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A MATHEMATICAL MODEL OF THE VISUAL MACKAY EFFECT

CYPRIEN TAMEKUE, DARIO PRANDI, AND YACINE CHITOUR

Abstract. This paper investigates the intricate connection between visual perception and the
mathematical modeling of neural activity in the primary visual cortex (V1). The focus is on
modeling the visual MacKay effect [D. M. MacKay, Nature, 180 (1957), pp. 849–850]. While
bifurcation theory has been a prominent mathematical approach for addressing issues in neuro-
science, especially in describing spontaneous pattern formations in V1 due to parameter changes,
it faces challenges in scenarios with localized sensory inputs. This is evident, for instance, in
Mackay’s psychophysical experiments, where the redundancy of visual stimuli information re-
sults in irregular shapes, making bifurcation theory and multi-scale analysis less effective. To
address this, we follow a mathematical viewpoint based on the input-output controllability of
an Amari-type neural fields model. In this framework, we consider sensory input as a control
function, a cortical representation via the retino-cortical map of the visual stimulus that cap-
tures its distinct features. This includes highly localized information in the center of MacKay’s
funnel pattern “MacKay rays”. From a control theory point of view, the Amari-type equation’s
exact controllability property is discussed for linear and nonlinear response functions. For the
visual MacKay effect modeling, we adjust the parameter representing intra-neuron connectivity
to ensure that cortical activity exponentially stabilizes to the stationary state in the absence of
sensory input. Then, we perform quantitative and qualitative studies to demonstrate that they
capture all the essential features of the induced after-image reported by MacKay.
Keywords. Control in neuroscience, Exact controllability, Neural field model, Amari-type
equation, Visual illusions and perception, MacKay effect, Spatially forced pattern forming sys-
tem.
MSCcodes. 93C20, 92C20, 35B36, 45A05, 45K05.
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1. Introduction

A simple yet profound question that can arise in humans daily is how we can control the
complexities around us, whether they are mathematical equations or even our perceptions of
reality. With its intricate network of neurons, the brain is a prime example of a complex system
that can be understood through the lens of control theory. Neuroscientists and psychophysics
researchers have been fascinated by intriguing phenomena like the MacKay effect [17, 18] during
which people experience visual illusions. In contrast to a visual hallucination, which refers to
the perception of an image that does not exist or is not present in front of the person who has
experienced it, a visual illusion often occurs when external stimuli trick our brain into perceiving
something differently from its actual state.

In the last decades, investigations of mechanisms underlying the spontaneous perception of
visual hallucination patterns have been widely undertaken in the literature using neural dynamics
in the primary visual cortex (hereafter referred to as V1) when its activity is due solely to the
random firing of its spiking neurons, that is in the absence of sensory inputs from the retina, [4, 8,
12, 28, 5]. In their seminal work [8], by using bifurcation techniques near a Turing-like instability,
Ermentrout and Cowan found that the 2-dimensional two-layer neural fields equation modelling
the average membrane potential of spiking neurons in V1 derived by Wilson and Cowan in [32]
is sufficient to theoretically describe the spontaneous formation (i.e., in the absence of visual
sensory inputs) of some geometric patterns (horizontal, vertical and oblique stripes, square,
hexagonal and rectangular patterns, etc.) in V1. These patterns result from activity spreading
over this brain area and correspond to states of highest cortical activities. When we transform
these patterns by the inverse of the retino-cortical map from V1 onto the visual field [29, 22],
what we obtain in the retina in terms of images are geometric visual hallucinations. They
correspond to some of the form constants that Klüver had meticulously classified [15], mainly
those contrasting regions of white and black (funnel, tunnel, spiral, checkerboard, phosphenes).
Therefore, the neural dynamic equation used to model the cortical activity in V1 combined
with the bijective nonlinear retino-cortical mapping between the visual field and V1 predicts the
geometric forms of hallucinatory patterns.

While spontaneous patterns that emerge in V1 give us insight into the underlying architecture
of the brain’s neural network, little is known about how precisely the intrinsic circuitry of
the primary visual cortex generates the patterns of activity that underlie the visual illusions
induced by visual stimuli from the retina. We study in this paper the interaction between
retinal stimulation by geometrical patterns and the cortical response in the primary visual
cortex, focusing on the MacKay effect [17] replication using control of Amari-type equation. As
a control term, we consider the sensory input from the retina modelling the V1 representation
via the retino-cortical map of the visual stimulus used in this intriguing visual phenomenon.
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Figure 1. The MacKay effect [17], showcasing the illusion induced by the stim-
ulus on the left, referred to as “MacKay rays”. This stimulus leads to an illusory
perception of concentric rings superimposed in its background, as illustrated on
the right. To see the illusory contours, look at the centre of the black circle
in the image on the left. The adaptation of this figure is based on the original
representation from [17, Fig. 1] and [33, Fig. 1b].

1.1. The visual MacKay effect. Around 1960, Donald MacKay made notable observations
on the after-effects of visual stimulation using regular geometrical patterns containing highly
redundant information. He associated this phenomenon, now known as the “MacKay effect”,
with a specific region of the visual cortex that potentially benefits from such redundancy [17].
The psychophysical experiments presented in this paper demonstrate that when a highly redun-
dant visual stimulus, such as a funnel pattern (fan shapes), is presented at the center of the
stimulus, an accompanying illusory tunnel pattern (concentric rings) emerges in the visual field,
superimposed onto the stimulus pattern (see Fig. 1).

Notably, the distance from the pattern to the retina or the illumination does not significantly
affect these more intricate phenomena. For most observers, the illusory contours in the back-
ground of the afterimage rotate rapidly at right angles to the stimulus pattern, either clockwise
or counterclockwise. Similarly, many observers perceive an illusory funnel pattern superimposed
in the afterimage background when viewing a tunnel pattern as that of Figure 2, the right panel.
In both cases, observers often note rapidly fluctuating sectors, again rotating either clockwise
or counterclockwise. Notably, the stimulus pattern does not need to fill the entire visual field; a
portion of the stimulus is sufficient to generate a corresponding afterimage in the same portion.
However, in both cases, the nervous system tends to prefer the direction perpendicular to the
regular contours of the visual stimulus. The present paper proposes to attribute this prefer-
ence to the retino-cortical map, resulting in induced afterimages of superimposed patterns of
horizontal and vertical stripes in V1.

1.2. Strategy of study and presentation of our results. In Section 1.2.1, we expound on
our strategy to theoretically replicate the visual MacKay effect that we recalled in the previous
section. Subsequently, in Section 1.2.2, we present and discuss our findings.

This work originated in [27], where we developed a novel approach to describe the MacKay
effect specifically, associated with a funnel pattern containing high localized information in the
center of the image (created by the very fast alternation of black and white rays) [17]. Instead
of relying on traditional mathematical tools such as bifurcation analysis, perturbation theories,
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Figure 2. The stimuli used in [17]. Left: “MacKay-rays”. Right: “MacKay-
target”.

or multi-scale analysis, commonly used to address neuroscience questions, we sought alternative
methods via control of the Amari-type neural fields.

Indeed, these classical mathematical tools are highly suitable for describing phenomena like
spontaneous geometric visual hallucinations that emerge in the visual field due to sudden qual-
itative changes in specific physiological parameters [4, 8, 12, 28]. They also prove effective in
understanding sensory-driven and self-organized cortical activity interactions when the visual
stimulus exhibits regular shape and complete distribution across the visual field, with symmetry
respecting a subgroup of the Euclidean group [19]. In simple terms, these tools are appropriate
when dealing with equations that exhibit complete equivariance (commutation) with respect to
a given group, typically the Euclidean group. However, the original MacKay stimulus, known as
the “MacKay rays” (refer to Fig. 2), consists of funnel patterns with high localized information
in the center. As a result, the Euclidean symmetry of the V1 representation via the retino-
cortical map of the funnel patterns is broken (see Section 2.2). This corresponds to the fact
that the funnel pattern is invariant by dilations in the visual plane, while the “MacKay rays”
are not. As a consequence, the Amari-type neural field describing the V1 activity induced by
“MacKay rays” does not present any symmetry. Accordingly, neither the works of [4, 8] nor [19]
can be directly employed to describe these complex visual phenomena. In particular, the work
[19] theoretically replicate a variant of the MacKay effect where the visual stimulus is not the
“MacKay rays” nor the “MacKay target” (see Figure 2, right) but a regular (symmetric with
respect to some subgroups of the plane Euclidean group) funnel or tunnel patterns, which is
fully distributed in the visual field.

1.2.1. Strategy of study. In our study, we begin by assuming that neurons in V1 are intercon-
nected in a homogeneous and isotropic manner. Accordingly, we employ the following Amari-
type equation [1, Eq. (3)] to describe the average membrane potential of V1 spiking neurons
that take into account the sensory input from the retina:

(NF) ∂ta = −a + µω ∗ f(a) + I.

Here a : R+ × R2 → R is a function of time t ∈ R+ and the position x ∈ R2, the sensory
input I represents the projection of the visual stimulus into V1 by the retino-cortical map. The
connectivity kernel ω(x, y) = ω(|x − y|) models the strength of connections between neurons
located at positions x ∈ R2 and y ∈ R2. The function f captures the nonlinear response of
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neurons after activation, while the parameter µ > 0 characterizes the intra-neural connectivity.
The symbol ∗ denotes spatial convolution, as defined in (3) below.

We observe that it would be natural to model V1 as a bounded domain Ω, instead of R2. We
stress that due to the strongly localized connectivity kernel that we consider, our results could
in principle be extended to this case, at least to describe neuronal activity sufficiently far from
the boundary of Ω. Moreover, although the more plausible biological neuronal dynamics in V1
involve considering the orientation preferences of “simple cells” as done in [4, Eq. (1)] when
describing contoured spontaneous cortical patterns, we neglect the orientation label entirely and
focus on equation (NF). This simplification is motivated by the fact that equation (NF) is
sufficient for describing spontaneous funnel and tunnel patterns, and we expect it also to be
suitable for describing psychophysical experiments involving these patterns.

In psychophysical experiments, observers perceive an illusory afterimage in their visual field
when viewing the visual stimulus, and this afterimage persists for a few seconds. Therefore,
describing these intriguing visual phenomena in V1 using equation (NF) relies on explicitly
studying the map Ψ, which associates the sensory input I with its corresponding stationary
output Ψ(I). The stationary output represents the stationary solution of equation (NF) for a
given I. Our goal is to prove that the cortical activity a(t, ·), which is the solution of equation
(NF), exponentially stabilizes towards Ψ(I) as t → +∞. Then, we perform qualitative and
quantitative study of this stationary state in a convenient space.

Before performing the asymptotic study (qualitatively and quantitatively) of the input to
stationary output map for modelling the visual MacKay effect, we investigate the exact control-
lability properties of the Amari-type control system (NF) where we interpret the sensory input
I as a distributed control over R2 that we use to act on the system state modelled by the cortical
activity a. In that direction, we prove that (NF) is exactly controllable, in the sense explained
previously, except for certain particular functional frameworks.

1.2.2. Presentation of results. In our previous paper [27], we established that to accurately
model the visual stimuli used, for instance, in the MacKay effect associated with the “MacKay
rays” visual stimulus, it is crucial to consider the highly localized information present in the
center of the funnel patterns as created by the very fast alternation of black and white rays. This
observation arises from the underlying Euclidean symmetry of V1, which imposes restrictions on
the geometric shapes of sensory inputs capable of inducing cortical illusions in V1. Interestingly,
this mathematical evidence supports the observation previously made by MacKay in paragraph 2
of [17]: “[· · · ] in investigations of the visual information system, it might be especially interesting
to observe the effect of highly redundant information patterns since the nervous system might
conceivably have its own ways of profiting from such redundancy [· · · ]”.

To model the redundant information in the center of the funnel pattern created by the very
fast alternation of black and white rays, we employed the characteristic function of a small disk in
the center of the visual field as a control function. Through numerical simulations, we suggested
that equation (NF), together with an odd sigmoidal response function, successfully reproduces
the MacKay effect associated with the “MacKay rays”. We employed a similar approach to
reproduce the MacKay effect associated with the “MacKay target”, except that the control
function was chosen as the characteristic function of two symmetric rays converging towards the
center of the image (refer to Remark 5.13 for more details on this modelling).

Having established that equation (NF), with appropriate modelling of MacKay visual stimuli,
reproduces this phenomenon, our next objective was to provide a mathematical proof of the
numerical results obtained in [27]. Therefore, in [26], we discovered that the linearized version
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of (NF) is sufficient to describe and replicate the MacKay effect, indicating that the nonlin-
ear nature of the response function does not play a role in its reproduction. Specifically, the
saturation effect only serves to dampen high oscillations that can occur in V1.

In this paper, we provide a mathematical modelling of the visual MacKay effect using Equa-
tion (NF), employing complex and harmonic analysis tools and sharp inequality estimates.
Specifically, we exploit Fourier analysis.

To the authors’ knowledge, the only attempt to theoretically replicate the MacKay-like phe-
nomenon using neural fields equations has been undertaken by Nicks et al. [19]. They employed
a model of cortical activity in V1, which included spike-frequency adaptation (SFA) of excita-
tory neurons, and utilized bifurcation and multi-scale analysis near a Turing-like instability to
describe the MacKay-type effect associated with a fully distributed state-dependent sensory in-
put representing cortical representations of funnel and tunnel patterns. By assuming a balanced
condition1 on the interaction kernel, they derived a dynamical equation for the amplitude of the
stationary solution near the critical value µc (see Equation (1) below) of the parameter µ where
spontaneous cortical patterns emerge in V1. Their theoretical results do not apply to localized
inputs, as those employed by MacKay [17].

In the present study, to address the specificity of the sensory inputs utilized in these psy-
chophysical experiments (i.e., the highly localized information in MacKay’s stimuli), we rely on
a central assumption regarding the range of parameter µ. We assume that µ is smaller than the
threshold µc, given as follows,

(1) µc := 1
f ′(0) max

ξ∈R2
ω̂(ξ) ,

corresponding to the value of µ where cortical patterns spontaneously emerge in V1, [8, 4].
Finally, we stress once again that our focus lies in assessing the qualitative concordance be-

tween the outputs of the proposed models and the observed human perceptual response to these
illusions reported by MacKay. It is imperative to emphasize that this inquiry is qualitative,
demonstrating the potential utility of Amari-type dynamics in reproducing the perceptual dis-
tortions elicited by certain visual illusions.

1.3. Structure of the paper. The remaining of the paper is organized as follows: Section 1.4
begins by introducing the general notations that will be utilized throughout the paper. We
present assumptions on model parameters used in Equation (NF) in Section 2.1, and we define
a binary pattern necessary to represent cortical activity in terms of white and black zones in
Section 2.2. In Section 3, we recall some preliminary results about the well-posedness of equation
(NF), and in Section 4, we discuss the exact controllability properties of Equation (NF). Using
equation (NF), in Section 5, we investigate the theoretical replication of the visual MacKay
effect. In Section 5.4, we present numerical results to bolster our theoretical study. Finally, we
provide in the Appendix some technical Theorems that serve as complement results.

1.4. General notations. Unless otherwise stated, p will denote a real number satisfying 1 ≤
p ≤ ∞, and q will denote the conjugate to p given by 1/p + 1/q = 1. We adopt the convention
that the conjugate of p = 1 is q = ∞ and vice-versa.

For d ∈ {1, 2}, we denote by Lp(Rd) the Lebesgue space of class of real-valued measurable
functions u on Rd such that |u| is integrable over Rd if p < ∞, and |u| is essentially bounded

1A kernel ω of “Mexican-hat” type distribution satisfies the balanced condition (between excitatory and in-
hibitory neurons) if its Fourier transform at zero equals 0.
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Figure 3. Possible response functions on the left where erf is the Gauss error
function, and on the right a 2D DoG kernel ω. Here, κ = 2, σ1 = 2, and σ2 = 4.

over Rd when p = ∞. We endow these spaces with their standard norms

∥u∥p
p =

∫
Rd

|u(x)|pdx, and ∥u∥∞ = ess sup
x∈Rd

|u(x)|.

We let Xp := C([0, ∞); Lp(Rd)) be the space of all real-valued functions u on Rd × [0, ∞) such
that, u(x, ·) is continuous on [0, ∞) for a.e., x ∈ Rd and u(·, t) ∈ Lp(Rd) for every t ∈ [0, ∞). In
Xp, we will use the following norm ∥u∥L∞

t Lp
x

= sup
t≥0

∥u(·, t)∥p.

For x ∈ R2, we denote by |x| its Euclidean norm, and the scalar product with ξ ∈ R2 is
defined by ⟨x, ξ⟩ = x1ξ1 + x2ξ2.

We let S(Rd) be the Schwartz space of rapidly-decreasing C∞(Rd) functions, and S ′(Rd) be
its dual space, i.e., the space of tempered distributions. Then, S(Rd) ⊂ Lp(Rd) and Lp(Rd) ⊂
S ′(Rd) continuously. The Fourier transform of u ∈ S(Rd) is defined by

(2) û(ξ) := F{u}(ξ) =
∫
Rd

u(x)e−2πi⟨x,ξ⟩dx, ∀ξ ∈ Rd.

We highlight that, for 1 ≤ p ≤ 2, the above definition can be continuously extends to function
u ∈ Lp(Rd) by density and Riesz-Thorin interpolation theorem. Whereas one can extend the
above by duality to S ′(Rd). We recall that F is a linear isomorphism from S(Rd) to itself and
from S ′(R) to itself.

The spatial convolution of two functions u ∈ L1(Rd) and v ∈ Lp(Rd), 1 ≤ p ≤ ∞ is defined
by

(3) (u ∗ v)(x) =
∫
Rd

u(x − y)v(y)dy, x ∈ Rd.

Finally, the following notation will be helpful: if F is a real-valued function defined on R2,
we use F −1({0}) to denote the zero level-set of F .

2. Assumptions on parameters and binary representation of patterns

We present in this section assumptions on model parameters used in Equation (NF) and the
definition of a binary pattern necessary to represent cortical activity in terms of white and black
zones.
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2.1. Assumption on parameters for Amari-type equation. We assume that the response
function f belongs to the class C2(R), is non-decreasing, satisfies f(0) = 0, f ′(0) = maxs∈R f ′(s),
and f ′′ is also bounded so that f ′ is Lipschitz continuous. Please refer to Figure 3 (image on
the left) for an example of a response function.

Unless otherwise stated, we consider f to be linear or a nonlinear and sigmoid function, such
that ∥f∥∞ = 1, f ′(0) = 1. This is without loss of generality since, as long as f ′(0) ̸= 0, we can
always define a sigmoid function f̃(s) = f(λs)/∥f∥∞ with λ = ∥f∥∞/f ′(0) and s ∈ R.

The interaction kernel ω is chosen to be the following difference of Gaussians (DoG)

(4) ω(x) = [2πσ2
1]−1e

− |x|2

2σ2
1 − κ[2πσ2

2]−1e
− |x|2

2σ2
2 , x ∈ R2,

where κ > 0, 0 < σ1 < σ2, and σ1
√

κ < σ2. It is worth noting that this choice of interaction
kernel aligns with the framework employing Equation (NF) to generate spontaneous cortical
patterns in V1.

In particular, ω is homogeneous and isotropic with respect to the spatial coordinates. It
solely depends on the Euclidean distance between neurons and exhibits rotational symmetry.
The first (positive) Gaussian in (4) describes short-range excitation interactions, while the second
(negative) Gaussian represents long-range inhibition interactions between neurons in V1.

It is important to observe that ω(x) = ω(|x|) and that ω belongs to the Schwartz space S(R2),
implying that ω ∈ Lp(R2) for all real numbers 1 ≤ p ≤ ∞. The Fourier transform of ω can be
explicitly expressed as

(5) ω̂(ξ) = e−2π2σ2
1 |ξ|2 − κe−2π2σ2

2 |ξ|2 , ∀ξ ∈ R2,

and ω̂ reaches its maximum at every vector ξc ∈ R2 such that

(6) |ξc| = qc :=

√√√√√ log
(

κσ2
2

σ2
1

)
2π2(σ2

2 − σ2
1)

and max
r≥0

ω̂(r) = ω̂(qc).

Finally, the explicit expression for the L1-norm of ω is given by

(7) ∥ω∥1 = (1 − κ) + 2
(

κe
− Θ2

2σ2
2 − e

− Θ2
2σ2

1

)
with Θ := σ1σ2

√√√√√2 log
(

σ2
2

κσ2
1

)
σ2

2 − σ2
1

.

We emphasize that the kernel ω does not necessarily satisfy the balanced2 condition ω̂(0) = 0
between excitation and inhibition. However, this condition is met when κ = 1.

2.2. Binary representation of patterns. Let us start this section by briefly recalling the
retino-cortical map that can be found in [22, 4]. Let (r, θ) ∈ [0, ∞) × [0, 2π) denote polar
coordinates in the visual field (or in the retina) and (x1, x2) ∈ R2 Cartesian coordinates in V1.
The retino-cortical map (see also [27] and references within) is analytically given by

(8) reiθ 7→ (x1, x2) := (log r, θ) .

2For a homogeneous NF equation (i.e., when I = 0), this condition ensures the existence of a unique stationary
state a0 = 0 even if f(0) ̸= 0. It was assumed, for instance, in [19] for deriving the amplitude equation of the
stationary state near the bifurcation point µc.
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Figure 4. Funnel pattern on the left (respectively in the retina and V1). Tunnel
pattern on the right (respectively in the retina and V1).

Due to the retino-cortical map (8), funnel and tunnel patterns are respectively given in Carte-
sian coordinates x := (x1, x2) ∈ R2 of V1 by

(9) PF (x) = cos(2πλx2), PT (x) = cos(2πλx1), λ > 0.

This choice is motivated by analogy with the (spontaneous) geometric hallucinatory patterns
described in [8] and [4]. Given the above representation of funnel and tunnel patterns in cortical
coordinates, to see how they look in terms of images, we represent them as contrasting white
and black regions, see Figure. 4. More precisely, define the binary pattern Bh of a function
h : R2 → R by

(10) Bh(x) =
{

0, if h(x) > 0 (black)
1, if h(x) ≤ 0 (white).

It follows that Bh is essentially determined by the zero level-set of h. Since stimuli involved in
the MacKay effect are binary patterns, our strategy in describing these phenomena consists of
characterising the zero-level set of output patterns. That is, we are mainly devoted to studying
the qualitative properties of patterns by viewing them as binary patterns.

3. Well-posedness of the Cauchy problem and stationary state

We recall in this section some preliminary results about the well-posedness of equation (NF).
We start this section by introducing the definition of stationary state to Equation (NF).

Definition 3.1 (Stationary state). Let a0 ∈ Lp(R2). For every I ∈ Lp(R2), a stationary state
aI ∈ Lp(R2) to Equation (NF) is a time-invariant solution, viz.

(SS) aI = µω ∗ f(aI) + I.

Using standard assumptions on the kernel ω or on the response function f , it is straightforward
to obtain the existence of at least one (even non-constant) stationary state to Equation (NF)
when I ≡ 0, see for instance [4, 8, 19, 7]. Moreover, in the case of an inhomogeneous equation
posed on a bounded domain with a state-dependent sensory input, in [6], under a mild condition
on the boundness of the response function, the existence of at least one stationary state is proved
using Schaefer’s fixed point Theorem, see also [9]. However, in the face of an inhomogeneous
equation posed on an unbounded domain as the case at hand, it can become a little bit more
subtle to provide the existence of (non-constant) stationary state only with assumptions on ω
and f .
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Consistent with the strategy that we use in this work, in order to obtain a unique non-constant
stationary state to the inhomogeneous Equation (NF), we will make the following assumption
on the intra-neuron parameter µ > 0,
(11) µ < µ0 := ∥ω∥−1

1 .

Observe that µ0 ≤ µc, where the latter is the bifurcation point defined in (1). We stress that,
when p = 2, and under the balanced condition ω̂(0) = 0, we can relax the above assumption to
µ < µc, see Theorem 3.3.

We collect in the following lemma some useful estimates that are immediate consequences of
generalised Young-convolution inequality.

Lemma 3.2. Let 1 ≤ p ≤ ∞. The nonlinear operator Xp ∋ a 7→ ω ∗ f(a) ∈ Xp is well-defined
and Lipschitz continuous and
(12) ∥ω ∗ f(a) − ω ∗ f(b)∥Lp

xL∞
t

≤ ∥ω∥1∥a − b∥Lp
xL∞

t
, ∀a, b ∈ Xp.

Moreover,
(1) If a ∈ Xp, then ω ∗ f(a) ∈ X∞ and

∥ω ∗ f(a)∥L∞
x L∞

t
≤ ∥ω∥q∥a∥Lp

xL∞
t

,(13)
∥ω ∗ f(a)∥L∞

x L∞
t

≤ ∥ω∥1;(14)

(2) If a ∈ X1, then ω ∗ f(a) ∈ Xp,
(15) ∥ω ∗ f(a)∥Lp

xL∞
t

≤ ∥ω∥p∥a∥L1
xL∞

t
.

In the following theorem, we prove the existence of a unique solution and a unique stationary
state of the Cauchy problem associated with Equation (NF).

Theorem 3.3. Let 1 ≤ p ≤ ∞ and I ∈ Lp(R2). For any initial datum a0 ∈ Lp(R2), there exists
a unique a ∈ Xp, solution of Equation (NF). Moreover, there exists a unique stationary state
aI ∈ Lp(R2) to (NF) under the following assumptions:

i. If µ < µ0, then

(16) ∥a(·, t) − aI(·)∥p ≤ e−(1−µ∥ω∥1)t∥a0(·) − aI(·)∥p, for any t ≥ 0.

ii. If p = 2, µ < µc, and ω̂(0) = 0, then

(17) ∥a(·, t) − aI(·)∥2 ≤ e−(1−µ∥ω̂∥∞)t∥a0(·) − aI(·)∥2, for any t ≥ 0.

Proof. Equation (NF) can be seen as an ordinary differential equation in Xp, whose r.h.s. is
a (globally) Lipschitz continuous map from Xp to itself by Lemma 3.2. It is then standard to
obtain that for any initial datum a0 ∈ Lp(R2), Equation (NF) has a unique solution a ∈ Xp

(see, for instance, [30, 23]). Moreover, the map ΦI : Lp(R2) → Lp(R2) defined for all u ∈ Lp(R2)
by ΦI(u) = I + µω ∗ f(u) satisfies

∥ΦI(v) − ΦI(u)∥p ≤ µ

µ0
∥v − u∥p, ∀u, v ∈ Lp(R2),

due to inequality (12). Since µ < µ0, the existence of a unique stationary state aI ∈ Lp(R2) is
obtained by invoking the contraction mapping principle.

We now present an argument of proof for Item i. of the statement. Set
(18) b(x, t) = a(x, t) − aI(x), (x, t) ∈ R2 × [0, ∞),
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It follows that b is the solution of the following initial value Cauchy problem
(19)∂tb(x, t) = −b(x, t) + µ

∫
R2

ω(x − y)[f(b(y, t) + aI(y)) − f(aI(y))]dy, (x, t) ∈ R2 × [0, ∞),

b(x, 0) = a0(x) − aI(x), x ∈ R2,

which belongs to C([0, ∞); Lp(R2)) ∩ C1((0, ∞); Lp(R2)). Moreover, b satisfies the following
variations of constant formula

(20) b(x, t) = e−tb(x, 0) + µ

∫ t

0
e−(t−s)

∫
R2

ω(x − y)[f(b(y, t) + aI(y)) − f(aI(y))]dy,

for all (x, t) ∈ R2 × [0, ∞).
Taking the Lp(R2)-norm of the above identity, we find for every t ≥ 0,

(21) ∥b(·, t)∥p ≤ e−t∥b(·, 0)∥p + µ∥ω∥1

∫ t

0
e−(t−s)∥b(·, s)∥pds.

Applying Gronwall’s Lemma to inequality (21) one deduces for every t ≥ 0,

∥b(·, t)∥p ≤ e−(1−µ∥ω∥1)t∥b(·, 0)∥p.

This proves the inequality (16) and completes the proof of i..
Let us now prove item ii. of the statement. In this case p = 2, µ < µc, and ω̂(0) = 0. The

latter condition implies that ω̂(|ξ|) ≥ 0 for all ξ ∈ R2. In particular, ω̂(qc) = max
r≥0

ω̂(r) = ∥ω̂∥∞.
Recall that ΦI(u) = I + µω ∗ f(u). Then, by Plancherel identity, the following holds for all
u, v ∈ L2(R2),

∥ΦI(v) − ΦI(u)∥2 = ∥Φ̂I(v) − Φ̂I(u)∥2 = µ∥ω̂(f̂(u) − f̂(v))∥2

≤ µ∥ω̂∥∞∥f̂(u) − f̂(v)∥2

= µω̂(qc)∥f(u) − f(v)∥2

≤ µ

µc
∥u − v∥2.(22)

Here, the last inequality follows from µc = ω̂(qc)−1 and the fact that f is 1-Lipschitz. Since
µ < µc, the existence of a unique stationary state aI ∈ L2(R2) is obtained by invoking the
contraction mapping principle. We complete the proof by arguing as in the previous point and
replacing (21) by

□(23) ∥b(·, t)∥2 ≤ e−t∥b(·, 0)∥2 + µ∥ω̂∥∞

∫ t

0
e−(t−s)∥b(·, s)∥2ds.

Due to Theorem 3.3, we can introduce the following.

Definition 3.4. Let 1 ≤ p ≤ ∞, the nonlinear input-output map Ψ : Lp(R2) → Lp(R2) is
defined by
(24) Ψ(I) = I + µω ∗ f(Ψ(I)), for all I ∈ L2(R2).

Proposition 3.5. Let 1 ≤ p ≤ ∞ and assume that µ < µ0. Then,
(1) The map Ψ is well-defined, bi-Lipschitz continuous, and it holds

(25) ∥Ψ(I)∥p ≤ µ0
µ0 − µ

∥I∥p, for all I ∈ Lp(R2);

(2) If 1 < p ≤ ∞, the map Ψ belongs to C1(Lp(R2); Lp(R2)).
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Proof. We only provide the proof of item 1., for item 2. see Theorem B.7. Let I1, I2 ∈ Lp(R2).
Then using inequality (12), we obtain

∥Ψ(I1) − Ψ(I2)∥p ≤ µ

µ0
∥Ψ(I1) − Ψ(I2)∥p + ∥I1 − I2∥p.

It follows that
∥Ψ(I1) − Ψ(I2)∥p ≤ µ0

µ0 − µ
∥I1 − I2∥p,

provided µ < µ0. This implies that Ψ is Lipschitz continuous from Lp(R2) to itself. On the
other hand, thanks to inequality (12),

∥Ψ(I1) − Ψ(I2)∥p ≥
∣∣∣∣∥I1 − I2∥p − µ∥ω ∗ [f(Ψ(I1)) − f(Ψ(I2))] ∥p

∣∣∣∣
≥ ∥I1 − I2∥p − µ

µ0
∥Ψ(I1) − Ψ(I2)∥p.

(26)

It follows that
∥I1 − I2∥p ≤

(
1 + µ

µ0

)
∥Ψ(I1) − Ψ(I2)∥p.

This shows that Ψ is bijective and Ψ−1 is Lipschitz continuous from Lp(R2) to itself. □

4. Controllability issues of Amari-type equation

In the area of mathematical neuroscience, the research by Ermentrout and Cowan [8] is
notable for its pioneering insights into the spontaneous emergence of patterns in V1 using neural
fields equations of Wilson-Cowan [32]. Likewise, Nicks et al. [19] provided a comprehensive
understanding of how V1 patterns (orthogonally) respond to specific stimuli that are regular
in shape and fill all the visual field, particularly near the threshold value µc via bifurcation
theory and multi-scale analysis. However, these studies do not directly address, for instance,
the MacKay effect associated with a funnel pattern that contains highly localized information in
the center [17] or even Billock and Tsou’s experiments [3] since the visual stimuli used in these
experiences are non-regular in shape or localized in the visual field.

Building on our discussion in Section 1.2.2, we claim that these intriguing visual patterns
in V1 should manifest before the µ parameter reaches the threshold µc. Given this, we are
interpreting the MacKay effect using a controllability framework, specifically in relation to the
Amari-type equation (NF). In this context, the sensory input is not just passive data; it acts as
a control, shaping and reflecting V1’s interpretation of the visual stimulus in the experiment.

We consider in this section the following nonlinear Amari-type control system,

(27)


∂ta(x, t) + a(x, t) − µ

∫
R2

ω(x − y)f(a(y, t))dy = I(x) (x, t) ∈ R2 × [0, T ],

a(x, 0) = a0(x), x ∈ R2,

where the cortical activity a represents the state of the system, a0 ∈ Lp(R2) is the initial datum,
the sensory input I ∈ Lp(R2) is the control that we will use to act on the system state and the
time horizon T > 0.

Definition 4.1 (Exact controllability). Let 1 ≤ p ≤ ∞. We say that the nonlinear control
system (27) is exactly controllable in Lp(R2) in time T > 0 if, for any a0, aT ∈ Lp(R2), there
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exists a control function I ∈ Lp(R2) such that the solution of (27) with a(·, 0) = a0 satisfies
a(·, T ) = aT .

To comprehend how the exact controllability of the nonlinear control system (27) could be
handled, let us first investigate the exact controllability of the linear model that we write in a
more abstract way (initial value Cauchy problem) as follows,

(28) ȧ(t) = Aa(t) + I, a(0) = a0, t ∈ [0, T ],

where the operator A is given by

(29) Au = −u + µω ∗ u, ∀u ∈ Lp(R2).

Observe that for any 1 ≤ p ≤ ∞, the operator A is a linear bounded operator from Lp(R2) to
itself.

Proposition 4.2. Let 1 ≤ p ≤ ∞. Then, there exists a positive time τ0 > 0 such that the
control system (28) is exactly controllable in Lp(R2) in any time τ ∈ (0, τ0).

Proof. Fix T > 0 and let a0, a1 ∈ Lp(R2). Since etA is a uniformly continuous semigroup of
bounded linear operators on Lp(R2) for any t ≥ 0, one can write

etA = Id +O(t), t ≥ 0,

where O(t) is a linear and bounded operator of Lp(R2) satisfying ∥O(t)∥ ≤ t∥A∥et∥A∥, see for
instance, [21, Theorem 1.2.]. Therefore, for any τ ∈ (0, T ] and aτ ∈ Lp(R2), the solution of (28)
at time τ satisfies

(30) a(τ) = eτAa0 +
∫ τ

0
e(τ−s)AIds = eτAa0 + τ(Id +O(τ))I.

Letting τ small enough, Id +O(τ) is invertible in L (Lp(R2)) (the vector space of linear and
bounded operators from Lp(R2) into itself), and I = τ−1(Id +O(τ))−1(a1 − eτAa0) ∈ Lp(R2)
defines a control function that steers the solution of (28) from a0 to a1 in time τ . □

Remark 4.3. Note that in the linear case, when µ < µ0, the control function I ∈ Lp(R2) that
steers the solution from the initial state a0 ∈ Lp(R2) to the target state a1 ∈ Lp(R2) in any time
T > 0 is given by

(31) I =
(
Id −eT A

)−1
A(a1 − eT Aa0).

Indeed, one can prove that the linear operator A ∈ L(Lp(R2)) is dissipative when µ < µ0 and
therefore that

(32) ∥etA∥L(Lp(R2)) < 1, ∀t > 0.

Let us now discuss the exact controllability in Lp(R2) of the nonlinear system (27) that we
write in abstract way as

(33) ȧ(t) = N(a(t)) + I, a(0) = a0, t ∈ [0, T ],

where for any 1 ≤ p ≤ ∞, the nonlinear operator N is defined by

(34) N(u) = −u + µω ∗ f(u), u ∈ Lp(R2).

Then (33) defines an ordinary differential equation in Lp(R2) associated with N . Recall from
Lemma 3.2 that for every 1 ≤ p ≤ ∞, the nonlinear operator N is (globally) Lipschitz continuous
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from Lp(R2) to itself. Therefore, one can define a nonlinear3 semigroup of operators {U(t, ·)}t≥0
in Lp(R2) such that for any a0 ∈ Lp(R2), a(t) := U(t, a0) is the unique solution to (33) when
I ≡ 0, namely

(35) ∂U

∂t
(t, a0) = N(U(t, a0)), U(0, a0) = a0.

Theorem 4.4. Let 1 < p ≤ ∞. Then, there exists a positive time τ0 > 0 such that the control
system (33) is exactly controllable in Lp(R2) in any time τ ∈ (0, τ0).

Proof. First of all, by Lemma B.8 one has N ∈ C1(Lp(R2); Lp(R2)) and the Fréchet differential
DN(u) ∈ L (Lp(R2)) is uniformly bounded for every u ∈ Lp(R2). Let T > 0 and τ ∈ (0, T ].

By Lemma B.10, the differential of U with respect to a0 is a well-defined invertible operator
Da0(t, v) ∈ L (Lp(R2)) for any v ∈ Lp(R2) and every 0 < t ≤ T , and it satisfies

(36) ∥Da0U(t, v) − Id ∥L (Lp(R2)) ≤ t

(
1 + µ

µ0

)
e

(
1+ µ

µ0

)
t
, 0 ≤ t ≤ T.

On the other hand, one observes that for any a0 ∈ Lp(R2) and every I ∈ Lp(R2), the solution
a ∈ C([0, τ ]; Lp(R2)) of (33) can be represented as

(37) a(t) = U(t, g(t)), where g(t) = a0 +
∫ t

0
T (s)Ids,

and we let T (s) := [Da0U(s, g(s))]−1. Again, by Lemma B.10, we have

(38) ∥T (s) − Id ∥L (Lp(R2)) ≤ s

(
1 + µ

µ0

)
e

(
1+ µ

µ0

)
s
, 0 ≤ s ≤ t.

Letting now aτ ∈ Lp(R2), one can compute owing to (36) and (38),

aτ := a(τ) = U(τ, g(τ)) = U(τ, a0) +
∫ 1

0

∂

∂η
U

(
τ, a0 + η

∫ τ

0
T (s)Ids

)
dη

= U(τ, a0) +
{∫ 1

0

[
Da0U

(
τ, a0 + η

∫ τ

0
T (s)Ids

)](∫ τ

0
T (s)Ids

)
dη

}
= U(τ, a0) +

{∫ 1

0
(Id +O(τ))

∫ τ

0
(Id +O(s))dsdη

}
I

= U(τ, a0) + τ(Id +O(τ))I.(39)
Then, letting τ ∈ (0, T ] small enough, one finds that Id +O(τ) is invertible in L (Lp(R2)) and
I = τ−1(Id +O(τ))−1(aτ − U(τ, a0)) ∈ Lp(R2) defines a control function that steers the solution
of (33) from a0 to aτ in time τ . □

Remark 4.5. It is immediate to see that for large time T > 0, the control I1 defined by I1 = 0
on [0, T −τ ] and I1 = τ−1(Id +O(τ))−1(a1 −eτAa(T −τ)) on (T −τ, T ] (resp. I2 = 0 on [0, T −τ ]
and I2 = τ−1(Id +O(τ))−1(a1 − U(T, a(T − τ))) on (T − τ, T ]) is a piece-wise constant function
in Lp(R2) that steers the solution of (28) (resp. (33)) from a0 to a1 in time T .

Remark 4.6. Related to Theorem 4.4 in the case of p = 1, the differential Da0U(t, v) does not
belong to L (L1(R2)) since the Gateaux-differential of the nonlinear operator N is not continuous
from L1(R2) into L (L1(R2)).

3Please, refer, for instance, to [20, p. 1] or [13, Section 3] for the definition of a nonlinear semigroup of
operators.
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We also stress that exact controllability results proved in Proposition 4.2 and Theorem 4.4
are quite general regarding assumptions on the connectivity kernel ω and the nonlinear response
function f . For the validity of Proposition 4.2, it suffices that ω ∈ L1(R2) to guarantee the
existence of a unique solution to Equation (29). While for the validity of Theorem 4.4, it suffices
that ω ∈ L1(R2) ∩ Lp(R2) and f ∈ C2(R) is bounded with its first and second derivatives, as it
is sufficient for the validity of Lemma (B.8) (see, for instance, inequalities (111) and (116)).

5. On the visual MacKay effect modelling

As mentioned in the introduction, we stress that the physical visual stimuli employed in
MacKay’s experiments consist of funnel and tunnel patterns with highly localized information.
Taking into account Equation (9) and the retino-cortical map, we incorporate these patterns as
sensory inputs in Equation (NF), such that I ∈ {PF , PT } + εv, where ε > 0 and v represents
a localized function in the cortical domain intended to model the highly localized information
present in the funnel and tunnel patterns. In this context, the function v can also be regarded
as a localized distributed control, aiming to disrupt the global plane Euclidean symmetry of the
funnel or tunnel pattern.

In Section 5.1, assuming that the response function f is linear, we provide a more general
result showing that spontaneous cortical patterns cannot induce illusory contours in the output
pattern. In particular, we deduce that I ∈ {PF , PT } cannot induce the MacKay effect using
Equation (NF). Then, using MacKay’s stimuli I ∈ {PF , PT } + εv, we prove in Section 5.2 that
the linearized form of (NF) is sufficient to replicate the visual MacKay effect theoretically. Thus,
the phenomenon starts in the linear regime, so the effect of saturating f should only dampen
out high oscillations in the system. Section 5.3 provides theoretical proof of all these results
when the response function f is a nonlinear sigmoid function.

5.1. A priori analysis. In this section, we prove that it is necessary to break the Euclidean
symmetry of funnel and tunnel pattern by localized control function for modelling the visual
MacKay effect with Equation (NF), both with a linear and nonlinear response function. Our
first result is the following.

Theorem 5.1. Let a0 ∈ L∞(R2) and I ∈ L∞(R2) given by I(·) = cos(2π⟨ξ0, ·⟩), for some
ξ0 ∈ R2. Assume that the response function f is linear. If µ < µ0, it holds

(40) a(·, t) −−−→
t→∞

I(·)
1 − µω̂(ξ0) , exponentially in L∞(R2),

where a ∈ X∞ is the solution of (NF) with initial datum a0.

Proof. The stationary state associated with I(·) = cos(2π⟨ξ0, ·⟩) is given by aI(·) = I(·)/(1 −
µω̂(ξ0)). Indeed, one has for x ∈ R2,

(41) I(x) + µ(ω ∗ aI)(x) = I(x) + µ

1 − µω̂(ξ0)(ω ∗ I)(x) = I(x)
1 − µω̂(ξ0) = aI(x),

since ω ∗ I = ω̂(ξ0)I. Therefore, if µ < µ0, the result follows by the uniqueness of stationary
state and exponential convergence of a to aI in the space L∞(R2) provided by Theorem 3.3. □

Corollary 5.2. Assume that the response function f is linear. If µ < µ0, then aF (resp. aP ) is
a funnel (resp. tunnel) pattern in shape as PF (resp. PT ). In particular, Equation (NF) with a
linear response function cannot reproduce the MacKay effect starting with a sensory input equal
to PF or PT .
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Proof. Due to Theorem 5.1, the stationary states associated with PF and PT are respectively
proportional to PF and PT so that they have the same binary pattern respectively (see, Sec-
tion 2.2), and then the same geometrical shape in terms of images. □

We provide a similar result as that of Theorem 5.1 with the nonlinear function f in Equa-
tion (SS). This result shows, in particular, that even in the presence of the nonlinearity, Equa-
tion (NF) cannot describe the MacKay effect when the sensory input is chosen equal to PF or
PT . Given that PF and PT have symmetrical roles, we focus only on PF . We recall that they
are analytically given in Cartesian cortical coordinates in V1 by (9).
Theorem 5.3. Assume that the sensory input in Equation (SS) is taken as I = PF ∈ L∞(R2).
If µ < µ0, then the stationary state aF := Ψ(PF ) ∈ L∞(R2) associated with PF explicitly depends
solely upon x2. Moreover, one has the following.

(1) The function aF is even and 1/λ-periodic with respect to x2;
(2) The function aF is infinitely differentiable, and Lipshitz continuous;
(3) If in addition µ < µ0/2 and the function f is odd, then aF has a discrete and countable

number of zeroes with respect to x2, identical with that of x2 7→ cos(2πλx2) on R.
Remark 5.4. Notice the assumption µ < µ0/2 in item 3. of Theorem 5.3 instead of µ < µ0.
We think this is a technical assumption because of the strategy used in our proof since numerical
results suggest that item 3. remains valid for all µ < µ0. Moreover, the assumption on the parity
of f is also technical, and we conjecture that if f is not odd, then aF will still have a discrete
and countable number of zeroes with respect to x2, such that

(42) a−1
F ({0}) = R ×

{
zk ∈

]
k

2λ
,
k + 1

2λ

[
| k ∈ Z

}
,

and, for all k ∈ Z,

(43) |zk − τk| ≤ arcsin(µµ−1
0 )

2πλ
, where τk := 2k + 1

4λ
.

The gap between the zeroes of aF and those of PF provided by (43) shows that on each interval,
zk and τk become arbitrarily close depending on whether µ is not closed to µ0. Nevertheless, if
λ is taken sufficiently large, zk and τk become arbitrarily close independently of µ0 − µ.
Proof of Theorem 5.3. We assume that λ = 1 in the sequel for ease of notation. We know by item
3. of Proposition A.3 that if PF or aF has a subgroup of E(2) as a group of symmetry, the other
has the same subgroup as a group of symmetry and conversely. Since PF (x1, x2) is independent
on x1, it follows that aF (x1, x2) is also independent on x1 for all (x1, x2) ∈ R2. Similarly, since
PF is invariant under the action of the reflection with respect to the straight x1 = 0, that is,
PF (x1, −x2) = PF (x1, x2) for all (x1, x2) ∈ R2, one deduces that aF (x1, −x2) = aF (x1, x2).
Thus, aF is an even function with respect to x2. Similarly, since PF is invariant under the
translation by vector (0, −1) ∈ R2, it follows that aF is also invariant under this translation
so that aF is 1-periodic with respect to x2. The fact that aF is infinitely differentiable on R2

follows immediately from that PF ∈ C∞(R2), the kernel ω ∈ S(R2) ⊂ C∞(R2) ∩ L1(R2) and
that f is bounded. Writing now aF (x2) := aF (x1, x2) for notational ease, we obtain that aF is
also given by
(44) aF (x2) = cos(2πx2) + µ[ω1 ∗ f(aF )](x2), x2 ∈ R,

where ω1 is a 1D difference of Gaussian kernel . Let a′
F := ∂x2aF , then due to (44), one obtains

(45) a′
F (x2) = −2π sin(2πx2) + µ[ω′

1 ∗ f(aF )](x2), x2 ∈ R.
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Since ∥f∥∞ ≤ 1 by assumption, it follows that ∥a′
F ∥∞ ≤ 2π + µ∥ω′

1∥1 < ∞. Therefore, aF is
Lipschitz continuous.

We now present an argument to prove item 3. of Theorem 5.3. Notice that aF = Ψ(PF )
satisfies
(46) aF = PF + µω ∗ f(aF ).
Let x∗ := (x∗

1, x∗
2) ∈ R2 be such that PF (x∗) = 0. It follows from (46) that

(47) aF (x∗) = µ

∫
R2

ω(y)f(aF (x∗ − y))dy.

By using (46) once again, one obtains

(48) aF (x∗ − y) = cos(2π(x∗
2 − y2)) + µ

∫
R2

ω(y − z)f(aF (x∗ − z))dz.

We introduce the map g3 : y := (y1, y2) ∈ R2 7−→ g3(y) := aF (x∗−y). Then, it is straightforward
to observe that, g3 is the unique solution of (48) for every µ < µ0, and it holds

−aF (x∗ + y) = cos(2π(x∗
2 − y2)) + µ

∫
R2

ω(y − z)f(−aF (x∗ + z))dz,

since f is odd. So the function y ∈ R2 7→ −g3(−y) is also solution of (48). By uniqueness of
solution, one has g3(−y) = −g3(y) and that y ∈ R2 7−→ ω(y)f(aF (x∗ − y)) is an odd function,
since ω is symmetric and f is and odd function. It follows that the right-hand side of (47) is
equal to 0.

To show the converse inclusion, let x∗ := (x∗
1, x∗

2) ∈ R2 verifying aF (x∗) = 0. From (46), it
follows

(49) cos(2πx∗
2) = −µ

∫
R2

ω(y)f(aF (x∗ − y))dy.

Developing cos(2π(x∗
2−y2)) and replacing in (48) cos(2πx∗

2) by its expression in (49), one obtains
for y ∈ R2,

(50) aF (x∗ − y) = sin(2πx∗
2) sin(2πy2) + µ

∫
R2

k(y, z)f(aF (x∗ − z))dz,

where k(y, z) := ω(y − z) − cos(2πy2)ω(z), satisfies

(51) K := sup
y∈R2

∫
R2

|k(y, z)|dy ≤ 2∥ω∥1.

Since µ < µ0/2, the contracting mapping principle shows that for every I ∈ L∞(R2) there exists
a unique solution b ∈ L∞(R2) to

(52) b(y) = I(y) + µ

∫
R2

k(y, z)f(b(z))dz.

By (50), function b(y) := aF (x∗ − y) is the unique solution of the above equation associated
with I(y) = sin(2πx∗

2) sin(2πy2).
On the other hand, since ω is symmetric and the sigmoid f is an odd function, we have also

for a. e., y ∈ R2,

(53) −aF (x∗ + y) = sin(2πx∗
2) sin(2πy2) + µ

∫
R2

k(y, z)f(−aF (x∗ + z))dz,

so that, the function b̃(y) = −b(−y) is also solution of Equation (52) associated with the input
I(y) = sin(2πx∗

2) sin(2πy2). By uniqueness of solution, one then has b(−y) = −b(y) for a. e., y ∈
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R2. This shows that y 7→ ω(y)f(aF (x∗ − y)) is an odd function on R2, since ω is symmetric
and f is an odd function, which implies that the r.h.s. of (49) is equal to 0 and thus that
x∗ ∈ P −1

F ({0}). □

The proof of the following corollary follows the same lines as that of Corollary 5.2.

Corollary 5.5. Under assumption, µ < µ0, aF (resp. aT ) is a funnel (resp. tunnel) pattern
in shape. In particular, Equation (NF) with a sigmoid activation function cannot reproduce the
MacKay effect starting with a sensory input equal to PF or PT .

Remark 5.6. By following the lines in the proof of Theorem 5.3, we can notice that it is only
sufficient for the kernel ω to be homogeneous and isotropically invariant to obtain the desired
results.

5.2. The visual MacKay effect with a linear response function. The results we provide
in this section aim to replicate the MacKay effect using Equation (NF) when the response
function f is linear. The Corollary 5.2 shows that, for our model of cortical activity in V1,
one cannot obtain the MacKay effect in the linear regime without breaking the Euclidean plane
symmetry of the sensory input when chosen equal to PF or PT . Our purpose now is to show
that Equation (NF) with the linear response function and sensory input I ∈ {PF , PT } + εv
reproduces the MacKay effect. Here, v is a suitable control function that should model the
localized information in MacKay’s stimuli.

Remark 5.7. We notice that only the description of the MacKay effect related to the funnel
pattern will be shown for ease of presentation and reader convenience. Then, in the rest of this
section, we focus on describing the MacKay effect related to the “MacKay rays”; see Fig 1.

One of the essential characteristics of the retino-cortical map, i.e. the way the visual field is
projected into V1, is that small objects located in the fovea, which is the center of the visual field,
have a much more extensive representation in V1 than similar objects located in the peripheral
visual field. As a result, for the cortical representation of the “MacKay rays” visual stimulus,
we choose a sensory input in Equation (NF) as I(x) = PF (x) + εH(θ − x1), where ε > 0, θ ∈ R
and H is the Heaviside step function. This choice models the highly localized information in
the center of the funnel pattern created by the very fast alternation of black and white rays. It is
worth noting that this corresponds to localized information in horizontal stripes in the left area
of the cortex.

To keep the presentation as clear as possible for reader convenience, we let θ = 0, and we
assume that the cortical representation of the “MacKay rays” visual stimulus is given by
(54) I(x) = cos(2πλx2) + εH(−x1), λ, ε > 0, x := (x1, x2) ∈ R2.

The sensory input v(x1, x2) = H(−x1) is dependent only on the variable x1. As a result
of Remark A.4, the associated stationary output b is also dependent solely on that variable.
Therefore, our current task is to compute the solution b of the following equation
(55) b(x) = I(x) + µ(ω1 ∗ b)(x), x ∈ R,

where I(x) = H(−x) and the 1-D kernel ω1 is given by

(56) ω1(x) = [σ1
√

2π]−1e
− x2

2σ2
1 − κ[σ2

√
2π]−1e

− x2
2σ2

2 , x ∈ R.

(57) ω̂1(ξ) = e−2π2σ2
1ξ2 − κe−2π2σ2

2ξ2
.
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Lemma 5.8. Let I ∈ S ′(R) and the kernel ω1 ∈ S(R) be defined by (56). Under the assumption
µ < µc, there is a unique solution b ∈ S ′(R) to Equation (55), which is given by

(58) b = I + µK ∗ I.

Here the kernel K ∈ S(R) is defined of all x ∈ R by

(59) K(x) =
∫ +∞

−∞
e2iπξxK̂(ξ)dξ, where K̂(ξ) = ω̂1(ξ)

1 − µω̂1(ξ) , ∀ξ ∈ R.

Proof. First of all, under assumptions on I and ω1, we have that Equation (55) is well-posed in
S ′(R). Then taking respectively the Fourier transform of (55) and the inverse Fourier transform
in the space S ′(R), we find that b ∈ S ′(R) is given by (58) with K ∈ S(R) defined as in (59).
Indeed, observe that K̂ is well-defined on R due to hypothesis µ < µc, with µc being defined
in (1), and it belongs to the Schwartz space S(R) as the product of a C∞(R) function and an
element of S(R). □

Due to Lemma 5.8, inverting the kernel K defined in (59) and providing an asymptotic
behaviour of its zeroes on R will help to provide detailed information on the qualitative properties
of the function b as given by (58). To achieve this, we use tools from complex.

Let us consider the extension of K̂ in the set C of complex numbers,

(60) K̂(z) = ω̂1(z)
1 − µω̂1(z) , z ∈ C.

Then K̂ is a meromorphic function on C, and its poles are zeroes of the entire function

(61) h(z) := 1 − µe−2π2σ2
1z2 + κµe−2π2σ2

2z2
, z ∈ C.

Remark 5.9. The holomorphic function h is an exponential polynomial [2, Chapter 3] in −z2

with frequencies α0 = 0, α1 = 2π2σ2
1 and α2 = 2π2σ2

2 satisfying α0 < α1 < α2 due to assumptions
on σ1 and σ2. It is normalized since the coefficient of 0-frequency equals 1. A necessary condition
for h for being factorizable [2, Remark 3.1.5, p. 201] is that parameters σ1 and σ2 are taken
so that it is simple. By definition [2, Definition 3.1.4, p. 201], h is simple if α1 and α2 are
commensurable, i.e., α1/α2 ∈ Q, which is equivalent to σ2

1/σ2
2 ∈ Q. Here Q denote the set of

rational numbers.

Remark 5.10. For ease in computation and pedagogical presentation, we assume in the rest of
this section that parameters in the kernel ω defined in (4) and then in the 1-D kernel ω1 defined
in (56) are given by κ = 1, 2π2σ2

1 = 1 and 2π2σ2
2 = 2. In this case, one has µ0 := ∥ω∥−1

1 = 2 and
µc := ω̂(ξc)−1 = 4. In particular ω satisfies the balanced condition ω̂(0) = 0. Then, assuming in
this particular consideration that µ := 1 < µ0 = 2 is not a loss of generality.

The main result of this section is then the following.

Theorem 5.11. Assume that the response function f is linear and the input I is given by (54).
Under the considerations of Remark 5.10, the unique stationary state to Equation (NF) is given
for all (x1, x2) ∈ R2 by

(62) aI(x1, x2) = cos(2πλx2)
1 − µω̂(ξ0) + εg(x1), ξ0 := (0, λ),

where g : R → R has a discrete and countable set of zeroes on (0, +∞).
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Observe that under the assumption that the response function f is linear, Equation (NF)
becomes linear. It follows that the first term in the r.h.s. of (62) is the stationary output
associated with the input PF by using Theorem 5.1, and b is the stationary output associated
with the sensory input v(x1, x2) = H(−x1). Consequently, Theorem 5.11 follows from the
following proposition. The proof is an immediate consequence of Lemma 5.8, Theorem B.1 and
Proposition B.4 given in Section B.1.

Proposition 5.12. Let I(x) = H(−x), x ∈ R, H being the Heaviside step function. Under the
considerations of Remark 5.10, the solution b ∈ L∞(R) of (55) is given, for x > 0, by

(63) eπx
√

2π
3 b(x) =

√
3

π
cos

(
π

3 + πx

√
2π

3

)
+ O

(1
x

)
.

Moreover, letting (θk)k∈N∗ and (τk)k∈N∗ be respectively zeroes and extrema of x 7→ cos(π/3 +
πx
√

2π/3) for x > 0, the zeroes of b in (0, +∞) are a countable sequence (ρk)k∈N∗ such that ρk

is unique in the interval Jk :=]τk, τk+1[ for all k ∈ N∗ and it holds

(64) |θk+1 − ρk| ≤
√

6
2π2 arcsin

(
2
√

5
5π(3k − 1)

)
, ∀k ∈ N∗.

Proof. If I(x) = H(−x), x ∈ R, is the input in Equation (55), then by Lemma 5.8 and Theo-
rem B.1, the solution b ∈ L∞(R) of (55) is given for all x > 0 by

b(x)
2
√

π
=

∫ +∞

x
e−πy

√
2π
3 cos

(
π

12 + πy

√
2π

3

)
dy

+
∫ +∞

x

+∞∑
k=1

e−πcky
√

2π
3

ck
cos

(
π

12 + πcky

√
2π

3

)
dy

+
∫ +∞

x

+∞∑
k=1

e−πdky
√

2π
3

dk
sin
(

π

12 − πdky

√
2π

3

)
dy,(65)

where the sequences (ck)k and (dk)k are defined in (78). Since these two sequences are positives
and tend to +∞ as k → +∞, we can commute the integrals and the sums in the r.h.s of (65)
for all x > 0. One finds,

b(x) =
√

3
π

cos
(

π

3 + πx

√
2π

3

)
e−πx

√
2π
3 +

√
3

π

+∞∑
k=1

e−πckx
√

2π
3

c2
k

cos
(

π

3 + πckx

√
2π

3

)

−
√

3
π

+∞∑
k=1

e−πdkx
√

2π
3

d2
k

cos
(

π

3 + πdkx

√
2π

3

)
,(66)

and (63) immediately follows. Finally, to prove (64), it suffices to repeat step by step the proof
of Lemma B.3 and Proposition B.4 given in Section B.1. □

The Proposition 5.12 implies that if the sensory input is the V1 representation of the “MacKay
rays” as defined by (54), then the associated stationary state corresponds to the V1 represen-
tation of the afterimage reported by MacKay [17]. Moreover, Theorem 3.3 ensures that the
average membrane potential a(x, t) of neurons in V1 located at x ∈ R2 at time t ≥ 0 exponen-
tially stabilises on the stationary state when t → ∞. It follows that Equation (NF) theoretically
replicates the MacKay effect associated with the “MacKay rays” at the cortical level. Due to
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the retino-cortical map between the visual field and V1, we deduce the theoretical description
of the MacKay effect for the “MacKay rays” at the retinal level.

Remark 5.13. We emphasise that a linear combination of the Heaviside step function in the
x2-variable as a perturbation of the V1 representation of the tunnel pattern (called “MacKay
target”) gives rise to the MacKay effect description related to this pattern.

While in the funnel pattern used in MacKay experiences, the difference between the center and
the rest of the image is more evident, one must notice that the MacKay target stimulus (Figure 2,
the right panel) is not perfectly radial. Indeed, symmetry-breaking imperfections are present. We
chose to mimic these imperfections by shaping our control as concentrated on rays converging to
the origin, which we chose to be symmetric for mathematical convenience (this has no bearing on
the results). This control captures that a symmetry-breaking in the input is necessary to induce
the observed afterimage and is sufficiently simple to be mathematically tractable. We stress that
the effect of adding such rays is barely noticeable (see, e.g., the left panel in Figure 8, where the
two rays are along the line passing horizontally through the center of the image).

5.3. The visual MacKay effect with a nonlinear response function. This section aims
to show that Equation (NF) with a nonlinear response function f still replicates the MacKay
effect associated with the “MacKay rays” and the “MacKay target”, see Figure 2.

Remark 5.4 and Corollary 5.5 shows that, for our model of cortical activity in V1 modelled by
Equation (NF), one cannot replicate the MacKay effect even with a nonlinear response function
(having standard properties in most neural fields model, namely, a sigmoid) without breaking
the Euclidean plane symmetry of the sensory input when chosen equal to PF or PT . In the
following, in order to see why a response function with sigmoid shape replicates the MacKay
effect, we assume the following hypothesis.

Hypothesis 5.14. The response function f satisfies: f ∈ C2(R), f is odd and f(s) = s for all
|s| ≤ 1. We also assume that maxs∈R f ′(s) = 1.

Let us model the cortical representation of the “MacKay rays” input by the following
(67) I(x) = γPF (x) + εH(−x1), x := (x1, x2) ∈ R2,

where γ ≥ 0 is a control parameter, ε > 0 and PF (x) = cos(2π⟨ξ0, x⟩) is an analytical represen-
tation of the funnel pattern in cortical coordinates, where ξ0 = (0, λ) with λ > 0.

The first result of this section is then the following

Proposition 5.15. Let the input I be defined by (67) with ε > 0 small and γ ≤ 1 − µω̂(ξ0).
Under the assumption, µ < µ0, equation (NF) with a response function satisfying Hypothesis 5.14
replicates the MacKay effect associated with the “MacKay rays”.

Proof. On one hand, the stationary solution associated with I(x) = γPF (x) + εv(x1, x2), where
v(x1, x2) = H(−x1) satisfies (24) in L∞(R2), i.e.,
(68) Ψ(γPF + εv) = γPF + εv + µω ∗ f(Ψ(γPF + εv)).
On the other hand, since ∥PF ∥∞ = 1 = ∥v∥∞, 0 < γ ≤ 1 − µω̂(ξ0) ≤ 1 and ε ≪ 1, we can apply
Theorem B.7 and obtain
(69) Ψ(γPF + εv) = Ψ(γPF ) + εDΨ(γPF )v + o(ε),
where DΨ(γPF )v is the differential of Ψ at γPF in the direction of v. It also follows from Theo-
rems 3.3 and B.6 that for some g1 ≥ 0, it holds ∥Ψ(γPF )∥∞ ≤ g1 = γ∥PF ∥∞+(µ/µ0)f(g1) < 3/2.
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Thus, injecting (69) into (68) and Taylor expansion of f in the first order leads to
(70) Ψ(γPF ) = γPF + µω ∗ f(Ψ(γPF )), DΨ(γPF )v = v + µω ∗ [f ′(Ψ(γPF ))DΨ(PF )v.]
Thanks to Hypothesis 5.14 and the assumption γ ≤ 1 − µω̂(ξ0), one has Ψ(γPF ) = γPF /(1 −
µω̂(ξ0)). Indeed, since |γPF /(1 − µω̂(ξ0)| ≤ 1 and ω ∗ PF = ω̂(ξ0)PF , one has that

(71) γPF + µω ∗ f

(
γPF

1 − µω̂(ξ0)

)
= γPF + µγω ∗ PF

1 − µω̂(ξ0) = γPF

1 − µω̂(ξ0) .

Therefore, Ψ(γPF ) is also a funnel pattern when represented in term of binary image. Moreover,
since |Ψ(γPF )| ≤ 1, one has f ′(Ψ(γPF )) = 1, and DΨ(γPF )v = v +µω ∗DΨ(PF )v has a discrete
and countable set of zeroes by Proposition 5.12. The result then follows at once. □

Proposition 5.16. Let v ∈ L∞(R2). Under the assumption µ < µ0, the map Π : γ ∈ R≥0 7→
Π(γ) = uγ ∈ L∞(R2), where uγ is the solution of uγ = v + µω ∗ [f ′(Ψ(γPF ))uγ ] is Lipschitz
continuous.

Proof. Let v ∈ L∞(R2) be fixed and γ ∈ R≥0. If uγ ∈ L∞(R2) is the solution of uγ = v + µω ∗
[f ′(Ψ(γPF ))uγ ], then, under the assumption µ < µ0 and Hypothesis 5.14, one has ∥uγ∥∞ ≤
∥v∥∞µ0/(µ − µ0). Let now γ1, γ2 ∈ R≥0, then using Inequality (25), one finds

∥Π(γ1) − Π(γ2)∥∞ ≤ µ∥ω∥1∥f ′(Ψ(γ1PF ))uγ1 − f ′(Ψ(γ2PF ))uγ2∥∞

≤ µ

µ0
∥Π(γ1) − Π(γ2)∥∞ + µµ0∥v∥∞f ′′

∞
(µ0 − µ)2 |γ1 − γ2|,(72)

where f ′′
∞ is the L∞-norm of the second derivative f ′′. The result then follows at once. □

Let us define the positive quantity
(73) γ0 := sup{γ ≥ 0 | ∥Ψ(γ′PF )∥∞ ≤ 1, for all γ′ ∈ [0, γ]}.

Observe that γ0 is not necessary finite and that if 0 ≤ γ ≤ γ0, then f ′(Ψ(γPF )) = 1. It follows
that if γ0 = +∞, then ∥Ψ(γPF )∥∞ ≤ 1 for all γ ≥ 0 and therefore, under Assumption µ < µ0,
Equation (NF) with a response function satisfying Hypothesis 5.14 and with the input I defined
by (67) with ε > 0 will always reproduce the MacKay effect associated with “MacKay rays”
thanks to Proposition 5.16.

In the case where γ0 is finite, one has the following.

Theorem 5.17. Let L > 0. If γ0 defined by (73) is finite, there exists δ > 0 such that the
stationary solution to Equation (NF) with a response function satisfying Hypothesis 5.14 and
with the input I defined by (67) with ε > 0 small and |γ − γ0| ≤ δ has the same zeroes structure
as in the linear case in [0, L] × R, under Assumption µ < µ0. In particular, it replicates the
MacKay effect associated with the “MacKay rays”.

Proof. Let ε > 0 be small and γ0 defined by (73) be finite. On one hand, by definition of γ0 and
Proposition 5.15, the stationary solution aI(x1, x2) to Equation (NF) with a response function
satisfying Hypothesis 5.14 and with the input I defined by (67) with γ = γ0 has a discrete and
countable zero-level set with respect to each of its variables x1 > 0 and x2 ∈ R. On the other
hand, one has for all γ ≥ 0, Ψ(γPF + εv) = Ψ(γPF ) + εuγ + o(ε) where uγ ∈ L∞(R2) is the
solution of uγ = v + µω ∗ [f ′(Ψ(γPF ))uγ ]. We known from Theorems 5.1 and 5.3 that Ψ(γPF )
has a discrete set of zeroes with respect to x2 as PF , and from Proposition 5.16 that for all
η > 0, there exists δ > 0 such that, if |γ − γ0| ≤ δ it holds ∥uγ − uγ0∥∞ ≤ η. Therefore, since
uγ0 has a discrete set of zeroes with respect to x1 > 0, then the zeroes of the function uγ cannot
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Figure 5. MacKay effect (right) on the “MacKay rays” (left). We use the linear
response function f(s) = s. The sensory input is chosen as I(x) = cos(5πx2) +
εH(2 − x1), ε = 0.025, where H is the Heaviside step function.

accumulate at any of those zeroes in a finite interval, that is, the zeroes of both functions are
distributed similarly in [0, L] × R for all finite L > 0. □

Remark 5.18. Although a sigmoid nonlinearity such as f(s) = tanh(s) or f(s) = erf(s
√

π/2)
does not satisfy the assumption f(s) = s for |s| ≤ 1, it is almost linear in a small interval of the
form (−ε, ε), ε > 0 in such a way that Theorem 5.17 should be a theoretical explanation of why
Equation (NF) with this nonlinearity replicates the MacKay effect.

5.4. Numerical results for the visual MacKay effect. The numerical implementation is
performed with Julia, where we coded retino-cortical map for visualising each experiment. More-
over, given a sensory input I, the associated stationary output aI is numerically implemented
via an iterative fixed-point method. Following the convention adopted in [8, 4] for geometric
visual hallucinations, we present binary versions of these images, where black corresponds to
positive values and white to negative ones as explained in Section 2.2. The reader may refer to
[25, Appendix B] for a toolbox that performs numerical results presented here.

The cortical data is defined on a square (x1, x2) ∈ [−L, L]2, L = 10 with steps ∆x1 =
∆x2 = 0.01. For the reproduction of the MacKay effect, parameters in the kernel ω given
by (4) are κ = 1, 2π2σ2

1 = 1, and 2π2σ2
2 = 2. We also choose µ := 1. We collected some

representative results in Figures 5, 6, 7 and 8. Here, we visualize the retinal representation
obtained from the cortical patterns via the inverse retino-cortical map. In Figure 5, we exhibit
the MacKay effect associated with the “MacKay rays”. In this case, the sensory input is chosen
as I(x) = cos(5πx2) + εH(2 − x1), where ε = 0.025 and H being the Heaviside step function.
Similarly, we exhibit in Figure 6 the MacKay effect associated with the “MacKay target”. In this
case, the sensory input is I(x) = cos(5πx1) + ε(H(−x2 − 9.75) + H(x2 − 9.75) + H(0.25 − |x2|)),
where ε = 0.025 and H being the Heaviside step function. We use a linear response function
(f(s) = s) for the two figures. However, the phenomenon can be reproduced with any sigmoid
function. See for instance, Figure 7 and Figure 8.
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Figure 6. MacKay effect (right) on the “MacKay target” (left).We use the linear
response function f(s) = s. The sensory input is I(x) = cos(5πx1) + ε(H(−x2 −
9.75) + H(x2 − 9.75) + H(0.25 − |x2|)), ε = 0.025, where H is the Heaviside step
function.

Remark 5.19. Although the Gaussian kernel is usually used in image processing and computer
vision tasks due to its proximity to the visual system, it cannot replicate the MacKay effect if
we use it as the kernel in Equation (NF). A physiological reason for this is that we used a one-
layer model of NF equations. It is not then biologically realistic to model synaptic interactions
with a Gaussian, which would model only excitatory-type interactions between neurons, see also
Remark B.5.

6. Discussion

In this paper, we investigated the replication of visual illusions reported by MacKay [17],
referred to as the visual MacKay effect. We have shown that these intriguing visual phenomena
can be theoretically explained through a neural field model of Amari-type modelling the average
membrane potential of V1 spiking neurons, which takes into account the sensory input from
the retina. In our model equation, the sensory input stands to the V1 representation via the
retino-cortical map of the visual stimulus employed in the MacKay experiment. Assuming
that the intra-neuron connectivity parameter is smaller than the threshold parameter where
cortical patterns spontaneously emerge in V1 when sensory inputs from the retina do not drive
its activity, we expounded a mathematical sound framework consisting of the input-output
controllability of this equation. Then, performing a quantitative and qualitative study of the
stationary output, we found that the MacKay effect is essentially a linear phenomenon, meaning
the non-linear nature of the neural response does not play a role in its replication via our model
equation.

Although our approach differs from that of Nicks et al. [19] in describing the MacKay-
like effect (associated with regular sensory input), it agrees with the latter in emphasizing
the role of inhibitory neurons in shaping the response of excitatory neurons to visual stimuli.
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Figure 7. MacKay effect (right) on the “MacKay rays” (left). We use the
nonlinear response function f(s) = s/(1 + |s|). The sensory input is chosen as
I(x) = cos(5πx2)+εH(2−x1), ε = 0.025, where H is the Heaviside step function.

Figure 8. MacKay effect (right) on the “MacKay target” (left).We use the
nonlinear response function f(s) = s/(1 + |s|). The sensory input is I(x) =
cos(5πx1) + ε(H(−x2 − 9.75) + H(x2 − 9.75) + H(0.25 − |x2|)), ε = 0.025, where
H is the Heaviside step function.

This is consistent with the idea that inhibitory neurons play an important role in shaping the
receptive fields of neurons in the visual cortex and that the interaction between excitatory and
inhibitory neurons is crucial for visual processing. This new approach offers the advantage of
accommodating any geometrical visual stimulus, particularly those localized in the visual field.
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We hope that this take on the question can serve as a foundation for future investigations,
such as the theoretical replication of other psychophysical phenomena, including Billock and
Tsou experiments [3], the apparent motion in quartet stimulus [11], the flickering wheel illusion
[24], the spin in the enigma stimulus of Isia Léviant [33, 16], or other psychophysical phenomena
involving spontaneous cortical patterns such as the Barber pole, Café wall, Fraser spiral illusions
[10, 14], etc..

Appendix A. Equivariance of the input-output map with respect to the plane
Euclidean group

We discuss in this section the equivariance of the input to stationary output map Ψ defined
in (24) with respect to the plane Euclidean group.

Let E(2) denote the Euclidean group, which is the symmetry group of R2. It is well known
that (see, [31, Chapter IV] for instance) E(2) is the cross product of two-dimensional real line
space R2 and O(2) the group of Euclidean rotations and reflections of this space, the so-called
orthogonal group : E(2) = R2 ⋊ O(2). For any g = (a, r) ∈ E(2), one has (a, r) ∈ R2 × O(2)
and the group property is the following

g1 · g2 = (a1, r1) · (a2, r2) = (r1a2 + a1, r1r2),
g−1 = (−r−1a, r−1),
e = (0, Id).

Here, g−1 is the inverse of g = (a, r) ∈ E(2), e is the identity in E(2) and Id is the identity in
O(2).
Definition A.1 (Action of E(2) on R2). For x ∈ R2, the action of g = (a, r) ∈ E(2) on R2 is
defined by gx = rx + a.
Definition A.2 (Action of E(2) on Lp(R2)). We define the action of E(2) on Lp(R2) by the
representation T : g ∈ E(2) 7−→ Tg ∈ GL(Lp(R2)) such that, for all v ∈ Lp(R2), it holds

(Tgv)(x) = v(g−1x), x ∈ R2.

Here GL(Lp(R2)) is the group of automorphism from Lp(R2) to itself.
We emphasise that the validity of the following proposition depends solely on the symmetry

properties satisfied by the kernel ω rather than the nonlinear function f . It remains valid
whatever the shape (even linear, etc.) of the response function f .
Proposition A.3. Let µ0 be defined by (11). If µ < µ0, then, the map Ψ defined in (24) and
its inverse Ψ−1 are E(2)-equivariant, that is
(74) ΨTg = TgΨ and Ψ−1Tg = TgΨ−1, for any g ∈ E(2).
Remark A.4. As a consequence of Proposition A.3 we have that the sensory input I and the
stationary output Ψ(I) have the same symmetry subgroups Γ ⊂ E(2). For example, I depends
solely on the x1 variable if and only if the same is true for Ψ(I).
Proof of Proposition A.3. We start by claiming that Q(v) := ω ∗ f(v) is an E(2)-equivariant
operator from Lp(R2) to itself. The fact that Q is well-defined is a consequence of Lemma 3.2.
We thus need to show that TgQ = QTg, for any g = (a, r) ∈ E(2). Let v ∈ Lp(R2) and x ∈ R2.
On one hand, one has

(75) (Tg(Q(v)))(x) = Q(v)(g−1x) =
∫
R2

ω(|g−1x − y|)f(v(y))dy.
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On the other hand, one has

(Q(Tgv))(x) =
∫
R2

ω(|x − y|)(f(Tgv))(y)dy =
∫
R2

ω(|x − y|)f(v(r−1(y − a)))dy.

Setting z = r−1(y − a), then dy = | det r|dz = dz, since r ∈ O(2) and

|x − rz − a| = |r(r−1(x − a) − z)| = |g−1x − z|.
It follows that

(76) (Q(Tgv))(x) =
∫
R2

ω(|g−1x − z|)f(v(z))dz,

which completes the proof of the claim by identifying (75) and (76).
To complete the proof of the statement, we need to show that TgΨ = ΨTg and TgΨ−1 = Ψ−1Tg

for any g ∈ E(2). This is equivalent to prove that for all I ∈ Lp(R2), TgΨ(I) = Ψ(TgI) and
TgΨ−1(I) = Ψ−1(TgI). It follows from the previous claim that

TgΨ(I) = TgI + µTgQ(Ψ(I)) = TgI + µQ(TgΨ(I)).
On the other hand, one has

Ψ(TgI) = TgI + µQ(Ψ(TgI)).
So, by the uniqueness of the stationary state provided by Theorem 3.3, we obtain TgΨ(I) =
Ψ(TgI). Arguing similarly, we prove that Ψ−1 is also E(2)-equivariant. □

Appendix B. Complement results

B.1. Complement results for the MacKay effect replication in the linear regime.
This section contains various complements used in Section 5.2 to describe the MacKay effect
when the response function in Equation (NF) is linear. The first result is the following.

Theorem B.1. Under the considerations of Remark 5.10, the kernel K defined in (59) can be
recast for all x ∈ R∗ as

K(x)
2
√

π
= e−π|x|

√
2π
3 cos

(
π

12 + π|x|
√

2π

3

)
+

∞∑
k=1

e−πck|x|
√

2π
3

ck
cos

(
π

12 + πck|x|
√

2π

3

)

+
∞∑

k=1

e−πdk|x|
√

2π
3

dk
sin
(

π

12 − πdk|x|
√

2π

3

)
,(77)

where
(78) ck =

√
1 + 6k k ∈ N and dk =

√
−1 + 6k, k ∈ N∗.

Proof. We start by introducing for a fixed x ∈ R, the function

(79) g : z ∈ C 7→ g(z) = e2iπzx ω̂1(z)
1 − ω̂1(z) = e2iπzxK̂(z), ω̂1(z) = e−z2 − e−2z2

.

We have that g is a meromorphic function with simple poles (zeroes of the exponential polynomial
h defined in (61)) distributed as in Figure 9 that we enumerate as pk,ℓ and qk,ℓ where ℓ ∈
{0, · · · , 3}, by

(80) pk,ℓ = ckei π
4 iℓ

√
π

3 , k ∈ N and qk,ℓ = dkei π
4 iℓ

√
π

3 , k ∈ N∗,
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Figure 9. Zeroes in the complex plane of the exponential polynomial h defined
in (61). Here κ = µ = 1, 2π2σ2

1 = 1 and 2π2σ2
2 = 2.

where ck and dk are defined as in (78). Since ω̂(pk,ℓ) = 1 = ω̂(qk,ℓ), we find the residues of g to
be given by

(81) Res(g, pk,ℓ) = −ei π
4 iℓei(−1)ℓ π

3

2ck
√

π
e2iπxpk,ℓ , k ∈ N,

(82) Res(g, qk,ℓ) = ei π
4 iℓe−i(−1)ℓ π

3

2dk
√

π
e2iπxqk,ℓ , k ∈ N∗.

We now fix x > 0, and we let

Rn :=
√

nπ, n ∈ N∗.

We consider the path Γn straight along the real line axis from −Rn to Rn and then coun-
terclockwise along a semicircle centred at z = 0 in the upper half of the complex plane,
Γn = [−Rn, Rn] ∪ C+

n , where C+
n = {Rneiϕ | ϕ ∈ [0, π]}. Then, by the residue Theorem,

one has for all n ∈ N∗,∫ Rn

−Rn

g(ξ)dξ +
∫

C+
n

g(z)dz = 2πi
ℓ=1∑
ℓ=0

n−1∑
k=0

Res(g, pk,ℓ) + 2πi
ℓ=1∑
ℓ=0

n−1∑
k=1

Res(g, qk,ℓ)

= 2
√

πe−πx
√

2π
3 cos

(
π

12 + πx

√
2π

3

)
+

2
√

π
n−1∑
k=1

e−πckx
√

2π
3

ck
cos

(
π

12 + πckx

√
2π

3

)
+

2
√

π
n−1∑
k=1

e−πdkx
√

2π
3

dk
sin
(

π

12 − πdkx

√
2π

3

)
.(83)
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We set
An(x) :=

∫
C+

n

g(z)dz.

Then, one obtains,

|An(x)| ≤ Rn

∫ π

0
e−2Rnπx sin(ϕ)|K̂(Rneiϕ)|dϕ

= Rn

∫ π
4

0
e−2Rnπx sin(ϕ)|K̂(Rneiϕ)|dϕ︸ ︷︷ ︸

J1

+ Rn

∫ 3π
4

π
4

e−2Rnπx sin(ϕ)|K̂(Rneiϕ)|dϕ︸ ︷︷ ︸
J2

+ Rn

∫ π

3π
4

e−2Rnπx sin(ϕ)|K̂(Rneiϕ)|dϕ︸ ︷︷ ︸
J3

.(84)

Since |K̂(Rneiϕ)| ≤ 1 for all ϕ ∈ [0, π], uniformly w.r.t. n ∈ N∗, one has for all x > 0,

J2 := Rn

∫ 3π
4

π
4

e−2Rnπx sin(ϕ)|K̂(Rneiϕ)|dϕ ≤ Rn

∫ 3π
4

π
4

e−2Rnπx sin(ϕ)dϕ

≤ πRn

2 e−Rnπx
√

2 −−−−−→
n→+∞

0.(85)

On the other hand, there exist a positive constant C > 0 independent of n ∈ N∗ (C := 3/2 is
valid) such that for all ϕ ∈ [0, π], it holds

|K̂(Rneiϕ)| =
∣∣∣∣∣ ω̂1(Rneiϕ)
1 − ω̂1(Rneiϕ)

∣∣∣∣∣ ≤ C|ω̂1(Rneiϕ)| ≤ C
(
e−R2

n cos(2ϕ) + e−2R2
n cos(2ϕ)

)
, ∀n ∈ N∗.

Since cos(2ϕ) ≥ − 4
π ϕ + 1 for all ϕ ∈ [0, π/4], one deduces

J1 + J3 ≤ 2Rn

∫ π
4

0
e−2Rnπx sin(ϕ)|K̂(Rneiϕ)|dϕ ≤ 2CRn

∫ π
4

0
e−R2

n cos(2ϕ)dϕ

≤ 4CRne−R2
n

∫ π
4

0
e

4
π

R2
nϕ

dϕ = Cπ

Rn

[
1 − e−R2

n

]
−−−−−→
n→+∞

0.(86)

To summarise, one has for all x > 0, ∫
C+

n

g(z)dz −−−−−→
n→+∞

0.

By taking the limit as n → +∞ in (83) we find for all x > 0,

K(x)
2
√

π
= e−πx

√
2π
3 cos

(
π

12 + πx

√
2π

3

)
+

+∞∑
k=1

e−πckx
√

2π
3

ck
cos

(
π

12 + πckx

√
2π

3

)

+
+∞∑
k=1

e−πdkx
√

2π
3

dk
sin
(

π

12 − πdkx

√
2π

3

)
.(87)

Finally, the result follows at once since K is an even function. □

Remark B.2. Since the kernel K is even on R, we will restrict its study to R+.
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In what follows, we aim to prove that K admits a discrete and countable set of zeroes on R∗
+.

It is a consequence of the following.

Lemma B.3. For all x ∈ R∗
+, it holds that

(88) eπx
√

2π
3 K(x)

2
√

π
= cos

(
π

12 + πx

√
2π

3

)
+ S(x)

x
,

where

(89) |S(x)| ≤
√

6
3π2 .

Moreover, the derivative of K satisfies

(90)
√

3eπx
√

2π
3 K ′(x)

4π2 = − sin
(

π

3 + πx

√
2π

3

)
+ T (x),

where

(91) |T (x)| ≤
1 + πx

√
2π
3

π3x2 .

Proof. Let x > 0, one starts with the equation

K(x)
2
√

π
= e−πx

√
2π
3 cos

(
π

12 + πx

√
2π

3

)
+ R1(x) + R2(x),

where R1(x) =
+∞∑
k=1

r1(k) cos
(

π
12 + πckx

√
2π
3

)
and R2(x) =

+∞∑
k=1

r2(k) sin
(

π
12 − πdkx

√
2π
3

)
. The

functions r1 and r2 are defined on R+ and [1/3, +∞) respectively by

r1(t) = e−A
√

1+6t

√
1 + 6t

, r2(t) = e−A
√

−1+6t

√
−1 + 6t

with A = πx

√
2π

3 .

Since r1 is decreasing on R+ one deduces that

|R1(x)| ≤
+∞∑
k=1

r1(k) ≤
+∞∑
k=1

∫ k

k−1
r1(t) dt =

∫ ∞

0
r1(t) dt =

∫ ∞

0
e−A

√
1+6t dt√

1 + 6t
= e−A

3A
.

The same argument gives the same inequality for |R2(x)| and inequality (89) follows at once. On
the other hand, it is straightforward to observe that the sum S(x) in (88) is uniformly (normally
in fact) convergent on (−∞, −B]∪ [B, +∞) for all B > 0. Thus, after derivation under the sum,
one finds for all x > 0,

√
3eπx

√
2π
3 K ′(x)

4π2 = − sin
(

π

3 + πx

√
2π

3

)
− eπx

√
2π
3

∞∑
k=1

e−πckx
√

2π
3 sin

(
π

3 + πckx

√
2π

3

)

−eπx
√

2π
3

∞∑
k=1

e−πdkx
√

2π
3 sin

(
π

3 − πdkx

√
2π

3

)

= − sin
(

π

3 + πx

√
2π

3

)
+ T (x),
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where

|T (x)| ≤ eπx
√

2π
3

∞∑
k=1

(
e−πckx

√
2π
3 + e−πdkx

√
2π
3

)
≤ 2eπx

√
2π
3

∞∑
k=1

e−πdkx
√

2π
3 ,

since ck ≥ dk for all k ≥ 1. But one has

∞∑
k=1

e−πdkx
√

2π
3 ≤

∞∑
k=1

∫ k

k− 2
3

e−πx
√

−1+6t
√

2π
3 dt =

∫ ∞

1
3

e−πx
√

−1+6t
√

2π
3 dt =

1 + πx
√

2π
3

2π3x2 e−πx
√

2π
3 ,

so that inequality (91) follows at once and completes the proof of the lemma. □

Proposition B.4. Let (xk)k∈N∗ and (yk)k∈N∗ denote the sequences of zeroes and extrema of
the function x 7→ cos(π/12 + πx

√
2π/3) on R∗

+ respectively. There exists (zk)k∈N∗, sequence of
zeroes of K in R∗

+ such that zk is the unique zero of K in the interval Ik :=]yk, yk+1[ for all
k ∈ N∗ and

(92) |xk+1 − zk| ≤
√

3
π

√
2π

arcsin
( 8

π(12k − 1)

)
, ∀k ∈ N∗.

Proof. We fix k ∈ N∗, then one has

|S(yk)| ≤ 2
π

√
6πyk

= 8
π(12k − 1) ≤ 8

11π
< 1,

by Lemma B.3. One deduces that

eπyk

√
2π
3

K(yk)
2
√

π
= (−1)k + S(yk)

{
< 0, if k is odd,

> 0, if k is even.

It follows that K admits at least one zero zk in the interval Ik by the intermediate value theorem.
Let us prove that zk is the unique zero in this interval. We let z̃ be an arbitrary zero of K in
the interval Ik and set ek := z̃ − xk+1. Then one has by Lemma B.3

(93) S(z̃) = − cos
(

π

12 + πz̃

√
2π

3

)
= (−1)k sin

(
πek

√
2π

3

)
,

and

(94)
∣∣∣∣∣sin

(
πek

√
2π

3

)∣∣∣∣∣ ≤ 2
π

√
6πz̃

≤ 2
π

√
6πyk

≤ 2
π

√
6πy1

= 8
11π

.

On the other hand, using (93) and trigonometric identity for sine, one obtains
√

3eπz̃
√

2π
3 K ′(z̃)

4π2 = − sin
(

π

12 + πz̃

√
2π

3 + π

4

)
+ T (z̃)

= (−1)k+1
√

2
cos

(
πek

√
2π

3

)
+ 1√

2
S(z̃) + T (z̃).(95)

By using (93), (94) and (91) one finds

cos
(

πek

√
2π

3

)
≥
√

1 − 8
11π

>

√
1 − 1

2 = 1√
2

,
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and ∣∣∣∣ 1√
2

S(z̃) + T (z̃)
∣∣∣∣ ≤ 1√

2
8

11π
+

1 + πy1
√

2π
3

π3y2
1

<
1
2 .

It follows that

K ′(z̃)
{

> 0, if k is odd,

< 0, if k is even.

Let z̃ and z̃′ be successive zeroes of K in Ik and assume that k is odd to be fixed. Then
K ′(z̃) > 0 and K ′(z̃′) > 0. By Rolle’s theorem, there exists z̃′′ ∈ (z̃, z̃′) such that K(z̃′′) = 0
and K ′(z̃′′) < 0, which is a contradiction of the fact that any zero z̃ in Ik satisfies K ′(z̃) > 0.
Thus, zk is the unique zero of K in the interval Ik. Finally, inequality (94) applied with z̃ = zk

leads to inequality (92), and this completes the proof of the proposition. □

Remark B.5. Suppose we model the interaction of V1 neurons in Equation (NF) with a Gauss-
ian kernel ω. In that case, we will obtain that the associated kernel K̂ defined in (79) has two
isolated poles located on the imaginary axis of the complex plane. The zero-order terms which
dominate the expansion of K given by (77) are only an exponential decreasing function without
a cosine multiplicative factor. Therefore, the kernel K will never have infinitely many discrete
distributed zeroes.

B.2. Miscellaneous complements. Some of the results provided in this section were used
in Section 5.3 to describe the MacKay effect when the response function in Equation (NF) is
nonlinear.

We recall from Theorem 3.3 that, given 1 ≤ p ≤ ∞ and I ∈ Lp(R2), then for any a0 ∈ Lp(R2),
the initial value Cauchy problem associated with Equation (NF) has a unique solution a ∈ Xp.
It is implicitly given for all x ∈ R2, and every t ≥ 0 by

(96) a(x, t) = e−ta0(x) +
(
1 − e−t

)
I(x) + µ

∫ t

0
e−(t−s)(ω ∗ f(a))(x, s)ds.

Given I ∈ L∞(R2), the following theorem improves the upper bound of the L∞-norm of the
stationary state aI ∈ L∞(R2) provided in (25).

Theorem B.6. Let a0 ∈ L∞(R2), I ∈ L∞(R2) with ∥I∥∞ = 1 and a ∈ X∞ be the solution of
(NF). It holds
(97) lim sup

t→+∞
∥a(·, t)∥∞ ≤ g1,

where g1 > 0 is the smaller fixed point of the following function

(98) g : x ∈ R 7−→ 1 + µ

µ0
f(x) ∈ R∗

+.

Proof. We start by using (96), (14) and Minkowski’s inequality to obtain for a.e. x ∈ R2 and
every t ≥ 0,

(99) |a(x, t)| ≤ e−t∥a0∥L∞ + (1 − e−t) + µ

µ0
(1 − e−t).

Letting t → ∞ in the last inequality, we find V∞ := lim sup
t→+∞

∥a(·, t)∥∞ ≤ 1 + µ/µ0, showing in

particular that V∞ < ∞. It follows that
(100) ∀ε > 0, ∃Tε > 0 s.t., ∀t ≥ Tε, ∥a(·, t)∥∞ ≤ V∞ + ε.
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Applying the variation of constants formula (96), starting at Tε > 0, one deduces for every
t > Tε that

∥a(·, t)∥∞ ≤ e−(t−Tε)∥a(·, Tε)∥∞ +
(
1 − e−(t−Tε)

)
+ µ∥ω∥1

∫ t

Tε

e−(t−s)f(∥a(·, s)∥∞)ds

≤ e−(t−Tε)(V∞ + ε) + 1 + µ

µ0
f(V∞ + ε).(101)

Letting respectively t → ∞ and ε → 0 in the preceding inequality we find

(102) V∞ ≤ 1 + µ

µ0
f(V∞).

Let (un)n be the real sequence defined by
(103) u0 = V∞, un+1 = g(un), ∀n ≥ 1.

Then (un)n is a bounded and non-decreasing sequence. The boundedness of (un)n follows from
the boundedness4 of the sigmoid function f . Let us prove by induction that the sequence (un)n

is increasing. Due to the inequality (102), one has

u1 = g(u0) = 1 + µ

µ0
f(u0) = 1 + µ

µ0
f(V∞) ≥ V∞ = u0.

If un ≥ un−1 then, since f is non-decreasing, one obtains

un+1 = g(un) = 1 + µ

µ0
f(un) ≥ 1 + µ

µ0
f(un−1) = g(un−1) = un,

showing that (un)n is a non-decreasing sequence. The monotone convergence and fixed point
Theorems, we have that (un)n converges to the smaller fixed point g1 > 0 of the function g, and
(97) follows. □

Let 1 ≤ p ≤ ∞, we introduce for every I ∈ Lp(R2), the map ΦI : Lp(R2) 7→ Lp(R2) defined
for all v ∈ Lp(R2) by
(104) ΦI(v) = I + µω ∗ f(v).

Theorem B.7. Let 1 < p ≤ ∞. If µ < µ0, then Ψ belongs to C1(Lp(R2); Lp(R2)) and the
differential at I ∈ Lp(R2) is given by
(105) DΨ(I)h = (Id −DΨ(I))−1h, ∀h ∈ Lp(R2).

The proof of Theorem B.7 is a consequence of the following two lemmas.

Lemma B.8. Let 1 < p ≤ ∞, and I ∈ Lp(R2). Then for every µ > 0, the map ΦI belongs to
the space C1(Lp(R2); Lp(R2)) and the differential at v ∈ Lp(R2) is given by

(106) (DΦI(v)h)(x) = µ

∫
R2

ω(x − y)f ′(v(y))h(y)dy, ∀h ∈ Lp(R2), x ∈ R2.

Moreover, it holds

(107) ∥DΦI(v)∥L (Lp(R2)) ≤ µ

µ0
, ∀v ∈ Lp(R2).

4Notice that in the case where the response function f is only Lipschitz continuous (with the Lipschitz constant
equal to f ′(0) = 1) but not bounded, the sequence (un)n is still bounded, via

|un| ≤ V∞ + µ0

µ0 − µ
, ∀n ∈ N.



34 CYPRIEN TAMEKUE, DARIO PRANDI, AND YACINE CHITOUR

Proof. It is straightforward to show that for all 1 ≤ p ≤ ∞, and I ∈ Lp(R2), the map ΦI is
Gateau-differentiable at every v ∈ Lp(R2), the Gateau-differential is given for every h ∈ Lp(R2)
by (106). Since f ′ is bounded by 1, we find

(108) ∥DΦI(v)h∥p ≤ µ

µ0
∥h∥p.

Let us now show that for all 1 < p ≤ ∞, the Gateau-differential
DΦI : Lp(R2) −→ L (Lp(R2))

v 7−→ DΦI(v),(109)
is continuous. To this end, let (vn) ⊂ Lp(R2) be a real sequence converging in the Lp-norm to
v ∈ Lp(R2). We want to prove that DΦI(vn) converges to DΦI(v) in L (Lp(R2)). Let h ∈ Lp(R2)
and set

(110) Rn : x ∈ R2 7−→ Rn(x) =
∫
R2

ω(x − y)[f ′(vn(y)) − f ′(v(y))]h(y)dy.

It is immediate to obtain the result when p = ∞. Indeed, since f ′ is ∥f ′′∥∞-Lipschitz continuous,
one immediately gets that

∥Rn∥∞ ≤ ∥f ′′∥∞∥ω∥1∥vn − v∥∞∥h∥∞,

so that
∥DΦI(vn) − DΦI(v)∥L (L∞(R2)) = sup

h∈L∞(R2)
∥h∥∞=1

∥DΦI(vn)h − DΦI(v)h∥∞

≤ µ∥f ′′∥∞∥ω∥1∥vn − v∥∞ −−−→
n→∞

0.(111)

Let us turn to an argument for the cases 1 < p < ∞. Since (vn) tends in the Lp-norm to
v ∈ Lp(R2), for every ε > 0, there exists a positive integer N ∈ N such that for any n ≥ N it
holds ∥vn − v∥p ≤ ε. In the following, we fix ε > 0 and N defined previously. For every n ∈ N
such that n ≥ N , we consider En := {y ∈ R2 | |vn(y) − v(y)| >

√
ε}, one has for every x ∈ R2,

(112)
Rn(x) =

∫
R2\En

ω(x − y)[f ′(vn(y)) − f ′(v(y))]h(y)dy︸ ︷︷ ︸
Λ1(x)

+
∫

En

ω(x − y)[f ′(vn(y)) − f ′(v(y))]h(y)dy︸ ︷︷ ︸
Λ2(x)

.

By Chebyshev’s inequality, it holds that

(113) |En| ≤
∥vn − v∥p

p

ε
p
2

≤ ε
p
2 ,

where |En| denotes the Lebesgue measure of the measurable set En ⊂ R2.
On one hand, using Hölder inequality and the fact that f ′ is ∥f ′′∥∞-Lipschitz continuous, one

has

|Λ1(x)| ≤ ∥f ′′∥∞
√

ε∥ω∥
1
q

1

{∫
R2\En

|ω(x − y)||h(y)|pdy

} 1
p

, ∀x ∈ R2.

Taking the p-th power on both sides of the above inequality and integrating it with variable x
over R2, we find, thanks to Fubini’s theorem,

(114) ∥Λ1∥p :=
{∫

R2
|Λ1(x)|pdx

} 1
p

≤ ∥f ′′∥∞∥ω∥1
√

ε∥h∥p.
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On the other hand, using Hölder inequality and the fact that f ′ is bounded by 1, one has

|Λ2(x)|p ≤ 2p|En|
p
q

∫
En

|ω(x − y)|p|h(y)|pdy, ∀x ∈ R2.

Integrating the above inequality with variable x over R2, we find, thanks to Fubini’s theorem,

(115) ∥Λ2∥p :=
{∫

R2
|Λ2(x)|pdx

} 1
p

≤ 2|En|
1
q ∥ω∥p∥h∥p ≤ 2∥ω∥p∥h∥p(

√
ε)p−1,

where the last inequality is obtained thanks to (113) and p/q = p − 1.
Taking now the p-th power on both sides of inequality (112), integrating it with variable x

over R2, applying Minkowski’s inequality and using (114) and (115), one gets
∥Rn∥p ≤ (∥f ′′∥∞∥ω∥1 + 2∥ω∥p) max(

√
ε, (

√
ε)p−1)∥h∥p.

Therefore,
∥DΦI(vn) − DΦI(v)∥L (Lp(R2)) = sup

h∈Lp(R2)
∥h∥p=1

∥DΦI(vn)h − DΦI(v)h∥p

≤ µ(∥f ′′∥∞∥ω∥1 + 2∥ω∥p) max(
√

ε, (
√

ε)p−1).(116)
Letting ε tend to zero, one deduces that DΦI is continuous. Finally, using (108) we find for all
v ∈ Lp(R2),

∥DΦI(v)∥L (Lp(R2)) = sup
h∈Lp(R2)
∥h∥p=1

∥DΦI(v)h∥p ≤ µ

µ0
,

completing the proof of the lemma. □

Lemma B.9. Let 1 < p ≤ ∞. Under assumption µ < µ0, the map
G : Lp(R2) × Lp(R2) −→ Lp(R2)

(I, a) 7−→ G(I, Ψ(I)) = a − ΦI(a),(117)
belongs to C1(Lp(R2) × Lp(R2); Lp(R2)) and the partial derivative DaG(I, a) is invertible in
L (Lp(R2)).

Proof. Since ΦI is differentiable at a ∈ Lp(R2) for all I ∈ Lp(R2), one has for all (J, b) ∈
Lp(R2) × Lp(R2),

G(I + J, a + b) = a + b − ΦI+J(a) − DΦI+J(a)b + o(∥b∥p)
= G(I, a) + (Id −DΦI(a))b − J + o(∥b∥p).

The map L(I,a) : Lp(R2) × Lp(R2) −→ Lp(R2), L(I,a)(J, b) = (Id −DΦI(a))b − J , is linear and
bounded,

∥L(I,a)(J, b)∥Lp(R2) ≤
(

1 + µ

µ0

)
∥(J, b)∥Lp(R2)×Lp(R2).

It follows that G is differentiable at (I, a) ∈ Lp(R2) × Lp(R2) and
DG(I, a)(J, b) = (Id −DΦI(a))b − J, ∀(J, b) ∈ Lp(R2) × Lp(R2).

We now show that the map (I, a) ∈ Lp(R2)2 7→ DG(I, a) ∈ L (Lp(R2)2, Lp(R2)) is continuous.
Let (I1, a1), (I2, a2) ∈ Lp(R2) × Lp(R2). One has for all (J, b) ∈ Lp(R2) × Lp(R2),

∥DG(I1, a1)(J, b) − DG(I2, a2)(J, b)∥p = ∥DΦI1(a1)b − DΦI2(a2)b∥p

≤ ∥DΦI1(a1) − DΦI1(a2)∥L (Lp(R2))∥(b, J)∥Lp(R2)2 .
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It follows by Lemma B.8 that

∥DG(I1, a1) − DG(I2, a2)∥L (Lp(R2)2,Lp(R2)) ≤ ∥DΦI1(a1) − DΦI2(a2)∥L (Lp(R2))

≤ µ∥f∥∞∥ω∥1∥(I1, a1) − (I2, a2)∥Lp(R2)2 ,

showing that G belongs to C1(Lp(R2) × Lp(R2); Lp(R2)). Finally, if I ∈ Lp(R2), aI := Ψ(I) ∈
Lp(R2) then DaG(I, aI) = Id −DΦI(aI), is invertible in L (Lp(R2)) if µ < µ0. □

We now can present the proof of Theorem B.7.

Proof of Theorem B.7. Let µ < µ0. For fixed I ∈ Lp(R2), aI := Ψ(I) ∈ Lp(R2), we have
G(I, aI) = 0, and DaG(I, aI) is invertible in L (Lp(R2)) by Lemma B.9. It follows by the
implicit function Theorem that there is an open neighbourhood V of I in Lp(R2), an open
neighbourhood W of aI in Lp(R2) and a map Σ : V → W of class C1 such that the following
holds

(I ∈ V, a ∈ W and G(I, a) = 0) ⇐⇒ (I ∈ V and a = Σ(I)).
Thereby, Ψ(·)|V = Σ(·) and then Ψ is C1 at I. Since I ∈ Lp(R2) is arbitrary, it follows that
Ψ belongs to C1(Lp(R2); Lp(R2)). Moreover, taking the derivative of G(I, Ψ(I)) = 0 at I, one
deduces that

(118) (Id −DΦI(Ψ(I))) (DΨ(I)h) = h, ∀h ∈ Lp(R2).

Thus, (105) is an immediate consequence of (107), (118) and the Neumann expansion lemma. □

Lemma B.10. Let 1 < p ≤ ∞, T > 0 and consider the solution U to (35). Then, Da0U(t, v)
is a well-defined invertible operator for any v ∈ Lp(R2) and every 0 ≤ t ≤ T . Moreover, it holds

∥Da0U(t, v) − Id ∥L (Lp(R2)) ≤ t

(
1 + µ

µ0

)
e

(
1+ µ

µ0

)
t
,

∥ [Da0U(t, v)]−1 − Id ∥L (Lp(R2)) ≤ t

(
1 + µ

µ0

)
e

(
1+ µ

µ0

)
t
.

(119)

Proof. From Lemma B.8, one gets DN(U(t, v)) = − Id +DΦ0(U(t, v)). One deduces that for
every V ∈ L (Lp(R2)), it holds

∥DN(U(t, v)) V ∥L (Lp(R2)) ≤ ∥DN(U(t, v))∥L (Lp(R2))∥ V ∥L (Lp(R2))

≤
(

1 + µ

µ0

)
∥ V ∥L (Lp(R2)).(120)

It follows that DN(U(t, v)) is a bounded linear operator on L (Lp(R2)). One also has that
t ∈ [0, T ] 7→ U(t, v) ∈ Lp(R2) is continuous and that u ∈ Lp(R2) 7→ DΦ0(u) ∈ L (Lp(R2))
is continuous thanks to Lemma B.8. Together with (120), one deduces that t ∈ [0, T ] 7→
DN(U(t, v)) ∈ L (L (Lp(R2))) is continuous.

By integrating (35), one gets for any a0 ∈ Lp(R2) and t ≥ 0,

(121) U(t, a0) = a0 +
∫ t

0
N(U(s, a0)) ds.

It is immediate to see that U(t, ·) is differentiable with respect to a0 for every t ≥ 0 and
we use Da0U(t, v) to denote the evaluation of this differential at any v ∈ Lp(R2). Actually,
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differentiating (121) yields that Da0U(·, v) belongs to C1([0, T ], L (Lp(R2))) for every T > 0
and satisfies

(122) Da0U(t, v) = Id +
∫ t

0
DN(U(s, v))Da0U(s, v)ds, 0 ≤ t ≤ T.

Differentiating the above equation, one sees that t 7→ DUa0(t, v) is the solution of the homoge-
neous initial value problem

(123)
{

∂tDa0U(t, v) = DN(U(t, v))Da0U(t, v),
Da0U(0, v) = Id,

defined for any v ∈ Lp(R2) and every 0 ≤ t ≤ T . This system is nothing else but the differential
of (35) with respect to a0. By [21, Theorem 5.2.-item (i)], one has

(124) ∥Da0U(t, v)∥L (Lp(R2)) ≤ e

(
1+ µ

µ0

)
t
, 0 ≤ t ≤ T.

By combining (122) and (124), one obtains the first inequality in (119). On the other hand,
(122) ensures that for t ∈ [0, T ] small enough, Da0U(s, v) is invertible in L (Lp(R2)) for every
s ∈ [0, t] and it holds

(125)
{

∂s [Da0U(s, v)]−1 = − [Da0U(s, v)]−1 DN(U(s, v)),
[Da0U(0, v)]−1 = Id .

Arguing as above, one obtains that the homogeneous initial value problem (125) admits a unique
solution [Da0U(·, v)]−1 ∈ C1([0, t], L (Lp(R2))) given by

(126) [Da0U(s, v)]−1 = Id −
∫ s

0
[Da0U(τ, v)]−1 DN(U(τ, v))dτ, 0 ≤ s ≤ t.

Moreover, one has

(127) ∥ [Da0U(s, v)]−1 ∥L (Lp(R2)) ≤ e

(
1+ µ

µ0

)
s
, 0 ≤ s ≤ t,

and the second inequality in (119) follows for t ∈ [0, T ] small enough. Since (123) holds for every
0 ≤ t ≤ T , one can iterate this procedure in [t, 2t], · · · , to prove that Da0U(t, v) is invertible in
L (Lp(R2)) for every t ∈ [0, T ] and that the second inequality in (119) holds. □
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