈ vars(𝑝𝑖 )
d𝑥 (𝑝1|𝑝2, 𝑒) = (𝑒∈ * 𝑝1 + ) ? d𝑥 (𝑝1, 𝑒) : d𝑥 (𝑝2, 𝑒)

d𝑥 (𝑝, 𝑒) = undefined otherwise
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B FULL SEMANTICS WITH EXTENSIONS
Expressions of the source language with extensions of Appendix A are defined as follows:

Test Types 𝜏 ::= 𝑏 | 0 → 1 | 𝜏 × 𝜏 | 𝜏 ∨ 𝜏 | ¬𝜏 | 0
Patterns 𝑝 ::= 𝜏 | 𝑥 | 𝑝&𝑝 | 𝑝|𝑝 | (𝑝, 𝑝) | 𝑥 := 𝑐
Expressions 𝑒 ::= 𝑐 | 𝑥 | 𝜆𝑥.𝑒 | 𝑒𝑒 | (𝑒, 𝑒) | 𝜋𝑖𝑒 | (𝑒∈𝜏) ? 𝑒 : 𝑒 | let𝑥 = 𝑒 in 𝑒 | (𝑒 : 𝜏)

| (tcase 𝑒 of𝜏 → 𝑒 | . . . | 𝜏 → 𝑒) | (match 𝑒 with𝑝 → 𝑒 | . . . | 𝑝 → 𝑒)
Values 𝑣 ::= 𝑐 | 𝜆𝑥.𝑒 | (𝑣, 𝑣)
The associated reduction rules are:

(𝜆𝑥.𝑒)𝑣 { 𝑒{𝑣/𝑥}
𝜋1 (𝑣1, 𝑣2) { 𝑣1
𝜋2 (𝑣1, 𝑣2) { 𝑣2

(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒1 if 𝑣 ∈ 𝜏
(𝑣∈𝜏) ? 𝑒1 : 𝑒2 { 𝑒2 if 𝑣 ∈ ¬𝜏
let𝑥 = 𝑣 in 𝑒 { 𝑒{𝑣/𝑥}

(𝑣 : 𝜏) { 𝑣 if 𝑣 ∈ 𝜏

tcase 𝑣 of𝜏1 → 𝑒1 | . . . | 𝜏𝑛 → 𝑒𝑛 { 𝑒𝑘
if 𝑣 : 𝜏𝑘 ∖ (∨𝑖∈1. .𝑘−1 𝜏𝑖 )
for any 𝑘 ∈ 1 . . 𝑛

match 𝑣 with 𝑝1 → 𝑒1 | . . . | 𝑝𝑛 → 𝑒𝑛 { 𝑒𝑘 (𝑣/𝑝𝑘 )
if 𝑣 : *𝑝𝑘 + ∖(∨𝑖∈1. .𝑘−1 *𝑝𝑖+)
for any 𝑘 ∈ 1 . . 𝑛

together with the context rules that implement a leftmost outermost reduction strategy, that is,
𝐸 [𝑒] { 𝐸 [𝑒 ′] if 𝑒 { 𝑒 ′ where the evaluation contexts 𝐸 [] are defined as follows:

Evaluation Context 𝐸 ::= [ ] | 𝑣𝐸 | 𝐸𝑒 | (𝑣, 𝐸) | (𝐸, 𝑒) | 𝜋𝑖𝐸 | (𝐸∈𝜏) ? 𝑒 : 𝑒
| let𝑥 =𝐸 in 𝑒 | (𝐸 : 𝜏)
| (tcase𝐸 of𝜏 → 𝑒 | . . . | 𝜏 → 𝑒)
| (match𝐸 with 𝑝 → 𝑒 | . . . | 𝑝 → 𝑒)

Capture-avoiding substitutions are defined as follows (cases for extended typecases and pattern-
matchings have been omitted for concision):

𝑐{𝑒 ′/𝑥} = 𝑐
𝑥{𝑒 ′/𝑥} = 𝑒 ′

𝑦{𝑒 ′/𝑥} = 𝑦 𝑥 ≠ 𝑦

(𝜆𝑥.𝑒){𝑒 ′/𝑥} = 𝜆𝑥.𝑒
(𝜆𝑦.𝑒){𝑒 ′/𝑥} = 𝜆𝑦.(𝑒{𝑒 ′/𝑥}) 𝑥 ≠ 𝑦,𝑦 ∉ fv(𝑒 ′)
(𝜆𝑦.𝑒){𝑒 ′/𝑥} = 𝜆𝑧.(𝑒{𝑧/𝑦}{𝑒 ′/𝑥}) 𝑥 ≠ 𝑦,𝑦 ∈ fv(𝑒 ′), 𝑧 fresh
(𝑒1𝑒2){𝑒 ′/𝑥} = (𝑒1{𝑒 ′/𝑥})(𝑒2{𝑒 ′/𝑥})
(𝑒1, 𝑒2){𝑒 ′/𝑥} = (𝑒1{𝑒 ′/𝑥}, 𝑒2{𝑒 ′/𝑥})
(𝜋𝑖𝑒){𝑒 ′/𝑥} = 𝜋𝑖 (𝑒{𝑒 ′/𝑥})

((𝑒1∈𝜏) ? 𝑒2 : 𝑒3){𝑒 ′/𝑥} = (𝑒1{𝑒 ′/𝑥}∈𝜏) ? 𝑒2{𝑒 ′/𝑥} : 𝑒3{𝑒 ′/𝑥}
(let𝑥 = 𝑒1 in 𝑒2 ){𝑒 ′/𝑥} = let𝑥 = 𝑒1{𝑒 ′/𝑥} in 𝑒2

(let𝑦 = 𝑒1 in 𝑒2 ){𝑒 ′/𝑥} = let𝑦 = 𝑒1{𝑒 ′/𝑥} in 𝑒2{𝑒 ′/𝑥} 𝑥 ≠ 𝑦,𝑦 ∉ fv(𝑒 ′)
(let𝑦 = 𝑒1 in 𝑒2 ){𝑒 ′/𝑥} = let𝑦 = 𝑒1{𝑒 ′/𝑥} in 𝑒2{𝑧/𝑦}{𝑒 ′/𝑥} 𝑥 ≠ 𝑦,𝑦 ∈ fv(𝑒 ′), 𝑧 fresh
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The relation 𝑣 ∈ 𝜏 that determines whether a value is of a given type or not and holds true if and
only if typeof (𝑣) ≤ 𝜏 , where

typeof (𝜆𝑥.𝑒) = 0 → 1

typeof (𝑐) = b𝑐

typeof ((𝑣1, 𝑣2)) = typeof (𝑣1) × typeof (𝑣2)
Finally, the operators used in the reduction rule for pattern matching are defined as follows:

*𝜏+ = 𝜏

*𝑥+ = 1

*𝑝1&𝑝2+ = *𝑝1 + ∧ * 𝑝2+
*𝑝1|𝑝2+ = *𝑝1 + ∨ * 𝑝2+

*(𝑝1, 𝑝2)+ = *𝑝1 + × * 𝑝2+
*𝑥 := 𝑐+ = 1

and
𝑣/𝜏 = id if 𝑣 : 𝜏
𝑣/𝑥 = {𝑣/𝑥}

𝑣/(𝑝1&𝑝2) = 𝜎1 ∪ 𝜎2 if 𝜎1 = 𝑣/𝑝1 and 𝜎2 = 𝑣/𝑝2

𝑣/(𝑝1|𝑝2) = 𝑣/𝑝1 if 𝑣/𝑝1 ≠ fail

𝑣/(𝑝1|𝑝2) = 𝑣/𝑝2 if 𝑣/𝑝1 = fail

𝑣/(𝑝1, 𝑝2) = 𝜎1 ∪ 𝜎2 if 𝑣 = (𝑣1, 𝑣2), 𝜎1 = 𝑣1/𝑝1 and 𝜎2 = 𝑣2/𝑝2

𝑣/(𝑥 := 𝑐) = {𝑐/𝑥}
𝑣/𝑝 = fail otherwise

C SUBTYPING RELATION
Subtyping is defined by giving a set-theoretic interpretation of the types of Definition 2.1 into a
suitable domain D. In case of polymorphic types, the domain at issue must satisfy the property of
convexity [Castagna and Xu 2011]. A simple model that satisfies convexity was proposed by [Gesbert
et al. 2015]. We succintly present it in this section. The reader may refer to [Castagna 2023a, Section
3.3] for more details.

Definition C.1 (Interpretation domain [Gesbert et al. 2015]). The interpretation domain
D is the set of finite terms 𝑑 produced inductively by the following grammar

𝑑 F 𝑐𝐿 | (𝑑, 𝑑)𝐿 | {(𝑑, 𝜕), . . . , (𝑑, 𝜕)}𝐿

𝜕 F 𝑑 | Ω
where 𝑐 ranges over the set C of constants, 𝐿 ranges over finite sets of type variables, and where Ω is

such that Ω ∉ D.

The elements of D correspond, intuitively, to (denotations of) the results of the evaluation of
expressions, labeled by finite sets of type variables. In particular, in a higher-order language, the
results of computations can be functions which, in this model, are represented by sets of finite
relations of the form {(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝐿 , where Ω (which is not in D) can appear in second
components to signify that the function fails (i.e., evaluation is stuck) on the corresponding input.
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This is implemented by using in the second projection the meta-variable 𝜕 which ranges over
DΩ = D∪{Ω} (we reserve 𝑑 to range overD, thus excluding Ω). This constant Ω is used to ensure
that 1 → 1 is not a supertype of all function types: if we used 𝑑 instead of 𝜕, then every well-typed
function could be subsumed to 1 → 1 and, therefore, every application could be given the type 1,
independently from its argument as long as this argument is typable (see Section 4.2 of [Frisch et al.
2008] for details). The restriction to finite relations corresponds to the intuition that the denotational
semantics of a function is given by the set of its finite approximations, where finiteness is a restriction
necessary (for cardinality reasons) to give the semantics to higher-order functions. Finally, the sets of
type variables that label the elements of the domain are used to interpret type variables: we interpret
a type variable 𝛼 by the set of all elements that are labeled by 𝛼 , that is J𝛼K = {𝑑 | 𝛼 ∈ tags(𝑑)}
(where we define tags(𝑐𝐿) = tags((𝑑, 𝑑 ′)𝐿) = tags({(𝑑1, 𝜕1), . . . , (𝑑𝑛, 𝜕𝑛)}𝐿) = 𝐿).

We define the interpretation J𝑡K of a type 𝑡 so that it satisfies the following equalities, where Pfin
denotes the restriction of the powerset to finite subsets and B denotes the function that assigns to
each basic type the set of constants of that type, so that for every constant 𝑐 we have 𝑐 ∈ B(b𝑐 ) (we
use b𝑐 to denote the basic type of the constant 𝑐):

J0K = ∅ J𝛼K = {𝑑 | 𝛼 ∈ tags(𝑑)} J𝑡1 ∨ 𝑡2K = J𝑡1K ∪ J𝑡2K
J𝑏K = B(𝑏) J¬𝑡K = D ∖ J𝑡K J𝑡1 × 𝑡2K = J𝑡1K × J𝑡2K

J𝑡1→𝑡2K = {𝑅 ∈ Pfin (D×DΩ) | ∀(𝑑, 𝜕) ∈ 𝑅. 𝑑 ∈ J𝑡1K =⇒ 𝜕 ∈ J𝑡2K}

We cannot take the equations above directly as an inductive definition of JK because types are
not defined inductively but coinductively. Notice however that the contractivity condition of
Definition 2.1 ensures that the binary relation ▷ ⊆Types×Types defined by 𝑡1 ∨ 𝑡2 ▷ 𝑡𝑖 , 𝑡1 ∧ 𝑡2 ▷ 𝑡𝑖 ,
¬𝑡 ▷ 𝑡 is Noetherian. This gives an induction principle11 on Types that we use combined with
structural induction on D to give the following definition, which validates these equalities.

Definition C.2 (Set-theoretic interpretation of types). We define a binary predicate (𝑑 : 𝑡)
(“the element 𝑑 belongs to the type 𝑡”), where 𝑑 ∈ D and 𝑡 ∈ Types, by induction on the pair (𝑑, 𝑡)
ordered lexicographically. The predicate is defined as follows:

(𝑐 : 𝑏) = 𝑐 ∈ B(𝑏)
(𝑑 : 𝛼) = 𝛼 ∈ tags(𝑑)

((𝑑1, 𝑑2) : 𝑡1 × 𝑡2) = (𝑑1 : 𝑡1) and (𝑑2 : 𝑡2)
({(𝑑1, 𝜕1), ..., (𝑑𝑛, 𝜕𝑛)} : 𝑡1 → 𝑡2) = ∀𝑖 ∈ [1..𝑛] . if (𝑑𝑖 : 𝑡1) then (𝜕𝑖 : 𝑡2)

(𝑑 : 𝑡1 ∨ 𝑡2) = (𝑑 : 𝑡1) or (𝑑 : 𝑡2)
(𝑑 : ¬𝑡) = not (𝑑 : 𝑡)
(𝜕 : 𝑡) = false otherwise

We define the set-theoretic interpretation JK : Types → P(D) as J𝑡K = {𝑑 ∈ D | (𝑑 : 𝑡)}.

Finally, we define the subtyping preorder and its associated equivalence relation as follows.

Definition C.3 (Subtyping relation). We define the subtyping relation ≤ and the subtyping
equivalence relation ≃ as 𝑡1 ≤ 𝑡2 ⇐⇒def J𝑡1K ⊆ J𝑡2K and 𝑡1 ≃ 𝑡2 ⇐⇒def (𝑡1 ≤ 𝑡2) and (𝑡2 ≤ 𝑡1) .

11In a nutshell, we can do proofs and give definitions by induction on the structure of unions and negations—and, thus,
intersections—but arrows, products, and basic types are the base cases for the induction.



40:40 Giuseppe Castagna, Mickaël Laurent, and Kim Nguyễn

D DECLARATIVE TYPE SYSTEMWITH EXTENSIONS
The declarative type system extended with the extensions of Appendix A uses expressions produced
by the following grammar:

Expressions 𝑒 ::= 𝑐 | 𝑥 | 𝜆𝑥.𝑒 | 𝑒𝑒 | (𝑒, 𝑒) | 𝜋𝑖𝑒 | (𝑒∈𝜏) ? 𝑒 : 𝑒 | let 𝑒 in 𝑒 | (𝑒 : 𝜏)

Note that extended typecases and pattern matching are absent because they are encoded using
let-bindings and type constraints before typing. Similarly, we use the construction let 𝑒 in 𝑒 for
let-bindings instead of the initial construction let𝑥 = 𝑒 in 𝑒 in order to avoid aliasing. You should
refer to Section A.1 for more details on this transformation.

The deduction rules for the declarative type system are:

[Const]
Γ ⊢ 𝑐 : b𝑐

[Ax]
Γ ⊢ 𝑥 : Γ(𝑥)

[→I]
Γ, 𝑥 : u ⊢ 𝑒 : 𝑡

Γ ⊢ 𝜆𝑥.𝑒 : u → 𝑡
[→E]

Γ ⊢ 𝑒1 : 𝑡1 → 𝑡2 Γ ⊢ 𝑒2 : 𝑡1
Γ ⊢ 𝑒1𝑒2 : 𝑡2

[×I]
Γ ⊢ 𝑒1 : 𝑡1 Γ ⊢ 𝑒2 : 𝑡2

Γ ⊢ (𝑒1, 𝑒2) : 𝑡1 × 𝑡2
[×E1]

Γ ⊢ 𝑒 : 𝑡1 × 𝑡2
Γ ⊢ 𝜋1𝑒 : 𝑡1

[×E2]
Γ ⊢ 𝑒 : 𝑡1 × 𝑡2
Γ ⊢ 𝜋2𝑒 : 𝑡2

[0]
Γ ⊢ 𝑒 : 0

Γ ⊢ (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 0
[∈1]

Γ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝑒1 : 𝑡1
Γ ⊢ (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡1

[∈2]
Γ ⊢ 𝑒 : ¬𝜏 Γ ⊢ 𝑒2 : 𝑡2
Γ ⊢ (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡2

[∨]
Γ ⊢ 𝑒 ′ : 𝑠 Γ, 𝑥 : 𝑠 ∧ u ⊢ 𝑒 : 𝑡 Γ, 𝑥 : 𝑠 ∧ ¬u ⊢ 𝑒 : 𝑡

Γ ⊢ 𝑒{𝑒 ′/𝑥} : 𝑡
[∧]

Γ ⊢ 𝑒 : 𝑡1 Γ ⊢ 𝑒 : 𝑡2
Γ ⊢ 𝑒 : 𝑡1 ∧ 𝑡2

[Inst]
Γ ⊢ 𝑒 : 𝑡
Γ ⊢ 𝑒 : 𝑡𝜎

[≤]
Γ ⊢ 𝑒 : 𝑡
Γ ⊢ 𝑒 : 𝑡 ′

𝑡 ≤ 𝑡 ′

with these additional rules for the extensions of Appendix A (let-bindings and type constraints):

[Let]
Γ ⊢ 𝑒1 : 𝑡1 Γ ⊢ 𝑒2 : 𝑡2
Γ ⊢ let 𝑒1 in 𝑒2 : 𝑡2

[Constr]
Γ ⊢ 𝑒 : 𝜏 Γ ⊢ 𝑒 : 𝑡

Γ ⊢ (𝑒 : 𝜏) : 𝑡

E COMPUTATION OF MSC-FORMS
E.1 From Canonical Forms to Source Language Expressions
We recall the grammar for canonical forms, with the extensions presented in Appendix A:

Atomic expressions 𝑎 ::= 𝑐 | 𝑥 | 𝜆𝑥 .𝜅 | (x, x) | xx | 𝜋𝑖x | (x∈𝜏) ? x : x | let x in x | x : 𝜏
Canonical Forms 𝜅 ::= x | bind x =𝑎 in𝜅

Any canonical form can be transformed into an expression of the source language using the
unwiding operator ⌈.⌉ defined as follows:
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⌈𝑐⌉ = 𝑐
⌈𝑥⌉ = 𝑥

⌈𝜆𝑥 .𝜅⌉ = 𝜆𝑥.⌈𝜅⌉
⌈x1x2⌉ = x1x2

⌈(x1, x2)⌉ = (x1, x2)
⌈𝜋𝑖x⌉ = 𝜋𝑖x 𝑖 = 1, 2

⌈(x∈𝜏) ? x1 : x2⌉ = (x∈𝜏) ? x1 : x2

⌈let x1 in x2 ⌉ = let𝑥 = x1 in x2{𝑥/x1} with 𝑥 fresh
⌈x : 𝜏⌉ = x : 𝜏

⌈bind x =𝑎 in𝜅 ⌉ = ⌈𝜅⌉{⌈𝑎⌉/x}
⌈x⌉ = x

E.2 From Source Language Expressions to Canonical Forms
The inverse direction, that is, producing from a source language expression a canonical form that
unwinds to it, is also straightforward.
Let 𝐵 denote a binding context, that is, an ordered list of mappings from binding variables to

atoms. Each mapping is written as a pair (x, 𝑒). We note these lists extensionally by separating
elements by a semicolon, that is, (x1, 𝑎1); . . . ; (x𝑛, 𝑎𝑛) and use 𝜀 to denote the empty list.

We define an operation term(𝐵,𝜅) which takes a binding context 𝐵 and a canonical form 𝜅 and
constructs the canonical form containing the bindings listed in 𝐵 and ending with 𝜅, that is:

term(𝜀, 𝜅) =
def
𝜅

term(((x, 𝑎);𝐵), 𝜅) =
def bind x =𝑎 in term(𝐵,𝜅)

We can now define the function J𝑒K that transforms an expression 𝑒 into a pair (𝐵, x) formed by
a binding context 𝐵 and a binding variable x that will be bound to the atom representing 𝑒 . The
definition is as follows, where x◦ is a fresh binding variable.

J𝑐K = ((x◦, 𝑐), x◦)
J𝑥K = ((x◦, 𝑥), x◦)

J𝜆𝑥 .𝑒K = ((x◦, 𝜆𝑥 .termJ𝑒K), x◦)
J𝜋𝑖𝑒K = ((𝐵; (x◦, 𝜋𝑖x)), x◦) where (𝐵, x) = J𝑒K
J𝑒1𝑒2K = ((𝐵1;𝐵2; (x◦, x1x2)), x◦) where (𝐵1, x1) = J𝑒1K, (𝐵2, x2) = J𝑒2K

J(𝑒1, 𝑒2)K = ((𝐵1;𝐵2; (x◦, (x1, x2))), x◦) where (𝐵1, x1) = J𝑒1K, (𝐵2, x2) = J𝑒2K
J(𝑒∈𝜏) ? 𝑒1 : 𝑒2K = ((𝐵;𝐵1;𝐵2; (x◦, (x∈𝜏) ? x1 : x2)), x◦)

where (𝐵, x) = J𝑒K, (𝐵1, x1) = J𝑒1K, (𝐵2, x2) = J𝑒2K
JxK = (𝜀, x)

Jlet𝑥 = 𝑒1 in 𝑒2 K = ((𝐵1;𝐵2; (x◦, let x1 in x2 )), x◦)
where (𝐵1, x1) = J𝑒1K, (𝐵2, x2) = J𝑒2{x1/𝑥}K

J𝑒 : 𝜏K = ((𝐵; (x◦, x : 𝜏)), x◦) where (𝐵, x) = J𝑒K

It is easy to prove that, for any term of the source language 𝑒 , ⌈term(J𝑒K)⌉ = 𝑒 .
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E.3 From Canonical Forms to a MSC Form
It is easy to transform a canonical form into a MSC-form that has the same unwinding. This can be
done by applying the rewriting rules below, that are confluent and normalizing.

bind x1 =𝑎1 in
bind x2 =𝑎2 in𝜅

d bind x1 =𝑎1 in𝜅{x1/x2} 𝑎1 ≡𝜅 𝑎2 (3)

bind x =𝑎 in𝜅 d 𝜅 x ∉ fv(𝜅) (4)

bind x = 𝜆𝑦.(
bind z =𝑎 in𝜅◦ )

in𝜅
d

bind z =𝑎 in
bind x = 𝜆𝑦.𝜅◦ in𝜅

𝑦 ∉ fv(𝑎), z ∉ fv(𝜅) (5)

𝜅1 d 𝜅2 ∃𝜅 ′1. 𝜅1 ≡𝜅 𝜅 ′1 d 𝜅2 (6)

Rule (3) implements the maximal sharing: if two variables bind atoms with the same unwinding
(modulo 𝛼-conversion), then the variables are unified. Rule (4) removes useless bindings. Rule (5)
extrudes bindings from abstractions of variables that do not occur in the argument of the binding.
Rule (6) applies the previous rule modulo the canonical equivalence: in practice it applies the swap
of binding defined in Definition 3.1 as many times as it is needed to apply one of the other rules.
As customary, these rules can be applied under any context.

The transformation above transforms every canonical form into an MSC-form that has the same
unwinding. It thus allows to compute MSC(𝑒) for any expression 𝑒 of the source language.

F TYPE OPERATORS
The algorithmic type system presented in this work use the following type-operators:

dom(𝑡) = max{𝑢 | 𝑡 ≤ 𝑢 → 1}
𝑡 ◦ 𝑠 = min{𝑢 | 𝑡 ≤ 𝑠 → 𝑢}

𝝅1 (𝑡) = min{𝑢 | 𝑡 ≤ 𝑢 × 1}
𝝅2 (𝑡) = min{𝑢 | 𝑡 ≤ 1 × 𝑢}

In words, 𝑡 ◦ 𝑠 is the best (i.e., smallest wrt ≤) type we can deduce for the application of a function
of type 𝑡 to an argument of type 𝑠 . Projection and domain are standard. All these operators can be
effectively computed as shown below (see Castagna et al. [2022a]; Frisch et al. [2008] for details
and proofs).
If any of the types at issue is empty, then the computation is straightforward: dom(0) = 1 and

0 ◦ 𝑠 = 𝑡 ◦ 0 = 𝝅1 (0) = 𝝅2 (0) = 0. Otherwise the operators are computed as follows.
For 𝑡 ≃dnf ∨

𝑖∈𝐼

(∧
𝑝′∈𝑃 ′

𝑖
𝛼𝑝′ ∧

∧
𝑛′∈𝑁 ′

𝑖
¬𝛼 ′

𝑛′ ∧
∧
𝑝∈𝑃𝑖 (𝑠𝑝 → 𝑡𝑝 ) ∧

∧
𝑛∈𝑁𝑖

¬(𝑠 ′𝑛 → 𝑡 ′𝑛)
)
,

where each summand of the outer union is not empty, the first two operators are computed by:

dom(𝑡) =
∧
𝑖∈𝐼

∨
𝑝∈𝑃𝑖

𝑠𝑝

𝑡 ◦ 𝑠 =
∨
𝑖∈𝐼

©«
∨

{𝑄⊊𝑃𝑖 | 𝑠≰∨𝑞∈𝑄 𝑠𝑞 }

©«
∧

𝑝∈𝑃𝑖∖𝑄
𝑡𝑝
ª®¬ª®¬ (for 𝑠 ≤ dom(𝑡))
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For 𝑡 ≃dnf ∨
𝑖∈𝐼

(∧
𝑝′∈𝑃 ′

𝑖
𝛼𝑝′ ∧

∧
𝑛′∈𝑁 ′

𝑖
¬𝛼 ′

𝑛′ ∧
∧
𝑝∈𝑃𝑖 (𝑠𝑝 , 𝑡𝑝 ) ∧

∧
𝑛∈𝑁𝑖

¬(𝑠 ′𝑛, 𝑡 ′𝑛)
)
,

where each summand of the outer union is not empty, the last two operators are computed by

𝝅1 (𝑡) =
∨
𝑖∈𝐼

∨
𝑁 ′⊆𝑁𝑖

©«
∧
𝑝∈𝑃𝑖

𝑠𝑝 ∧
∧
𝑛∈𝑁 ′

¬𝑠 ′𝑛
ª®¬

𝝅2 (𝑡) =
∨
𝑖∈𝐼

∨
𝑁 ′⊆𝑁𝑖

©«
∧
𝑝∈𝑃𝑖

𝑡𝑝 ∧
∧
𝑛∈𝑁 ′

¬𝑡 ′𝑛
ª®¬

G ALGORITHMIC TYPE SYSTEM

Atom annots a ::= ∅ | 𝜆(u, k) | (𝜌, 𝜌) | @(Σ, Σ) | 𝜋 (Σ) | 0(Σ) | ∈1 (Σ) | ∈2 (Σ) |
∧({a, ... , a})

Form annots k ::= 𝜌 | keep (a, {(u, k), . . . , (u, k)}) | skip k | ∧({k, . . . , k})
The algorithmic type system is defined by the following deduction rules:

[Const-Alg]
Γ ⊢A [𝑐 | ∅] : b𝑐

[Ax-Alg]
Γ ⊢A [𝑥 | ∅] : Γ(𝑥)

[→I-Alg]
Γ, 𝑥 : u ⊢A [𝜅 | k] : 𝑡

Γ ⊢A [𝜆𝑥 .𝜅 | 𝜆(u, k)] : u → 𝑡

[→E-Alg]
Γ ⊢A [x1x2 | @(Σ1, Σ2)] : 𝑡1 ◦ 𝑡2

𝑡1 = Γ(x1)Σ1, 𝑡2 = Γ(x2)Σ2
𝑡1 ≤ 0 → 1, 𝑡2 ≤ dom(𝑡1)

[×I-Alg]
Γ ⊢A [(x1, x2) | (𝜌1, 𝜌2)] : 𝑡1 × 𝑡2

𝑡1 = Γ(x1)𝜌1, 𝑡2 = Γ(x2)𝜌2

[×E1-Alg]
Γ ⊢A [𝜋1x | 𝜋 (Σ)] : 𝝅1 (𝑡)

𝑡 = Γ(x)Σ
𝑡 ≤ (1 × 1)

[×E2-Alg]
Γ ⊢A [𝜋2x | 𝜋 (Σ)] : 𝝅2 (𝑡)

𝑡 = Γ(x)Σ
𝑡 ≤ (1 × 1)

[0-Alg]
Γ ⊢A [(x∈𝜏) ? x1 : x2 | 0(Σ)] : 0

Γ(x)Σ ≃ 0

[∈1-Alg]
Γ ⊢A [(x∈𝜏) ? x1 : x2 | ∈1 (Σ)] : Γ(x1)

Γ(x)Σ ≤ 𝜏

[∈2-Alg]
Γ ⊢A [(x∈𝜏) ? x1 : x2 | ∈2 (Σ)] : Γ(x2)

Γ(x)Σ ≤ ¬𝜏

[∧-Alg]
(∀𝑖 ∈ 𝐼 ) Γ ⊢A [𝑎 | a𝑖 ] : 𝑡𝑖

Γ ⊢A [𝑎 | ∧({a𝑖 }𝑖∈𝐼 )] :
∧
𝑖∈𝐼 𝑡𝑖

𝐼 ≠ ∅
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[Var-Alg]
Γ ⊢A [x | 𝜌] : Γ(x)𝜌

[Bind1-Alg]
Γ ⊢A [𝜅 | k] : 𝑡

Γ ⊢A [bind x =𝑎 in𝜅 | skip k] : 𝑡
x ∉ dom(Γ)

[Bind2-Alg]
Γ ⊢A [𝑎 | a] : 𝑠 (∀𝑖 ∈ 𝐼 ) Γ, x : 𝑠 ∧ u𝑖 ⊢A [𝜅 | k𝑖 ] : 𝑡𝑖
Γ ⊢A [bind x =𝑎 in𝜅 | keep (a, {(u𝑖 , k𝑖 )}𝑖∈𝐼 )] :

∨
𝑖∈𝐼 𝑡𝑖

∨
𝑖∈𝐼 u𝑖 ≃ 1

[∧-Alg]
(∀𝑖 ∈ 𝐼 ) Γ ⊢A [𝜅 | k𝑖 ] : 𝑡𝑖

Γ ⊢A [𝜅 | ∧({k𝑖 }𝑖∈𝐼 )] :
∧
𝑖∈𝐼 𝑡𝑖

𝐼 ≠ ∅

To extend the system to type the extensions presented in Appendix A the following rules must
be added:

[Let-Alg]
Γ ⊢A [let x1 in x2 | ∅] : Γ(x2)

x1 ∈ dom(Γ)

[Constr-Alg]
Γ ⊢A [x : 𝜏 | :(Σ)] : Γ(x)

Γ(x)Σ ≤ 𝜏

H FULL RECONSTRUCTION SYSTEM
H.1 Main Reconstruction System

Split annotations S ::= {(u,K), . . . , (u,K)}
Atoms intermediate annot. A ::= infer | untyp | typ | ∧({A, . . . ,A}, {A, . . . ,A})

| ∈1 | ∈2 | 𝜆(u,K)
Forms intermediate annot. K ::= infer | untyp | typ | ∧({K, . . . ,K}, {K, . . . ,K})

| try-skip (K) | try-keep (A,K,K)
| propagate (A,L,S,S)
| skip (K) | keep (A,S,S)

[Ok]
Γ ⊢R ⟨𝜂 | typ⟩ ⇒ Ok(typ)

[Fail]
Γ ⊢R ⟨𝜂 | untyp⟩ ⇒ Fail

[Const]
Γ ⊢R ⟨𝑐 | infer⟩ ⇒ Ok(typ)

[AxOk]
𝑥 ∈ dom(Γ)

Γ ⊢R ⟨𝑥 | infer⟩ ⇒ Ok(typ)
[AxFail]

Γ ⊢R ⟨𝑥 | infer⟩ ⇒ Fail
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[PairVar𝑖 ]
x𝑖 ∉ dom(Γ)

Γ ⊢R ⟨(x1, x2) | infer⟩ ⇒ Var (x𝑖 , infer, untyp)

[PairOk]
Γ ⊢R ⟨(x1, x2) | infer⟩ ⇒ Ok(typ)

[ProjVar]
x ∉ dom(Γ)

Γ ⊢R ⟨𝜋𝑖x | infer⟩ ⇒ Var (x, infer, untyp)

[ProjInfer]
Ψ = tally_infer({Γ(x) ¤≤ 𝛼 × 𝛽})

Γ ⊢R ⟨𝜋𝑖x | infer⟩ ⇒ Subst(Ψ, typ, untyp)
𝛼, 𝛽 ∈ V𝑃 fresh

[AppVar𝑖 ]
x𝑖 ∉ dom(Γ)

Γ ⊢R ⟨x1x2 | infer⟩ ⇒ Var (x𝑖 , infer, untyp)

[AppInfer]
Ψ = tally_infer({Γ(x1) ¤≤ Γ(x2) → 𝛼})

Γ ⊢R ⟨x1x2 | infer⟩ ⇒ Subst(Ψ, typ, untyp)
𝛼 ∈ V𝑃 fresh

[CaseVar]
x ∉ dom(Γ)

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | infer⟩ ⇒ Var (x, infer, untyp)

[CaseSplit]
Γ(x) ≰ 𝜏 Γ(x) ≰ ¬𝜏

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | infer⟩ ⇒ Split({(x : 𝜏)}, infer, infer)

[CaseEmpty]
Γ(x) ≃ 0

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | infer⟩ ⇒ Ok(typ)

[CaseThen]
Γ(x) ≤ 𝜏 Ψ = tally_infer({Γ(x) ¤≤ 0})

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | infer⟩ ⇒ Subst(Ψ, typ, ∈1)

[CaseElse]
Γ(x) ≤ ¬𝜏 Ψ = tally_infer({Γ(x) ¤≤ 0})

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | infer⟩ ⇒ Subst(Ψ, typ, ∈2)

[CaseVar𝑖 ]
x𝑖 ∉ dom(Γ)

Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | ∈𝑖⟩ ⇒ Var (x𝑖 , typ, untyp)

[CaseOk𝑖 ]
Γ ⊢R ⟨(x∈𝜏) ? x1 : x2 | ∈𝑖⟩ ⇒ Ok(typ)
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[LambdaInfer]
Γ ⊢R ⟨𝜆𝑥 .𝜅 | 𝜆(𝜶 , infer)⟩ ⇒ R

Γ ⊢R ⟨𝜆𝑥.𝜅 | infer⟩ ⇒ R
𝜶 ∈ V𝑀 fresh

[LambdaEmpty]
Γ ⊢R ⟨𝜆𝑥 .𝜅 | 𝜆(0,K)⟩ ⇒ Fail

[Lambda]
Γ, 𝑥 : u ⊢∗R ⟨𝜅 | K⟩ ⇒ R

Γ ⊢R ⟨𝜆𝑥 .𝜅 | 𝜆(u,K)⟩ ⇒ map(𝑋 ↦→ 𝜆(u, 𝑋 ), R)
with map(𝑋 ↦→ 𝑓 (𝑋 ), R) an auxiliary function that applies 𝑓 to each intermediate annotation in R:

map(𝑋 ↦→ 𝑓 (𝑋 ), Ok(H)) =
def Ok(𝑓 (H))

map(𝑋 ↦→ 𝑓 (𝑋 ), Fail) =
def Fail

map(𝑋 ↦→ 𝑓 (𝑋 ), Split(Γ,H1,H2)) =
def Split(Γ, 𝑓 (H1), 𝑓 (H2))

map(𝑋 ↦→ 𝑓 (𝑋 ), Subst(Ψ,H1,H2)) =
def Subst(Ψ, 𝑓 (H1), 𝑓 (H2))

map(𝑋 ↦→ 𝑓 (𝑋 ), Var (x,H1,H2)) =
def Var (x, 𝑓 (H1), 𝑓 (H2))

[FormVar]
x ∉ dom(Γ)

Γ ⊢R ⟨x | infer⟩ ⇒ Var (x, infer, untyp)

[FormOk]
Γ ⊢R ⟨x | infer⟩ ⇒ Ok(typ)

[BindInfer]
Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-skip (infer)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | infer⟩ ⇒ R

[BindTrySkip1]

Γ ⊢∗R ⟨𝜅 | K⟩ ⇒ Var (x,K1,K2)
Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-keep (infer,K1,K2)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-skip (K)⟩ ⇒ R

[BindTrySkip2]
Γ ⊢∗R ⟨𝜅 | K⟩ ⇒ Ok(K ′)

Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-skip (K)⟩ ⇒ Ok(skip (K ′))

[BindTrySkip3]
Γ ⊢∗R ⟨𝜅 | K⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-skip (K)⟩ ⇒ map(𝑋 ↦→ try-skip (𝑋 ), R)

[BindSkip1]
Γ ⊢∗R ⟨𝜅 | K⟩ ⇒ Var (x,K1,K2) Γ ⊢R ⟨bind x =𝑎 in𝜅 | skip (K2)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | skip (K)⟩ ⇒ R

[BindSkip2]
Γ ⊢∗R ⟨𝜅 | K⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | skip (K)⟩ ⇒ map(𝑋 ↦→ skip (𝑋 ), R)
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[BindTryKeep1]

Γ ⊢∗R ⟨𝑎 | A⟩ ⇒ Ok(A ′)
Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A ′, {(1,K1)},∅)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-keep (A,K1,K2)⟩ ⇒ R

[BindTryKeep2]
Γ ⊢∗R ⟨𝑎 | A⟩ ⇒ Fail Γ ⊢R ⟨bind x =𝑎 in𝜅 | skip (K2)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-keep (A,K1,K2)⟩ ⇒ R

[BindTryKeep3]
Γ ⊢∗R ⟨𝑎 | A⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | try-keep (A,K1,K2)⟩ ⇒ R′

where R′ = map(𝑋 ↦→ try-keep (𝑋,K1,K2), R).

[BindOk]
Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A,∅,S)⟩ ⇒ Ok(keep (A,∅,S))

[BindKeep1]

Γ ⊢P ⟨𝑎 | A⟩ ⇒ a Γ ⊢A [𝑎 | a] : 𝑠 Γ, x : 𝑠 ∧ u ⊢∗R ⟨𝜅 | K⟩ ⇒ Ok(K ′)
Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A,S, {(u,K ′)} ∪ S′)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A, {(u,K)} ∪ S,S′)⟩ ⇒ R

[BindKeep2]

Γ ⊢P ⟨𝑎 | A⟩ ⇒ a
Γ ⊢A [𝑎 | a] : 𝑠 Γ, x : 𝑠 ∧ u ⊢∗R ⟨𝜅 | K⟩ ⇒ Split(Γ′,K1,K2)

x ∈ dom(Γ′) Γ ⊢E (𝑎 : ¬(u ∧ Γ′(x))) ⇒ L
1 Γ ⊢E (𝑎 : ¬(u ∖ Γ′(x))) ⇒ L

2

Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A, {(u,K)} ∪ S,S′)⟩ ⇒ Split(Γ′ ∖ x,K ′
1,K ′

2)

where:
• K ′

1 = propagate (A,L1 ∪
L

2, {(u ∧ Γ′(x),K1), (u ∖ Γ′(x),K2)} ∪ S,S′)
• K ′

2 = keep (A, {(u,K2)} ∪ S,S′)

[BindKeep3]
Γ ⊢P ⟨𝑎 | A⟩ ⇒ a Γ ⊢A [𝑎 | a] : 𝑠 Γ, x : 𝑠 ∧ u ⊢∗R ⟨𝜅 | K⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A, {(u,K)} ∪ S,S′)⟩ ⇒ R′

where R′ = map(𝑋 ↦→ keep (A, {(u, 𝑋 )} ∪ S,S′), R).

[BindProp1]
Γ′ ∈ L

compatible(Γ, Γ′)
Γ ⊢R ⟨bind x =𝑎 in𝜅 | propagate (A,L,S,S′)⟩ ⇒ Split(Γ′′,K1,K2)

where:
• compatible(Γ, Γ′) ⇔ (dom(Γ′) ⊆ dom(Γ)) and (∀x ∈ dom(Γ′) . (Γ(x) ∧ Γ′(x) ; 0) or (Γ(x) ≃ 0))
• Γ′′ = {(x : u) ∈ Γ′ | Γ(x) ≰ u}
• K1 = keep (A,S,S′)
• K2 = propagate (A,L ∖ {Γ′},S,S′)

[BindProp2]
Γ ⊢R ⟨bind x =𝑎 in𝜅 | keep (A,S,S′)⟩ ⇒ R

Γ ⊢R ⟨bind x =𝑎 in𝜅 | propagate (A,L,S,S′)⟩ ⇒ R
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[InterEmpty]
Γ ⊢R ⟨𝜂 | ∧(∅,∅)⟩ ⇒ Fail

[InterOk]
Γ ⊢R ⟨𝜂 | ∧(∅, 𝑆)⟩ ⇒ Ok(∧(∅, 𝑆))

[Inter1]
Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ Ok(H ′) Γ ⊢R ⟨𝜂 | ∧(𝑆, {H ′} ∪ 𝑆 ′)⟩ ⇒ R

Γ ⊢R ⟨𝜂 | ∧({H} ∪ 𝑆, 𝑆 ′)⟩ ⇒ R

[Inter2]
Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ Fail Γ ⊢R ⟨𝜂 | ∧(𝑆, 𝑆 ′)⟩ ⇒ R

Γ ⊢R ⟨𝜂 | ∧({H} ∪ 𝑆, 𝑆 ′)⟩ ⇒ R

[Inter3]
Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R

Γ ⊢R ⟨𝜂 | ∧({H} ∪ 𝑆, 𝑆 ′)⟩ ⇒ map(𝑋 ↦→ (∧({𝑋 } ∪ 𝑆, 𝑆 ′)), R)

[Iterate1]
Γ ⊢R ⟨𝜂 | H⟩ ⇒ Split(Γ′,H1,H2) Γ ⊢∗R ⟨𝜂 | H1⟩ ⇒ R′

Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R′ Γ′ = ∅

[Iterate2]

Γ ⊢R ⟨𝜂 | H⟩ ⇒ Subst({𝜓𝑖 }𝑖∈𝐼 ,H1,H2)
Γ ⊢∗R ⟨𝜂 | ∧({H1𝜓𝑖 }𝑖∈𝐼 ∪ {H2},∅)⟩ ⇒ R′

Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R′ ∀𝑖 ∈ 𝐼 . 𝜓𝑖#Γ

[Stop]
Γ ⊢R ⟨𝜂 | H⟩ ⇒ R

Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R

withH𝜓 denoting the intermediate annotationH in which the substitution𝜓 has been applied
recursively to every type (in 𝜆-abstraction annotations and binding annotations).

The following rules can be added to support the extensions presented in Appendix A:

[LetVar𝑖 ]
x𝑖 ∉ dom(Γ)

Γ ⊢R ⟨let x1 in x2 | infer⟩ ⇒ Var (x𝑖 , infer, untyp)

[LetOk]
Γ ⊢R ⟨let x1 in x2 | infer⟩ ⇒ Ok(typ)

[ConstrVar]
x ∉ dom(Γ)

Γ ⊢R ⟨x : 𝜏 | infer⟩ ⇒ Var (x, infer, untyp)

[ConstrInfer]
Ψ = tally_infer({Γ(x) ¤≤ 𝜏})

Γ ⊢R ⟨x : 𝜏 | infer⟩ ⇒ Subst(Ψ, typ, untyp)
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H.2 Auxiliary Reconstruction System
In the following, refresh(𝑡) denotes a renaming from vars(𝑡) ∩V𝑃 to fresh polymorphic variables.

[Const]
Γ ⊢P ⟨𝑐 | typ⟩ ⇒ ∅

[Ax]
Γ ⊢P ⟨𝑥 | typ⟩ ⇒ ∅

𝑥 ∈ dom(Γ)

[Pair]
𝜌1 = refresh(Γ(x1)) 𝜌2 = refresh(Γ(x2))

Γ ⊢P ⟨(x1, x2) | typ⟩ ⇒ (𝜌1, 𝜌2)

[Proj]
Σ = tally({Γ(x) ¤≤ 𝛼 × 𝛽})
Γ ⊢P ⟨𝜋𝑖x | typ⟩ ⇒ 𝜋 (Σ)

Σ ≠ ∅
𝛼, 𝛽 ∈ V𝑃 fresh

[App]

𝑡1 = Γ(x1) 𝑡2 = Γ(x2)
𝜌1 = refresh(𝑡1) 𝜌2 = refresh(𝑡2) Σ = tally({𝑡1𝜌1 ¤≤ 𝑡2𝜌2 → 𝛼})

Γ ⊢P ⟨x1x2 | typ⟩ ⇒ @({𝜎 ◦ 𝜌1 | 𝜎 ∈ Σ}, {𝜎 ◦ 𝜌2 | 𝜎 ∈ Σ})
Σ ≠ ∅
𝛼 ∈ V𝑃 fresh

[Case0]
𝜎 ∈ tally({Γ(x) ¤≤ 0})

Γ ⊢P ⟨(x∈𝜏) ? x1 : x2 | typ⟩ ⇒ 0({𝜎})

[Case1]
𝜎 ∈ tally({Γ(x) ¤≤ 𝜏})

Γ ⊢P ⟨(x∈𝜏) ? x1 : x2 | typ⟩ ⇒ ∈1 ({𝜎})
x1 ∈ dom(Γ)

[Case2]
𝜎 ∈ tally({Γ(x) ¤≤ ¬𝜏})

Γ ⊢P ⟨(x∈𝜏) ? x1 : x2 | typ⟩ ⇒ ∈2 ({𝜎})
x2 ∈ dom(Γ)

[Lambda]
Γ, 𝑥 : u ⊢P ⟨𝜅 | K⟩ ⇒ k

Γ ⊢P ⟨𝜆𝑥 .𝜅 | 𝜆(u,K)⟩ ⇒ 𝜆(u, k)

[Var]
𝜌 = refresh(Γ(x))
Γ ⊢P ⟨x | typ⟩ : 𝜌

[BindSkip]
Γ ⊢P ⟨𝜅 | K⟩ ⇒ k

Γ ⊢P ⟨bind x =𝑎 in𝜅 | skip (K)⟩ ⇒ skip k
x ∉ dom(Γ)

[BindKeep]
Γ ⊢P ⟨𝑎 | A⟩ ⇒ a Γ ⊢A [𝑎 | a] : 𝑠 (∀𝑖 ∈ 𝐼 ) Γ, x : 𝑠 ∧ u𝑖 ⊢P ⟨𝜅 | K𝑖⟩ ⇒ k𝑖

Γ ⊢P ⟨bind x =𝑎 in𝜅 | keep (A,∅, {(u𝑖 ,K𝑖 )}𝑖∈𝐼 )⟩ ⇒ keep (a, {(u𝑖 , k𝑖 )}𝑖∈𝐼 )
(∗)

where (∗) is ∨𝑖∈𝐼 u𝑖 ≃ 1.

[Inter]
(∀𝑖 ∈ 𝐼 ) Γ ⊢P ⟨𝜂 | H𝑖⟩ ⇒ h𝑖

Γ ⊢P ⟨𝜂 | ∧(∅, {H𝑖 }𝑖∈𝐼 )⟩ ⇒
∧({h𝑖 }𝑖∈𝐼 )

𝐼 ≠ ∅

The following rules can be added to support the extensions presented in Appendix A:

[Let]
Γ ⊢P ⟨let x1 in x2 | typ⟩ ⇒ ∅

[Constr]
𝜎 ∈ tally({Γ(x) ¤≤ 𝜏})

Γ ⊢P ⟨x : 𝜏 | typ⟩ ⇒ :({𝜎})



40:50 Giuseppe Castagna, Mickaël Laurent, and Kim Nguyễn

H.3 Split Propagation System
The split propagation system defined in this section tries to deal with the following problem: given
an environment Γ, an atom 𝑎 and a type 𝑡 , what additional assumptions can be made on Γ in order to

ensure that 𝑎 has type 𝑡? It is used by the main reconstruction system in order to propagate splits
made by bindings.

[Const1]
b𝑐 ≤ u

Γ ⊢E (𝑐 : u) ⇒ {∅}
[Const2]

Γ ⊢E (𝑐 : u) ⇒ {}

[Ax1]
Γ(𝑥) ≤ u

Γ ⊢E (𝑥 : u) ⇒ {∅}
[Ax2]

Γ ⊢E (𝑥 : u) ⇒ {}

[Proj1]
Γ ⊢E (𝜋1x : u) ⇒ {{x : u × 1}}

[Proj2]
Γ ⊢E (𝜋2x : u) ⇒ {{x : 1 × u}}

[Pair]
u ≃dnf (∨𝑖∈𝐼 (u𝑖 × v𝑖 )) ∨ . . .

Γ ⊢E ((x1, x2) : u) ⇒ {{x1 : u𝑖 } ∧ {x2 : v𝑖 } | 𝑖 ∈ 𝐼 }

[Case]
Γ ⊢E ((x∈𝜏) ? x1 : x2 : u) ⇒ {{x : 𝜏, x1 : u}, {x : ¬𝜏, x2 : u}}

[App]
Γ(x1) ≃dnf ∨

𝑖∈𝐼 𝑡𝑖 ∀𝑖 ∈ 𝐼 . {𝜎 𝑗 } 𝑗 ∈𝐽𝑖 = tally({𝑡𝑖 ¤≤ 𝛼 → u})
Γ ⊢E (x1x2 : u) ⇒ ⋃

𝑖∈𝐼
L
𝑖

𝛼 ∈ V𝑃 fresh

where, for every 𝑖 ∈ 𝐼 , L
𝑖 = {{x1 : (𝑡𝑖𝜎 𝑗 )𝜎 ′

𝑗 , x2 : (𝛼𝜎 𝑗 )𝜎 ′
𝑗 } | 𝑗 ∈ 𝐽𝑖 } with 𝜎 ′

𝑗 a type substitution
mapping each polymorphic type variable 𝛽 appearing in 𝑡𝑖𝜎 𝑗 or 𝛼𝜎 𝑗 to either:

• 1 if 𝛽 only appears in covariant positions in 𝛼𝜎 𝑗 ,
• 0 if 𝛽 only appears in contravariant positions in 𝛼𝜎 𝑗 ,
• a fresh monomorphic type variable otherwise.

[Lambda]
Γ ⊢E (𝜆𝑥 . 𝜅 : u) ⇒ {}

The following rules can be added to support the extensions presented in Appendix A:

[Let]
Γ ⊢E (let x1 in x2 : u) ⇒ {{x2 : u}}

[Constr]
Γ ⊢E (x : 𝜏 : u) ⇒ {{x : u}}

I PROOFS
The proofs are for the source language presented in section 2 without extension:

Expressions 𝑒 ::= 𝑐 | 𝑥 | 𝜆𝑥 .𝑒 | 𝑒𝑒 | (𝑒, 𝑒) | 𝜋𝑖𝑒 | (𝑒∈𝜏) ? 𝑒 : 𝑒
We fix some notations relative to substitutions:

• 𝜙 ranges over substitutions from type variables (V𝑃 ¤∪V𝑀 ) to types
• 𝜌 ranges over renamings of polymorphic variables, that is, injective substitutions from V𝑃

to V𝑃

• 𝜎 ranges over substitutions from polymorphic type variables V𝑃 to types
• Σ ranges over sets of substitutions from polymorphic type variables V𝑃 to types
• 𝜓 ranges over substitutions from monomorphic type variablesV𝑀 to monomorphic types
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• Ψ ranges over sets of substitutions from monomorphic type variables V𝑀 to monomorphic
types

I.1 A Canonical Form for the Derivations
Derivations for the declarative type system can have many shapes (see Appendix D for the full
declarative system, without the rules for extensions). In particular, the union elimination rule
[∨E] can be used anywhere in the derivation and changes the expression to type by performing
a substitution on it. Other non-structural rules such as [∧], [≤] and [Inst] can also be applied
anywhere in the derivation. In this section, we will define canonical derivations that restrict the
use of those rules. This will then be used, in Section I.2, to establish a type safety theorem.

I.1.1 Alternative Form of the Declarative Type System. In order to be able to express our normalisa-
tions lemmas, we first need to slightly modify some rules of the declarative type system. In order
to avoid confusions, the modified declarative type system will use this turnstile symbol: ⊢: .

First, we modify the [Ax] rule so that it can perform a renaming of the polymorphic type variables
in Γ(𝑥):

[Ax]
Γ ⊢: 𝑥 : Γ(𝑥)𝜌

This new [Ax] rule is derivable in the initial delcarative type system by composing a [Ax] rule
and a [Inst] rule. Still, allowing the [Ax] rule to perform a renaming of polymorphic type variables
is useful, as it allows to uncorrelate types without resorting to the [Inst] rule. For instance, consider
the pair (𝑥, 𝑥) with 𝑥 having the type 𝛼 → 𝛼 . While this pair could be typed (𝛼 → 𝛼)×(𝛼 → 𝛼), this
type does not allow instantiating the left-hand side and right-hand side of the product independently.
A better type would be (𝛼 → 𝛼) × (𝛽 → 𝛽), and with this new [Ax] rule, it can be derived without
having to use a [Inst] rule. This way, the [Inst] rule can be reserved to cases that require non
trivial instantiations (i.e. not just renamings). Note that the necessity of performing this renaming
comes from the fact that we do not use type schemes ∀®𝛼. 𝑡 , where renaming of the type variables
in ®𝛼 can be performed implicitely anywhere.

Secondly, we use a [∧] rule of multiple arity instead of a binary one:

[∧]
(∀𝑖 ∈ 𝐼 ) Γ ⊢: 𝑒 : 𝑡𝑖
Γ ⊢: 𝑒 :

∧
𝑖∈𝐼 𝑡𝑖

𝐼 ≠ ∅

This allows to combine successive [∧] rule applications into one [∧] rule, making the normalisa-
tion lemmas easier to express. This new [∧] rule is admissible in the ⊢ system: it can be replaced by
several consecutive [∧] nodes.

Similarly, we will use a [∨] rule of multiple arity:

[∨]
Γ ⊢: 𝑒 ′ : 𝑠 (∀𝑖 ∈ 𝐼 ) Γ, 𝑥 : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡

Γ ⊢: 𝑒{𝑒 ′/𝑥} : 𝑡
{u𝑖 }𝑖∈𝐼 ∈ Part(1)

with Part(𝑡) denoting the set of partitions of the type 𝑡 , that is, the set of all sets {𝑡𝑖 }𝑖∈𝐼 such that:
(𝑖) ∨𝑖∈𝐼 𝑡𝑖 ≃ 𝑡 , (𝑖𝑖) ∀𝑖 ∈ 𝐼 . 𝑡𝑖 ; 0, and (𝑖𝑖𝑖) ∀𝑖, 𝑗 ∈ 𝐼 . 𝑖 ≠ 𝑗 ⇒ 𝑡𝑖 ∧ 𝑡 𝑗 ≃ 0. The guard condition is
most of time omitted, for concision.
This allows to combine successive [∨] rule applications substituting the same sub-expression

into one [∨] rule, making the normalisation lemmas easier to express. Again, this new [∨] rule is
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admissible. For instance, the following derivation:

[∨]

𝐴

Γ ⊢: 𝑒 ′ : 𝑠
𝐵

Γ, 𝑦 : 𝑠 ∧ u1 ⊢: 𝑒 : 𝑡
𝐶

Γ, 𝑦 : 𝑠 ∧ u2 ⊢: 𝑒 : 𝑡
𝐷

Γ, 𝑦 : 𝑠 ∧ u3 ⊢: 𝑒 : 𝑡
Γ ⊢: 𝑒{𝑒 ′/𝑥} : 𝑡

can be transformed to use only two binary [∨] rules:

[∨]

𝐴

Γ ⊢: 𝑒 ′ : 𝑠
𝐵

Γ, 𝑥 : 𝑠 ∧ u1 ⊢: 𝑒 : 𝑡
𝑋

Γ, 𝑥 : 𝑠 ∧ ¬u1 ⊢: 𝑒 : 𝑡
Γ ⊢: 𝑒{𝑒 ′/𝑥} : 𝑡

with 𝑋 being the following derivation:

[∨]
[Ax]

𝐶{𝑦/𝑥}
Γ, 𝑥 : 𝑠 ∧ ¬u1, 𝑦 : 𝑠 ∧ u2 ⊢: 𝑒{𝑦/𝑥} : 𝑡

𝐷{𝑦/𝑥}
Γ, 𝑥 : 𝑠 ∧ ¬u1, 𝑦 : 𝑠 ∧ u3 ⊢: 𝑒{𝑦/𝑥} : 𝑡

Γ, 𝑥 : 𝑠 ∧ ¬u1 ⊢: (𝑒{𝑦/𝑥}){𝑥/𝑦} : 𝑡

This construction can be generalized for a partition of 1 of any cardinality.
Lastly, we distinguish variables that are introduced by a [→I] node from variables introduced by

a [∨] node. The formers are called lambda variables, the set of all lambda variables is denoted by
Vars𝜆 and ranged over by 𝑥 , 𝑦, and 𝑧. The latters are called binding variables, the set of all binding
variables is denoted by VarsB and ranged over by x, y, and z. Vars𝜆 and VarsB form a partition of
the set of variables Vars (formally, Vars = Vars𝜆 ¤∪VarsB). The syntax of expressions and the rules of
the type system are changed accordingly as follows:

Expressions 𝑒 ::= 𝑐 | 𝑥 | x | 𝜆𝑥 .𝑒 | 𝑒𝑒 | (𝑒, 𝑒) | 𝜋𝑖𝑒 | (𝑒∈𝜏) ? 𝑒 : 𝑒
[Ax𝜆]

Γ ⊢: 𝑥 : Γ(𝑥)𝜌
[Ax∨]

Γ ⊢: x : Γ(x)𝜌

[∨]
Γ ⊢: 𝑒 ′ : 𝑠 (∀𝑖 ∈ 𝐼 ) Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡
{u𝑖 }𝑖∈𝐼 ∈ Part(1)

When needed, we will use the notation 𝑥/x to range over both binding variables and lambda
variables. For instance, we could write the proposition ∀𝑥/x ∈ dom(Γ). Γ(𝑥/x) ; 0. We say that an
expression 𝑒 is a ground expression if 𝑒 does not contain any binding variable, and that a derivation
𝐷 is a ground derivation if it derives a judgement for a ground expression. For what concerns
programs, they use lambda variables for top-level definitions, and are only composed of ground
expressions.
This new system is equivalent to the initial type system: the combination of both [Ax𝜆] and

[Ax∨] gives the previous [Ax] rule.
A full declarative type system with these modifications is presented in Figure 4.
The rules [Const], [Ax𝜆], [→I], [→E], [×I], [×E1], [×E2], [0], [∈1] and [∈2] will be called

structural rules as their use is guided by the structure of the expression to type, each of them
allowing to type a specific syntactic construction. In particular, note that the rule [Ax∨] is not
considered structural as binding variables x are not supposed to appear in the initial expression
(they are only introduced in the derivation when using a [∨] rule).

Also, the first premise of a [∨] rule will be called its definition premise, and its others premises
will be called body premises.

All the proofs in the next sections and chapters will use the ⊢: declarative type system, which is
equivalent to the ⊢ type system.
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[Const]
Γ ⊢: 𝑐 : b𝑐

[Ax𝜆]
Γ ⊢: 𝑥 : Γ(𝑥)𝜌

[Ax∨]
Γ ⊢: x : Γ(x)𝜌

[→I]
Γ, 𝑥 : u ⊢: 𝑒 : 𝑡

Γ ⊢: 𝜆𝑥.𝑒 : u → 𝑡
[→E]

Γ ⊢: 𝑒1 : 𝑡1 → 𝑡2 Γ ⊢: 𝑒2 : 𝑡1
Γ ⊢: 𝑒1𝑒2 : 𝑡2

[×I]
Γ ⊢: 𝑒1 : 𝑡1 Γ ⊢: 𝑒2 : 𝑡2
Γ ⊢: (𝑒1, 𝑒2) : 𝑡1 × 𝑡2

[×E1]
Γ ⊢: 𝑒 : 𝑡1 × 𝑡2
Γ ⊢: 𝜋1𝑒 : 𝑡1

[×E2]
Γ ⊢: 𝑒 : 𝑡1 × 𝑡2
Γ ⊢: 𝜋2𝑒 : 𝑡2

[0]
Γ ⊢: 𝑒 : 0

Γ ⊢: (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 0
[∈1]

Γ ⊢: 𝑒 : 𝜏 Γ ⊢: 𝑒1 : 𝑡1
Γ ⊢: (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡1

[∈2]
Γ ⊢: 𝑒 : ¬𝜏 Γ ⊢: 𝑒2 : 𝑡2
Γ ⊢: (𝑒∈𝜏) ? 𝑒1 : 𝑒2 : 𝑡2

[∨]
Γ ⊢: 𝑒 ′ : 𝑠 (∀𝑖 ∈ 𝐼 ) Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡
{u𝑖 }𝑖∈𝐼 ∈ Part(1)

[∧]
(∀𝑖 ∈ 𝐼 ) Γ ⊢: 𝑒 : 𝑡𝑖
Γ ⊢: 𝑒 :

∧
𝑖∈𝐼 𝑡𝑖

𝐼 ≠ ∅ [Inst]
Γ ⊢: 𝑒 : 𝑡
Γ ⊢: 𝑒 : 𝑡𝜎

[≤]
Γ ⊢: 𝑒 : 𝑡
Γ ⊢: 𝑒 : 𝑡 ′

𝑡 ≤ 𝑡 ′

Fig. 4. Alternative Declarative Type System

Proposition I.1. For any ground expression 𝑒 , type environment Γ and type 𝑡 :

Γ ⊢ 𝑒 : 𝑡 ⇔ Γ ⊢: 𝑒 : 𝑡

Proof. The ⇒ direction is trivial. The⇐ direction is obtained by using [Inst] nodes to rename
polymorphic type variables of axioms whenever needed, and by locally transforming 𝑛-ary [∧]
nodes into 𝑛 − 1 binary [∧] nodes, and 𝑛-ary [∨] nodes into 𝑛 − 1 binary [∨] nodes, as detailled
above. □

Now, we introduce a new order ≤P on types. Intuitively, it adds to the subtyping order ≤
the possibility to instantiate polymorphic type variables. We then use it in the statement of a
monotonicity lemma that will be used extensively in the next sections.

Definition I.2 (Polymorphic subtyping order). We define the order relation ≤P over types as

follows:

∀𝑡1, 𝑡2. 𝑡1 ≤P 𝑡2 ⇔ ∃Σ. 𝑡1Σ ≤ 𝑡2

Note that, while this order will be extensively used in the proofs, it will not be used in algorithms
as we have no way to compute it. Indeed, while deciding this order might seem equivalent to
solving a tallying problem (defined in Section 4.1), it is actually not the case as deciding this order
requires to find a set of substitutions Σ, and not a single substitution 𝜎 .

Definition I.3. For any order relation ≤ over types, we define the order relation ≤ over environments

as follows:

∀Γ1, Γ2. Γ1 ≤ Γ2 ⇔ ∀𝑥/x ∈ dom(Γ2). 𝑥/x ∈ dom(Γ1) and Γ1 (𝑥) ≤ Γ2 (𝑥)
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We introduce for convenience a new notation that takes the form of a new rule [Inst∧≤], but is
actually just a shortand for a specific combination of [Inst], [∧], and [≤] rules:

[Inst∧≤]

𝐴

Γ ⊢: 𝑒 : 𝑡 ′ (∃Σ. ∧𝜎 ∈Σ 𝑡
′𝜎 ≤ 𝑡)

Γ ⊢: 𝑒 : 𝑡
↔ [≤]

[∧]
[Inst]

𝐴

Γ ⊢: 𝑒 : 𝑡 ′

Γ ⊢: 𝑒 : 𝑡 ′𝜎
∀𝜎 ∈ Σ

Γ ⊢: 𝑒 :
∧
𝜎 ∈Σ 𝑡

′𝜎

Γ ⊢: 𝑒 : 𝑡

Lemma I.4 (Monotonicity). For derivation 𝐷 of Γ ⊢: 𝑒 : 𝑡 and environment Γ′ such that Γ′ ≤P Γ,
𝐷 can be transformed into a derivation of Γ′ ⊢: 𝑒 : 𝑡 just by adding [≤], [Inst] and [∧] nodes.

Proof. Straightforward induction on the derivation Γ ⊢: 𝑒 : 𝑡 , where each [Ax∨] and [Ax𝜆] node
is replaced by a [Inst∧≤] pattern of that node. □

I.1.2 Normalisation Lemmas. Derivations for the declarative type system of Figure 4 can still take
many different shapes. In this section, we define several normalisation lemmas, each restricting the
use of a non-structural rule. They are then combined into a normalisation theorem.

Normalisation of [∨] nodes

Lemma I.5 (Introduction of an arbitrary [∨] node). Let Γ a type environment, 𝑒 and 𝑒x two

expressions, and {u𝑖 }𝑖∈𝐼 a partition of 1. Let 𝐷 be a derivation for the judgement Γ ⊢: 𝑒{𝑒x/x} : 𝑡 such
that 𝐷 does not contain any [∨] node performing a substitution {𝑒y/y} with 𝑒y a strict sub-expression
of 𝑒x. If 𝑒x is typable under the context Γ, then there exists a type 𝑠 such that 𝐷 can be transformed

into a derivation whose root is a [∨] node of the following form:

[∨]

. . .

Γ ⊢: 𝑒x : 𝑠
. . .

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒x/x} : 𝑡

Proof. Let𝐶 a derivation for Γ ⊢: 𝑒x : 1. We collect in 𝐷 the set {𝐶𝑘 }𝑘∈𝐾 of all the subderivations
for the expression 𝑒x. As substitutions are capture-avoiding, no variable in fv(𝑒x) could have been
introduced in the environment by a [→I] or [∨] node in 𝐷 . Thus, we know that the derivations
{𝐶𝑘 }𝑘∈𝐾 are still valid under the initial environment Γ.
Thus, we can build the following derivation:

[∨]
[∧]

𝐶

Γ ⊢: 𝑒x : 1

𝐶𝑘

Γ ⊢: 𝑒x : 𝑡𝑘
∀𝑘 ∈ 𝐾

Γ ⊢: 𝑒x :
∧
𝑘∈𝐾 𝑡𝑘

𝐷 ′
𝑖

Γ, x : (∧𝑘∈𝐾 𝑡𝑘 ) ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒x/x} : 𝑡

with each 𝐷 ′
𝑖 being a derivation easily derived from 𝐷 by substituting 𝑒x by x when relevant, using

a [Ax∨] rule on x instead of a subderivation for 𝑒x when necessary, and by using monotonicity
(Lemma I.4). The hypothesis on the derivation 𝐷 ensures that it does not contain any conflicting
[∨] node that would become inapplicable due to the fact that 𝑒x has been substituted by x. □

Lemma I.6 (Elimination of aliasing). Let 𝐷 be a ground derivation, and 𝑁 be a [∨] node in 𝐷
applying a substitution {x/y}. Then, 𝑁 can be removed from 𝐷 , without adding any new [∨] node nor
structural node in 𝐷 .

Proof. The following transformation can be performed to the subderivation introducing x (as
𝐷 is a ground derivation, there must be a [∨] node that introduces x):
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[∨]

𝐴

Γ ⊢: 𝑒x : 𝑠
𝐵

Γ, x : 𝑠 ∧ u𝑘 ⊢: 𝑒 : 𝑡
𝐸𝑖

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼 ∖ {𝑘}

Γ ⊢: 𝑒{𝑒x/x} : 𝑡

where 𝐵 is a derivation that contains this subderivation 𝑆

(whose root is the node 𝑁 to eliminate):

[∨]

𝐶

Γ′ ⊢: x : 𝑠 ′
𝐷 𝑗

Γ′, y : 𝑠 ′ ∧ u
′
𝑗 ⊢: 𝑒

′ : 𝑡 ′
∀𝑗 ∈ 𝐽

Γ′ ⊢: 𝑒 ′{x/y} : 𝑡 ′

with Γ′ = (Γ, x : 𝑠 ∧ u𝑘 ) ¤∪Γ′′ for some Γ′′

↓ (transformed into)

[∨]

𝐴

Γ ⊢: 𝑒x : 𝑠

𝐵′𝑗
Γ, x : 𝑠 ∧ u𝑘 ∧ u

′
𝑗 ⊢: 𝑒 : 𝑡

∀𝑗 ∈ 𝐽
𝐸𝑖

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼 ∖ {𝑘}

Γ ⊢: 𝑒{𝑒x/x} : 𝑡

where 𝐵′𝑗 is constructed from 𝐵 by monotonicity (Lemma I.4),

and by replacing the subderivation 𝑆 by this one:

𝐷 ′
𝑗

(Γ, x : 𝑠 ∧ u𝑘 ∧ u
′
𝑗 ) ¤∪Γ

′′ ⊢: 𝑒 ′{x/y} : 𝑡 ′

where 𝐷 ′
𝑗 is constructed from 𝐷 𝑗 {x/y} by monotonicity (Lemma I.4) (★)

(★) Note that we have 𝑠 ∧u𝑘 ≤P 𝑠
′ as the only structural rule that the derivation𝐶 can use is [Ax∨]

on x, and thus 𝑠 ∧ u𝑘 ∧ u
′
𝑗 ≤ 𝑠 ′ ∧ u

′
𝑗 . □

An interesting thing to note is that the proof above would not work in the presence of a
generalization rule such as the one used at top-level:

[Gen]
Γ ⊢: 𝑒 : 𝑡
Γ ⊢: 𝑒 : 𝑡𝜙

𝜙#Γ

Indeed, the guard condition 𝜙#Γ may prevent monotonicity. More precisely, in the transformation
above, if the partition {u𝑖 }𝑖∈𝐼 introduces a new monomorphic type variable, its introduction earlier
in the environment might prevent a potential application of a [Gen] rule in the derivation 𝐵. This
impossibility to eliminate aliasing would be an issue for the normalisation lemma (Lemma I.13)
detailled below, as it states, in particular, that the union elimination rule only needs to be applied once
for a given sub-expression. This is the reason why, in our declarative type system, generalisation
only occurs at top-level.

Definition I.7 (Acceptable [∨] node). In any derivation, a [∨] node 𝑁 doing the substitution

𝑒{𝑒 ′/x} is said acceptable if it satisfies the following constraints:
• 𝑒 contains x (no useless definition), and
• 𝑒 does not contain 𝑒 ′ (maximal sharing), and
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• 𝑒 ′ is not a binding variable (no aliasing)

Definition I.8 (Binding context). A binding context 𝐵 is an ordered list of mappings from

binding variables to atoms. Each mapping is written as a pair (x, 𝑒). We note these lists extensionally

by separating elements by a semicolon, that is, (x1, 𝑎1); . . . ; (x𝑛, 𝑎𝑛) and use 𝜀 to denote the empty list.

We note 𝑒𝐵 the expression 𝑒{𝑒𝑛/x𝑛} . . . {𝑒1/x1} where (x1, 𝑒1); . . . ; (x𝑛, 𝑒𝑛) are the pairs in 𝐵.

Given a derivation 𝐷 and a node 𝑁 of 𝐷 , we call binding context of 𝑁 in 𝐷 the binding context
(x1, 𝑒1); . . . ; (x𝑛, 𝑒𝑛), where {𝑒1/x1}; . . . ; {𝑒𝑛/x𝑛} are the substitutions made by all the [∨] nodes
crossed by one of their body premises when going from the root of 𝐷 to 𝑁 .

In the following definition, we use an order over expressions:

Definition I.9 (Expression order). A (possibly partial) order ≤ is called expression order if it is

an order over expressions modulo 𝛼-renaming, and if it is an extension of the sub-expression order: if

𝑒1 is a sub-expression of 𝑒2 modulo 𝛼-renaming, then we should have 𝑒1 ≤ 𝑒2. We write 𝑒1 < 𝑒2 when

𝑒1 ≤ 𝑒2 and 𝑒2 ̸≤ 𝑒1.

Definition I.10 (Well-positionned [∨] node). A [∨] node 𝑁 of a derivation 𝐷 , of binding

context 𝐵 in 𝐷 and doing the substitution 𝑒{𝑒1/x}, is said well-positionned in 𝐷 relatively to the

expression order ≤ (or more succintly, well-positionned in (𝐷, ≤)) if there is no node 𝑁 ′
on the path

from the root to 𝑁 such that:

• Every variable in fv(𝑒1𝐵) is in the type environment of 𝑁 ′
, and

• 𝑁 ′
is not a [∨] rule, or 𝑁 ′

is a [∨] rule of binding context 𝐵′
and performing a substitution

{𝑒2/y} such that 𝑒1𝐵 < 𝑒2𝐵
′
.

Definition I.11 ([∨]-canonical derivation). For a given expression order ≤, a derivation 𝐷 is

[∨]-canonical for the order ≤ if every [∨] node it contains is acceptable and well-positionned in (𝐷, ≤).

Definition I.12 (Form derivations, atomic derivations). A derivation 𝐷 is a form derivation

if every segment of branch containing the root and stopping at the first [∨] node (if any, or stopping at
a leaf otherwise):

• does not contain any structural node, and

• if it ends with a [∨] node 𝑁 , the definition premise of 𝑁 is an atomic derivation, and the body

premises of 𝑁 are form derivations.

A derivation 𝐷 is an atomic derivation if every segment of branch containing the root and stopping

at the first [→I] node (if any, or stopping at a leaf otherwise):

• does not contain any [∨] node, and
• contains exactly one structural node, and

• if it ends with a [→I] node 𝑁 , the premise of 𝑁 is a form derivation.

A derivation that is both a [∨]-canonical derivation and a form derivation is called [∨]-canonical
form derivation.

Lemma I.13 (Normalisation of [∨]). Given an expression order ≤, any ground derivation 𝐷 of

Γ ⊢: 𝑒 : 𝑡 can be transformed into a [∨]-canonical form derivation of Γ ⊢: 𝑒 : 𝑡 ′ for the order ≤ and with

𝑡 ′ ≤P 𝑡 .

Proof. First, we can remove any aliasing (i.e. [∨] nodes doing a substitution {y/x}) by applying
Lemma I.6 as needed. We can also trivially remove useless [∨] nodes (i.e. those doing a substitution
𝑒{𝑒x/x} where 𝑒 does not contain x).

Then, let’s consider, in the whole derivation, all the nodes that satisfy one of those conditions:
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• It is a structural node 𝑁 such that, when going towards the root, it crosses another structural
node before crossing a [→I] node.

• It is a structural node 𝑁 such that, when going towards the root, it crosses a [∨] node by
one of its body premises before crossing a [∨] node by its definition premise.

• It is a [∨] node that is not acceptable or not well-positionned in (𝐷, ≤).
If there is no such node, then the properties of Lemma I.13 are satisfied. Otherwise, we associate to
each of these faulty nodes an expression and a binding context:

• For a structural node applied on an expression 𝑒 in a binding context 𝐵, we associate (𝑒, 𝐵),
• For a [∨] node doing the substitution {𝑒x/x} in a binding context 𝐵, we associate (𝑒x, 𝐵).

Now, we select among those nodes the one whose associated pair is minimal with respects to the
following order: (𝑒1, 𝐵1) is smaller than (𝑒2, 𝐵2) if and only if 𝑒1𝐵1 ≤ 𝑒2𝐵2. Let’s call this node 𝑁 ,
and its associated expression and binding context 𝑒 and 𝐵 respectively.
Now, let’s locate, in the segment from the root to 𝑁 , the farthest location 𝐿 from the root such

that 𝑁 would be well-positionned in (𝐷, ≤) at this location.
Let’s note Γ𝐿 ⊢: 𝑒𝐿 : 𝑡𝐿 the judgement at this location. We consider the subderivation 𝐷𝐿 that

derives this judgement in 𝐷 . Note that, in 𝐷𝐿 , there is no [∨] node that makes a substitution {𝑒y/y}
with 𝑒y a strict sub-expression of 𝑒 , because 𝑒y𝐵y (with 𝐵y the binding context of the corresponding
[∨] node) would be smaller than 𝑒𝐵 for ≤, thus making it not well-positionned and contradicting
the minimality of (𝑒, 𝐵). Also note that 𝐷𝐿 contains the node 𝑁 (otherwise, the [∨] node 𝑁 would
not be well-positionned at location 𝐿).
We apply Lemma I.5 on the root of 𝐷𝐿 so that it performs the substitution 𝑒 ′

𝐿
{𝑒/z} using the

decomposition {u𝑖 }𝑖∈𝐼 = {1}, with z fresh and 𝑒 ′
𝐿
an expression that does not contain 𝑒 and such

that 𝑒 ′
𝐿
{𝑒/z} ≡ 𝑒𝐿{𝑒/z} (basically, 𝑒 ′𝐿 is 𝑒𝐿 where occurrences of 𝑒 have been replaced by z). This

lemma can be applied as:
• There cannot be in our subderivation any [∨] node substituting a strict sub-expression of 𝑒 ,
• We know that Γ𝐿 ⊢: 𝑒 : 1 holds: we can derive it from the definition premise of 𝑁 if 𝑁 is a
[∨] node, or from 𝑁 itself if 𝑁 is a structural node.

This gives us a new derivation 𝐷 ′
𝐿
.

If 𝑁 is a [∨] node, 𝑁 can be removed in 𝐷 ′
𝐿
by using Lemma I.6, as well as other aliasing that

would have been introduced in other branches. Not that, if 𝑁 is a structural node, it has already
been eliminated by the application of Lemma I.5. Finally, we replace the subderivation 𝐷𝐿 by 𝐷 ′

𝐿
in

𝐷 .
We conclude by repeating this whole process until all the nodes satisfy the conditions. We are

guaranteed that it terminates by the fact that 𝑒𝐵 strictly increases for ≤ at each iteration (with
(𝑒, 𝐵) the pair associated to the choosen node 𝑁 ). □

Normalisation of [Inst] nodes

Lemma I.14. A derivation Γ ⊢: 𝑒 : 𝑡 can be transformed into a derivation Γ ⊢: 𝑒 : 𝑡𝜌 (for any renaming

𝜌) without changing the structure of the derivation.

Proof. Any polymorphic type variable in 𝑡 must be introduced either by a [Ax𝜆], [Ax∨], or
[Inst] rule. Thus, we can derive Γ ⊢: 𝑒 : 𝑡𝜌 by induction on Γ ⊢: 𝑒 : 𝑡 , where:

• Every renaming 𝜌 ′ of a [Ax𝜆] or [Ax∨] node is replaced by the renaming 𝜌 ◦ 𝜌 ′, and
• Every substitution 𝜎 of a [Inst] node is replaced by the substitution 𝜌 ◦ 𝜎 ◦ 𝜌−1.

□

Proposition I.15. If ∀𝑖 ∈ 𝐼 . 𝑡 ′𝑖 ≤P 𝑡𝑖 , then
∧
𝑖∈𝐼 𝑡

′
𝑖 ≤P

∧
𝑖∈𝐼 𝑡𝑖 .
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Proof. For each 𝑖 ∈ 𝐼 , let Σ𝑖 a set of substitutions such that 𝑡 ′𝑖 Σ𝑖 ≤ 𝑡𝑖 . We consider the set of
substitutions Σ =

⋃
𝑖∈𝐼 Σ𝑖 , and we show that (∧𝑖∈𝐼 𝑡

′
𝑖 )Σ ≤ ∧

𝑖∈𝐼 𝑡𝑖 .
We have: ∧

𝜎 ∈Σ (
∧
𝑖∈𝐼 𝑡

′
𝑖 )𝜎 ≃ ∧

𝑖∈𝐼
∧
𝜎 ∈Σ𝑖 (

∧
𝑗 ∈𝐼 𝑡

′
𝑗 )𝜎

≤ ∧
𝑖∈𝐼

∧
𝜎 ∈Σ𝑖 𝑡

′
𝑖𝜎

≤ ∧
𝑖∈𝐼 𝑡𝑖

□

Proposition I.16. If ∀𝑖 ∈ 𝐼 . 𝑡 ′𝑖 ≤P 𝑡𝑖 and all {𝑡𝑖 }𝑖∈𝐼 have disjoint polymorphic type variables, then∨
𝑖∈𝐼 𝑡

′
𝑖 ≤P

∨
𝑖∈𝐼 𝑡𝑖 .

Proof. For each 𝑖 ∈ 𝐼 , let Σ𝑖 a set of substitutions such that 𝑡 ′𝑖 Σ𝑖 ≤ 𝑡𝑖 . We consider the set of
substitutions Σ = {𝜎1 ¤∪ . . . ¤∪𝜎𝑛 | 𝜎1 ∈ Σ1, . . . , 𝜎𝑛 ∈ Σ𝑛} for 𝐼 = {1, . . . , 𝑛}, where ¤∪ denotes the
composition of disjoint substitutions (their disjointness is guaranteed by the fact that all {𝑡 ′𝑖 }𝑖∈𝐼
have disjoint polymorphic type variables), and we show that (∨𝑖∈𝐼 𝑡

′
𝑖 )Σ ≤ ∨

𝑖∈𝐼 𝑡𝑖 .
We have:∧

𝜎 ∈Σ (
∨
𝑖∈1. .𝑛 𝑡

′
𝑖 )𝜎

≃∧
(𝜎1,...,𝜎𝑛) ∈Σ1×···×Σ𝑛 (

∨
𝑖∈1. .𝑛 𝑡

′
𝑖 ) (𝜎1 ¤∪ . . . ¤∪𝜎𝑛)

≃∧
(𝜎1,...,𝜎𝑛) ∈Σ1×···×Σ𝑛

∨
𝑖∈1. .𝑛 𝑡

′
𝑖 (𝜎1 ¤∪ . . . ¤∪𝜎𝑛)

≃∧
(𝜎1,...,𝜎𝑛) ∈Σ1×···×Σ𝑛

∨
𝑖∈1. .𝑛 𝑡

′
𝑖𝜎𝑖

≃∨
𝑖∈1. .𝑛

∧
𝜎𝑖 ∈Σ𝑖 𝑡

′
𝑖𝜎𝑖 (distributivity of ∨ over ∧)

≤∨
𝑖∈1. .𝑛 𝑡𝑖

□

Definition I.17 ([Inst]-canonical derivation). A derivation 𝐷 is [Inst]-canonical if every

[Inst] node it contains is part of a [Inst∧≤] pattern that is either:

• The first premise of a [0], [∈1] or [∈2] node, or

• The premise of a [×E1] or [×E2] node, or

• One of the premises of a [→E] node

Lemma I.18 (Normalisation of [Inst]). Given an expression order ≤, any [∨]-canonical form
derivation 𝐷 of Γ ⊢: 𝑒 : 𝑡 can be transformed into a [∨][Inst]-canonical form derivation of Γ ⊢: 𝑒 : 𝑡 ′ for
the order ≤ and with 𝑡 ′ ≤P 𝑡 .

Proof. We proceed by induction on (𝑛∨, 𝑛) (using the lexicographic order), where𝑛∨ denotes the
number of [∨] nodes in the derivation, and 𝑛 denotes the total number of nodes in the derivation.
If the root is a [Inst] or [≤], we can remove the root (its premise will be the new root) and

proceed inductively on the result.
If the root is a [∧], we proceed inductively on all its premises and update the intersection type 𝑡

derived by the root into a new intersection type 𝑡 ′ (according to the new premises). We know that
the new derived type 𝑡 ′ satisfies 𝑡 ′ ≤P 𝑡 according to Proposition I.15.

If the root is a [∨] of the following form:

[∨]

𝐴

Γ ⊢: 𝑒 ′ : 𝑠
𝐵𝑖

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡
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(1) We first proceed inductively on 𝐴, which gives a derivation 𝐴′. We consider following
derivation, where 𝑠 ′ ≤P 𝑠 (and thus 𝑠 ′ ∧ u𝑖 ≤P 𝑠 ∧ u𝑖 ):

[∨]

𝐴′

Γ ⊢: 𝑒 ′ : 𝑠 ′
𝐵′
𝑖

Γ, x : 𝑠 ′ ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡

with 𝐵′
𝑖 a derivation easily derived from 𝐵𝑖 by monotonicity (Lemma I.4). Note that the

application of the monotonicity lemma might insert unwanted [Inst∧≤] patterns after
axioms, but they will be eliminated with the next step.

(2) The next step is to proceed inductively on the {𝐵′
𝑖 }𝑖∈𝐼 premises, yielding some derivations

{𝐵′′
𝑖 }𝑖∈𝐼 that derive some types {𝑡𝑖 }𝑖∈𝐼 (with ∀𝑖 ∈ 𝐼 . 𝑡𝑖 ≤P 𝑡 ). We can suppose that all the

{𝑡𝑖 }𝑖∈𝐼 have disjoint polymorphic type variables: if it is not the case, it can be ensured by
applying Lemma I.14 to these premises. Then, we consider the following derivation:

[∨]

𝐴′

Γ ⊢: 𝑒 ′ : 𝑠 ′
[≤]

𝐵′′𝑖
Γ, x : 𝑠 ′ ∧ u𝑖 ⊢: 𝑒 : 𝑡𝑖

Γ, x : 𝑠 ′ ∧ u𝑖 ⊢: 𝑒 :
∨
𝑖∈𝐼 𝑡𝑖

∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} :
∨
𝑖∈𝐼 𝑡𝑖

The result
∨
𝑖∈𝐼 𝑡𝑖 satisfies

∨
𝑖∈𝐼 𝑡𝑖 ≤P 𝑡 according to Proposition I.16.

(3) The new [≤] nodes that appear as premise of the [∨] root could break the properties of
Lemma I.13 if the corresponding 𝐵′′

𝑖 ends with a [∨] node. In this case, we move up the
faulty [≤] nodes as needed using this transformation:

[≤]
[∨]

𝐴

Γ ⊢: 𝑒 ′ : 𝑠
𝐵𝑖

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡 ′
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡 ′

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡

↓

[∨]

𝐴

Γ ⊢: 𝑒 ′ : 𝑠
[≤]

𝐵𝑖

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡 ′

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡

The other cases are straightforward. □

Normalisation of [≤] nodes

Definition I.19 ([≤]-canonical derivation). A derivation 𝐷 is [≤]-canonical if every [≤] node
it contains is either:

• The first premise of a [∈1] or [∈2] node, or

• One of the body premises of a [∨] node, or
• The premise of a [×E1] or [×E2] node, or

• The first premise of a [→E] node

Lemma I.20 (Normalisation of [≤]). Given an expression order ≤, any [∨][Inst]-canonical form
derivation 𝐷 of Γ ⊢: 𝑒 : 𝑡 can be transformed into a [∨][Inst][≤]-canonical form derivation of Γ ⊢: 𝑒 : 𝑡 ′
for the order ≤ and with 𝑡 ′ ≤P 𝑡 .
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Proof. We proceed by induction on (𝑛∨, 𝑛) (using the lexicographic order), with 𝑛∨ the number
of [∨] nodes in the derivation, and 𝑛 the total number of nodes in the derivation.
If the root is a [≤] or [Inst], we can remove the root (its premise will be the new root) and

proceed by induction on its premise.
If the root is a [∧], we proceed inductively on all its premises and update the intersection type 𝑡

derived by the root into a new intersection type 𝑡 ′ (according to the new premises). We trivially
have 𝑡 ′ ≤P 𝑡 .
If the root is a [→I] pattern, we proceed inductively on its premise and update the arrow type

𝑡 derived by the root into a new arrow type 𝑡 ′ (according to the new premise). We trivially have
𝑡 ′ ≤P 𝑡 .

If the root is a [∨] of the following form:

[∨]

𝐴

Γ ⊢: 𝑒 ′ : 𝑠
𝐵𝑖

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡

(1) We first proceed inductively on 𝐴, yielding a derivation 𝐴′. We then consider the following
derivation, with 𝑠 ′ ≤P 𝑠:

[∨]

𝐴′

Γ ⊢: 𝑒 ′ : 𝑠 ′
𝐵′
𝑖

Γ, x : 𝑠 ′ ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡

where each 𝐵′
𝑖 is derived from 𝐵𝑖 by applying Lemma I.4 (monotonicity), and then Lemma I.18

in order to normalize [Inst] nodes that might have been introduced by the monotonicity
lemma. Note that this might add unwanted [≤] nodes, but they will be eliminated with the
next step.

(2) We proceed inductively on the {𝐵′
𝑖 }𝑖∈𝐼 premises, yielding some derivations {𝐵′′

𝑖 }𝑖∈𝐼 that
derive some types {𝑡𝑖 }𝑖∈𝐼 (with ∀𝑖 ∈ 𝐼 . 𝑡𝑖 ≤P 𝑡 ). Then, we consider the following derivation:

[∨]

𝐴′

Γ ⊢: 𝑒 ′ : 𝑠 ′
[≤]

𝐵′′𝑖
Γ, x : 𝑠 ′ ∧ u𝑖 ⊢: 𝑒 : 𝑡𝑖

Γ, x : 𝑠 ′ ∧ u𝑖 ⊢: 𝑒 :
∨
𝑖∈𝐼 𝑡𝑖

∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} :
∨
𝑖∈𝐼 𝑡𝑖

The result
∨
𝑖∈𝐼 𝑡𝑖 trivially satisfies

∨
𝑖∈𝐼 𝑡𝑖 ≤P 𝑡 .

(3) The new [≤] nodes that appear as premise of the [∨] root could break the properties of
Lemma I.13 if the corresponding 𝐵′′

𝑖 ends with a [∨] node. In this case, we move up the
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faulty [≤] nodes as needed using this transformation:

[≤]
[∨]

𝐴

Γ ⊢: 𝑒 ′ : 𝑠
𝐵𝑖

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡 ′
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡 ′

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡

↓

[∨]

𝐴

Γ ⊢: 𝑒 ′ : 𝑠
[≤]

𝐵𝑖

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡 ′

Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒 : 𝑡
∀𝑖 ∈ 𝐼

Γ ⊢: 𝑒{𝑒 ′/x} : 𝑡

The other cases are straightforward. □

Definition I.21 (Canonical derivation). Given an expression order ≤, a canonical derivation for
the expression order ≤ is a [∨][Inst][≤]-canonical derivation. We say it is a canonical form derivation

if it is also a form derivation, and a canonical atomic derivation if it is an atomic derivation.

When qualifying a derivation 𝐷 of canonical, the order ≤ may be omitted: in this case, we
consider that there exists an expression order ≤ such that 𝐷 is canonical for ≤.

Theorem I.22 (Normalisation of derivations). Given an expression order ≤, any ground

derivation 𝐷 of Γ ⊢: 𝑒 : 𝑡 can be transformed into a canonical form derivation of Γ ⊢: 𝑒 : 𝑡 ′, for the order
≤ and with 𝑡 ′ ≤P 𝑡 .

Proof. By successive application of Lemma I.13, Lemma I.18, and Lemma I.20. □

I.2 Type Safety
I.2.1 The Parallel Semantics. One technical difficuulty is that the subject reduction does not hold
for the semantics presented in Figure 1: performing a reduction step on an expression 𝑒 might break
the use of a [∨] rule. Indeed, if in the original typing derivation a rule [∨] substitutes multiple
occurrences of the sub-expression 𝑒 by a variable 𝑥 , reducing one occurrence of 𝑒 but not the others
can make the application of this [∨] rule impossible: the correlation between the reduced 𝑒 and the
other occurrences of 𝑒 is thus lost.
To circumvent this issue, we introduce a notion of parallel reduction which forces to reduce

all occurrences of a sub-expression at the same time. The idea is to first define reduction rules
that only apply at top-level, and then define a context rule (rule [𝜅] below) that allows reducing
under an evaluation context, but that will apply this reduction everywhere in the term. With this
alternative semantics, the subject reduction becomes true, allowing to prove type safety. The type
safety for the initial semantics (Figure 1) is then deduced from this result.
The parallel semantics is formalized in Figure 5. A step of reduction happening at top-level is

noted{⊤, and a step of reduction of the parallel semantics under any evaluation context is noted
{P . Notice that the rule [𝜅] applies on an expression 𝑒 ′′ a substitution from an expression 𝑒 ′ to an
expression 𝑒 , noted 𝑒 ′′{𝑒/𝑒 ′}, which is defined inductively on 𝑒 ′′ as follows:

• If 𝑒 ′ ≡𝛼 𝑒 ′′, then 𝑒 ′′{𝑒/𝑒 ′} = 𝑒 .
• If 𝑒 ′ ̸≡𝛼 𝑒 ′′, then 𝑒 ′′{𝑒/𝑒 ′} is inductively defined as
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Top-level reductions:

(𝜆𝑥.𝑒)𝑣 {⊤ 𝑒{𝑣/𝑥} (7)
𝜋1 (𝑣1, 𝑣2) {⊤ 𝑣1 (8)
𝜋2 (𝑣1, 𝑣2) {⊤ 𝑣2 (9)

(𝑣∈𝜏) ? 𝑒1 : 𝑒2 {⊤ 𝑒1 if 𝑣 ∈ 𝜏 (10)
(𝑣∈𝜏) ? 𝑒1 : 𝑒2 {⊤ 𝑒2 if 𝑣 ∈ ¬𝜏 (11)

Parallel reductions:

[𝜅]
𝑒 {⊤ 𝑒

′

𝐸 [𝑒] {P (𝐸 [𝑒]){𝑒 ′/𝑒}

Evaluation Context 𝐸 ::= [ ] | 𝑣𝐸 | 𝐸𝑒 | (𝑣, 𝐸) | (𝐸, 𝑒) | (𝐸∈𝜏) ? 𝑒 : 𝑒

Fig. 5. Parallel Semantics

𝑐{𝑒/𝑒 ′} = 𝑐
𝑥{𝑒/𝑒 ′} = 𝑥
x{𝑒/𝑒 ′} = x

(𝑒1𝑒2){𝑒/𝑒 ′} = (𝑒1{𝑒/𝑒 ′})(𝑒2{𝑒/𝑒 ′})
(𝜆𝑥.𝑒◦){𝑒/𝑒 ′} = 𝜆𝑥 .𝑒◦ 𝑥 ∈ fv(𝑒 ′)
(𝜆𝑥.𝑒◦){𝑒/𝑒 ′} = 𝜆𝑥 .(𝑒◦{𝑒/𝑒 ′}) 𝑥 ∉ fv(𝑒) ∪ fv(𝑒 ′)
(𝜆𝑥.𝑒◦){𝑒/𝑒 ′} = 𝜆𝑦.((𝑒◦{𝑦/𝑥}){𝑒/𝑒 ′}) 𝑥 ∉ fv(𝑒), 𝑥 ∈ fv(𝑒 ′), 𝑦 fresh
(𝜋𝑖𝑒◦){𝑒/𝑒 ′} = 𝜋𝑖 (𝑒◦{𝑒/𝑒 ′})
(𝑒1, 𝑒2){𝑒/𝑒 ′} = (𝑒1{𝑒/𝑒 ′}, 𝑒2{𝑒/𝑒 ′})

((𝑒1∈𝑡) ? 𝑒2 : 𝑒3){𝑒/𝑒 ′} = (𝑒1{𝑒/𝑒 ′}∈𝑡) ? 𝑒2{𝑒/𝑒 ′} : 𝑒3{𝑒/𝑒 ′}
In particular, notice that expression substitutions are up to 𝛼-renaming and perform only one pass.

Here is an example of reduction step using the parallel semantics:

[𝜅]
(𝜆𝑥.𝑥) (𝜆𝑥 .𝑥) {⊤ 𝜆𝑥 .𝑥

((𝜆𝑥 .𝑥) (𝜆𝑥 .𝑥), (𝜆𝑥 .𝑥) (𝜆𝑥.𝑥)) {P (𝜆𝑥 .𝑥, 𝜆𝑥 .𝑥)

I.2.2 Subject Reduction.

Proposition I.23. If Γ ⊢: 𝑣 : 𝜏 , then 𝑣 ∈ 𝜏 (see Figure 1 for the definition of ∈).

Proof. Straightforward, by induction on the derivation of the judgement Γ ⊢: 𝑣 : 𝜏 . Note that the
case of 𝜆-abstractions is trivial as arrows in 𝜏 can only be 0 → 1. □

Lemma I.24 (Substitution lemma). If Γ, 𝑥 : 𝑠 ⊢: 𝑒 : 𝑡 and Γ ⊢: 𝑒 ′ : 𝑠 , then Γ ⊢: 𝑒{𝑒 ′/𝑥} : 𝑡 .

Proof. Straightforward induction on the derivation Γ, 𝑥 : 𝑠 ⊢: 𝑒 : 𝑡 , where each [Ax𝜆] node is
replaced by the derivation Γ ⊢: 𝑒 ′ : 𝑠 . □

Definition I.25 (Atomic type). A type 𝑡 is said atomic if it cannot be decomposed into a non-trivial

union. Formally, 𝑡 is atomic if and only if, for any set of types {𝑡𝑖 }𝑖∈𝐼 , 𝑡 ≤
∨
𝑖∈𝐼 𝑡𝑖 ⇒ ∃𝑖 ∈ 𝐼 . 𝑡 ≤ 𝑡𝑖 .

Equivalently, 𝑡 is atomic if and only if, for any type 𝑠 , either 𝑡 ≤ 𝑠 or 𝑡 ≤ ¬𝑠 .
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Lemma I.26 (Atomicity of value types). If there exists a canonical atomic derivation 𝐷 of Γ ⊢: 𝑣 : 𝑠
(with 𝑣 a value), then 𝑠 is atomic.

Proof. As 𝑣 is a value, we know that the derivation does not contain any destructor nor axiom
node, except possibly in the premise of a [→I] node. Moreover, as𝐷 is a canonical atomic derivation,
it does not contain any [∨] nor [≤] node neither. In particular, this implies that 𝑠 cannot contain
any type variable nor union, except under an arrow. More precisely, we can easily prove that 𝑠 can
be constructed with the following syntax:

Value Type 𝑡 ::= 𝑏 | 𝑡 → 𝑡 | 𝑡 × 𝑡 | 𝑡 ∧ 𝑡
Any type 𝑡1 → 𝑡2 is atomic, so is any base type 𝑏. Atomicity is preserved by intersection and

product, thus we can deduce that a type constructed with the syntax above is atomic. □

Definition I.27 (Unavoidable [∨] node). In any derivation, a [∨] node 𝑁 doing the substitution

𝑒{𝑒 ′/x} is said unavoidable if 𝑁 is acceptable (Definition I.7) and if 𝑒 ′ is not a value. A [∨] node that
is not unavoidable is said avoidable.

Definition I.28 (Minimal derivation). A derivation is said minimal if every [∨] node it contains
is unavoidable.

Lemma I.29 (Elimination of value substitutions). Any canonical form derivation or canonical

atomic derivation 𝐷 of Γ ⊢: 𝑒 : 𝑡 can be transformed into a minimal derivation of Γ ⊢: 𝑒 : 𝑡 .

Proof. We proceed by structural induction on 𝐷 .
If the root is not a [∨] node, or if it is an unavoidable [∨] node, then we proceed inductively on

all its premises.
Otherwise, if the root is an avoidable [∨] node, we know that it is doing a substitution 𝑒{𝑣/x}

with 𝑣 a value (as 𝐷 is canonical, the [∨] node must be acceptable). We can thus apply Lemma I.26
on its definition premise Γ ⊢: 𝑣 : 𝑠: we deduce that 𝑠 is atomic. Consequently, among the types
{u𝑖 }𝑖∈𝐼 composing the partition of 1 used by this node, there is a type u𝑖 , for some 𝑖 ∈ 𝐼 , such that
𝑠 ≤ u𝑖 .

We consider the corresponding body premise Γ, x : 𝑠 ⊢: 𝑒 : 𝑡 , and we proceed by induction on it in
order to get a minimal derivation 𝐷 ′ for Γ, x : 𝑠 ⊢: 𝑒 : 𝑡 . Similarly, we proceed by induction on the
definition premise Γ ⊢: 𝑣 : 𝑠 in order to get a minimal derivation 𝐴 for Γ ⊢: 𝑣 : 𝑠 .
We can then derive Γ ⊢: 𝑒{𝑣/x} : 𝑡 from 𝐷 ′ by replacing [Ax∨] nodes applying on x by the

derivation 𝐴 (in a similar way as done in Lemma I.24, but for a binding variable). This new
derivation is minimal. □

Lemma I.30 (Subject reduction). If 𝐷 is a minimal derivation for Γ ⊢: 𝑒 : 𝑡 , and if 𝑒◦ {⊤ 𝑒 ′◦, then
Γ ⊢: 𝑒{𝑒 ′◦/𝑒◦} : 𝑡 .

Proof. We proceed by structural induction on 𝐷 .
If 𝑒 contains no occurrence of 𝑒◦ (modulo 𝛼-renaming), this result is trivial. Thus, we will suppose

in the following that 𝑒 contains at least one occurrence of 𝑒◦.
We denote by 𝑒 ′ the expression 𝑒{𝑒 ′◦/𝑒◦}, and consider the root of the derivation:

[Const] Impossible case (𝑒 cannot contain any reducible expression).
[Ax𝜆] Impossible case (𝑒 cannot contain any reducible expression).
[Ax∨] Impossible case (𝑒 cannot contain any reducible expression).
[≤] By induction on the premise Γ ⊢ 𝑒 : 𝑡 ′ (with 𝑡 ′ ≤ 𝑡 ), we get a derivation for Γ ⊢ 𝑒 ′ : 𝑡 ′, thus we

can derive Γ ⊢ 𝑒 ′ : 𝑡 by using a [≤] node.
[Inst] Similar to the previous case.
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[∧] We proceed inductively on each premise, and intersect the resulting derivations with a [∧]
node.

[→I] We have 𝑒 ′ ≡ 𝜆𝑥. (𝑒𝜆{𝑒 ′◦/𝑒◦}) for some expression 𝑒𝜆 . We can derive Γ, 𝑥 : u ⊢: 𝑒𝜆{𝑒 ′◦/𝑒◦} : 𝑡 ′
by induction on the premise Γ, 𝑥 : u ⊢: 𝑒𝜆 : 𝑡 ′ (with 𝑡 ≃ u → 𝑡 ′) and conclude by using a
[→I] node.

[×I] We have 𝑒 ′ ≡ (𝑒1{𝑒 ′◦/𝑒◦}, 𝑒2{𝑒 ′◦/𝑒◦}) for some 𝑒1 and 𝑒2. We proceed inductively on the
premises, as in the previous case.

[→E] We have 𝑒 ≡ 𝑒1𝑒2 for some expressions 𝑒1 and 𝑒2. If 𝑒◦ is a sub-expression of 𝑒1 and/or 𝑒2,
we conclude by proceeding inductively on the premises, as in the previous case.
Otherwise, 𝑒◦ ≡ 𝑒1𝑒2 and thus the reduction 𝑒◦ {⊤ 𝑒 ′◦ uses the rule 7. Consequently, we
know that 𝑒◦ ≡ 𝑒 ≡ (𝜆𝑥. 𝑒𝜆)𝑣 for some expression 𝑒𝜆 and value 𝑣 , and 𝑒 ′◦ ≡ 𝑒 ′ ≡ 𝑒𝜆{𝑣/𝑥}.
We have the following premises:
(1) Γ ⊢: 𝜆𝑥 . 𝑒𝜆 : 𝑡1 → 𝑡2 (with 𝑡2 ≃ 𝑡 )
(2) Γ ⊢: 𝑣 : 𝑡1
As 𝐷 is minimal, we know that the premise (1) has no [∨] node, except possibly in the
premise of a [→I] node. Thus, we can extract from (1) a collection of derivations of the
judgements Γ, 𝑥 : u𝑖 ⊢: 𝑒𝜆 : 𝑠𝑖 for 𝑖 ∈ 𝐼 , such that there exists some instantiations Σ𝑖 such
that

∧
𝑖∈𝐼 (u𝑖 → 𝑠𝑖 )Σ𝑖 ≤ 𝑡1 → 𝑡2. We have

∧
𝑖∈𝐼 u𝑖 → 𝑠𝑖Σ𝑖 ≃

∧
𝑖∈𝐼 (u𝑖 → 𝑠𝑖 )Σ𝑖 ≤ 𝑡1 → 𝑡2.

Moreover, using [Inst∧≤] patterns, we can derive for each 𝑖 ∈ 𝐼 the judgement Γ, 𝑥 : u𝑖 ⊢: 𝑒𝜆 :
𝑠𝑖Σ𝑖 .
Now, let’s consider a partition {v𝑗 } 𝑗 ∈𝐽 of

∨
𝑖∈𝐼 u𝑖 of minimal cardinality such that: ∀𝑗 ∈

𝐽 . ∀𝑖 ∈ 𝐼 . v𝑗 ≤ u𝑖 or v𝑗 ∧ u𝑖 ≃ 0. We know that 𝐽 is not empty: the case 𝑡1 ≤ ∨
𝑖∈𝐼 u𝑖 ≃ 0 is

impossible since the value 𝑣 would have type 0, contradicting Proposition I.23. For every
𝑗 ∈ 𝐽 , we define 𝐼 𝑗 = {𝑖 ∈ 𝐼 | v𝑖 ∧ u𝑖 ; 0} (𝐼 𝑗 cannot be empty as the partition {v𝑗 } 𝑗 ∈𝐽 has
minimal cardinality). Note that for any 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝐼 𝑗 , we have v𝑗 ≤ u𝑖 .
Using the monotonicity lemma (Lemma I.4), we can derive for every 𝑗 ∈ 𝐽 and 𝑖 ∈ 𝐼 𝑗
the judgement Γ, 𝑥 : v𝑗 ⊢: 𝑒𝜆 : 𝑠𝑖Σ𝑖 . Thus, using a [∧] node, for every 𝑗 ∈ 𝐽 we can
derive Γ, 𝑥 : v𝑗 ⊢: 𝑒𝜆 :

∧
𝑖∈𝐼 𝑗 𝑠𝑖Σ𝑖 . Moreover, as

∧
𝑖∈𝐼 u𝑖 → 𝑠𝑖Σ𝑖 ≤ 𝑡1 → 𝑡2, we have, for

every 𝑗 ∈ 𝐽 , ∧𝑖∈𝐼 𝑗 𝑠𝑖Σ𝑖 ≤ 𝑡2. Consequently, for every 𝑗 ∈ 𝐽 , we can derive the judgement
Γ, 𝑥 : v𝑗 ⊢: 𝑒𝜆 : 𝑡2 using a [≤] node. Combining these judgements with a [∨] node allows us
to derive Γ, 𝑥 :

∨
𝑗 ∈𝐽 v𝑗 ⊢: 𝑒𝜆 : 𝑡2.

As
∨
𝑗 ∈𝐽 v𝑗 covers 𝑡1, we can construct from (2) a derivation Γ ⊢: 𝑣 :

∨
𝑗 ∈𝐽 v𝑗 using a [≤] node.

Finally, applying the substitution lemma (Lemma I.24) gives a derivation for Γ ⊢: 𝑒𝜆{𝑣/𝑥} : 𝑡2.
[×E1] We have 𝑒 ≡ 𝜋1𝑒1 for some expression 𝑒1. If 𝑒◦ is a sub-expression of 𝑒1, we conclude by

proceeding inductively on the premise.
Otherwise, 𝑒◦ ≡ 𝜋1𝑒1 and thus the reduction 𝑒◦ {⊤ 𝑒 ′◦ uses the rule 8. Consequently, we
know that 𝑒◦ ≡ 𝑒 ≡ 𝜋1 (𝑣1, 𝑣2) for some values 𝑣1 and 𝑣2, and 𝑒 ′◦ ≡ 𝑒 ′ ≡ 𝑣1.
Similarly to the previous case, as 𝐷 is minimal, we can extract from the premise Γ ⊢: (𝑣1, 𝑣2) :
𝑡1 × 𝑡2 a collection of derivations of the judgements Γ ⊢: 𝑣1 : 𝑠𝑖 and Γ ⊢: 𝑣2 : 𝑠 ′𝑖 for 𝑖 ∈ 𝐼 , such
that there exists some instantiations Σ𝑖 such that

∧
𝑖∈𝐼 (𝑠𝑖 × 𝑠 ′𝑖 )Σ𝑖 ≤ 𝑡1 × 𝑡2. We thus have∧

𝑖∈𝐼 𝑠𝑖Σ𝑖 ≤ 𝑡1, as none of the {𝑠 ′𝑖 }𝑖∈𝐼 can be 0 (this would contradict Proposition I.23 as 𝑣2
is a value).
Therefore, we can conclude this case by using a [Inst∧≤] pattern with the premises {Γ ⊢: 𝑣1 :
𝑠𝑖 }𝑖∈𝐼 in order to derive Γ ⊢: 𝑣1 : 𝑡1.

[×E2] Similar to the previous case.
[∨] We have 𝑒 ≡ 𝑒1{𝑒2/x} for some expressions 𝑒1 and 𝑒2, and thus 𝑒 ′ ≡ (𝑒1{𝑒2/x}){𝑒 ′◦/𝑒◦}.

We have the following premises:
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(1) Definition premise: Γ ⊢: 𝑒2 : 𝑠
(2) Body premises: ∀𝑖 ∈ 𝐼 . Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒1 : 𝑡
As 𝐷 is minimal, we know that 𝑒2 cannot be a value. Also, we know that 𝑒◦ does not contain
x as a free variable (otherwise there would be no occurrence of 𝑒◦ in 𝑒1{𝑒2/x}). Consequently,
𝑒 ′◦ does not contain x neither, because a reduction step cannot introduce a new free variable.
There are several cases:
• 𝑒◦ does not contain 𝑒2 and 𝑒2 does not contain 𝑒◦. In this case, we have:
𝑒 ′ ≡ (𝑒1{𝑒2/x}){𝑒 ′◦/𝑒◦} ≡ (𝑒1{𝑒 ′◦/𝑒◦}){𝑒2/x}. Thus, we can easily conclude by keeping
the definition premise of the [∨] node and applying the induction hypothesis on the
body premises.

• 𝑒2 contains 𝑒◦. In this case, we pose 𝑒 ′2 = 𝑒2{𝑒 ′◦/𝑒◦}.
We have 𝑒 ′ ≡ (𝑒1{𝑒2/x}){𝑒 ′◦/𝑒◦} ≡ (𝑒1{𝑒 ′◦/𝑒◦}){𝑒 ′2/x}. We can derive Γ ⊢: 𝑒 ′2 : 𝑠 by
induction on the definition premise, and Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒1{𝑒 ′◦/𝑒◦} : 𝑡 for all 𝑖 ∈ 𝐼 by
induction on the body premises. Thus, we can derive Γ ⊢: (𝑒1{𝑒 ′◦/𝑒◦}){𝑒 ′2/x} : 𝑡 using a
[∨] node.

• 𝑒◦ contains 𝑒2 as a strict sub-expression. In this case, we pose 𝑒• = 𝑒◦{x/𝑒2} and 𝑒 ′• =
𝑒 ′◦{x/𝑒2}. We know that 𝑒1 does not contain any occurrence of 𝑒2 (because𝐷 is minimal),
and thus no occurrence of 𝑒◦ neither. Consequently, we have 𝑒 ′ ≡ (𝑒1{𝑒2/x}){𝑒 ′◦/𝑒◦} ≡
(𝑒1{𝑒 ′•/𝑒•}){𝑒2/x}.
As 𝑒2 is not a value, it can only appear in 𝑒◦ inside of a 𝜆-abstraction, and/or inside of a
branch of a typecase: otherwise, 𝑒◦ would not be reducible.
Thus, we can deduce that 𝑒• = 𝑒◦{x/𝑒2} {⊤ 𝑒 ′◦{x/𝑒2} = 𝑒 ′•. Consequently, we can
easily conclude by keeping the definition premise of the [∨] node and applying the
induction hypothesis on the body premises.

[0] We have 𝑒 ≡ (𝑒1∈𝜏) ? 𝑒2 : 𝑒3 for some 𝑒1, 𝑒2 and 𝑒3. As values cannot have the type 0 (Proposi-
tion I.23), we know that 𝑒1 is not a value. Thus, 𝑒 ′ ≡ (𝑒1{𝑒 ′◦/𝑒◦}∈𝜏) ? 𝑒2{𝑒 ′◦/𝑒◦} : 𝑒3{𝑒 ′◦/𝑒◦}.
We can derive Γ ⊢: 𝑒1{𝑒 ′◦/𝑒◦} : 0 by proceeding inductively on the premise, and then we can
derive Γ ⊢: 𝑒 ′ : 0 by using [0].

[∈1] We have 𝑒 ≡ (𝑒1∈𝜏) ? 𝑒2 : 𝑒3 for some 𝑒1, 𝑒2 and 𝑒3. There are three cases:
𝑒 ′ ≡ (𝑒1{𝑒 ′◦/𝑒◦}∈𝜏) ? 𝑒2{𝑒 ′◦/𝑒◦} : 𝑒3{𝑒 ′◦/𝑒◦} We can easily conclude by proceeding induc-

tively on the premises.
𝑒 ′ ≡ 𝑒2 The second premise, unchanged, allows us to conclude.
𝑒 ′ ≡ 𝑒3 This case is impossible. Indeed, it implies that 𝑒1 is a value, and as Γ ⊢: 𝑒1 : 𝜏 (first

premise), we can deduce using Proposition I.23 that 𝑒1 ∈ 𝜏 , which contradicts 𝑒 {⊤ 𝑒3.
[∈2] Similar to the previous case.

□

Theorem I.31 (Subject reduction). If Γ ⊢: 𝑒 : 𝑡 with 𝑒 a ground expression and if 𝑒 {P 𝑒 ′, then
Γ ⊢: 𝑒 ′ : 𝑡 .

Proof. Using the normalisation theorem (Theorem I.22) and the Lemma I.29, we can build a
minimal derivation for Γ ⊢: 𝑒 : 𝑡 .
Moreover, the root of the reduction step 𝑒 {P 𝑒 ′ is a [𝜅] node, with its premise being of the

form 𝑒◦ {⊤ 𝑒 ′◦, and with 𝑒 ′ ≡ 𝑒{𝑒 ′◦/𝑒◦}.
Thus, by using Lemma I.30, we obtain Γ ⊢: 𝑒 ′ : 𝑡 . □

I.2.3 Progress.

Lemma I.32 (Progress). If 𝐷 is a minimal derivation for Γ ⊢: 𝑒 : 𝑡 , and if there is no evaluation

context 𝐸 and variable
𝑥/x such that 𝑒 ≡ 𝐸 [𝑥/x], then either 𝑒 is a value or ∃𝑒 ′. 𝑒 {P 𝑒 ′.
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Proof. We proceed by structural induction on 𝐷 .
We consider the root of the derivation:

[Const] Trivial (𝑒 is a value).
[Ax𝜆] Impossible case (contradict the hypotheses).
[Ax∨] Impossible case (contradict the hypotheses).
[≤] Trivial (by induction on the premise).
[Inst] Trivial (by induction on the premise).
[∧] Trivial (by induction on one of the premises).
[→I] Trivial (𝑒 is a value).
[×I] We have 𝑒 ≡ (𝑒1, 𝑒2) for some expressions 𝑒1 and 𝑒2.

• If 𝑒1 is not a value, and as we have ∀𝐸, 𝑥/x. 𝑒1 . 𝐸 [𝑥/x], we know by applying the
induction hypothesis that 𝑒1 can be reduced. Thus, 𝑒 can also be reduced under the
evaluation context ( [ ], 𝑒2).

• If 𝑒1 is a value, then we can apply the induction hypothesis on the second premise (as
𝑒1 is a value, we know that ∀𝐸, 𝑥/x. 𝑒2 . 𝐸 [𝑥/x]). It gives that either 𝑒2 is a value or it
can be reduced. We can easily conclude in both cases: if 𝑒2 is a value, then 𝑒 is also a
value, otherwise, 𝑒 can be reduced under the evaluation context (𝑒1, [ ]).

[→E] We have 𝑒 ≡ 𝑒1𝑒2 for some expressions 𝑒1 and 𝑒2, with Γ ⊢: 𝑒1 : 𝑠 → 𝑡 and Γ ⊢: 𝑒2 : 𝑠 .
• If 𝑒1 is not a value, and as we have ∀𝐸, 𝑥/x. 𝑒1 . 𝐸 [𝑥/x], we know by applying the
induction hypothesis that 𝑒1 can be reduced. Thus, 𝑒 can also be reduced under the
evaluation context [ ]𝑒2.

• If 𝑒1 is a value, we can apply Proposition I.23 on it: as Γ ⊢: 𝑒1 : 0 → 1, it implies that
𝑒1 ∈ 0 → 1 and thus 𝑒1 ≡ 𝜆𝑥 . 𝑒𝜆 for some 𝑒𝜆 . Moreover, we can apply the induction
hypothesis on the second premise (as 𝑒1 is a value, we know that ∀𝐸, 𝑥/x. 𝑒2 . 𝐸 [𝑥/x]). It
gives that either 𝑒2 is a value or it can be reduced. We can easily conclude in both cases:
if 𝑒2 is a value, then 𝑒 can be reduced using the rule 7, otherwise, 𝑒 can be reduced
under the evaluation context 𝑒1 [ ].

[×E1] We have 𝑒 ≡ 𝜋1𝑒1 for some 𝑒1, with Γ ⊢: 𝑒1 : 𝑡 × 𝑠 . By applying the induction hypothesis on
the premise, we know that 𝑒1 is either a value or it can be reduced. If 𝑒1 can be reduced,
then 𝑒 can also be reduced under the evaluation context 𝜋1 [ ]. Otherwise, as Γ ⊢: 𝑒1 : 1 × 1,
we can apply Proposition I.23 on it, yielding 𝑒1 ∈ 1 × 1. Thus, 𝑒1 ≡ (𝑣1, 𝑣2) for some values
𝑣1 and 𝑣2, and consequently 𝑒 can be reduced using the rule 8.

[×E2] Similar to the previous case.
[∨] We have 𝑒 ≡ 𝑒1{𝑒2/x} for some 𝑒1 and 𝑒2, with Γ ⊢: 𝑒2 : 𝑠 and ∀𝑖 ∈ 𝐼 . Γ, x : 𝑠 ∧ u𝑖 ⊢: 𝑒1 : 𝑡 . There

are two cases:
• There exists an evaluation context 𝐸 such that 𝑒1 ≡ 𝐸 [x]. In this case, we know that
∀𝐸 ′, 𝑦/y. 𝑒2 . 𝐸 ′[𝑦/y], otherwise we would have 𝑒 ≡ 𝐸 [𝐸 ′[𝑦/y]]. Thus, we can apply
the induction hypothesis on the definition premise. It gives that either 𝑒2 is a value or
it can be reduced. As 𝐷 is minimal, 𝑒2 cannot be a value and thus 𝑒2 can be reduced.
Consequently, 𝑒 can also be reduced under the evaluation context 𝐸.

• There is no evaluation context 𝐸 such that 𝑒1 ≡ 𝐸 [x]. In this case, we apply the induction
hypothesis on one of the body premises. It gives that either 𝑒1 is a value or it can be
reduced. We can easily conclude in both cases: if 𝑒1 is a value, then 𝑒 is also a value,
otherwise, 𝑒 can be reduced.

[0] We have 𝑒 ≡ (𝑒1∈𝜏) ? 𝑒2 : 𝑒3 for some 𝑒1, 𝑒2 and 𝑒3, with Γ ⊢: 𝑒1 : 0. As values cannot have the
type 0 (Proposition I.23), we know that 𝑒1 is not a value. Thus, by applying the induction
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hypothesis on the premise, we know that 𝑒1 can be reduced. Consequently, 𝑒 can be reduced
under the evaluation context ([ ]∈𝜏) ? 𝑒2 : 𝑒3.

[∈1] We have 𝑒 ≡ (𝑒1∈𝜏) ? 𝑒2 : 𝑒3 for some 𝑒1, 𝑒2 and 𝑒3, with Γ ⊢: 𝑒1 : 𝜏 . We thus have 𝑒1 ∈ 𝜏

(Proposition I.23). By applying the induction hypothesis on the first premise, we know that
𝑒1 is either a value or it can be reduced. If 𝑒1 is a value, then 𝑒 can be reduced using the
rule 10. Otherwise, 𝑒1 can be reduced and thus 𝑒 can also be reduced under the evaluation
context ([ ]∈𝜏) ? 𝑒2 : 𝑒3.

[∈2] Similar to the previous case.

□

Theorem I.33 (Progress). If ∅ ⊢: 𝑒 : 𝑡 with 𝑒 a ground expression, then either 𝑒 is a value or

∃𝑒 ′. 𝑒 {P 𝑒 ′.

Proof. Using the normalisation theorem (Theorem I.22) and the Lemma I.29, we can build a
minimal derivation for ∅ ⊢: 𝑒 : 𝑡 .

Moreover, we can deduce from ∅ ⊢: 𝑒 : 𝑡 that there is no evaluation context 𝐸 and lambda variable
𝑥/x such that 𝑒 ≡ 𝐸 [𝑥/x]. Thus, we can conclude using Lemma I.32. □

I.2.4 Type Safety for Programs. Now that we expressed subject reduction and progress for the
parallel semantics on expressions, we extend it to programs, still using the parallel semantics. Then,
we will deduce from it a type safety theorem on programs for the parallel semantics.

Lemma I.34 (Weak monotonicity). For derivation 𝐷 of Γ ⊢: 𝑒 : 𝑡 and environment Γ′ such that

Γ′ ≤ Γ, 𝐷 can be transformed into a derivation of Γ′ ⊢: 𝑒 : 𝑡 just by adding [≤] nodes.

Proof. Straightforward induction on the derivation Γ ⊢: 𝑒 : 𝑡 , where each [Ax∨] and [Ax𝜆] node
is replaced by a [≤] node with the [Ax∨] or [Ax𝜆] node as premise. □

Lemma I.35 (Elimination of [Inst] nodes). For any canonical form derivation 𝐷 of Γ ⊢: 𝑒 : 𝑡 and
set of substitutions Σ, 𝐷 can be transformed into a derivation 𝐷 ′

of ΓΣ′ ⊢: 𝑒 : 𝑡Σ, for some Σ′
, and such

that 𝐷 ′
does not contain any [Inst] node.

Proof. We procced by structural induction on the derivation 𝐷 (with 𝐷 being a canonical form
derivation).

If the root of 𝐷 is a [Ax∨] node, we can directly conclude by choosing Σ′ = Σ.
Otherwise, if the root 𝐷 is a [∨] node, doing a substitution 𝑒{𝑒 ′/x}, we first proceed inductively

on its body premises (which all are canonical form derivations). It yields some derivations ΓΣ′
𝑖 , x :

𝑠Σ′
𝑖 ∧ u𝑖 ⊢: 𝑒 : 𝑡Σ for 𝑖 ∈ 𝐼 . We consider the set of substitutions Σ′ =

⋃
𝑖∈𝐼 Σ

′
𝑖 .

Now, let’s try to derive ΓΣ′′ ⊢: 𝑒 ′ : 𝑠 ′, for some Σ′′ and 𝑠 ′, with 𝑠 ′ ≤ 𝑠Σ′ (≤ 𝑠Σ′
𝑖 for every 𝑖 ∈ 𝐼 ). For

that, we consider the definition premise of 𝐷 , deriving Γ ⊢: 𝑒 ′ : 𝑠 , and apply the following process
on it:

• If its root is a [∧] node, we apply inductively this process to each premise Γ ⊢: 𝑒 ′ : 𝑠 𝑗
(with

∨
𝑗 ∈𝐽 𝑠 𝑗 ≃ 𝑠) in order to derive some ΓΣ′′

𝑗 ⊢: 𝑒 ′ : 𝑠 ′𝑗 , with 𝑠
′
𝑗 ≤ 𝑠Σ′. We then consider

Σ′′ =
⋃
𝑗 ∈𝐽 Σ

′′
𝑗 , and derive for each 𝑗 ∈ 𝐽 ΓΣ′′ ⊢: 𝑒 ′ : 𝑠 ′𝑗 using Lemma I.34. Finally, we intersect

the those derivations with a [∧] node.
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• If its root is a [→E] node, we apply the following transformation:

[→E]
[Inst∧≤]

[Ax∨]
Γ ⊢: x1 : Γ(x1)

Γ ⊢: x1 : 𝑡 → 𝑠
[Inst∧≤]

[Ax∨]
Γ ⊢: x2 : Γ(x2)
Γ ⊢: x2 : 𝑡

Γ ⊢: x1x2 : 𝑠

with 𝑡 → 𝑠 ≤ Γ(x1)Σ′′1 and 𝑡 ≤ Γ(x2)Σ′′2

↓

[→E]
[≤]

[Ax∨]
ΓΣ′′ ⊢: x1 : Γ(x1)Σ′′

ΓΣ′′ ⊢: x1 : 𝑡Σ′ → 𝑠Σ′
[≤]

[Ax∨]
ΓΣ′′ ⊢: x2 : Γ(x2)Σ′′

ΓΣ′′ ⊢: x2 : 𝑡Σ′

ΓΣ′′ ⊢: x1x2 : 𝑠Σ′

with Σ′′ = {𝜎 ′ ◦ 𝜎 ′′ | 𝜎 ′ ∈ Σ′, 𝜎 ′′ ∈ Σ′′1 ∪ Σ′′2 }
• If its root is a [→I] node, we apply the following transformation:

[→I]

𝐴

Γ, 𝑥 : u ⊢: 𝑒◦ : 𝑡
Γ ⊢: 𝜆𝑥 .𝑒◦ : u → 𝑡

↔ [→I]

𝐴′

ΓΣ′′, 𝑥 : u ⊢: 𝑒◦ : (𝑡Σ′)
ΓΣ′′ ⊢: 𝜆𝑥.𝑒◦ : u → (𝑡Σ′)

with 𝐴′ obtained by applying the induction hypothesis on 𝐴 and Σ′.

• If its root is a [Ax𝜆] node, we apply the following transformation:
[Ax𝜆]

Γ ⊢: 𝑥 : Γ(𝑥)
↔ [Ax𝜆]

ΓΣ′ ⊢: 𝑥 : Γ(𝑥)Σ′

• The other cases are similar.
We thus have Σ′′ and 𝑠 ′ such that ΓΣ′′ ⊢: 𝑒 ′ : 𝑠 ′ and ∀𝑖 ∈ 𝐼 . 𝑠 ′ ≤ 𝑠Σ′

𝑖 . We transform, for each 𝑖 ∈ 𝐼 ,
the derivation ΓΣ′

𝑖 , x : 𝑠Σ′
𝑖 ∧ u𝑖 ⊢: 𝑒 : 𝑡Σ into a derivation ΓΣ′′, x : 𝑠 ′ ∧ u𝑖 ⊢: 𝑒 : 𝑡Σ using Lemma I.34.

By combining all those derivations into a [∨] node, we can derive ΓΣ′′ ⊢: 𝑒{𝑒 ′/x} : 𝑡Σ. □

Lemma I.36. If Γ ⊢: 𝑒 : 𝑡 , then for any substitution𝜓 , we can derive Γ𝜓 ⊢: 𝑒 : 𝑡𝜓 .

Proof. Straightforward induction on the derivation of Γ ⊢: 𝑒 : 𝑡 . The type substitution 𝜓 can
be applied to every type (and type environment) in the derivation, and as dom(𝜓 ) ⊆ V𝑀 it
will not conflict with any [Inst] node in the derivation. Subtyping relations are preserved as
𝑡1 ≤ 𝑡2 ⇒ 𝑡1𝜓 ≤ 𝑡2𝜓 . □

Lemma I.37 (Generalisation lemma). If Γ, 𝑥 : 𝑠𝜙 ⊢: 𝑒 : 𝑡 with 𝑒 a ground expression, 𝜙#Γ, and
Γ ⊢: 𝑒 ′ : 𝑠 , then Γ ⊢: 𝑒{𝑒 ′/𝑥} : 𝑡 ′ for some 𝑡 ′ such that there exists a substitution 𝜙 ′

such that 𝑡 ′𝜙 ′ ≃ 𝑡
and 𝜙 ′#Γ.

Proof. We can suppose, without loss of generality, that 𝜙 is a full generalisation, that is, an
injective substitution mapping every type variable in (vars(𝑥) ∧ V𝑀 ) ∖ vars(Γ) to a fresh poly-
morphic type variable (and being the identity for any other type variable). Indeed, if for any 𝜙
the conditions of Lemma I.37 are satisfied, then they are also satisfied for any such generalisation
according to the monotonicity lemma (Lemma I.4).
Now, we transform the derivation of Γ, 𝑥 : 𝑠𝜙 ⊢: 𝑒 : 𝑡 into a canonical form derivation 𝐷 of

Γ, 𝑥 : 𝑠𝜙 ⊢: 𝑒 : 𝑡 ′ (with 𝑡 ′ ≤P 𝑡 ) using Theorem I.22. Let Σ such that 𝑡 ′Σ ≤ 𝑡 . Then, using Lemma I.35,
we transform 𝐷 into a derivation 𝐷 ′ of ΓΣ′, 𝑥 : (𝑠𝜙)Σ′ ⊢: 𝑒 : 𝑡 ′Σ, for some Σ′, and such that 𝐷 ′ does
not contain any [Inst] node. Adding a [≤] at the root gives ΓΣ′, 𝑥 : (𝑠𝜙)Σ′ ⊢: 𝑒 : 𝑡 .



40:69

Let 𝜎 ′′ be an injective substitution mapping every polymorphic type variable appearing in the
image of at least one of the substitutions 𝜎 ′ ∈ Σ′ and 𝜙 to a fresh monomorphic type variable
(and being the identity for any other type variable). From ΓΣ′, 𝑥 : (𝑠𝜙)Σ′ ⊢: 𝑒 : 𝑡 , we can derive a
derivation of (ΓΣ′)𝜎 ′′, 𝑥 : ((𝑠𝜙)Σ′)𝜎 ′′ ⊢: 𝑒 : 𝑡𝜎 ′′ simply by renaming the type variables everywhere
according to 𝜎 ′′. This is only possible because the derivation does not contain any [Inst] node
(substituting a polymorphic type variable by a monomorphic one could invalidate [Inst] nodes).
By monotonicity (Lemma I.4), we get Γ, 𝑥 : ((𝑠𝜙)Σ′)𝜎 ′′ ⊢: 𝑒 : 𝑡𝜎 ′′.

Now, we consider the set of substitutions {𝜙𝑖 }𝑖∈𝐼 =
def {𝜎 ′′ ◦𝜎 ′ ◦𝜙 | 𝜎 ′ ∈ Σ′}. For any 𝑖 ∈ 𝐼 , we can

decompose 𝜙𝑖 into two substitutions,𝜓𝑖 =
def
𝜎𝑖
��
V𝑀

and 𝜎𝑖 =
def
𝜎𝑖
��
V𝑃

. Note that ∀𝑖 ∈ 𝐼 . 𝜓𝑖#Γ (it follows
from 𝜙#Γ). Rewriting the previous judgement with these new notations gives Γ, 𝑥 :

∧
𝑖∈𝐼 (𝑠𝜓𝑖 )𝜎𝑖 ⊢: 𝑒 :

𝑡𝜎 ′′.
Using Lemma I.36 on the derivation of Γ ⊢: 𝑒 ′ : 𝑠 , we can derive, for any 𝑖 ∈ 𝐼 , Γ ⊢: 𝑒 ′ : 𝑠𝜓𝑖 (we

recall that𝜓𝑖#Γ, and thus Γ𝜓𝑖 ≃ Γ). Using a [Inst] node, we can then derive Γ ⊢: 𝑒 ′ : (𝑠𝜓𝑖 )𝜎𝑖 for any
𝑖 ∈ 𝐼 . Regrouping those derivations with a [∧] node gives Γ ⊢: 𝑒 ′ :

∧
𝑖∈𝐼 (𝑠𝜓𝑖 )𝜎𝑖 .

Finally, using the substitution lemma (Lemma I.24) on Γ, 𝑥 :
∧
𝑖∈𝐼 (𝑠𝜓𝑖 )𝜎𝑖 ⊢: 𝑒 : 𝑡𝜎 ′′ and Γ ⊢: 𝑒 ′ :∧

𝑖∈𝐼 (𝑠𝜓𝑖 )𝜎𝑖 , we get a derivation for Γ ⊢: 𝑒{𝑒 ′/𝑥} : 𝑡𝜎 ′′. We recall that the substitution 𝜎 ′′ is injective
and thus inversible, with its inverse 𝜙 ′ being such that 𝜙 ′#Γ (as the image of 𝜎 ′′ is only composed
of fresh monomorphic type variables). Thus, we have (𝑡𝜎 ′′)𝜙 ′ ≃ 𝑡 , which concludes the proof. □

We now have all the results necessary to prove the type safety of programs for the parallel
semantics. The parallel semantics is extended to programs in a straightforward way:

Reduction rule let𝑥 = 𝑣 ;𝑝 {P,Pr 𝑝{𝑣/𝑥}
Evaluation Context 𝑃 ::= [ ] | let𝑥 = [] ; 𝑝

𝑒 {P 𝑒
′

𝑃 [𝑒] {P,Pr 𝑃 [𝑒 ′]

Theorem I.38 (Subject reduction for programs). If Γ ⊢Pr 𝑝 : 𝑡 and 𝑝 {P,Pr 𝑝 ′, then Γ ⊢Pr 𝑝 ′ : 𝑡 .

Proof. Direct consequence of Theorem I.31 and Lemma I.37. □

Theorem I.39 (Progress for programs). If∅ ⊢Pr 𝑝 : 𝑡 , then either 𝑝 is a value or ∃𝑝 ′. 𝑝 {P,Pr 𝑝 ′.

Proof. Direct consequence of Theorem I.33. □

Theorem I.40 (Type safety for the parallel semantics). For any program 𝑝 , if ∅ ⊢Pr 𝑝 : 𝑡 ,
then either 𝑝 {∗

P,Pr 𝑣 with ∅ ⊢Pr 𝑣 : 𝑡 or 𝑒 {∞
P,Pr.

Proof. Straightforward consequence of Theorem I.38 and Theorem I.39. □

I.2.5 Type Safety for the Source Semantics. The final step is to deduce a type safety theorem for
the source semantics (Figure 1) from the type safety theorem for the parallel semantics. In order
to help comparing the two reduction semantics, we introduce again another reduction semantics
{C on expressions that can perform a reduction{⊤ under any context C (not just an evaluation
context):

C ::= [ ] | C𝑒 | 𝑒C | (C, 𝑒) | (𝑒, C) | 𝜋𝑖C
| (C∈𝜏) ? 𝑒 : 𝑒 | (𝑒∈𝜏) ?C : 𝑒 | (𝑒∈𝜏) ? 𝑒 :C

𝑒 {⊤ 𝑒
′

C[𝑒] {C C[𝑒 ′]
Definition I.41. We say that a context C1 is a subcontext of C2, noted C1 ≤ C2, if and only if there

exists a context C′
1 such that C2 ≡ C1 [C′

1].
Lemma I.42. For any expressions 𝑒1 and 𝑒3, if we have a chain 𝑒1 {

∗
C 𝑒3 such that at least one of

the reduction steps happen under an evaluation context, then there exists an expression 𝑒2 such that

𝑒1 { 𝑒2 and 𝑒2 {
∗
C 𝑒3.
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Proof. Let 𝑒1 and 𝑒4 two expressions such that 𝑒1 {
∗
C 𝑒4, where at least one of the reduction

steps happen under an evaluation context.
Let’s consider the first reduction step 𝑒2 {C 𝑒3 happening under an evaluation context. We have

𝑒1 {
∗
C 𝑒2 (with no reduction step happening under an evaluation context) and 𝑒3 {

∗
C 𝑒4. Moreover,

we have 𝑒2 ≡ 𝐸 [𝑒 ′2] and 𝑒3 ≡ 𝐸 [𝑒 ′3] for some evaluation context 𝐸 and expressions 𝑒 ′2 and 𝑒
′
3 such

that 𝑒 ′2 {⊤ 𝑒 ′3.
No reduction step in 𝑒1 {

∗
C 𝑒2 happen under a context C such that C ≤ 𝐸: otherwise, it would

also be an evaluation context, contradicting the fact that 𝑒2 {C 𝑒3 is the first reduction step
happening under an evaluation context. Consequently, we can "reverse" in 𝐸 and 𝑒 ′2 the reduction
steps happening in 𝑒1 {

∗
C 𝑒2 (one after the other, in reverse order):

• If a reduction step happens under a context C such that 𝐸 ≤ C, it only involves 𝑒 ′2, we can
thus apply the reverse rewriting to 𝑒 ′2. After that, the expression we get is still reducible at
top-level, as the reduction step that has been reversed cannot happen under an evaluation
context (no reduction step in 𝑒1 {

∗
C 𝑒2 can happen under an evaluation context).

• Otherwise, if a reduction step happens under a context C such that C ̸≤ 𝐸 and 𝐸 ̸≤ C, it
only involves 𝐸, we can thus apply the reverse rewriting to 𝐸. After that, the new context
we get is still an evaluation context, as the reduction step that has been reversed cannot
happen under an evaluation context (no reduction step in 𝑒1 {

∗
C 𝑒2 can happen under an

evaluation context).
After this reversing process, we get a new evaluation context 𝐸 ′ and expression 𝑒 ′1 such that
𝑒1 ≡ 𝐸 ′[𝑒 ′1] and 𝑒 ′1 {⊤ 𝑒 ′′2 for some 𝑒 ′′2 such that 𝐸 ′[𝑒 ′′2 ] {∗

C 𝐸 [𝑒
′
2].

Consequently, we have 𝑒1 ≡ 𝐸 ′[𝑒 ′1] { 𝐸 ′[𝑒 ′′2 ], and 𝐸 ′[𝑒 ′′2 ] {∗
C 𝐸 [𝑒 ′2] ≡ 𝑒3 {

∗
C 𝑒4, which

concludes the proof. □

Lemma I.43. For any expressions 𝑒1, 𝑒2 and 𝑒3, if 𝑒1 {
∗
C 𝑒2 {P 𝑒3, then there exists an expression

𝑒 ′1 such that 𝑒1 { 𝑒 ′1 {
∗
C 𝑒3.

Proof. The step 𝑒2 {P 𝑒3 can be decomposed into several{C steps with at least one happening
under an evaluation context. Thus, this lemma is an immediate consequence of Lemma I.42 applied
on the chain 𝑒1 {

∗
C 𝑒2 {

∗
C 𝑒3. □

Lemma I.44. For any expression 𝑒 and value 𝑣 , if 𝑒 {∗
C 𝑣 then either 𝑒 {∞

or there exists a value

𝑣 ′ such that 𝑒 {∗ 𝑣 ′ {∗
C 𝑣 .

Proof. If 𝑒 is not already a value, then there must be at least one step in 𝑒 {∗
C 𝑣 that happen

under an evaluation context (it is not possible for 𝑣 to be a value otherwise). We can thus apply
Lemma I.42 successively, starting on 𝑒 {∗

C 𝑣 and continuing until the remaining 𝑒 ′ {∗
C 𝑣 chain is

such that 𝑒 ′ is a value. If this process terminates, it builds a chain 𝑒 {∗ 𝑣 ′ with 𝑣 ′ {∗
C 𝑣 , otherwise

it builds 𝑒 {∞. □

Lemma I.45. For any expression 𝑒1, 𝑒2, and value 𝑣 , if 𝑒1 {
∗
C 𝑒2 {

∗
P 𝑣 then there exists 𝑣 ′ such that

𝑒1 {
∗ 𝑣 ′ {∗

C 𝑣 or 𝑒1 {
∞
.

Proof. By induction on the number of steps in 𝑒2 {
∗
P 𝑣 , we prove using Lemma I.43 that

𝑒1 {
∗ 𝑒 ′ {∗

C 𝑣 for some 𝑒 ′. Then, we conclude by applying Lemma I.44 on 𝑒 ′ {∗
C 𝑣 . □

Lemma I.46. For any expression 𝑒1 and 𝑒2, if 𝑒1 {
∗
C 𝑒2 {

∞
P then 𝑒1 {

∞
.

Proof. We can arbitrarily extend a chain 𝑒1 { . . . using Lemma I.43. □

The semantics{C is extended into a semantics{C,Pr for programs, with an extended context
allowing to perform a reduction under any top-level definition of the program:
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CPr ::= [] | let𝑥 = [] ; 𝑝 | let𝑥 = 𝑒 ;CPr

𝑒 {⊤ 𝑒
′

CPr [C[𝑒]] {C,Pr CPr [C[𝑒 ′]]
Lemma I.47. For any program 𝑝1, 𝑝2, and value 𝑣 , if 𝑝1 {

∗
C,Pr 𝑝2 {

∗
P,Pr 𝑣 then there exists 𝑣 ′ such

that 𝑝1 {
∗
Pr 𝑣

′ {∗
C,Pr 𝑣 or 𝑝1 {

∞
Pr .

Proof. Straightforward induction on the number of top-level definitions in 𝑝2, using Lemma I.45
(note that 𝑝1 and 𝑝2 must have the same number of top-level definitions as 𝑝1 {

∗
C,Pr 𝑝2). □

Lemma I.48. For any program 𝑝1 and 𝑝2, if 𝑝1 {
∗
C,Pr 𝑝2 {

∞
P,Pr then 𝑝1 {

∞
Pr .

Proof. Straightforward induction on the number of top-level definitions in 𝑝2, using Lemma I.46
(note that 𝑝1 and 𝑝2 must have the same number of top-level definitions as 𝑝1 {

∗
C,Pr 𝑝2). □

Lemma I.49. For any values 𝑣1 and 𝑣2 such that 𝑣1 {
∗
C 𝑣2, if 𝑣2 ∈ 𝜏 then 𝑣1 ∈ 𝜏 .

Proof. As 𝑣1 is a value, every reduction step in 𝑣1 {
∗
C 𝑣2 can only happen under a 𝜆-abstraction.

Given that the ∈ relation ignores the body of 𝜆-abstractions ((𝜆𝑥.𝑒) ∈ 0 → 1 for any 𝑒), none of
the reduction steps in 𝑣1 {

∗
C 𝑣2 can change the relation · ∈ 𝜏 . □

Theorem I.50 (Type safety for the source semantics). For any program 𝑝 , if ∅ ⊢Pr 𝑝 : 𝜏 , then
either 𝑝 {∗

Pr 𝑣 with 𝑣 ∈ 𝜏 or 𝑝 {∞
Pr .

Proof. Straightforward combination of the type safety for the parallel semantics (Theorem I.40)
with the Lemmas I.47 and I.48. In the case where we get 𝑝 {∗

Pr 𝑣 , for some value 𝑣 such that
there exists 𝑣 ′ such that 𝑣 {∗

C 𝑣 ′ and ∅ ⊢Pr 𝑣 ′ : 𝜏 , we can deduce ∅ ⊢: 𝑣 ′ : 𝜏 , then 𝑣 ′ ∈ 𝜏 using
Proposition I.23, and finally 𝑣 ∈ 𝜏 using Lemma I.49. □

I.3 Algorithmic Type System
I.3.1 Maximal Sharing Canonical Form. This section applies to definitions of Appendix E.
As defined in Section I.1, we consider that expressions of the source language can contain

binding variables. In particular, the unwinding operator ⌈.⌉ can be used on atoms and canonical
forms containing free binding variables. An expression without binding variables is called ground
expression.

Proposition I.51. For any ground expression of the source language 𝑒 , ⌈term(J𝑒K)⌉ ≡ 𝑒 .
Proof. Straightorward structural induction on 𝑒 . □

Proposition I.52. If 𝜅 ≡𝜅 𝜅 ′, then ⌈𝜅⌉ ≡𝛼 ⌈𝜅 ′⌉.
Proof. If a reordering, as defined in Definition 3.1, applies at top-level on the expression

bind x1 =𝑎1 in bind x2 =𝑎2 in𝜅 , the unwinding remains unchanged: as x1 ∉ fv(𝑎2) and 𝑥2 ∉ fv(𝑎1),
we have 𝜅{𝑎1/x1}{𝑎2/x2} ≡ 𝜅{𝑎2/x2}{𝑎1/x1}.

The general case can easily be deduced with the observation that ∀C, 𝜅1, 𝜅2. ⌈𝜅1⌉ ≡𝛼 ⌈𝜅2⌉ ⇒
⌈C[𝜅1]⌉ ≡𝛼 ⌈C[𝜅2]⌉ (with C denoting an arbitrary context). □

Proposition I.53 (Eqivalence of MSC-forms). If 𝜅1 and 𝜅2 are two MSC-forms and ⌈𝜅1⌉ ≡𝛼
⌈𝜅2⌉, then 𝜅1 ≡𝜅 𝜅2.

Proof. We will show that 𝜅2 can be transformed into 𝜅1 just with 𝛼-renaming and reordering
of independent bindings (as specified in the definition of ≡𝜅 ).
In this proof, we represent partially unwinded canonical forms by a pair (𝐵, 𝑒), where 𝐵 is a

binding context and 𝑒 an expression. With this representation, the unwinding of (𝐵, 𝑒) is 𝑒𝐵, but
for clarity we can also use the notation ⌈(𝐵, 𝑒)⌉.
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Let (𝐵1, x1) be the representation of 𝜅1, with 𝐵1 representing its top-level definitions and x1 its
final binding variable, and (𝐵2, x2) be the representation of 𝜅2. Formally, we have term(𝐵1, x1) ≡ 𝜅1
and term(𝐵2, x2) ≡ 𝜅2.

As ⌈𝜅1⌉ ≡𝛼 ⌈𝜅2⌉, we have ⌈(𝐵1, x1)⌉ ≡𝛼 ⌈(𝐵2, x2)⌉. By𝛼-renaming, we can assume that x1 = x2 = x
and ⌈(𝐵1, x)⌉ ≡ ⌈(𝐵2, x)⌉.

Now, let’s prove the property below, from which Proposition I.53 can be deduced. Let 𝐵1 and 𝐵2
two binding contexts, and 𝑒 an expression such that:

• ⌈(𝐵1, 𝑒)⌉ ≡ ⌈(𝐵2, 𝑒)⌉
• The body of 𝜆-abstractions in 𝐵1 and 𝐵2 are in MSC-form (Definition 3.2)

• Both 𝐵1 and 𝐵2 satisfy the following properties (corresponding to the MSC-form properties

applied to the top-level definitions), written here for a binding context 𝐵:

(1) if (x1, 𝑎1) and (x2, 𝑎2) are distinct definitions in 𝐵, then 𝑎1 ̸≡𝜅 𝑎2
(2) for any definition (x, 𝜆𝑧.𝜅) in 𝐵, any binding bind y =𝑎 in𝜅 ′ in 𝜅 is such that fv(𝑎) ⊈

fv(𝜆𝑧.𝜅)
(3) if 𝐵 contains a definition (x, 𝑎), then x is a free variable of one of the next definitions in 𝐵

or of 𝑒

Then, we can transform 𝐵2 into 𝐵1 just with 𝛼-renaming, reordering of independent definitions, and

replacement of an atom by a ≡𝜅-equivalent one.
We prove this property by induction on the total number of atoms appearing in 𝐵1 (by counting

top-level atoms as well as the sub-atoms they contain).
The base case (𝐵1 = 𝜀) is trivial: as ⌈(𝐵2, 𝑒)⌉ ≡ ⌈(𝐵1, 𝑒)⌉ ≡ ⌈(𝜀, 𝑒)⌉ ≡ 𝑒 , we deduce with Property

3 of MSC-forms that 𝐵2 = 𝜀.
For the inductive case, let’s consider 𝐵1 = 𝐵

′
1 ; (x, 𝑎1).

With property 3 of MSC-forms, we know that x appears in 𝑒 . As ⌈(𝐵1, 𝑒)⌉ ≡ ⌈(𝐵2, 𝑒)⌉, we
can deduce that ⌈(𝐵1, x)⌉ ≡ ⌈(𝐵2, x)⌉. Thus, 𝐵2 must also feature a definition for x, let’s call 𝑎2
the associated atom. We move in 𝐵2 the definition (x, 𝑎2) at the end (if not already), it gives
𝐵2 = 𝐵

′
2 ; (x, 𝑎2). We then have ⌈(𝐵′

1, 𝑎1)⌉ ≡ ⌈(𝐵′
2, 𝑎2)⌉. As every kind of atom introduces a different

syntactic construction, we can deduce that 𝑎1 and 𝑎2 are atoms of the same kind.
• If 𝑎1 and 𝑎2 are atoms that are not 𝜆-abstractions and that do not contain any binding
variable (constants, lambda variables), we directly have 𝑎1 ≡ 𝑎2.

• If 𝑎1 and 𝑎2 are atoms that are not 𝜆-abstractions and that contain only one binding variable
(projections), we can 𝛼-rename binding variables in 𝐵2 so that 𝑎1 ≡ 𝑎2.

• If 𝑎1 and 𝑎2 are atoms that are not 𝜆-abstractions and that contain two binding variables x
and y (applications, pairs), we consider two cases:
– If ⌈(𝐵′

1, x)⌉ ≡𝛼 ⌈(𝐵′
1, y)⌉, let’s show that we necessarily have x = y. We consider the

binding context 𝐵x, which is a cleaned version of 𝐵′
1 where all the definitions that are

not related (directly or indirectly) to x1 have been removed. Similarly, we consider the
binding context 𝐵y where the definitions unrelated to y have been removed. Then, we
apply the induction hypothesis to the binding contexts 𝐵x, 𝐵y{x/y} and the expression
x. This tells us that 𝐵x and 𝐵y are equivalent modulo reordering of the definitions,
𝛼-renaming and ≡𝜅-transformation of atoms. Thus, according to the property 1 of
MSC-forms, x and y cannot have two distinct definitions in 𝐵′

1, and thus x = y. The
same reasoning can be done for 𝑎2, and thus we deduce that both 𝑎1 and 𝑎2 contain the
same binding variable twice. Thus, we can 𝛼-rename binding variables in 𝐵2 so that
𝑎1 ≡ 𝑎2.

– Otherwise, x and ymust be different, and the same applies to 𝑎2. Thus, we can 𝛼-rename
binding variables in 𝐵2 so that 𝑎1 ≡ 𝑎2.
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• If 𝑎1 and 𝑎2 are typecases (containing 3 binding variables), we proceed similarly to the
previous case to obtain 𝑎1 ≡ 𝑎2.

• In the case where 𝑎1 and 𝑎2 are 𝜆-abstractions, let’s say 𝜆𝑥 . 𝜅1 and 𝜆𝑥 . 𝜅2, we note (𝐵x1 , x1)
and (𝐵x2 , x2) the representations of 𝜅1 and 𝜅2 respectively. We now consider the representa-
tion (𝐵′

1;𝐵x1 , 𝜆𝑥 . x1) and remove from it all the unused definitions (i.e. not related to x1), it
gives us a new representation (𝐵′′

1 , 𝜆𝑥 . x1) . We do the same for (𝐵′
2;𝐵x2 , 𝜆𝑥 . x2), it gives a

new representation (𝐵′′
2 , 𝜆𝑥 . x2). Then, we use the induction hypothesis on 𝐵′′

1 , 𝐵
′′
2 {x1/x2}

and 𝜆𝑥. x1. It gives us that 𝐵′′
1 and 𝐵′′

2 are equivalent modulo reordering of the definitions,
𝛼-renaming and ≡𝜅-transformation of the atoms. By using the property 2 of MSC-forms, we
can deduce that 𝐵x1 and 𝐵x2 are equivalent modulo reordering of the definitions, 𝛼-renaming
and ≡𝜅-transformation of the atoms. Thus, we can 𝛼-rename 𝐵2 and ≡𝜅-transform some of
its atoms so that 𝐵x1 ≡ 𝐵x2 , and thus 𝑎1 ≡ 𝑎2.

In any case, we get 𝑎1 ≡ 𝑎2 ≡ 𝑎, thus the last definition of 𝐵1 is the same as the last definiton of
𝐵2. The same can be proven for the previous definitions by using the induction hypothesis on 𝐵′

1,
𝐵′

2 and 𝑒{𝑎/x}. □

Proposition I.54. If 𝜅 d 𝜅 ′, then ⌈𝜅⌉ ≡𝛼 ⌈𝜅 ′⌉.
Proof. Similar to Proposition I.52. □

Proposition I.55 (Normalisation). There is no infinite chain 𝜅1 d 𝜅2 d · · ·
Proof. Let 𝑛 be the maximal number of nested 𝜆-abstractions in 𝜅1. We call depth of a binding

the number of nested 𝜆-abstractions it is into (the depth of a binding of 𝜅1 is at most 𝑛).
Let 𝑁𝜅 (𝑖) be the number of bindings of depth 𝑖 in an expression 𝜅. Let 𝑆 (𝜅) be the following

n-uplet: (𝑁𝜅 (𝑛), 𝑁𝜅 (𝑛 − 1), . . . , 𝑁𝜅 (0)).
For any chain 𝜅1 d 𝜅2 d · · · , the sequence 𝑆 (𝜅1), 𝑆 (𝜅2), . . . is strictly decreasing with respects

to the lexicographic order. Thus 𝜅1 d 𝜅2 d · · · cannot be infinite. □

Proposition I.56. If 𝜅 ̸d (i.e., nod rule apply on 𝜅), then 𝜅 is an MSC-form.

Proof. We assume 𝜅 ̸d and show that all 3 MSC properties are satisfied.
The property 3 (no unused bindings) is trivially verified: any binding that does not satisfy this

property can directly be eliminated with the rule 4. As the rule 4 does not apply, this property must
be satisfied.
Now, we focus on the property 2 (extrusion of bindings). We assume that there exists a sub-

expression 𝜆𝑥 . 𝜅1 of 𝜅 and a sub-expression bind y =𝑎 in𝜅2 of 𝜅1 such that fv(𝑎) ⊆ fv(𝜆𝑥 . 𝜅1). We
know that 𝑎 does not depend on 𝑥 , otherwise 𝑥 would be in fv(𝑎) and not in fv(𝜆𝑥. 𝜅1). Thus, we
can reorder the binding 𝑦 (6) in the first position of its inner-most containing lambda-abstraction,
and then apply the rule 5 on it, which contradicts 𝜅 ̸d. Consequently, the property 2 is satisfied.
Finally, we show that the property 1 (sharing) is also satisfied. We assume that there are two

distinct bindings bind x1 =𝑎1 in . . . and bind x2 =𝑎2 in . . . such that 𝑎1 ≡𝜅 𝑎2. As the property 2
is satisfied, and as fv(𝑎1) = fv(𝑎2), we know that these two bindings are in the same 𝜆-abstraction.
Thus, we can reorder them (6) to be the one next to the other so that the rule 3 is applicable, which
contradicts 𝜅 ̸d. Thus, the property 1 is satisfied. □

Proposition I.57 (Confluence). Let 𝜅1, 𝜅2 and 𝜅
′
2 such that 𝜅1 d

∗ 𝜅2 and 𝜅1 d
∗ 𝜅 ′2. Then, there

exists 𝜅3 and 𝜅
′
3 such that 𝜅2 d

∗ 𝜅3, 𝜅
′
2 d

∗ 𝜅 ′3, and 𝜅3 ≡𝜅 𝜅 ′3.
Proof. Immediate consequence of Proposition I.55 (normalisation), Proposition I.54 (preserva-

tion of ⌈.⌉), Proposition I.56 ( ̸d implies MSC-form), and Proposition I.53 (equivalence of MSC-
forms). □
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I.3.2 Soundness. See Appendix G for the full algorithmic system, without the rules for extensions.
Lemma I.58 (Monotonicity).

If Γ ⊢A [𝜅 | k] : 𝑡 and Γ′ ≤P Γ, then ∃k′, 𝑡 ′. Γ′ ⊢A [𝜅 | k′] : 𝑡 ′ with 𝑡 ′ ≤P 𝑡 .

If Γ ⊢A [𝑎 | a] : 𝑡 and Γ′ ≤P Γ, then ∃a′, 𝑡 ′. Γ′ ⊢A [𝑎 | a′] : 𝑡 ′ with 𝑡 ′ ≤P 𝑡 .

Proof. Straightforward structural induction on the derivation. □

Theorem I.59 (Soundness). If Γ ⊢A [𝜅 | k] : 𝑡 , then Γ ⊢: ⌈𝜅⌉ : 𝑡 . If Γ ⊢A [𝑎 | a] : 𝑡 , then Γ ⊢: ⌈𝑎⌉ : 𝑡 .
Proof. We proceed by structural induction on the typing derivation of Γ ⊢A [𝜅 | k] : 𝑡 (resp.

Γ ⊢A [𝑎 | a] : 𝑡 ) in order to build a derivation Γ ⊢: ⌈𝜅⌉ : 𝑡 (resp. Γ ⊢: ⌈𝑎⌉ : 𝑡 ). We consider the root of
the derivation:
[Const-Alg] Trivial (we use a [Const] node).
[Ax-Alg] Trivial (we use a [Ax𝜆] node).
[→I-Alg] We have 𝑎 ≡ 𝜆𝑥 . 𝜅, and thus ⌈𝑎⌉ ≡ 𝜆𝑥 . ⌈𝜅⌉.

By induction on the premise, we get Γ, 𝑥 : u ⊢: ⌈𝜅⌉ : 𝑠 . By applying the rule [→I], we get
Γ ⊢: ⌈𝑎⌉ : u → 𝑠 (with 𝑡 ≃ u → 𝑠).

[→E-Alg] We have 𝑎 ≡ x1x2. We pose 𝑡1 =
def Γ(x1)Σ1 and 𝑡2 =

def Γ(x2)Σ2.
With an [Ax∨] node, we can derive Γ ⊢: x1 : Γ(x1) and Γ ⊢: x2 : Γ(x2). Using a [Inst∧≤]
pattern, we can derive from that Γ ⊢: x1 : 𝑡1 and Γ ⊢: x2 : 𝑡2. We have 𝑡 ≃ 𝑡1◦𝑡2. Thus, according
to the definition of ◦, we know that 𝑡1 ≤ 𝑡2 → 𝑡 . Thus, with an application of the [≤] rule
on Γ ⊢: x1 : 𝑡1, we can derive Γ ⊢: x1 : 𝑡2 → 𝑡 . We can then conclude with an application of
the [→E] rule.

[×I-Alg] We have 𝑎 ≡ (x1, x2).
With an [Ax∨] node, we can derive Γ ⊢: x1 : Γ(x1)𝜌1 and Γ ⊢: x2 : Γ(x2)𝜌2 (with 𝜌1 and 𝜌2 as
in the [×I-Alg] node). We can then conclude with an application of the [×I] rule.

[×E1-Alg] We have 𝑎 ≡ 𝜋1x. We pose 𝑡◦ = Γ(x)Σ.
With an [Ax∨] node, we can derive Γ ⊢: x : Γ(x). Using a [Inst∧≤] pattern, we can derive
from that Γ ⊢: x : 𝑡◦. We have 𝑡 ≃ 𝝅1 (𝑡◦). Thus, according to the definition of 𝝅1, we know
that 𝑡◦ ≤ 𝑡 × 1. Thus, with an application of the [≤] rule, we can derive Γ ⊢: x : 𝑡 × 1. We can
then conclude with an application of the [×E1] rule.

[×E2-Alg] Similar to the previous case.
[0-Alg] Similar to the previous case.
[∈1-Alg] Similar to the previous case.
[∈2-Alg] Similar to the previous case.
[Var-Alg] Trivial (we use a [Ax∨] node).
[Bind1-Alg] We have 𝜅 ≡ bind x =𝑎 in𝜅◦ and thus ⌈𝜅⌉ ≡ ⌈𝜅◦⌉{⌈𝑎⌉/x}.

By induction on the premise, we get Γ ⊢: ⌈𝜅◦⌉ : 𝑡 . As x ∉ dom(Γ), we know that this
derivation does not contain any [Ax∨] node applied on x. We can thus easily transform it
into a derivation of Γ ⊢: ⌈𝜅◦⌉{⌈𝑎⌉/x} : 𝑡 by substituting every occurrence of x by ⌈𝑎⌉.

[Bind2-Alg] We have 𝜅 ≡ bind x =𝑎 in𝜅◦ and thus ⌈𝜅⌉ ≡ ⌈𝜅◦⌉{⌈𝑎⌉/x}.
We can suppose without loss of generality that the decomposition {u𝑖 }𝑖∈𝐼 is a partition of
1: if for any two distinct 𝑖, 𝑗 ∈ 𝐼 , u𝑖 and u𝑗 are not disjoint, then we can replace the u𝑗 part
by u𝑗 ∖ u𝑖 and conclude by monotonicity (Lemma I.58).
By induction on the first premise, we get Γ ⊢: ⌈𝑎⌉ : 𝑠 . For any 𝑖 ∈ 𝐼 , we apply the induction
hypothesis on the corresponding premise. It gives Γ, x : 𝑠 ∧ u𝑖 ⊢: ⌈𝜅◦⌉ : 𝑡𝑖 . With a [≤] node,
we can obtain Γ, x : 𝑠 ∧ u𝑖 ⊢: ⌈𝜅◦⌉ : 𝑡 (with 𝑡 ≃ ∨

𝑖∈𝐼 𝑡𝑖 ). We conclude with a [∨] node.
[∧-Alg] Trivial induction on the premises.

□



40:75

I.3.3 Completeness.

Definition I.60 (Atomic source expression). We say that an expression of the source language

is an atomic source expression if it can be constructed with the following syntax:

Atomic source expressions 𝑎 ::= 𝑐 | 𝑥 | 𝜆𝑥 .𝑒 | (x, x) | xx | 𝜋𝑖x | (x∈𝜏) ? x : x
and if, for the case 𝜆𝑥.𝑒 , all sub-expressions of 𝑒 are either a binding variable or they contain a lambda

variable that is not in fv(𝜆𝑥.𝑒).
The variable 𝑎 is used to range over atomic source expressions.

Definition I.61. For any atomic source expression 𝑎, we define MSCA(𝑎) as follows:
MSCA(𝜆𝑥.𝑒) = 𝜆𝑥 .MSC(𝑒)

MSCA(𝑎) = 𝑎 for any 𝑎 that is not a 𝜆-abstraction

Proposition I.62. For any atomic source expression 𝑎, bind x =MSCA(𝑎) in x is a valid MSC-form.

Proof. The extrusion property is ensured by the condition on 𝜆-abstractions in Definition I.60.
The two other properties are trivially satisfied. □

Definition I.63. For a binding context 𝐵 and an expression 𝑒 , we define the operator 𝑒 ∖ 𝐵 as

follows:

𝑒 ∖ 𝜀 = 𝑒

𝑒 ∖ ((x, 𝑎);𝐵) = (𝑒{x/⌈𝑎⌉}) ∖ 𝐵

Proposition I.64. For any binding context 𝐵 and expression 𝑒 , we have (𝑒 ∖ 𝐵)𝐵 ≡𝛼 𝑒𝐵 and

(𝑒𝐵) ∖ 𝐵 ≡𝛼 𝑒 ∖ 𝐵.

Proof. Straightforward induction on 𝐵. □

In the following, we fix an expression order ≤ over expressions (c.f. Desfinition I.9). This order
should be total, so that for any expression 𝑒 , it determines a unique MSC-form MSC(𝑒) modulo 𝛼-
renaming (and not only modulo ≡𝜅 ): independent consecutive bindings must follow the increasing
order ≤ of their unwinding. As the order ≤ is arbitrarily choosen, the proofs below will work for
any MSC-form.

Lemma I.65 (Decomposition of canonical form derivations). If 𝐷 is a canonical form deriva-

tion of Γ ⊢: 𝑒 : 𝑡 , with the root being a [∨] node doing the substitution 𝑒 ′{𝑒x/x}, then there exists a

binding context 𝐵 such thatMSC(𝑒) ≡𝛼 term(𝐵, bind x =MSCA(𝑒x ∖ 𝐵) inMSC(𝑒 ′ ∖ 𝐵) ).

Proof. First, we deduce from the fact that 𝐷 is a canonical form derivation that the definition
premise, Γ ⊢: 𝑒x : 𝑠 , is an atomic derivation.
We know that 𝑒x appears in 𝑒 (as 𝐷 is canonical, see Definition I.7). Thus, we can deduce that

MSC(𝑒) contains a definition for an atom 𝑎 that unwinds to 𝑒x. Formally, we know that there exists a
binding context 𝐵, an atom 𝑎 and a canonical form 𝜅 such thatMSC(𝑒) ≡𝛼 term(𝐵, bind x =𝑎 in𝜅 )
with ⌈𝑎⌉𝐵 ≡𝛼 𝑒x.

First, we determine what 𝐵 is. The expression 𝑒x could contain some sub-expressions that are not
binding variables and that have no occurrence of a lambda variable defined in 𝑒x. In this case, these
sub-expressions should be defined by some bindings in 𝐵 (the unwinding of each such binding is
necessarily smaller than 𝑒x by ≤, as ≤ is an extension of the sub-expressions order). The expression
𝑒 ′ could also contain some such sub-expressions. The ones whose unwnding is smaller than 𝑒x
according to ≤ must be defined by some bindings in 𝐵 too. No other expression should be defined
in 𝐵 or it would contradict the properties of MSC-forms.
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Now, we determine what 𝑎 is. Under the context 𝐵, the expression 𝑒x ∖ 𝐵 unwinds to 𝑒x (Proposi-
tion I.64). Moreover, as Γ ⊢: 𝑒x : 𝑠 is an atomic derivation, and given how 𝐵 is constructed, 𝑒x∖𝐵 must
be an atomic source expression. Thus, we can deduce from Proposition I.62 that MSCA(𝑒x ∖ 𝐵)
can be used in place of the atom 𝑎 without breaking any property of the MSC-form, and thus by
unicity of the MSC-form (Proposition I.53) we can conclude that 𝑎 ≡𝛼 MSCA(𝑒x ∖ 𝐵).
Finally, we determine what 𝜅 is. We note 𝐵′ the binding context 𝐵; (x,MSCA(𝑒x ∖ 𝐵)). The

expression 𝑒 ′ ∖ 𝐵′ unwinds to 𝑒 ′{𝑒x/x} under the context 𝐵′ (Proposition I.64). As 𝐷 is a canonical
form, 𝑒x cannot be a sub-expression of 𝑒 ′ (c.f. Definition I.7), thus 𝑒 ′ ∖ 𝐵 ≡𝛼 𝑒 ′ ∖ 𝐵′ and thus
𝑒 ′ ∖ 𝐵 also unwinds to 𝑒 ′{𝑒x/x}. Thus, MSC(𝑒 ′ ∖ 𝐵) can be used in place of 𝜅 without breaking
any property of the MSC-form (note that it only contains top-level bindings for expressions
whose unwinding is greater than 𝑒x by ≤, as the smaller ones have been put in 𝐵). By unicity
of the MSC-form (Proposition I.53), we conclude that 𝜅 ≡𝛼 MSC(𝑒 ′ ∖ 𝐵), and thus MSC(𝑒) ≡𝛼
term(𝐵, bind x =MSCA(𝑒x ∖ 𝐵) inMSC(𝑒 ′ ∖ 𝐵) ). □

Lemma I.66 (Completeness). If 𝐷 is a canonical form derivation of Γ ⊢: 𝑒 : 𝑡 , then ∃k, 𝑡 ′. Γ ⊢A
[MSC(𝑒) | k] : 𝑡 ′ with 𝑡 ′ ≤P 𝑡 .

If 𝐷 is a canonical atomic derivation of Γ ⊢: 𝑎 : 𝑡 (with 𝑎 an atomic source expression), then ∃a, 𝑡 ′. Γ ⊢A
[MSCA(𝑎) | a] : 𝑡 ′ with 𝑡 ′ ≤P 𝑡 .

Proof. We proceed by induction on the depth of 𝐷 .
We consider the root of the derivation (the cases up to [∈2] are for canonical atomic derivations,

the cases after are for canonical form derivations):
[Const] Trivial.
[Ax𝜆] Trivial.
[→I] We have 𝑎 ≡ 𝜆x. 𝑒 and thusMSCA(𝑎) ≡𝛼 𝜆x. MSC(𝑒).

The premise of this [→I] node is a canonical form derivation. Thus, by induction on
this premise, we get Γ, x : u ⊢A [MSC(𝑒) | k] : 𝑡 ′ (with 𝑡 ′ ≤P 𝑡 ). We can thus derive
Γ ⊢A [𝜆x. MSC(𝑒) | 𝜆(u, k)] : u → 𝑡 ′ and we have u → 𝑡 ′ ≤P u → 𝑡 , which concludes this
case.

[→E] We have 𝑎 ≡ x1x2 and thus MSCA(𝑎) ≡𝛼 x1x2.
As 𝐷 is a canonical atomic derivation, we know that the second premise, Γ ⊢: x2 : 𝑡1, is a
[Inst∧≤] pattern with no [≤] node and whose premise is a [Ax∨] node. Thus, we know
that there exists Σ2 such that Γ(x2)Σ2 ≃ 𝑡1. Similarly, the first premise, Γ ⊢: x1 : 𝑡1 → 𝑡2, is a
[Inst∧≤] pattern whose premise is a [Ax∨] node. Thus, we know that there exists Σ1 such
that Γ(x1)Σ1 ≤ 𝑡1 → 𝑡2.
Consequently, and by definition of ◦, we know that (Γ(x1)Σ1) ◦ (Γ(x2)Σ2) ≤ 𝑡2. We can
thus derive Γ ⊢A [x1x2 | @(Σ1, Σ2)] : 𝑡 ′ (with 𝑡 ′ ≃ (Γ(x1)Σ1) ◦ (Γ(x2)Σ2)) such that 𝑡 ′ ≤ 𝑡2,
which concludes this case.

[×I] We have 𝑎 ≡ (x1, x2) and thus MSCA(𝑎) ≡𝛼 (x1, x2).
As 𝐷 is a canonical atomic derivation, both premises can only be [Ax∨] nodes. Thus, we
can deduce that there exists two renamings of polymorphic type variables 𝜌1 and 𝜌2 such
that Γ(x1)𝜌1 ≃ 𝑡1 and Γ(x2)𝜌2 ≃ 𝑡2. Thus, we can derive Γ ⊢A [(x1, x2) | (𝜌1, 𝜌2)] : 𝑡1 × 𝑡2.

[×E1] We have 𝑎 ≡ 𝜋1x and thus MSCA(𝑎) ≡𝛼 𝜋1x.
As 𝐷 is a canonical atomic derivation, we know that the premise, Γ ⊢: x : 𝑡1 × 𝑡2, is a
[Inst∧≤] pattern whose premise is a [Ax∨] node. Thus, we know that there exists Σ such
that Γ(x)Σ ≤ 𝑡1 × 𝑡2.
Consequently, and by definition of 𝝅1, we know that 𝝅1 (Γ(x)Σ) ≤ 𝑡1. We can thus derive
Γ ⊢A [𝜋1x | 𝜋 (Σ)] : 𝑡 ′ (with 𝑡 ′ ≃ 𝝅1 (Γ(x)Σ)) such that 𝑡 ′ ≤ 𝑡1, which concludes this case.

[×E2] Similar to the previous case.
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[0] We have 𝑎 ≡ (x∈𝜏) ? x1 : x2 and thus MSCA(𝑎) ≡𝛼 (x∈𝜏) ? x1 : x2.
As 𝐷 is a canonical atomic derivation, we know that the premise, Γ ⊢: x : 0, is a [Inst∧≤]
pattern with no [≤] node and whose premise is a [Ax∨] node. Thus, we know that there
exists Σ such that Γ(x)Σ ≃ 0.
We can thus derive Γ ⊢A [(x∈𝜏) ? x1 : x2 | 0(Σ)] : 0.

[∈1] We have 𝑎 ≡ (x∈𝜏) ? x1 : x2 and thusMSCA(𝑎) ≡𝛼 (x∈𝜏) ? x1 : x2.
As 𝐷 is a canonical atomic derivation, we know that the first premise, Γ ⊢: x : 𝜏 , is a
[Inst∧≤] pattern whose premise is a [Ax∨] node. Thus, we know that there exists Σ such
that Γ(x)Σ ≤ 𝜏 . Similarly, the second premise, Γ ⊢: x1 : 𝑡1, can only be a [Ax∨]. Thus, we
know that there exists a renaming of polymorphic variables 𝜌 such that Γ(x1)𝜌 ≃ 𝑡1.
We can thus derive Γ ⊢A [(x∈𝜏) ? x1 : x2 | ∈1 (Σ)] : Γ(x1) with Γ(x1) ≤P 𝑡1.

[∈2] Similar to the previous case.
[Ax∨] Trivial.
[≤] Straightforward induction on the premise.
[Inst] Straightforward induction on the premise.
[∧] By induction on the premises, we get ∀𝑖 ∈ 𝐼 . Γ ⊢A [MSC(𝑒) | k𝑖 ] : 𝑡 ′𝑖 with 𝑡

′
𝑖 ≤P 𝑡𝑖 . Thus, we

can derive Γ ⊢A [MSC(𝑒) | ∧({k𝑖 }𝑖∈𝐼 )] :
∧
𝑖∈𝐼 𝑡

′
𝑖 (with

∧
𝑖∈𝐼 𝑡

′
𝑖 ≤P

∧
𝑖∈𝐼 𝑡𝑖 ).

[∨] By using Lemma I.65, we know that there exists 𝐵 such thatMSC(𝑒) ≡𝛼 𝐵 [bind x =MSCA(𝑒x∖
𝐵) inMSC(𝑒 ′ ∖ 𝐵) ] (with 𝑒x ∖ 𝐵 being an atomic source expression).
The unwiding of the top-level definitions in 𝐵 are necessarily smaller than 𝑒x by ≤. Thus,
none of them can be defined by a [∨] node in 𝐷 . Consequently, and as in canonical form
derivation a structural node can only appear in the first premise of a [∨] node, none of the
expressions defined in𝐵 are typed in𝐷 . Thus, these sub-expressions can easily be substituted,
in 𝐷 , by the associated binding variables in 𝐵. It yields a derivation for Γ ⊢: (𝑒 ′{𝑒x/x}) ∖𝐵 : 𝑡 ,
or equivalently, for Γ ⊢: (𝑒 ′ ∖ 𝐵){(𝑒x ∖ 𝐵)/x} : 𝑡 .
By induction on the premises of this new derivation, we get Γ ⊢A [MSCA(𝑒x ∖ 𝐵) | a] : 𝑠 ′
(with 𝑠 ′ ≤P 𝑠) and ∀𝑖 ∈ 𝐼 . Γ, x : 𝑠 ∧ u𝑖 ⊢A [MSC(𝑒 ′ ∖ 𝐵) | k𝑖 ] : 𝑡𝑖 (with 𝑡𝑖 ≤P 𝑡 ). By
monotonicity (Lemma I.58), we can derive∀𝑖 ∈ 𝐼 . Γ, x : 𝑠 ′∧u𝑖 ⊢A [MSC(𝑒 ′∖𝐵) | k′

𝑖 ] : 𝑡 ′𝑖 (with
𝑡 ′𝑖 ≤P 𝑡𝑖 ≤P 𝑡 ). We can thus derive Γ ⊢A [bind x =MSCA(𝑒x∖𝐵) inMSC(𝑒 ′∖𝐵) | k] :

∨
𝑖∈𝐼 𝑡

′
𝑖

with k = keep (a, {(u𝑖 , k′
𝑖 )}𝑖∈𝐼 ).

From that, we can easily derive Γ ⊢A [MSC(𝑒) | k′] :
∨
𝑖∈𝐼 𝑡

′
𝑖 with k′ obtained by inserting

at the root of k a skip annotation for each definition in 𝐵.
□

Theorem I.67 (Completeness). If Γ ⊢: 𝑒 : 𝑡 with 𝑒 a ground expression, then∃k, 𝑡 ′. Γ ⊢A [MSC(𝑒) | k] :
𝑡 ′ with 𝑡 ′ ≤P 𝑡 .

Proof. Direct application of Lemma I.66 after using the normalisation theorem (Theorem I.22)
on a derivation of Γ ⊢: 𝑒 : 𝑡 . □

I.4 Annotations Reconstruction System
This section contains proofs for the reconstruction system (Appendix H).

Theorem I.68 (Soundness). If Γ ⊢P ⟨𝜅 | K⟩ ⇒ k, then ∃𝑡 . Γ ⊢A [𝜅 | k] : 𝑡 .
If Γ ⊢P ⟨𝑎 | A⟩ ⇒ a, then ∃𝑡 . Γ ⊢A [𝑎 | a] : 𝑡 .

Proof. We proceed by structural induction on the derivation of Γ ⊢P ⟨𝜅 | K⟩ ⇒ k or Γ ⊢P
⟨𝑎 | A⟩ ⇒ a.
If the derivation Γ ⊢P ⟨𝑎 | A⟩ ⇒ a has a [App] root, we construct a derivation Γ ⊢A [𝑎 | a] : 𝑡 (for

some 𝑡 ) with a [→E-Alg] root. In order to satisfy the guard-conditions of the rule [→E-Alg], we
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need to prove that the annotation @(Σ1, Σ2) generated by the [App] root satisfies Γ(x1)Σ1 ≤ 0 → 1
and Γ(x2)Σ2 ≤ dom(Γ(x1)Σ1).
We have, in the premise of the [App] root, Σ = tally({Γ(x1)𝜌1 ¤≤ Γ(x2)𝜌2 → 𝛼}) and Σ ≠ ∅.

Let 𝜎 ∈ Σ. By definition of the tallying problem, we have (Γ(x1)𝜌1)𝜎 ≤ (Γ(x2)𝜌2 → 𝛼)𝜎 , which
can be rewritten Γ(x1) (𝜎 ◦ 𝜌1) ≤ (Γ(x2) (𝜎 ◦ 𝜌2)) → (𝛼𝜎). From that subtyping relation, we can
deduce Γ(x1) (𝜎 ◦ 𝜌1) ≤ 0 → 1, and by definition of dom(.), Γ(x2) (𝜎 ◦ 𝜌2) ≤ dom(Γ(x1) (𝜎 ◦ 𝜌1)).
As (𝜎 ◦ 𝜌2) ∈ Σ2 and (𝜎 ◦ 𝜌1) ∈ Σ1, we deduce Γ(x1)Σ1 ≤ 0 → 1 and Γ(x2)Σ2 ≤ dom(Γ(x1)Σ1)
(we use the fact that dom(.) is monotonically non-increasing).

The other cases are similar or straightforward. □

Now, we propose a sketch of proof justifying that the deduction rules for the reconstruction
system define a terminating algorithm. The idea of this proof is similar to the proof of termination
of the Kirby-Paris hydra game12: we can associate an ordinal number weight to each node, and
this weight can only decrease as the game (or derivation) advances. Intuitively, this non-negative
weight represents the advancement of the game (or derivation). Though sub-trees can sometimes
be duplicated, their weight is always lowered before being duplicated, resulting in a lower weight
overall.

For any type environment Γ, canonical form or atom𝜂, and intermediate annotationH compatible
with the structure of 𝜂, the weight w(Γ, 𝜂,H) is the ordinal number defined as follows:

w(Γ, 𝜂, typ) = 1
w(Γ, 𝜂, untyp) = 1

w(Γ, 𝜂,∧(𝑆1, 𝑆2)) =
∑{w(Γ, 𝜂,H) | H ∈ 𝑆1}

w(Γ, 𝑐, infer) = 𝜔
w(Γ, 𝑥, infer) = 𝜔

w(Γ, 𝜆𝑥 .𝜅, infer) = 𝜔w(Γ,𝜅,infer)

w(Γ, 𝜆𝑥 .𝜅, 𝜆(u,K)) = 𝜔w(Γ,𝜅,K)

w(Γ, 𝜋𝑖x, infer) = 𝜔 if x ∈ dom(Γ)
w(Γ, 𝜋𝑖x, infer) = 𝜔2 otherwise

w(Γ, x1x2, infer) = 𝜔 if {x1, x2} ⊆ dom(Γ)
w(Γ, x1x2, infer) = 𝜔2 otherwise, if x1 ∈ dom(Γ)
w(Γ, x1x2, infer) = 𝜔2 otherwise, if x2 ∈ dom(Γ)
w(Γ, x1x2, infer) = 𝜔3 otherwise

w(Γ, (x1, x2), infer) = 𝜔 if {x1, x2} ⊆ dom(Γ)
w(Γ, (x1, x2), infer) = 𝜔2 otherwise, if x1 ∈ dom(Γ)
w(Γ, (x1, x2), infer) = 𝜔2 otherwise, if x2 ∈ dom(Γ)
w(Γ, (x1, x2), infer) = 𝜔3 otherwise

12https://en.wikipedia.org/wiki/Hydra_game

https://en.wikipedia.org/wiki/Hydra_game
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w(Γ, (x0∈𝜏) ? x1 : x2, ∈𝑖 ) = 𝜔
w(Γ, (x0∈𝜏) ? x1 : x2, infer) = 𝜔2 if Γ(x0) ≤ 𝜏
w(Γ, (x0∈𝜏) ? x1 : x2, infer) = 𝜔2 otherwise, if Γ(x0) ≤ ¬𝜏
w(Γ, (x0∈𝜏) ? x1 : x2, infer) = 𝜔3 otherwise, if x0 ∈ dom(Γ)
w(Γ, (x0∈𝜏) ? x1 : x2, infer) = 𝜔4 otherwise

w(Γ, bind x =𝑎 in𝜅 , skip (K)) = 𝜔w(Γ,𝜅,K)

w(Γ, bind x =𝑎 in𝜅 , keep (A,S1,S2)) = 𝜔𝛼

with 𝛼 =
∑{w((Γ, x : u), 𝜅,K) | (u,K) ∈ S1}

w(Γ, bind x =𝑎 in𝜅 , propagate (A,L,S1,S2)) = 𝜔𝛼+|
L |

with 𝛼 =
∑{w((Γ, x : u), 𝜅,K) | (u,K) ∈ S1}

w(Γ, bind x =𝑎 in𝜅 , try-keep (A,K1,K2)) = 𝜔𝛼

with 𝛼 =
∑{w(Γ, 𝑎,A), w((Γ, x : 1), 𝜅,K1), w(Γ, 𝜅,K2)}

w(Γ, bind x =𝑎 in𝜅 , try-skip (K)) = 𝜔𝛼

with 𝛼 =
∑{w(Γ, 𝑎, infer), w(Γ, 𝜅,K)}

w(Γ, x, infer) = 𝜔 if x ∈ dom(Γ)
w(Γ, x, infer) = 𝜔2 otherwise

where, for any multiset {𝛼1, 𝛼2, . . . , 𝛼𝑛},
∑{𝛼1, 𝛼2, . . . , 𝛼𝑛} =

def
𝛼1 + 𝛼2 + · · · + 𝛼𝑛 with 𝛼1 ≥ 𝛼2 ≥

· · · ≥ 𝛼𝑛 .
Then, we define a weight w(Γ, 𝜂,R) for any type environment Γ, canonical form or atom 𝜂, and

result R compatible with the structure of 𝜂:
w(Γ, 𝜂, Ok(H)) = 1
w(Γ, 𝜂, Fail) = 1

w(Γ, 𝜂, Split(Γ′,H1,H2)) =
∑ {w(Γ ∧ Γ′, 𝜂,H1)} ∪ {w((Γ, x : ¬u), 𝜂,H2) | (x : u) ∈ Γ′}

w(Γ, 𝜂, Subst({𝜓𝑖 }𝑖∈𝐼 ,H1,H2)) =
∑ {w(Γ, 𝜂,H2)} ∪ {w(Γ𝜓𝑖 , 𝜂,H1𝜓𝑖 ) | 𝑖 ∈ 𝐼 }

w(Γ, 𝜂, Var (x,H1,H2)) =
∑{w((Γ, x : 1), 𝜂,H1), w(Γ, 𝜂,H2)}

Lemma I.69. For any Γ, 𝜂,H , and Γ′ such that Γ′ ≤ Γ, we have w(Γ′, 𝜂,H) ≤ w(Γ, 𝜂,H).

Proof. Straightforward induction. □

Lemma I.70. For any Γ, 𝜂,H , and𝜓 , we have w(Γ𝜓, 𝜂,H𝜓 ) ≤ w(Γ, 𝜂,H).

Proof. Straightforward induction (we recall that test types 𝜏 do not contain type variables). □

Lemma I.71. If Γ ⊢R ⟨𝜂 | H⟩ ⇒ R or Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R, then w(Γ, 𝜂,H) ⪈ w(Γ, 𝜂,R).

Proof. Structural induction on the derivation of Γ ⊢R ⟨𝜂 | H⟩ ⇒ R or Γ ⊢∗R ⟨𝜂 | H⟩ ⇒ R. □

Theorem I.72 (Termination). The deduction rules ⊢∗R and ⊢R define a terminating algorithm: it

can either fail (if no rule applies at some point) or return a result R.

Proof. There can only be finitely many [Iterate1] and [Iterate2] nodes applied on a given
canonical form or atom, otherwise, according to the previous lemmas, we could extract from them
an infinite decreasing chain of ordinal numbers. □
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