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ON THE MATHEMATICAL REPLICATION OF THE MACKAY EFFECT
FROM REDUNDANT STIMULATION

CYPRIEN TAMEKUE, DARIO PRANDI, AND YACINE CHITOUR

Abstract. In this study, we investigate the intricate connection between visual perception
and the mathematical modelling of neural activity in the primary visual cortex (V1), focusing
on replicating the MacKay e�ect [Mackay, Nature 1957]. While bifurcation theory has been a
prominent mathematical approach for addressing issues in neuroscience, especially in describing
spontaneous pattern formations in V1 due to parameter changes, it faces challenges in sce-
narios with localised sensory inputs. This is evident, for instance, in Mackay’s psychophysical
experiments, where the redundancy of visual stimuli information results in irregular shapes,
making bifurcation theory and multi-scale analysis less e�ective. To address this, we follow
a mathematical viewpoint based on the input-output controllability of an Amari-type neural
fields model. This framework views the sensory input as a control function, cortical representa-
tion via the retino-cortical map of the visual stimulus that captures the distinct features of the
stimulus, specifically the central redundancy in MacKay’s funnel pattern “MacKay rays”. From
a control theory point of view, the exact controllability property of the Amari-type equation is
discussed both for linear and nonlinear response functions. Then, applied to the MacKay e�ect
replication, we adjust the parameter representing intra-neuron connectivity to ensure that, in
the absence of sensory input, cortical activity exponentially stabilises to the stationary state
that we perform quantitative and qualitative studies to show that it captures all the essential
features of the induced after-image reported by MacKay.
Keywords. Control in neuroscience, Exact controllability, Neural field model, Amari-type
equation, Visual illusions and perception, MacKay e�ect, Spatially forced pattern forming sys-
tem.
MSCcodes. 93C20, 92C20, 35B36, 45A05, 45K05.
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Figure 1. “MacKay-rays”: funnel pattern with hight redundant information in
the fovea (left). “MacKay-target”: tunnel pattern with hight redundant infor-
mation (right). Redrawn from [18].
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1. Introduction

A simple yet profound question that can arise in humans daily is how we can control the
complexities around us, whether they are mathematical equations or even our perceptions of
reality. With its intricate network of neurons, the brain is a prime example of a complex system
that can be understood through the lens of control theory. Neuroscientists and psychophysics
researchers have been fascinated by intriguing phenomena like the MacKay e�ect [18, 19] during
which people experience visual illusions. In contrast to a visual hallucination, which refers to
the perception of an image that does not exist or is not present in front of the person who has
experienced it, a visual illusion often occurs when external stimuli trick our brain into perceiving
something di�erently from its actual state.

In the last decades, investigations of mechanisms underlying the spontaneous perception of
visual hallucination patterns have been widely undertaken in the literature using neural dynamics
in the primary visual cortex (hereafter referred to as V1) when its activity is due solely to the
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random firing of its spiking neurons, that is in the absence of sensory inputs from the retina, [5,
9, 13, 28, 6]. Indeed, in their seminal work [9], by using bifurcation techniques near a Turing-like
instability, Ermentrout and Cowan found that the 2-dimensional two-layer neural fields equation
modelling the average membrane potential of spiking neurons in V1 derived by Wilson and
Cowan in [32] is su�cient to theoretically describe the spontaneous formation (i.e., in the absence
of visual sensory inputs) of some geometric patterns (horizontal, vertical and oblique stripes,
square, hexagonal and rectangular patterns, etc.) in V1. These patterns result from activity
spreading over this brain area and correspond to states of highest cortical activities. When we
transform these patterns by the inverse of the retino-cortical map from V1 onto the visual field
[29, 23], what we obtain in the retina in terms of images are geometric visual hallucinations. They
correspond to some of the form constants that Klüver had meticulously classified [16], mainly
those contrasting regions of white and black (funnel, tunnel, spiral, checkerboard, phosphenes).
Therefore, the neural dynamic equation used to model the cortical activity in V1 combined
with the bijective nonlinear retino-cortical mapping between the visual field and V1 predicts the
geometric forms of hallucinatory patterns.

While spontaneous patterns that emerge in V1 give us insight into the underlying architecture
of the brain’s neural network, little is known about how precisely the intrinsic circuitry of
the primary visual cortex generates the patterns of activity that underlie the visual illusions
induced by visual stimuli from the retina. We study in this paper the interaction between retinal
stimulation by redundant geometrical patterns and the cortical response in the primary visual
cortex, focusing on the MacKay e�ect from redundant stimulation [18] replication using control
of Amari-type equation where the control term is the sensory input from the retina modelling
the V1 representation via the retino-cortical map of visual stimulus used in this intriguing visual
phenomenon.

1.1. The MacKay e�ect from redundant stimulation. Around 1960, Donald MacKay
made notable observations on the after-e�ects of visual stimulation using regular geometrical
patterns containing highly redundant information. He associated this phenomenon, now known
as the “MacKay e�ect”, with a specific region of the visual cortex that potentially benefits from
such redundancy [18]. The psychophysical experiments presented in this paper demonstrate that
when a highly redundant visual stimulus, such as a funnel pattern (fan shapes), is presented
at the fovea, an accompanying illusory tunnel pattern (concentric rings) emerges in the visual
field, superimposed onto the stimulus pattern (see Figure. 2).

Notably, the distance from the pattern to the retina or the illumination does not significantly
a�ect these more intricate phenomena. For most observers, the illusory contours in the back-
ground of the afterimage rotate rapidly at right angles to the stimulus pattern, either clockwise
or counterclockwise. Similarly, when viewing a tunnel pattern as that of Figure. 1, many ob-
servers perceive an illusory funnel pattern superimposed in the afterimage background. In both
cases, observers often note rapidly fluctuating sectors, again rotating either clockwise or counter-
clockwise. Notably, the stimulus pattern does not need to fill the entire visual field; a portion of
the stimulus is su�cient to generate a corresponding afterimage in the same portion. However,
in both cases, the nervous system tends to prefer the direction perpendicular to the regular
contours of the visual stimulus. In this paper, it is proposed to attribute this preference to the
retino-cortical map, resulting in induced afterimages of superimposed patterns of horizontal and
vertical stripes in V1.

1.2. Strategy of study and presentation of our results. In Section 1.2.1, we expound
on our strategy to theoretically replicate the MacKay e�ect from redundant stimulation that
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Figure 2. The MacKay e�ect results from redundant stimulation [18], showcas-
ing the illusion induced by the stimulus on the left, referred to as “MacKay rays”.
This stimulus leads to an illusory perception of concentric rings superimposed in
its background, as illustrated on the right (artist’s depiction by Isia Leviant [17]).
To see the illusory contours, look at the centre of the black circle in the image
on the left. The adaptation of this figure is based on the original representation
from [18, Fig. 1] and [33, Fig. 1b].

we recalled in the previous section. Subsequently, in Section 1.2.2, we present and discuss our
findings.

This work originated in [27], where we developed a novel approach to describe the MacKay
e�ect (specifically, redundant stimulation) [18]. Instead of relying on traditional mathematical
tools such as bifurcation analysis, perturbation theories, or multi-scale analysis, commonly used
to address neuroscience questions, we sought alternative methods via control of the Amari-type
neural fields.

Indeed, these classical mathematical tools are highly suitable for describing phenomena like
spontaneous geometric visual hallucinations that emerge in the visual field due to sudden qual-
itative changes in specific physiological parameters [5, 9, 13, 28]. They also prove e�ective in
understanding sensory-driven and self-organized cortical activity interactions when the visual
stimulus exhibits regular shape and complete distribution across the visual field, with symmetry
respecting a subgroup of the Euclidean group [20]. In simple terms, these tools are appropriate
when dealing with equations that exhibit complete equivariance (commutation) with respect to
a given group, typically the Euclidean group. However, the original MacKay stimulus, known as
the “MacKay rays” (refer to Figure. 1), which plays a key role in the MacKay visual phenomena,
consists of funnel patterns with high levels of redundant information in the fovea. As a result,
the Euclidean symmetry of the funnel patterns is disrupted, rendering the “MacKay rays” vi-
sually irregular. Accordingly, neither the works of [5, 9] nor [20] can be directly employed to
describe these complex visual phenomena. Indeed, the work [20] theoretically replicate a variant
of the MacKay e�ect where the visual stimulus is not the “MacKay rays” (Figure 1) nor the
“MacKay target” (Figure 1) but a regular (symmetric with respect to some subgroups of the
plane Euclidean group) funnel or tunnel patterns, which is fully distributed in the visual field.

1.2.1. Strategy of study. In our study, we begin by assuming that neurons in V1 are intercon-
nected in a homogeneous and isotropic manner. Accordingly, we employ the following Amari-
type equation [2, Eq. (3)] to describe the average membrane potential of V1 spiking neurons
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that take into account the sensory input from the retina:

(NF) ˆta = ≠a + µÊ ú f(a) + I.

Here a : R+ ◊ R2
æ R is a function of time t œ R+ and the position x œ R2, the sensory

input I represents the projection of the visual stimulus into V1 by the retino-cortical map. The
connectivity kernel Ê(x, y) = Ê(|x ≠ y|) models the strength of connections between neurons
located at positions x œ R2 and y œ R2. The function f captures the nonlinear response of
neurons after activation, while the parameter µ > 0 characterizes the intra-neural connectivity.
The symbol ú denotes spatial convolution, as defined in (3) below.

Although the more plausible biological neuronal dynamics in V1 involve considering the
orientation preferences of “simple cells”, as done in [5, Eq. (1)] when describing contoured
spontaneous cortical patterns, we neglect the orientation label entirely and focus on equation
(NF). This simplification is motivated by the fact that equation (NF) is su�cient for describing
spontaneous funnel and tunnel patterns, and we expect it also to be suitable for describing
psychophysical experiments involving these patterns.

In these experiments, observers perceive an illusory afterimage in their visual field when
viewing the visual stimulus, and this afterimage persists for a few seconds. Therefore, describing
these intriguing visual phenomena in V1 using equation (NF) relies on explicitly studying the
map �, which associates the sensory input I with its corresponding stationary output �(I). The
stationary output represents the stationary solution of equation (NF) for a given I. Our goal is
to prove that the cortical activity a(t, ·), which is the solution of equation (NF), exponentially
stabilizes towards �(I) as t æ +Œ. Then, we perform qualitative and quantitative study of
this stationary state in a convenient space.

Before performing the asymptotic study (qualitatively and quantitatively) of the input to sta-
tionary output map for replicating the MacKay e�ect from redundant stimulation, we investigate
the exact controllability properties of the Amari-type control system (NF) where we interpret
the sensory input I as a distributed control over R2 that we use to act on the system state
modelled by the cortical activity a. In that direction, we prove that (NF) is exactly controllable,
in the sense explained previously, except for certain particular functional frameworks.

1.2.2. Presentation of results. In our previous paper [27], we established that to accurately
model the visual stimuli used for instance, in the MacKay e�ect from redundant stimulation
associated with the “MacKay rays” visual stimulus, it is crucial to consider the redundant
information present in the center of the funnel patterns. This observation arises from the
underlying Euclidean symmetry of V1, which imposes restrictions on the geometric shapes of
sensory inputs capable of inducing cortical illusions in V1. Interestingly, this mathematical
evidence supports the observation previously made by MacKay in paragraph 2 of [18]: “[· · · ] in
investigations of the visual information system, it might be especially interesting to observe the
e�ect of highly redundant information patterns since the nervous system might conceivably have
its own ways of profiting from such redundancy [· · · ]”.

To model the redundant information in the center of the funnel pattern, we employed a control
function equal to the characteristic function of a neighbouring region of the fovea. Through nu-
merical simulations, we suggested that equation (NF), together with an odd sigmoidal response
function, successfully reproduces the MacKay e�ect associated with the “MacKay rays”. We
employed a similar approach to reproduce the MacKay e�ect associated with the “MacKay tar-
get”, except that the control function was chosen as the characteristic function of two symmetric
rays converging towards the fovea.
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Having established that equation (NF), with appropriate modelling of MacKay visual stimuli,
reproduces this phenomenon, our next objective was to provide a mathematical proof of the
numerical results obtained in [27]. Therefore, in [26], we discovered that the linearized version
of (NF) is su�cient to describe and replicate the MacKay e�ect, indicating that the nonlin-
ear nature of the response function does not play a role in its reproduction. Specifically, the
saturation e�ect only serves to dampen high oscillations that can occur in V1.

In this paper, we provide a mathematical proof of the MacKay e�ect from redundant stim-
ulation replication using Equation (NF), employing complex and harmonic analysis tools and
sharp inequality estimates. Specifically, we exploit Fourier analysis.

Up to our knowledge, the only attempt to theoretically replicate the MacKay-like phenome-
non using neural fields equations has been undertaken by Nicks et al. [20]. They employed a
model of cortical activity in V1, which included spike-frequency adaptation (SFA) of excitatory
neurons, and utilized bifurcation and multi-scale analysis near a Turing-like instability to de-
scribe the MacKay-type e�ect associated with a fully distributed state-dependent sensory input
representing cortical representations of funnel and tunnel patterns. By assuming a balanced
condition1 on the interaction kernel, they derived a dynamical equation for the amplitude of the
stationary solution near the critical value µc (see Equation (1) below) of the parameter µ where
spontaneous cortical patterns emerge in V1. Their theoretical results do not apply to localized
inputs, as those employed by MacKay [18].

In the present study, to address the specificity of the sensory inputs utilized in these psy-
chophysical experiments (i.e., the redundant information in MacKay’s stimuli), we rely on a
central assumption regarding the range of parameter µ. We assume that µ is smaller than the
threshold µc, given as follows,

(1) µc := 1
f Õ(0) max

›œR2
Ê̂(›) ,

corresponding to the value of µ where cortical patterns spontaneously emerge in V1, [9, 5].
Finally, we stress once again that our focus lies in assessing the qualitative concordance

between the outputs of the proposed models and the observed human perceptual response to
these illusions reported by MacKay. It is imperative to emphasize that this inquiry is qualitative,
serving as a demonstration of the potential utility of Amary-type dynamics in reproducing the
perceptual distortions elicited by certain visual illusions.

1.3. Structure of the paper. The remaining of the paper is organized as follows: Section 1.4
begins by introducing the general notations that will be utilized throughout the paper. We
present assumptions on model parameters used in Equation (NF) in Section 2.1, and we define
a binary pattern necessary to represent cortical activity in terms of white and black zones in
Section 2.2. In Section 3, we recall some preliminary results about the well-posedness of equation
(NF), and in Section 4, we discuss the exact controllability properties of Equation (NF). Using
equation (NF), in Section 5, we investigate the theoretical replication of the MacKay e�ect from
redundant stimulation. In Section 5.4, we present numerical results to bolster our theoretical
study. Finally, we provide in the Appendix some technical Theorems that serve as complement
results.

1A kernel Ê of “Mexican-hat” type distribution satisfies the balanced condition (between excitatory and in-
hibitory neurons) if its Fourier transform at zero equals 0.
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1.4. General notations. Unless otherwise stated, p will denote a real number satisfying 1 Æ

p Æ Œ, and q will denote the conjugate to p given by 1/p + 1/q = 1. We adopt the convention
that the conjugate of p = 1 is q = Œ and vice-versa.

For d œ {1, 2}, we denote by Lp(Rd) the Lebesgue space of class of real-valued measurable
functions u on Rd such that |u| is integrable over Rd if p < Œ, and |u| is essentially bounded
over Rd when p = Œ. We endow these spaces with their standard norms

ÎuÎ
p
p =

⁄

Rd
|u(x)|pdx, and ÎuÎŒ = ess sup

xœRd
|u(x)|.

We let Xp := C([0, Œ); Lp(Rd)) be the space of all real-valued functions u on Rd
◊ [0, Œ) such

that, u(x, ·) is continuous on [0, Œ) for a.e., x œ Rd and u(·, t) œ Lp(Rd) for every t œ [0, Œ). In
Xp, we will use the following norm ÎuÎLŒ

t Lp
x

= sup
tØ0

Îu(·, t)Îp.

For x œ R2, we denote by |x| its Euclidean norm, and the scalar product with › œ R2 is
defined by Èx, ›Í = x1›1 + x2›2.

We let S(Rd) be the Schwartz space of rapidly-decreasing CŒ(Rd) functions, and S
Õ(Rd) be

its dual space, i.e., the space of tempered distributions. Then, S(Rd) µ Lp(Rd) and Lp(Rd) µ

S
Õ(Rd) continuously. The Fourier transform of u œ S(Rd) is defined by

(2) ‚u(›) := F{u}(›) =
⁄

Rd
u(x)e≠2fiiÈx,›Ídx, ’› œ Rd.

We highlight that, for 1 Æ p Æ 2, the above definition can be continuously extends to function
u œ Lp(Rd) by density and Riesz-Thorin interpolation theorem. Whereas one can extend the
above by duality to S

Õ(Rd). We recall that F is a linear isomorphism from S(Rd) to itself and
from S

Õ(R) to itself.
The spatial convolution of two functions u œ L1(Rd) and v œ Lp(Rd), 1 Æ p Æ Œ is defined

by

(3) (u ú v)(x) =
⁄

Rd
u(x ≠ y)v(y)dy, x œ Rd.

Finally, the following notation will be helpful: if F is a real-valued function defined on R2,
we use F ≠1({0}) to denote the zero level-set of F .

2. Assumptions on parameters and binary representation of patterns

We present in this section assumptions on model parameters used in Equation (NF) and the
definition of a binary pattern necessary to represent cortical activity in terms of white and black
zones.

2.1. Assumption on parameters for Amari-type equation. We assume that the response
function f belongs to the class C2(R), is non-decreasing, satisfies f(0) = 0, f Õ(0) = maxsœR f Õ(s),
and f ÕÕ is also bounded so that f Õ is Lipschitz continuous. Please refer to Figure 3 (image on
the left) for an example of a response function.

Unless otherwise stated, we consider f to be linear or a nonlinear and sigmoid function, such
that ÎfÎŒ = 1, f Õ(0) = 1. This is without loss of generality since, as long as f Õ(0) ”= 0, we can
always define a sigmoid function Âf(s) = f(⁄s)/ÎfÎŒ with ⁄ = ÎfÎŒ/f Õ(0) and s œ R.

The interaction kernel Ê is chosen to be the following di�erence of Gaussians (DoG)

(4) Ê(x) = [2fi‡2
1]≠1e

≠ |x|2

2‡2
1 ≠ Ÿ[2fi‡2

2]≠1e
≠ |x|2

2‡2
2 , x œ R2,
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Figure 3. Possible response functions on the left where erf is the Gauss error
function, and on the right a 2D DoG kernel Ê. Here, Ÿ = 2, ‡1 = 2, and ‡2 = 4.

where Ÿ > 0, 0 < ‡1 < ‡2, and ‡1
Ô

Ÿ < ‡2. It is worth noting that this choice of interaction
kernel aligns with the framework employing Equation (NF) to generate spontaneous cortical
patterns in V1.

In particular, Ê is homogeneous and isotropic with respect to the spatial coordinates. It
solely depends on the Euclidean distance between neurons and exhibits rotational symmetry.
The first (positive) Gaussian in (4) describes short-range excitation interactions, while the second
(negative) Gaussian represents long-range inhibition interactions between neurons in V1.

It is important to observe that Ê(x) = Ê(|x|) and that Ê belongs to the Schwartz space S(R2),
implying that Ê œ Lp(R2) for all real numbers 1 Æ p Æ Œ. The Fourier transform of Ê can be
explicitly expressed as

(5) ‚Ê(›) = e≠2fi2‡2
1 |›|2

≠ Ÿe≠2fi2‡2
2 |›|2 , ’› œ R2,

and ‚Ê reaches its maximum at every vector ›c œ R2 such that

(6) |›c| = qc :=

ı̂ııÙ log
1

Ÿ‡2
2

‡2
1

2

2fi2(‡2
2 ≠ ‡2

1) and max
rØ0

‚Ê(r) = ‚Ê(qc).

Finally, the explicit expression for the L1-norm of Ê is given by

(7) ÎÊÎ1 = (1 ≠ Ÿ) + 2
A

Ÿe
≠ �2

2‡2
2 ≠ e

≠ �2
2‡2

1

B

with � := ‡1‡2

ı̂ııÙ2 log
1

‡2
2

Ÿ‡2
1

2

‡2
2 ≠ ‡2

1
.

We emphasize that the kernel Ê does not necessarily satisfy the balanced2 condition ‚Ê(0) = 0
between excitation and inhibition. However, this condition is met when Ÿ = 1.

2.2. Binary representation of patterns. Let us start this section by briefly recalling the
retino-cortical map that can be found in [23, 5]. Let (r, ◊) œ [0, Œ) ◊ [0, 2fi) denote polar

2For a homogeneous NF equation (i.e., when I = 0), this condition ensures the existence of a unique stationary
state a0 = 0 even if f(0) ”= 0. It was assumed, for instance, in [20] for deriving the amplitude equation of the
stationary state near the bifurcation point µc.
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Figure 4. Funnel pattern on the left (respectively in the retina and V1). Tunnel
pattern on the right (respectively in the retina and V1).

coordinates in the visual field (or in the retina) and (x1, x2) œ R2 Cartesian coordinates in V1.
The retino-cortical map (see also [27] and references within) is analytically given by

(8) rei◊
‘æ (x1, x2) := (log r, ◊) .

Due to the retino-cortical map (8), funnel and tunnel patterns are respectively given in Carte-
sian coordinates x := (x1, x2) œ R2 of V1 by
(9) PF (x) = cos(2fi⁄x2), PT (x) = cos(2fi⁄x1), ⁄ > 0.

This choice is motivated by analogy with the (spontaneous) geometric hallucinatory patterns
described in [9] and [5]. Given the above representation of funnel and tunnel patterns in cortical
coordinates, to see how they look in terms of images, we represent them as contrasting white
and black regions, see Figure. 4. More precisely, define the binary pattern Bh of a function
h : R2

æ R by

(10) Bh(x) =
I

0, if h(x) > 0 (black)
1, if h(x) Æ 0 (white).

It follows that Bh is essentially determined by the zero level-set of h. Since stimuli involved in
the MacKay e�ect are binary patterns, our strategy in describing these phenomena consists of
characterising the zero-level set of output patterns. That is, we are mainly devoted to studying
the qualitative properties of patterns by viewing them as binary patterns.

3. Well-posedness of the Cauchy problem and stationary state

We recall in this section some preliminary results about the well-posedness of equation (NF).
We start this section by introducing the definition of stationary state to Equation (NF).

Definition 3.1 (Stationary state). Let a0 œ Lp(R2). For every I œ Lp(R2), a stationary state
aI œ Lp(R2) to Equation (NF) is a time-invariant solution, viz.
(SS) aI = µÊ ú f(aI) + I.

Using standard assumptions on the kernel Ê or on the response function f , it is straightforward
to obtain the existence of at least one (even non-constant) stationary state to Equation (NF)
when I © 0, see for instance [5, 9, 20, 8]. Moreover, in the case of an inhomogeneous equation
posed on a bounded domain with a state-dependent sensory input, in [7], under a mild condition
on the boundness of the response function, the existence of at least one stationary state is proved
using Schaefer’s fixed point Theorem, see also [10]. However, in the face of an inhomogeneous
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equation posed on an unbounded domain as the case at hand, it can become a little bit more
subtle to provide the existence of (non-constant) stationary state only with assumptions on Ê
and f .

Consistent with the strategy that we use in this work, in order to obtain a unique non-constant
stationary state to the inhomogeneous Equation (NF), we will make the following assumption
on the intra-neuron parameter µ > 0,
(11) µ < µ0 := ÎÊÎ

≠1
1 .

Observe that µ0 Æ µc, where the latter is the bifurcation point defined in (1). We stress that,
when p = 2, and under the balanced condition ‚Ê(0) = 0, we can relax the above assumption to
µ < µc, see Theorem 3.1.

We collect in the following lemma some useful estimates that are immediate consequences of
generalised Young-convolution inequality.

Lemma 3.1. Let 1 Æ p Æ Œ. The nonlinear operator Xp – a ‘æ Ê ú f(a) œ Xp is well-defined
and Lipschitz continuous and
(12) ÎÊ ú f(a) ≠ Ê ú f(b)ÎLp

xLŒ
t

Æ ÎÊÎ1Îa ≠ bÎLp
xLŒ

t
, ’a, b œ Xp.

Moreover,
(1) If a œ Xp, then Ê ú f(a) œ XŒ and

ÎÊ ú f(a)ÎLŒ
x LŒ

t
Æ ÎÊÎqÎaÎLp

xLŒ
t

,(13)
ÎÊ ú f(a)ÎLŒ

x LŒ
t

Æ ÎÊÎ1;(14)
(2) If a œ X1, then Ê ú f(a) œ Xp,

(15) ÎÊ ú f(a)ÎLp
xLŒ

t
Æ ÎÊÎpÎaÎL1

xLŒ
t

.

In the following theorem, we prove the existence of a unique solution and a unique stationary
state of the Cauchy problem associated with Equation (NF).

Theorem 3.1. Let 1 Æ p Æ Œ and I œ Lp(R2). For any initial datum a0 œ Lp(R2), there exists
a unique a œ Xp, solution of Equation (NF). Moreover, there exists a unique stationary state
aI œ Lp(R2) to (NF) under the following assumptions:

i. If µ < µ0, then
(16) Îa(·, t) ≠ aI(·)Îp Æ e≠(1≠µÎÊÎ1)t

Îa0(·) ≠ aI(·)Îp, for any t Ø 0.

ii. If p = 2, µ < µc, and Ê̂(0) = 0, then

(17) Îa(·, t) ≠ aI(·)Î2 Æ e≠(1≠µÎ‚ÊÎŒ)t
Îa0(·) ≠ aI(·)Î2, for any t Ø 0.

Proof. Equation (NF) can be seen as an ordinary di�erential equation in Xp, whose r.h.s. is
a (globally) Lipschitz continuous map from Xp to itself by Lemma 3.1. It is then standard to
obtain that for any initial datum a0 œ Lp(R2), Equation (NF) has a unique solution a œ Xp

(see, for instance, [30, 24]). Moreover, the map �I : Lp(R2) æ Lp(R2) defined for all u œ Lp(R2)
by �I(u) = I + µÊ ú f(u) satisfies

Î�I(v) ≠ �I(u)Îp Æ
µ

µ0
Îv ≠ uÎp, ’u, v œ Lp(R2),

due to inequality (12). Since µ < µ0, the existence of a unique stationary state aI œ Lp(R2) is
obtained by invoking the contraction mapping principle.
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We now present an argument of proof for Item i. of the statement. Set

(18) b(x, t) = a(x, t) ≠ aI(x), (x, t) œ R2
◊ [0, Œ),

It follows that b is the solution of the following initial value Cauchy problem
(19)Y

]

[
ˆtb(x, t) = ≠b(x, t) + µ

⁄

R2
Ê(x ≠ y)[f(b(y, t) + aI(y)) ≠ f(aI(y))]dy, (x, t) œ R2

◊ [0, Œ),

b(x, 0) = a0(x) ≠ aI(x), x œ R2,

which belongs to C([0, Œ); Lp(R2)) fl C1((0, Œ); Lp(R2)). Moreover, b satisfies the following
variations of constant formula

(20) b(x, t) = e≠tb(x, 0) + µ
⁄ t

0
e≠(t≠s)

⁄

R2
Ê(x ≠ y)[f(b(y, t) + aI(y)) ≠ f(aI(y))]dy,

for all (x, t) œ R2
◊ [0, Œ).

Taking the Lp(R2)-norm of the above identity, we find for every t Ø 0,

(21) Îb(·, t)Îp Æ e≠t
Îb(·, 0)Îp + µÎÊÎ1

⁄ t

0
e≠(t≠s)

Îb(·, s)Îpds.

Applying Gronwall’s Lemma to inequality (21) one deduces for every t Ø 0,

Îb(·, t)Îp Æ e≠(1≠µÎÊÎ1)t
Îb(·, 0)Îp.

This proves the inequality (16) and completes the proof of i..
Let us now prove item ii. of the statement. In this case p = 2, µ < µc, and Ê̂(0) = 0. The

latter condition implies that ‚Ê(|›|) Ø 0 for all › œ R2. In particular, ‚Ê(qc) = max
rØ0

‚Ê(r) = Î‚ÊÎŒ.
Recall that �I(u) = I + µÊ ú f(u). Then, by Plancherel identity, the following holds for all
u, v œ L2(R2),

Î�I(v) ≠ �I(u)Î2 = Î\�I(v) ≠ \�I(u)Î2 = µÎ‚Ê( ‰f(u) ≠
‰f(v))Î2 Æ µÎ‚ÊÎŒÎ

‰f(u) ≠
‰f(v)Î2

= µ‚Ê(qc)Îf(u) ≠ f(v)Î2

Æ
µ

µc
Îu ≠ vÎ2.(22)

Here, the last inequality follows from µc = Ê̂(qc)≠1 and the fact that f is 1-Lipschitz. Since
µ < µc, the existence of a unique stationary state aI œ L2(R2) is obtained by invoking the
contraction mapping principle. We complete the proof by arguing as in the previous point and
replacing (21) by

(23) Îb(·, t)Î2 Æ e≠t
Îb(·, 0)Î2 + µÎÊ̂ÎŒ

⁄ t

0
e≠(t≠s)

Îb(·, s)Î2ds.

⇤

Due to Theorem 3.1, we can introduce the following.

Definition 3.2. Let 1 Æ p Æ Œ, the nonlinear input-output map � : Lp(R2) æ Lp(R2) is
defined by

(24) �(I) = I + µÊ ú f(�(I)), for all I œ L2(R2)

Proposition 3.1. Let 1 Æ p Æ Œ and assume that µ < µ0. Then,
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(1) The map � is well-defined, bi-Lipschitz continuous, and it holds

(25) Î�(I)Îp Æ
µ0

µ0 ≠ µ
ÎIÎp, for all I œ Lp(R2);

(2) If 1 < p Æ Œ, the map � belongs to C1(Lp(R2); Lp(R2)).

Proof. We only provide the proof of item 1., for item 2. see Theorem B.3. Let I1, I2 œ Lp(R2).
Then using inequality (12), we obtain

Î�(I1) ≠ �(I2)Îp Æ
µ

µ0
Î�(I1) ≠ �(I2)Îp + ÎI1 ≠ I2Îp.

It follows that
Î�(I1) ≠ �(I2)Îp Æ

µ0
µ0 ≠ µ

ÎI1 ≠ I2Îp,

provided µ < µ0. This implies that � is Lipschitz continuous from Lp(R2) to itself. On the
other hand, thanks to inequality (12),

Î�(I1) ≠ �(I2)Îp Ø

----ÎI1 ≠ I2Îp ≠ µÎÊ ú [f(�(I1)) ≠ f(�(I2))] Îp

----

Ø ÎI1 ≠ I2Îp ≠
µ

µ0
Î�(I1) ≠ �(I2)Îp.

(26)

It follows that
ÎI1 ≠ I2Îp Æ

3
1 + µ

µ0

4
Î�(I1) ≠ �(I2)Îp.

This shows that � is bijective and �≠1 is Lipschitz continuous from Lp(R2) to itself. ⇤

4. Controllability issues of Amari-type equation

In the area of mathematical neuroscience, the research by Ermentrout and Cowan [9] is
notable for its pioneering insights into the spontaneous emergence of patterns in V1 using neural
fields equations of Wilson-Cowan [32]. Likewise, Nicks et al. [20] provided a comprehensive
understanding of how V1 patterns (orthogonally) respond to specific stimuli that are regular
in shape and fill all the visual field, particularly near the threshold value µc via bifurcation
theory and multi-scale analysis. However, these studies do not directly address, for instance,
the MacKay e�ect associated with redundant stimulation [18].

Building on our discussion in Section 1.2.2, we claim that these intriguing visual patterns
in V1 should manifest before the µ parameter reaches the threshold µc. Given this, we are
interpreting the MacKay e�ect using a controllability framework, specifically in relation to the
Amari-type equation (NF). In this context, the sensory input is not just passive data; it acts as
a control, shaping and reflecting V1’s interpretation of the visual stimulus in the experiment.

We consider in this section the following nonlinear Amari-type control system,

(27)

Y
___]

___[

ˆta(x, t) + a(x, t) ≠ µ
⁄

R2
Ê(x ≠ y)f(a(y, t))dy = I(x) (x, t) œ R2

◊ [0, T ],

a(x, 0) = a0(x), x œ R2,

where the cortical activity a represents the state of the system, a0 œ Lp(R2) is the initial datum,
the sensory input I œ Lp(R2) is the control that we will use to act on the system state and the
time horizon T > 0.
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Definition 4.1 (Exact controllability). Let 1 Æ p Æ Œ. We say that the nonlinear control
system (27) is exactly controllable in Lp(R2) in time T > 0 if, for any a0, aT œ Lp(R2), there
exists a control function I œ Lp(R2) such that the solution of (27) with a(·, 0) = a0 satisfies
a(·, T ) = aT .

To comprehend how the exact controllability of the nonlinear control system (27) could be
handled, let us first investigate the exact controllability of the linear model that we write in a
more abstract way (initial value Cauchy problem) as follows,
(28) ȧ(t) = Aa(t) + I, a(0) = a0, t œ [0, T ],
where the operator A is given by
(29) Au = ≠u + µÊ ú u, ’u œ Lp(R2).
Observe that for any 1 Æ p Æ Œ, the operator A is a linear bounded operator from Lp(R2) to
itself.
Proposition 4.1. Let 1 Æ p Æ Œ. Then the control system (28) is exactly controllable in
Lp(R2) in any time T > 0.
Proof. Fix T > 0 and let a0, aT œ Lp(R2). Since etA is a uniformly continuous semigroup of
bounded linear operators on Lp(R2) for any t Ø 0, one can write

etA = Id +O(t), t Ø 0,

where O(t) is a linear and bounded operator of Lp(R2) satisfying ÎO(t)Î Æ tÎAÎetÎAÎ, see for
instance, [22, Theorem 1.2.]. Therefore, for any · œ (0, T ] and a· œ Lp(R2), the solution of (28)
at time · satisfies

(30) a· := a(·) = e·Aa0 +
⁄ ·

0
e(·≠s)AIds = e·Aa0 + ·(Id +O(·))I.

Letting · small enough, Id +O(·) is invertible in L (Lp(R2)) (the vector space of linear and
bounded operators from Lp(R2) into itself), and I = ·≠1(Id +O(·))≠1(a· ≠ e·Aa0) œ Lp(R2)
defines a control function that steers the solution of (28) from a0 to a· in time · . Finally, it is
immediate to see that the control Iú defined by Iú = 0 on [0, T ≠ · ] and Iú = I œ Lp(R2) on
(T ≠ ·, T ] is a function in Lp(R2) that steers the solution of (28) from a0 to aT in time T . ⇤

Let us now discuss the exact controllability in Lp(R2) of the nonlinear system (27) that we
write in abstract way as
(31) ȧ(t) = N(a(t)) + I, a(0) = a0, t œ [0, T ],
where for any 1 Æ p Æ Œ, the nonlinear operator N is given by
(32) N(u) = ≠u + µÊ ú f(u), u œ Lp(R2).
Then (31) defines an ordinary di�erential equation in Lp(R2) associated with N . Recall from
Lemma 3.1 that for every 1 Æ p Æ Œ, the nonlinear operator N is (globally) Lipschitz continuous
from Lp(R2) to itself. Therefore, one can define a nonlinear3 semigroup of operators {U(t, ·)}tØ0
in Lp(R2) such that for any a0 œ Lp(R2), a(t) := U(t, a0) is the unique solution to (31) when
I © 0, namely

(33) ˆU

ˆt
(t, a0) = N(U(t, a0)), U(0, a0) = a0.

3Please, refer, for instance, to [21, p. 1] or [14, Section 3] for the definition of a nonlinear semigroup of
operators.
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Theorem 4.1. Let 1 < p Æ Œ. Then the control system (31) is exactly controllable in Lp(R2)
in any time T > 0.

Proof. First of all, by Lemma B.2 one has N œ C1(Lp(R2); Lp(R2)) and the Fréchet di�erential
DN(u) œ L (Lp(R2)) is bounded for every u œ Lp(R2). Let T > 0 and · œ (0, T ].

On one hand, di�erentiating (33) with respect to a0, the chronological calculus [1] allows us
to represent for any v œ Lp(R2) and every t œ [0, · ], the operator Da0U(t, v) œ L (Lp(R2)) as
the right chronological exponential, namely

(34) Da0U(t, v) = ≠æexp
3⁄ t

0
DN(U(s, v))ds

4
, 0 Æ t Æ ·.

In particular, thanks to Lemma B.2 one gets for any v œ Lp(R2),

(35) ÎDa0U(t, v) ≠ Id ÎL (Lp(R2)) Æ t
3

1 + µ

µ0

4
e

t
1

1+ µ
µ0

2

, 0 Æ t Æ ·.

On the other hand, for any a0 œ Lp(R2) and every I œ Lp(R2), the solution a œ C([0, · ]; Lp(R2))
of (31) can be represented as

(36) a(t) = U(t, g(t)), t œ [0, · ].

Once again, using the chronological calculus, one obtains that g is given for every t œ [0, · ] by

(37) g(t) = a0 +
⁄ t

0
[Da0U(s, g(s)]≠1 Ids = a0 +

⁄ t

0
T (s)Ids,

where the operator

(38) T (s) := [Da0U(s, g(s)]≠1 = Ω≠exp
3

≠

⁄ s

0
DN(U(÷, g(÷))d÷

4
, 0 Æ s Æ t,

is the left chronological exponential [1, Eq (2.18)], which belongs to L (Lp(R2)). In particular,
it satisfies thanks to Lemma B.2,

(39) ÎT (s) ≠ Id ÎL (Lp(R2)) Æ s
3

1 + µ

µ0

4
e

s
1

1+ µ
µ0

2

, 0 Æ s Æ t.

Letting now a· œ Lp(R2), one can compute owing to (35) and (39),

a· := a(·) = U(·, g(·)) = U(·, a0) +
⁄ 1

0

ˆ

ˆ÷
U

3
·, a0 + ÷

⁄ ·

0
T (s)Ids

4
d÷

= U(·, a0) +
;⁄ 1

0

5
Da0U

3
·, a0 + ÷

⁄ ·

0
T (s)Ids

46 3⁄ ·

0
T (s)Ids

4
d÷

<

= U(·, a0) +
;⁄ 1

0
(Id +O(·))

⁄ ·

0
(Id +O(s))dsd÷

<
I

= U(·, a0) + ·(Id +O(·))I.(40)

Then, letting · œ (0, T ] small enough, one finds that Id +O(·) is invertible in L (Lp(R2)) and
I = ·≠1(Id +O(·))≠1(a· ≠ U(·, a0)) œ Lp(R2) defines a control function that steers the solution
of (31) from a0 to a· in time · . Finally, one can iterate this procedure in [·, 2· ], · · · , to prove
the exact controllability of (31) in arbitrarily positive time T > 0. ⇤
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Remark 4.1. Observe that the exact controllability results given in Proposition 4.1 and Theo-
rem 4.1 holds for every µ > 0. Moreover, related to Theorem 4.1 in the case of p = 1, the chrono-
logical exponentials (38) and (34) do not belong to L (L1(R2)) since the Gateaux-di�erential of
the nonlinear operator N is not continuous from L1(R2) into L (L1(R2)).
Remark 4.2. We also stress that exact controllability results proved in Proposition 4.1 and The-
orem 4.1 are quite general regarding assumptions on the connectivity kernel Ê and the nonlinear
response function f . For the validity of Proposition 4.1, it su�ces that Ê œ L1(R2) to guarantee
the existence of a unique solution to Equation (29). While for the validity of Theorem 4.1, it
su�ces that Ê œ L1(R2) fl Lp(R2) and f œ C2(R) is bounded with its first and second deriva-
tives, as it is su�cient for the validity of Lemma (B.2) (see, for instance, inequalities (110) and
(115)).

5. On the MacKay effect replication

As mentioned in the introduction, we stress that the physical visual stimuli employed in
MacKay’s experiments consist of funnel and tunnel patterns with highly localized redundant
information. Taking into account Equation (9) and the retino-cortical map, we incorporate
these patterns as sensory inputs in Equation (NF), such that I œ {PF , PT } + Áv, where Á > 0
and v represents a localized function in the cortical domain intended to model the redundant
information present in the funnel and tunnel patterns. In this context, the function v can also
be regarded as a localized distributed control, aiming to disrupt the global plane Euclidean
symmetry of the funnel or tunnel pattern.

In Section 5.1, assuming that the response function f is linear, we provide a more general
result showing that spontaneous cortical patterns cannot induce illusory contours in the output
pattern. In particular, we deduce that I œ {PF , PT } cannot induce the MacKay e�ect using
Equation (NF). Then, using MacKay’s stimuli I œ {PF , PT } + Áv, we prove in Section 5.2 that
the linearized of (NF) is su�cient to theoretically replicate the MacKay e�ect from redundant
stimulation. Thus, the phenomenon starts in the linear regime, so the e�ect of saturating f
should only dampen out high oscillations occurring in the system. In Section 5.3, we provide
theoretical proof of all these results when the response function f is a nonlinear sigmoid function.

5.1. A priori analysis. In this section, we prove that it is necessary to break the Euclidean
symmetry of funnel and tunnel pattern by localized control function for replicating the MacKay
e�ect with Equation (NF), both with a linear and nonlinear response function. Our first result
is the following.
Theorem 5.1. Let a0 œ LŒ(R2) and I œ LŒ(R2) given by I(·) = cos(2fiÈ›0, ·Í), for some
›0 œ R2. Assume that the response function f is linear. If µ < µ0, it holds

(41) a(·, t) ≠≠≠æ
tæŒ

I(·)
1 ≠ µ‚Ê(›0) , exponentially in LŒ(R2),

where a œ XŒ is the solution of (NF) with initial datum a0.
Proof. The stationary state associated with I(·) = cos(2fiÈ›0, ·Í) is given by aI(·) = I(·)/(1 ≠

µ‚Ê(›0)). Indeed, one has for x œ R2,

(42) I(x) + µ(Ê ú aI)(x) = I(x) + µ

1 ≠ µ‚Ê(›0)(Ê ú I)(x) = I(x)
1 ≠ µ‚Ê(›0) = aI(x),

since Ê ú I = ‚Ê(›0)I. Therefore, if µ < µ0, the result follows by the uniqueness of stationary
state and exponential convergence of a to aI in the space LŒ(R2) provided by Theorem 3.1. ⇤
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Corollary 5.1. Assume that the response function f is linear. If µ < µ0, then aF (resp. aP ) is
a funnel (resp. tunnel) pattern in shape as PF (resp. PT ). In particular, Equation (NF) with a
linear response function cannot reproduce the MacKay e�ect starting with a sensory input equal
to PF or PT .

Proof. Due to Theorem 5.1, the stationary states associated with PF and PT are respectively
proportional to PF and PT so that they have the same binary pattern respectively (see, Sec-
tion 2.2), and then the same geometrical shape in terms of images. ⇤

We provide a similar result as that of Theorem 5.1 with the presence of the nonlinear function
f in Equation (SS). This result shows, in particular, that even in the presence of the nonlinearity,
Equation (NF) cannot describe the MacKay e�ect when the sensory input is chosen equal to
PF or PT . Since PF and PT play symmetry roles, we focus only on PF . We recall that they are
analytically given in Cartesian cortical coordinates in V1 by (9).

Theorem 5.2. Assume that the sensory input in Equation (SS) is taken as I = PF œ LŒ(R2).
If µ < µ0, then the stationary state aF := �(PF ) œ LŒ(R2) associated with PF explicitly depends
solely upon x2. Moreover, one has the following.

(1) The function aF is even and 1/⁄-periodic with respect to x2;
(2) The function aF is infinitely di�erentiable, and Lipshitz continuous;
(3) If in addition µ < µ0/2 and the function f is odd, then aF has a discrete and countable

number of zeroes with respect to x2, identical with that of x2 ‘æ cos(2fi⁄x2) on R.

Remark 5.1. Notice the assumption µ < µ0/2 in item 3. of Theorem 5.2 instead of µ < µ0.
We think this is a technical assumption because of the strategy used in our proof since numerical
results suggest that item 3. remains valid for all µ < µ0. Moreover, the assumption on the parity
of f is also technical, and we conjecture that if f is not odd, then aF will still have a discrete
and countable number of zeroes with respect to x2, such that

(43) a≠1
F ({0}) = R ◊

;
zk œ

6
k

2⁄
,
k + 1

2⁄

5
| k œ Z

<
,

and, for all k œ Z,

(44) |zk ≠ ·k| Æ
arcsin(µµ≠1

0 )
2fi⁄

, where ·k := 2k + 1
4⁄

.

The gap between the zeroes of aF and those of PF provided by (44) shows that on each interval,
zk and ·k become arbitrarily closed depending on whether µ is not closed to µ0. Nevertheless, if
⁄ is taken su�ciently large, zk and ·k become arbitrarily close independently of µ0 ≠ µ.

Proof of Theorem 5.2. For ease of notation, we assume in the sequel that ⁄ = 1. We know by
item 3. of Proposition A.1 that if PF or aF has a subgroup of E(2) as a group of symmetry,
the other has the same subgroup as a group of symmetry and conversely. Since PF (x1, x2) is
independent on x1, it follows that aF (x1, x2) is also independent on x1 for all (x1, x2) œ R2.
Similarly, since PF is invariant under the action of the reflection with respect to the straight
x1 = 0, that is, PF (x1, ≠x2) = PF (x1, x2) for all (x1, x2) œ R2, one deduces that aF (x1, ≠x2) =
aF (x1, x2). Thus, aF is an even function with respect to x2. Similarly, since PF is invariant under
the translation by vector (0, ≠1) œ R2, it follows that aF is also invariant under this translation
so that aF is 1-periodic with respect to x2. The fact that aF is infinitely di�erentiable on R2

follows immediately from that PF œ CŒ(R2), the kernel Ê œ S(R2) µ CŒ(R2) fl L1(R2) and
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that f is bounded. Writing now aF (x2) := aF (x1, x2) for notational ease, we obtain that aF is
also given by

(45) aF (x2) = cos(2fix2) + µ[Ê1 ú f(aF )](x2), x2 œ R,

where Ê1 is a 1D di�erence of Gaussian kernel . Let aÕ
F := ˆx2aF , then due to (45), one obtains

(46) aÕ
F (x2) = ≠2fi sin(2fix2) + µ[ÊÕ

1 ú f(aF )](x2), x2 œ R.

Since ÎfÎŒ Æ 1 by assumption, it follows that ÎaÕ
F ÎŒ Æ 2fi + µÎÊÕ

1Î1 < Œ. Therefore, aF is
Lipschitz continuous.

We now present an argument to prove item 3. of Theorem 5.2. Notice that aF = �(PF )
satisfies

(47) aF = PF + µÊ ú f(aF ).

In particular, thanks to item 1., one has a≠1
F ({0}) ∏ R ◊ {±1/4 + k | k œ Z}.

To show the converse inclusion, let xú := (xú
1, xú

2) verifying aF (xú) = 0. From (47), it follows

(48) cos(2fixú
1) = ≠µ

⁄

R2
Ê(y)f(aF (xú ≠ y))dy.

On one hand, by exploiting trigonometric formulae for the cosine, one has for a. e., y œ R2,

(49) aF (xú ≠ y) = sin(2fixú
1) sin(2fiy1) + µ

⁄

R2
k(y, z)f(aF (xú ≠ z))dz,

where k(x, y) := Ê(x ≠ y) ≠ cos(2fix1)Ê(y), satisfies

(50) K := sup
xœR2

⁄

R2
|k(x, y)|dy = 2ÎÊÎ1.

Since µ < µ0/2, the contracting mapping principle shows that for every I œ LŒ(R2) there exists
a unique solution b œ LŒ(R2) to

(51) b(x) = I(x) + µ
⁄

R2
k(x, y)f(b(y))dy.

By (49), function b(y) := aF (xú ≠ y) is the unique solution of the above equation associated
with I(y) = sin(2fixú

1) sin(2fiy1).
On the other hand, since Ê is symmetric and the sigmoid f is an odd function, we have also

for a. e., y œ R2,

(52) ≠aF (xú + y) = sin(2fixú
1) sin(2fiy1) + µ

⁄

R2
k(y, z)f(≠aF (xú + z))dz,

so that, the function b̃(y) = ≠b(≠y) is also solution of Equation (51) associated with the input
I(y) = sin(2fixú

1) sin(2fiy1). By uniqueness of solution, one then has b(≠y) = ≠b(y) for a. e., y œ

R2. This shows that y ‘æ Ê(y)f(aF (xú ≠ y)) is an odd function on R2, since Ê is symmetric
and f is an odd function, which implies that the r.h.s. of (48) is equal to 0 and thus that
xú

œ P ≠1
F ({0}). ⇤

The proof of the following corollary follows the same lines as that of Corollary 5.1.

Corollary 5.2. Under assumption, µ < µ0, aF (resp. aT ) is a funnel (resp. tunnel) pattern
in shape. In particular, Equation (NF) with a sigmoid activation function cannot reproduce the
MacKay e�ect starting with a sensory input equal to PF or PT .
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Remark 5.2. By following the lines in the proof of Theorem 5.2, we can notice that it is only
su�cient for the kernel Ê to be homogeneous and isotropically invariant to obtain the desired
results.

5.2. The MacKay e�ect with a linear response function. The results we provide in this
section aim to replicate the MacKay e�ect using Equation (NF) when the response function f is
linear. The Corollary 5.1 shows that, for our model of cortical activity in V1, one cannot obtain
the MacKay e�ect in the linear regime without breaking the Euclidean plane symmetry of the
sensory input when chosen equal to PF or PT . Our purpose now is to show that Equation (NF)
with the linear response function and sensory input I œ {PF , PT } + Áv reproduces the MacKay
e�ect. Here v is a suitable control function which should model the redundant information in
MacKay’s stimuli.

Remark 5.3. We notice that only the description of the MacKay e�ect related to the funnel
pattern will be shown for ease of presentation and reader convenience. Then, in the rest of this
section, we focus on describing the MacKay e�ect related to the “MacKay rays”; seex Fig 2.

One of the fundamental properties of the retinotopic projection of the visual field into V1
is that small objects centred on the fovea (centre of the visual field) have a much larger rep-
resentation in V1 than do similar objects in the peripheral visual field. Consistent with that,
a more realistic cortical representation of the “MacKay rays” visual stimulus consists of taking
the sensory input in Equation (NF) as I(x) = PF (x)+ÁH(◊ ≠x1), where Á > 0, ◊ Ø 0 (typically,
◊ ∫ 1) and H is the Heaviside step function, modelling the redundant information in the centre
of the funnel pattern. Note that this corresponds to redundant information in horizontal stripes
in the left area of the cortex.

To keep the presentation as clear as possible for reader convenience, we let ◊ = 0, and we
assume that the cortical representation of the “MacKay rays” visual stimulus is given by

(53) I(x) = cos(2fi⁄x2) + ÁH(≠x1), ⁄, Á > 0, x := (x1, x2) œ R2.

Since the sensory input v(x1, x2) = H(≠x1) explicitly depends only upon the variable x1,
the associated stationary output b also depends solely on that variable (a consequence of Re-
mark A.1). Thus, we are now devoted to computing the solution b of the following equation

(54) b(x) = I(x) + µ(Ê1 ú b)(x), x œ R,

where I(x) = H(≠x) and the 1-D kernel Ê1 is given by

(55) Ê1(x) = [‡1
Ô

2fi]≠1e
≠ x2

2‡2
1 ≠ Ÿ[‡2

Ô
2fi]≠1e

≠ x2
2‡2

2 , x œ R.

(56) „Ê1(›) = e≠2fi2‡2
1›2

≠ Ÿe≠2fi2‡2
2›2

.

Lemma 5.1. Let I œ S
Õ(R) and the kernel Ê1 œ S(R) be defined by (55). Under the assumption

µ < µc, there is a unique solution b œ S
Õ(R) to Equation (54), which is given by

(57) b = I + µK ú I.

Here the kernel K œ S(R) is defined of all x œ R by

(58) K(x) =
⁄ +Œ

≠Œ
e2ifi›x„K(›)d›, where „K(›) =

„Ê1(›)
1 ≠ µ„Ê1(›) , ’› œ R.



ON THE MATHEMATICAL REPLICATION OF THE MACKAY EFFECT 19

Proof. First of all, under assumptions on I and Ê1, we have that Equation (54) is well-posed in
S

Õ(R). Then taking respectively the Fourier transform of (54) and the inverse Fourier transform
in the space S

Õ(R), we find that b œ S
Õ(R) is given by (57) with K œ S(R) defined as in (58).

Indeed, observe that „K is well-defined on R due to hypothesis µ < µc, with µc being defined
in (1), and it belongs to the Schwartz space S(R) as the product of a CŒ(R) function and an
element of S(R). ⇤

Due to Lemma 5.1, inverting the kernel K defined in (58) and providing an asymptotic
behaviour of its zeroes on R will help to provide detailed information on the qualitative properties
of the function b as given by (57). To achieve this, we use tools from complex and harmonic
analysis.

Let us consider the extension of „K in the set C of complex numbers,

(59) „K(z) =
„Ê1(z)

1 ≠ µ„Ê1(z) , z œ C.

Then „K is a meromorphic function on C, and its poles are zeroes of the entire function

(60) h(z) := 1 ≠ µe≠2fi2‡2
1z2 + Ÿµe≠2fi2‡2

2z2
, z œ C.

Remark 5.4. The holomorphic function h is an exponential polynomial [3, Chapter 3] in ≠z2

with frequencies –0 = 0, –1 = 2fi2‡2
1 and –2 = 2fi2‡2

2 satisfying –0 < –1 < –2 due to assumptions
on ‡1 and ‡2. It is normalized since the coe�cient of 0-frequency equals 1. A necessary condition
for h for being factorizable [3, Remark 3.1.5, p. 201] is that parameters ‡1 and ‡2 are taken
so that it is simple. By definition [3, Definition 3.1.4, p. 201], h is simple if –1 and –2 are
commensurable, i.e., –1/–2 œ Q, which is equivalent to ‡2

1/‡2
2 œ Q. Here Q denote the set of

rational numbers.

Remark 5.5. For ease in computation and pedagogical presentation, we assume in the rest of
this section that parameters in the kernel Ê defined in (4) and then in the 1-D kernel Ê1 defined
in (55) are given by Ÿ = 1, 2fi2‡2

1 = 1 and 2fi2‡2
2 = 2. In this case, one has µ0 := ÎÊÎ

≠1
1 = 2 and

µc := ‚Ê(›c)≠1 = 4. In particular Ê satisfies the balanced condition ‚Ê(0) = 0. Then, assuming in
this particular consideration that µ := 1 < µ0 = 2 is not a loss of generality.

The main result of this section is then the following.

Theorem 5.3. Assume that the response function f is linear and the input I is given by (53).
Under the considerations of Remark 5.5, the unique stationary state to Equation (NF) is given
for all (x1, x2) œ R2 by

(61) aI(x1, x2) = cos(2fi⁄x2)
1 ≠ µ‚Ê(›0) + Ág(x1), ›0 := (0, ⁄),

where g : R æ R has a discrete and countable set of zeroes on (0, +Œ).

Observe that under the assumption that the response function f is linear, Equation (NF)
becomes linear. It follows that the first term in the r.h.s. of (61) is the stationary output
associated with the input PF by using Theorem 5.1, and b is the stationary output associated
with the sensory input v(x1, x2) = H(≠x1). Consequently, Theorem 5.3 follows from the fol-
lowing proposition. The proof is an immediate consequence of Lemma 5.1, Theorem B.1 and
Proposition B.1 given in Section B.1.
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Proposition 5.1. Let I(x) = H(≠x), x œ R, H being the Heaviside step function. Under the
considerations of Remark 5.5, the solution b œ LŒ(R) of (54) is given, for x > 0, by

(62) efix


2fi
3 b(x) =

Ô
3

fi
cos

A
fi

3 + fix

Ú
2fi

3

B

+ O
3 1

x

4
.

Moreover, letting (◊k)kœNú and (·k)kœNú be respectively zeroes and extrema of x ‘æ cos(fi/3 +
fix


2fi/3) for x > 0, the zeroes of b in (0, +Œ) are a countable sequence (flk)kœNú such that flk

is unique in the interval Jk :=]·k, ·k+1[ for all k œ Nú and it holds

(63) |◊k+1 ≠ flk| Æ

Ô
6

2fi2 arcsin
A

2
Ô

5
5fi(3k ≠ 1)

B

, ’k œ Nú.

Proof. If I(x) = H(≠x), x œ R, is the input in Equation (54), then by Lemma 5.1 and Theo-
rem B.1, the solution b œ LŒ(R) of (54) is given for all x > 0 by

b(x)
2
Ô

fi
=

⁄ +Œ

x
e≠fiy


2fi
3 cos

A
fi

12 + fiy

Ú
2fi

3

B

dy

+
⁄ +Œ

x

+Œÿ

k=1

e≠ficky


2fi
3

ck
cos

A
fi

12 + ficky

Ú
2fi

3

B

dy

+
⁄ +Œ

x

+Œÿ

k=1

e≠fidky


2fi
3

dk
sin

A
fi

12 ≠ fidky

Ú
2fi

3

B

dy,(64)

where the sequences (ck)k and (dk)k are defined in (77). Since these two sequences are positives
and tend to +Œ as k æ +Œ, we can commute the integrals and the sums in the r.h.s of (64)
for all x > 0. One finds,

b(x) =
Ô

3
fi

cos
A

fi

3 + fix

Ú
2fi

3

B

e≠fix


2fi
3 +

Ô
3

fi

+Œÿ

k=1

e≠fickx


2fi
3

c2
k

cos
A

fi

3 + fickx

Ú
2fi

3

B

≠

Ô
3

fi

+Œÿ

k=1

e≠fidkx


2fi
3

d2
k

cos
A

fi

3 + fidkx

Ú
2fi

3

B

,(65)

and (62) immediately follows. Finally, to prove (63), it su�ces to repeat the proof of Lemma B.1
and Proposition B.1 given in Section B.1. ⇤

The Proposition 5.1 implies that if the sensory input is the V1 representation of the “MacKay
rays” as defined by (53), then the associated stationary state corresponds to the V1 represen-
tation of the afterimage reported by MacKay [18]. Moreover, Theorem 3.1 ensures that the
average membrane potential a(x, t) of neurons in V1 located at x œ R2 at time t Ø 0 exponen-
tially stabilises on the stationary state when t æ Œ. It follows that Equation (NF) theoretically
replicates the MacKay e�ect associated with the “MacKay rays” at the cortical level. Due to
the retino-cortical map between the visual field and V1, we deduce the theoretical description
of the MacKay e�ect for the “MacKay rays” at the retinal level.

Remark 5.6. We emphasise that a linear combination of the Heaviside step function in the
x2-variable as a perturbation of the V1 representation of the tunnel pattern (called “MacKay
target”) gives rise to the MacKay e�ect description related to this pattern.
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5.3. The MacKay e�ect with a nonlinear response function. This section aims to show
that Equation (NF) with a nonlinear response function f still replicates the MacKay e�ect
associated with the “MacKay rays” and the “MacKay target”, see Figure 1.

Remark 5.1 and Corollary 5.2 shows that, for our model of cortical activity in V1 modelled by
Equation (NF), one cannot replicate the MacKay e�ect even with a nonlinear response function
(having standard properties in most neural fields model, namely, a sigmoid) without breaking
the Euclidean plane symmetry of the sensory input when chosen equal to PF or PT . In the
following, in order to see why a response function with sigmoid shape replicates the MacKay
e�ect, we assume the following hypothesis.

Hypothesis 5.1. The response function f satisfies: f œ C2(R), f is odd and f(s) = s for all
|s| Æ 1. We also assume that maxsœR f Õ(s) = 1.

Let us model the cortical representation of the “MacKay rays” input by the following

(66) I(x) = “PF (x) + ÁH(≠x1), x := (x1, x2) œ R2,

where “ Ø 0 is a control parameter, Á > 0 and PF (x) = cos(2fiÈ›0, xÍ) is an analytical represen-
tation of the funnel pattern in cortical coordinates, where ›0 = (0, ⁄) with ⁄ > 0.

The first result of this section is then the following

Proposition 5.2. Let the input I be defined by (66) with Á > 0 small and “ Æ 1 ≠ µ‚Ê(›0).
Under the assumption, µ < µ0, equation (NF) with a response function satisfying Hypothesis 5.1
replicates the MacKay e�ect associated with the “MacKay rays”.

Proof. On one hand, the stationary solution associated with I(x) = “PF (x) + Áv(x1, x2), where
v(x1, x2) = H(≠x1) satisfies (24) in LŒ(R2), i.e.,

(67) �(“PF + Áv) = “PF + Áv + µÊ ú f(�(“PF + Áv)).

On the other hand, since ÎPF ÎŒ = 1 = ÎvÎŒ, 0 < “ Æ 1 ≠ µ‚Ê(›0) Æ 1 and Á π 1, we can apply
Theorem B.3 and obtain

(68) �(“PF + Áv) = �(“PF ) + ÁD�(“PF )v + o(Á),

where D�(“PF )v is the di�erential of � at “PF in the direction of v. It also follows from Theo-
rems 3.1 and B.2 that for some g1 Ø 0, it holds Î�(“PF )ÎŒ Æ g1 = “ÎPF ÎŒ+(µ/µ0)f(g1) < 3/2.
Thus, injecting (68) into (67) and Taylor expansion of f in the first order leads to

(69) �(“PF ) = “PF + µÊ ú f(�(“PF )), D�(“PF )v = v + µÊ ú [f Õ(�(“PF ))D�(PF )v.]

Thanks to Hypothesis 5.1 and the assumption “ Æ 1 ≠ µ‚Ê(›0), one has �(“PF ) = “PF /(1 ≠

µ‚Ê(›0)). Indeed, since |“PF /(1 ≠ µ‚Ê(›0)| Æ 1 and Ê ú PF = ‚Ê(›0)PF , one has that

(70) “PF + µÊ ú f
3

“PF

1 ≠ µ‚Ê(›0)

4
= “PF + µ“Ê ú PF

1 ≠ µ‚Ê(›0) = “PF

1 ≠ µ‚Ê(›0) .

Therefore, �(“PF ) is also a funnel pattern when represented in term of binary image. Moreover,
since |�(“PF )| Æ 1, one has f Õ(�(“PF )) = 1, and D�(“PF )v = v +µÊ úD�(PF )v has a discrete
and countable set of zeroes by Proposition 5.1. The result then follows at once. ⇤
Proposition 5.3. Let v œ LŒ(R2). Under the assumption µ < µ0, the map � : “ œ RØ0 ‘æ

�(“) = u“ œ LŒ(R2), where u“ is the solution of u“ = v + µÊ ú [f Õ(�(“PF ))u“ ] is Lipschitz
continuous.
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Proof. Let v œ LŒ(R2) be fixed and “ œ RØ0. If u“ œ LŒ(R2) is the solution of u“ = v +
µÊ ú [f Õ(�(“PF ))u“ ], then, under the assumption µ < µ0 and Hypothesis 5.1, one has Îu“ÎŒ Æ

ÎvÎŒµ0/(µ ≠ µ0). Let now “1, “2 œ RØ0, then using Inequality (25), one finds

Î�(“1) ≠ �(“2)ÎŒ Æ µÎÊÎ1Îf Õ(�(“1PF ))u“1 ≠ f Õ(�(“2PF ))u“2ÎŒ

Æ
µ

µ0
Î�(“1) ≠ �(“2)ÎŒ + µµ0ÎvÎŒf ÕÕ

Œ
(µ0 ≠ µ)2 |“1 ≠ “2|,(71)

where f ÕÕ
Œ is the LŒ-norm of the second derivative f ÕÕ. The result then follows at once. ⇤

Let us define the positive quantity

(72) “0 := sup{“ Ø 0 | Î�(“ÕPF )ÎŒ Æ 1, for all “Õ
œ [0, “]}.

Observe that “0 is not necessary finite and that if 0 Æ “ Æ “0, then f Õ(�(“PF )) = 1. It follows
that if “0 = +Œ, then Î�(“PF )ÎŒ Æ 1 for all “ Ø 0 and therefore, under Assumption µ < µ0,
Equation (NF) with a response function satisfying Hypothesis 5.1 and with the input I defined
by (66) with Á > 0 will always reproduce the MacKay e�ect associated with “MacKay rays”
thanks to Proposition 5.3.

In the case where “0 is finite, one has the following.

Theorem 5.4. Let L > 0. If “0 defined by (72) is finite, there exists ” > 0 such that the
stationary solution to Equation (NF) with a response function satisfying Hypothesis 5.1 and
with the input I defined by (66) with Á > 0 small and |“ ≠ “0| Æ ” has the same zeroes structure
as in the linear case in [0, L] ◊ R, under Assumption µ < µ0. In particular, it replicates the
MacKay e�ect associated with the “MacKay rays”.

Proof. Let Á > 0 be small and “0 defined by (72) be finite. On one hand, by definition of “0 and
Proposition 5.2, the stationary solution aI(x1, x2) to Equation (NF) with a response function
satisfying Hypothesis 5.1 and with the input I defined by (66) with “ = “0 has a discrete and
countable zero-level set with respect to each of its variables x1 > 0 and x2 œ R. On the other
hand, one has for all “ Ø 0, �(“PF + Áv) = �(“PF ) + Áu“ + o(Á) where u“ œ LŒ(R2) is the
solution of u“ = v + µÊ ú [f Õ(�(“PF ))u“ ]. We known from Theorems 5.1 and 5.2 that �(“PF )
has a discrete set of zeroes with respect to x2 as PF , and from Proposition 5.3 that for all ÷ > 0,
there exists ” > 0 such that, if |“ ≠ “0| Æ ” it holds Îu“ ≠ u“0ÎŒ Æ ÷. Therefore, since u“0
has a discrete set of zeroes with respect to x1 > 0, then the zeroes of the function u“ cannot
accumulate at any of those zeroes in a finite interval, that is, the zeroes of both functions are
distributed similarly in [0, L] ◊ R for all finite L > 0. ⇤
Remark 5.7. Although a sigmoid nonlinearity such as f(s) = tanh(s) or f(s) = erf(s

Ô
fi/2)

does not satisfies the assumption f(s) = s for |s| Æ 1, it is almost linear in a small interval of
the form (≠Á, Á), Á > 0 in such a way that Theorem 5.4 should be a theoretical explanation of
why Equation (NF) with this nonlinearity replicates the MacKay e�ect.

5.4. Numerical results for the MacKay e�ect. The numerical implementation is performed
with Julia, where we coded retino-cortical map for visualising each experiment. Moreover,
given a sensory input I, the associated stationary output aI is numerically implemented via an
iterative fixed-point method. Following the convention adopted in [9, 5] for geometric visual
hallucinations, we present binary versions of these images, where black corresponds to positive
values and white to negative ones as explained in Section 2.2.
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Figure 5. MacKay e�ect (right) on the “MacKay rays” (left). We use the linear
response function f(s) = s. The sensory input is chosen as I(x) = cos(5fix2) +
ÁH(2 ≠ x1), Á = 0.025, where H is the Heaviside step function.

The cortical data is defined on a square (x1, x2) œ [≠L, L]2, L = 10 with steps �x1 =
�x2 = 0.01. For the reproduction of the MacKay e�ect, parameters in the kernel Ê given
by (4) are Ÿ = 1, 2fi2‡2

1 = 1, and 2fi2‡2
2 = 2. We also choose µ := 1. We collected some

representative results in Figures 5, 6, 7 and 8. Here, we visualize in the retinal representation
obtained from the cortical patterns via the inverse retino-cortical map. In Figure 5, we exhibit
the MacKay e�ect associated with the “MacKay rays”. In this case, the sensory input is chosen
as I(x) = cos(5fix2) + ÁH(2 ≠ x1), where Á = 0.025 and H being the Heaviside step function.
Similarly, we exhibit in Figure 6 the MacKay e�ect associated with the “MacKay target”. In this
case, the sensory input is I(x) = cos(5fix1) + Á(H(≠x2 ≠ 9.75) + H(x2 ≠ 9.75) + H(0.25 ≠ |x2|)),
where Á = 0.025 and H being the Heaviside step function. We use a linear response function
(f(s) = s) for the two figures. However, the phenomenon can be reproduced with any sigmoid
function. See for instance, Figure 7 and Figure 8.

Remark 5.8. Although the Gaussian kernel is usually used in image processing and computer
vision tasks due to its proximity to the visual system, it cannot replicate the MacKay e�ect if
we use it as the kernel in Equation (NF). A physiological reason for this is that we used a one-
layer model of NF equations. It is not then biologically realistic to model synaptic interactions
with a Gaussian, which would model only excitatory-type interactions between neurons, see also
Remark B.2.

6. Discussion

In this paper, we investigated the replication of visual illusions reported by MacKay [18],
referred to as the MacKay e�ect “from redundant stimulation”. We have shown that these
intriguing visual phenomena can be theoretically explained through a neural field model of
Amari-type modelling the average membrane potential of V1 spiking neurons, which takes into
account the sensory input from the retina. In our model equation, the sensory input stands
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Figure 6. MacKay e�ect (right) on the “MacKay target” (left).We use the linear
response function f(s) = s. The sensory input is I(x) = cos(5fix1) + Á(H(≠x2 ≠

9.75) + H(x2 ≠ 9.75) + H(0.25 ≠ |x2|)), Á = 0.025, where H is the Heaviside step
function.

Figure 7. MacKay e�ect (right) on the “MacKay rays” (left). We use the
nonlinear response function f(s) = s/(1 + |s|). The sensory input is chosen as
I(x) = cos(5fix2)+ÁH(2≠x1), Á = 0.025, where H is the Heaviside step function.

to the V1 representation via the retino-cortical map of the visual stimulus employed in the
MacKay experiment. Assuming that the intra-neuron connectivity parameter is smaller than
the threshold parameter where cortical patterns spontaneously emerge in V1 when its activity
is not driven by sensory inputs from the retina, we expounded a mathematical sound framework
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Figure 8. MacKay e�ect (right) on the “MacKay target” (left).We use the
nonlinear response function f(s) = s/(1 + |s|). The sensory input is I(x) =
cos(5fix1) + Á(H(≠x2 ≠ 9.75) + H(x2 ≠ 9.75) + H(0.25 ≠ |x2|)), Á = 0.025, where
H is the Heaviside step function.

consisting of the input-output controllability of this equation. Then, performing a quantitative
and qualitative study of the stationary output, we found that the MacKay e�ect is essentially a
linear phenomenon, meaning the non-linear nature of the neural response does not play a role
in its replication via our model equation.

Although our approach di�ers from that of Nicks et al. [20] in describing the MacKay-
like e�ect (associated with regular sensory input), it agrees with the latter in emphasizing
the role of inhibitory neurons in shaping the response of excitatory neurons to visual stimuli.
This is consistent with the idea that inhibitory neurons play an important role in shaping the
receptive fields of neurons in the visual cortex and that the interaction between excitatory and
inhibitory neurons is crucial for visual processing. This new approach o�ers the advantage of
accommodating any geometrical visual stimulus, particularly those localized in the visual field.
We hope that this take on the question can serve as a foundation for future investigations,
such as the theoretical replication of other psychophysical phenomena, including Billock and
Tsou experiments [4], the apparent motion in quartet stimulus [12], the flickering wheel illusion
[25], the spin in the enigma stimulus of Isia Léviant [33, 17], or other psychophysical phenomena
involving spontaneous cortical patterns such as the Barber pole, Café wall, Fraser spiral illusions
[11, 15], etc..

Appendix A. Equivariance of the input-output map with respect to the plane

Euclidean group

We discuss in this section the equivariance of the input to stationary output map � defined
in (24) with respect to the plane Euclidean group.

Let E(2) denote the Euclidean group, which is the symmetry group of R2. It is well known
that (see, [31, Chapter IV] for instance) E(2) is the cross product of two-dimensional real line
space R2 and O(2) the group of Euclidean rotations and reflections of this space, the so-called
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orthogonal group : E(2) = R2 o O(2). For any g = (a, r) œ E(2), one has (a, r) œ R2
◊ O(2)

and the group property is the following
Y
__]

__[

g1 · g2 = (a1, r1) · (a2, r2) = (r1a2 + a1, r1r2),
g≠1 = (≠r≠1a, r≠1),
e = (0, Id).

Here, g≠1 is the inverse of g = (a, r) œ E(2), e is the identity in E(2) and Id is the identity in
O(2).

Definition A.1 (Action of E(2) on R2). For x œ R2, the action of g = (a, r) œ E(2) on R2 is
defined by gx = rx + a.

Definition A.2 (Action of E(2) on Lp(R2)). We define the action of E(2) on Lp(R2) by the
representation T : g œ E(2) ‘≠æ Tg œ GL(Lp(R2)) such that, for all v œ Lp(R2), it holds

(Tgv)(x) = v(g≠1x), x œ R2.

Here GL(Lp(R2)) is the group of automorphism from Lp(R2) to itself.

We emphasise that the validity of the following proposition depends solely on the symmetry
properties satisfied by the kernel Ê rather than the nonlinear function f . It remains valid
whatever the shape (even linear, etc.) of the response function f .

Proposition A.1. Let µ0 be defined by (11). If µ < µ0, then, the map � defined in (24) and
its inverse �≠1 are E(2)-equivariant, that is

(73) �Tg = Tg� and �≠1Tg = Tg�≠1, for any g œ E(2).

Remark A.1. As a consequence of Proposition A.1 we have that the sensory input I and the
stationary output �(I) have the same symmetry subgroups � µ E(2). For example, I depends
solely on the x1 variable if and only if the same is true for �(I).

Proof of Proposition A.1. We start by claiming that Q(v) := Ê ú f(v) is an E(2)-equivariant
operator from Lp(R2) to itself. The fact that Q is well-defined is a consequence of Lemma 3.1.
We thus need to show that TgQ = QTg, for any g = (a, r) œ E(2). Let v œ Lp(R2) and x œ R2.
On one hand, one has

(74) (Tg(Q(v)))(x) = Q(v)(g≠1x) =
⁄

R2
Ê(|g≠1x ≠ y|)f(v(y))dy.

On the other hand, one has

(Q(Tgv))(x) =
⁄

R2
Ê(|x ≠ y|)(f(Tgv))(y)dy =

⁄

R2
Ê(|x ≠ y|)f(v(r≠1(y ≠ a)))dy.

Setting z = r≠1(y ≠ a), then dy = | det r|dz = dz, since r œ O(2) and

|x ≠ rz ≠ a| = |r(r≠1(x ≠ a) ≠ z)| = |g≠1x ≠ z|.

It follows that

(75) (Q(Tgv))(x) =
⁄

R2
Ê(|g≠1x ≠ z|)f(v(z))dz,

which completes the proof of the claim by identifying (74) and (75).
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To complete the proof of the statement, we need to show that Tg� = �Tg and Tg�≠1 = �≠1Tg

for any g œ E(2). This is equivalent to prove that for all I œ Lp(R2), Tg�(I) = �(TgI) and
Tg�≠1(I) = �≠1(TgI). It follows from the previous claim that

Tg�(I) = TgI + µTgQ(�(I)) = TgI + µQ(Tg�(I)).
On the other hand, one has

�(TgI) = TgI + µQ(�(TgI)).
So, by the uniqueness of the stationary state provided by Theorem 3.1, we obtain Tg�(I) =
�(TgI). Arguing similarly, we prove that �≠1 is also E(2)-equivariant. ⇤

Appendix B. Complement results

B.1. Complement results for the MacKay e�ect replication in the linear regime.
This section contains various complements used in Section 5.2 to describe the MacKay e�ect
when the response function in Equation (NF) is linear. The first result is the following.

Theorem B.1. Under the considerations of Remark 5.5, the kernel K defined in (58) can be
recast for all x œ Rú as

K(x)
2
Ô

fi
= e≠fi|x|


2fi
3 cos

A
fi

12 + fi|x|

Ú
2fi

3

B

+
Œÿ

k=1

e≠fick|x|


2fi
3

ck
cos

A
fi

12 + fick|x|

Ú
2fi

3

B

+
Œÿ

k=1

e≠fidk|x|


2fi
3

dk
sin

A
fi

12 ≠ fidk|x|

Ú
2fi

3

B

,(76)

where
(77) ck =

Ô
1 + 6k k œ N and dk =

Ô
≠1 + 6k, k œ Nú.

Proof. We start by introducing for a fixed x œ R, the function

(78) g : z œ C ‘æ g(z) = e2ifizx „Ê1(z)
1 ≠ „Ê1(z) = e2ifizx„K(z), „Ê1(z) = e≠z2

≠ e≠2z2
.

We have that g is a meromorphic function with simple poles (zeroes of the exponential polynomial
h defined in (60)) distributed as in Figure 9 that we enumerate as pk,¸ and qk,¸ where ¸ œ

{0, · · · , 3}, by

(79) pk,¸ = ckei fi
4 i¸

Ú
fi

3 , k œ N and qk,¸ = dkei fi
4 i¸

Ú
fi

3 , k œ Nú,

where ck and dk are defined as in (77). Since ‚Ê(pk,¸) = 1 = ‚Ê(qk,¸), we find the residues of g to
be given by

(80) Res(g, pk,¸) = ≠
ei fi

4 i¸ei(≠1)¸ fi
3

2ck
Ô

fi
e2ifixpk,¸ , k œ N,

(81) Res(g, qk,¸) = ei fi
4 i¸e≠i(≠1)¸ fi

3

2dk
Ô

fi
e2ifixqk,¸ , k œ Nú.

We now fix x > 0, and we let
Rn :=

Ô
nfi, n œ Nú.

We consider the path �n straight along the real line axis from ≠Rn to Rn and then coun-
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Figure 9. Zeroes in the complex plane of the exponential polynomial h defined
in (60). Here Ÿ = µ = 1, 2fi2‡2

1 = 1 and 2fi2‡2
2 = 2.

terclockwise along a semicircle centred at z = 0 in the upper half of the complex plane,
�n = [≠Rn, Rn] fi C+

n , where C+
n = {Rnei„

| „ œ [0, fi]}. Then, by the residue Theorem,
one has for all n œ Nú,

⁄ Rn

≠Rn

g(›)d› +
⁄

C+
n

g(z)dz = 2fii
¸=1ÿ

¸=0

n≠1ÿ

k=0
Res(g, pk,¸) + 2fii

¸=1ÿ

¸=0

n≠1ÿ

k=1
Res(g, qk,¸)

= 2
Ô

fie≠fix


2fi
3 cos

A
fi

12 + fix

Ú
2fi

3

B

+

2
Ô

fi
n≠1ÿ

k=1

e≠fickx


2fi
3

ck
cos

A
fi

12 + fickx

Ú
2fi

3

B

+

2
Ô

fi
n≠1ÿ

k=1

e≠fidkx


2fi
3

dk
sin

A
fi

12 ≠ fidkx

Ú
2fi

3

B

.(82)

We set
An(x) :=

⁄

C+
n

g(z)dz.

Then, one obtains,

|An(x)| Æ Rn

⁄ fi

0
e≠2Rnfix sin(„)

|„K(Rnei„)|d„

= Rn

⁄ fi
4

0
e≠2Rnfix sin(„)

|„K(Rnei„)|d„
¸ ˚˙ ˝

J1

+ Rn

⁄ 3fi
4

fi
4

e≠2Rnfix sin(„)
|„K(Rnei„)|d„

¸ ˚˙ ˝
J2

+ Rn

⁄ fi

3fi
4

e≠2Rnfix sin(„)
|„K(Rnei„)|d„

¸ ˚˙ ˝
J3

.(83)
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Since |„K(Rnei„)| Æ 1 for all „ œ [0, fi], uniformly w.r.t. n œ Nú, one has for all x > 0,

J2 := Rn

⁄ 3fi
4

fi
4

e≠2Rnfix sin(„)
|„K(Rnei„)|d„ Æ Rn

⁄ 3fi
4

fi
4

e≠2Rnfix sin(„)d„

Æ
fiRn

2 e≠Rnfix
Ô

2
≠≠≠≠≠æ
næ+Œ

0.(84)

On the other hand, there exist a positive constant C > 0 independent of n œ Nú (C := 3/2 is
valid) such that for all „ œ [0, fi], it holds

|„K(Rnei„)| =
-----

„Ê1(Rnei„)
1 ≠ „Ê1(Rnei„)

----- Æ C|„Ê1(Rnei„)| Æ C
1
e≠R2

n cos(2„) + e≠2R2
n cos(2„)

2
, ’n œ Nú.

Since cos(2„) Ø ≠
4
fi „ + 1 for all „ œ [0, fi/4], one deduces

J1 + J3 Æ 2Rn

⁄ fi
4

0
e≠2Rnfix sin(„)

|„K(Rnei„)|d„ Æ 2CRn

⁄ fi
4

0
e≠R2

n cos(2„)d„

Æ 4CRne≠R2
n

⁄ fi
4

0
e

4
fi

R2
n„

d„ = Cfi

Rn

Ë
1 ≠ e≠R2

n

È
≠≠≠≠≠æ
næ+Œ

0.(85)

To summarise, one has for all x > 0,
⁄

C+
n

g(z)dz ≠≠≠≠≠æ
næ+Œ

0.

By taking the limit as n æ +Œ in (82) we find for all x > 0,

K(x)
2
Ô

fi
= e≠fix


2fi
3 cos

A
fi

12 + fix

Ú
2fi

3

B

+
+Œÿ

k=1

e≠fickx


2fi
3

ck
cos

A
fi

12 + fickx

Ú
2fi

3

B

+
+Œÿ

k=1

e≠fidkx


2fi
3

dk
sin

A
fi

12 ≠ fidkx

Ú
2fi

3

B

.(86)

Finally, the result follows at once since K is an even function. ⇤
Remark B.1. Since the kernel K is even on R, we will restrict its study to R+.

In what follows, we aim to prove that K admits a discrete and countable set of zeroes on Rú
+.

It is a consequence of the following.

Lemma B.1. For all x œ Rú
+, it holds that

(87) efix


2fi
3 K(x)

2
Ô

fi
= cos

A
fi

12 + fix

Ú
2fi

3

B

+ S(x)
x

,

where

(88) |S(x)| Æ

Ô
6

3fi2 .

Moreover, the derivative of K satisfies

(89)
Ô

3efix


2fi
3 K Õ(x)

4fi2 = ≠ sin
A

fi

3 + fix

Ú
2fi

3

B

+ T (x),
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where

(90) |T (x)| Æ

1 + fix
Ò

2fi
3

fi3x2 .

Proof. Let x > 0, one starts with the equation
K(x)
2
Ô

fi
= e≠fix


2fi
3 cos

A
fi

12 + fix

Ú
2fi

3

B

+ R1(x) + R2(x),

where R1(x) =
+Œq

k=1
r1(k) cos

1
fi
12 + fickx

Ò
2fi
3

2
and R2(x) =

+Œq

k=1
r2(k) sin

1
fi
12 ≠ fidkx

Ò
2fi
3

2
. The

functions r1 and r2 are defined on R+ and [1/3, +Œ) respectively by

r1(t) = e≠A
Ô

1+6t

Ô
1 + 6t

, r2(t) = e≠A
Ô

≠1+6t

Ô
≠1 + 6t

with A = fix

Ú
2fi

3 .

Since r1 is decreasing on R+ one deduces that

|R1(x)| Æ

+Œÿ

k=1
r1(k) Æ

+Œÿ

k=1

⁄ k

k≠1
r1(t) dt =

⁄ Œ

0
r1(t) dt =

⁄ Œ

0
e≠A

Ô
1+6t dt

Ô
1 + 6t

= e≠A

3A
.

The same argument gives the same inequality for |R2(x)| and inequality (88) follows at once. On
the other hand, it is straightforward to observe that the sum S(x) in (87) is uniformly (normally
in fact) convergent on (≠Œ, ≠B]fi [B, +Œ) for all B > 0. Thus, after derivation under the sum,
one finds for all x > 0,

Ô
3efix


2fi
3 K Õ(x)

4fi2 = ≠ sin
A

fi

3 + fix

Ú
2fi

3

B

≠ efix


2fi
3

Œÿ

k=1
e≠fickx


2fi
3 sin

A
fi

3 + fickx

Ú
2fi

3

B

≠efix


2fi
3

Œÿ

k=1
e≠fidkx


2fi
3 sin

A
fi

3 ≠ fidkx

Ú
2fi

3

B

= ≠ sin
A

fi

3 + fix

Ú
2fi

3

B

+ T (x),

where

|T (x)| Æ efix


2fi
3

Œÿ

k=1

3
e≠fickx


2fi
3 + e≠fidkx


2fi
3

4
Æ 2efix


2fi
3

Œÿ

k=1
e≠fidkx


2fi
3 ,

since ck Ø dk for all k Ø 1. But one has
Œÿ

k=1
e≠fidkx


2fi
3 Æ

Œÿ

k=1

⁄ k

k≠ 2
3

e≠fix
Ô

≠1+6t


2fi
3 dt =

⁄ Œ

1
3

e≠fix
Ô

≠1+6t


2fi
3 dt =

1 + fix
Ò

2fi
3

2fi3x2 e≠fix


2fi
3 ,

so that inequality (90) follows at once and completes the proof of the lemma. ⇤
Proposition B.1. Let (xk)kœNú and (yk)kœNú denote the sequences of zeroes and extrema of
the function x ‘æ cos(fi/12 + fix


2fi/3) on Rú

+ respectively. There exists (zk)kœNú, sequence of
zeroes of K in Rú

+ such that zk is the unique zero of K in the interval Ik :=]yk, yk+1[ for all
k œ Nú and

(91) |xk+1 ≠ zk| Æ

Ô
3

fi
Ô

2fi
arcsin

3 8
fi(12k ≠ 1)

4
, ’k œ Nú.
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Proof. We fix k œ Nú, then one has

|S(yk)| Æ
2

fi
Ô

6fiyk
= 8

fi(12k ≠ 1) Æ
8

11fi
< 1,

by Lemma B.1. One deduces that

efiyk


2fi
3

K(yk)
2
Ô

fi
= (≠1)k + S(yk)

I
< 0, if k is odd,

> 0, if k is even.

It follows that K admits at least one zero zk in the interval Ik by the intermediate value theorem.
Let us prove that zk is the unique zero in this interval. We let Âz be an arbitrary zero of K in
the interval Ik and set ek := Âz ≠ xk+1. Then one has by Lemma B.1

(92) S(Âz) = ≠ cos
A

fi

12 + fiÂz
Ú

2fi

3

B

= (≠1)k sin
A

fiek

Ú
2fi

3

B

,

and

(93)
-----sin

A

fiek

Ú
2fi

3

B----- Æ
2

fi
Ô

6fiÂz
Æ

2
fi

Ô
6fiyk

Æ
2

fi
Ô

6fiy1
= 8

11fi
.

On the other hand, using (92) and trigonometric identity for sine, one obtains
Ô

3efiÂz


2fi
3 K Õ(Âz)

4fi2 = ≠ sin
A

fi

12 + fiÂz
Ú

2fi

3 + fi

4

B

+ T (Âz)

= (≠1)k+1
Ô

2
cos

A

fiek

Ú
2fi

3

B

+ 1
Ô

2
S(Âz) + T (Âz).(94)

By using (92), (93) and (90) one finds

cos
A

fiek

Ú
2fi

3

B

Ø

Ú
1 ≠

8
11fi

>

Ú
1 ≠

1
2 = 1

Ô
2

,

and
----

1
Ô

2
S(Âz) + T (Âz)

---- Æ
1

Ô
2

8
11fi

+
1 + fiy1

Ò
2fi
3

fi3y2
1

<
1
2 .

It follows that

K Õ(Âz)
I

> 0, if k is odd,

< 0, if k is even.

Let Âz and ÂzÕ be successive zeroes of K in Ik and assume that k is odd to be fixed. Then
K Õ(Âz) > 0 and K Õ(ÂzÕ) > 0. By Rolle’s theorem, there exists ÂzÕÕ

œ (Âz, ÂzÕ) such that K(ÂzÕÕ) = 0
and K Õ(ÂzÕÕ) < 0, which is a contradiction of the fact that any zero Âz in Ik satisfies K Õ(Âz) > 0.
Thus, zk is the unique zero of K in the interval Ik. Finally, inequality (93) applied with Âz = zk

leads to inequality (91), and this completes the proof of the proposition. ⇤
Remark B.2. Suppose we model the interaction of V1 neurons in Equation (NF) with a Gauss-
ian kernel Ê. In that case, we will obtain that the associated kernel „K defined in (78) has two
isolated poles located on the imaginary axis of the complex plane. The zero-order terms which
dominate the expansion of K given by (76) are only an exponential decreasing function without
a cosine multiplicative factor. Therefore, the kernel K will never have infinitely many discrete
distributed zeroes.
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B.2. Miscellaneous complements. Some of the results provided in this section were used
in Section 5.3 to describe the MacKay e�ect when the response function in Equation (NF) is
nonlinear.

We recall from Theorem 3.1 that, given 1 Æ p Æ Œ and I œ Lp(R2), then for any a0 œ Lp(R2),
the initial value Cauchy problem associated with Equation (NF) has a unique solution a œ Xp.
It is implicitly given for all x œ R2, and every t Ø 0 by

(95) a(x, t) = e≠ta0(x) +
1
1 ≠ e≠t

2
I(x) + µ

⁄ t

0
e≠(t≠s)(Ê ú f(a))(x, s)ds.

Given I œ LŒ(R2), the following theorem improves the upper bound of the LŒ-norm of the
stationary state aI œ LŒ(R2) provided in (25).
Theorem B.2. Let a0 œ LŒ(R2), I œ LŒ(R2) with ÎIÎŒ = 1 and a œ XŒ be the solution of
(NF). It holds
(96) lim sup

tæ+Œ
Îa(·, t)ÎŒ Æ g1,

where g1 > 0 is the smaller fixed point of the following function

(97) g : x œ R ‘≠æ 1 + µ

µ0
f(x) œ Rú

+.

Proof. We start by using (95), (14) and Minkowski’s inequality to obtain for a.e. x œ R2 and
every t Ø 0,

(98) |a(x, t)| Æ e≠t
Îa0ÎLŒ + (1 ≠ e≠t) + µ

µ0
(1 ≠ e≠t).

Letting t æ Œ in the last inequality, we find VŒ := lim sup
tæ+Œ

Îa(·, t)ÎŒ Æ 1 + µ/µ0, showing in

particular that VŒ < Œ. It follows that
(99) ’Á > 0, ÷TÁ > 0 s.t., ’t Ø TÁ, Îa(·, t)ÎŒ Æ VŒ + Á.

Applying the variation of constants formula (95), starting at TÁ > 0, one deduces for every
t > TÁ that

Îa(·, t)ÎŒ Æ e≠(t≠TÁ)
Îa(·, TÁ)ÎŒ +

1
1 ≠ e≠(t≠TÁ)

2
+ µÎÊÎ1

⁄ t

TÁ

e≠(t≠s)f(Îa(·, s)ÎŒ)ds

Æ e≠(t≠TÁ)(VŒ + Á) + 1 + µ

µ0
f(VŒ + Á).(100)

Letting respectively t æ Œ and Á æ 0 in the preceding inequality we find

(101) VŒ Æ 1 + µ

µ0
f(VŒ).

Let (un)n be the real sequence defined by
(102) u0 = VŒ, un+1 = g(un), ’n Ø 1.

Then (un)n is a bounded and non-decreasing sequence. The boundedness of (un)n follows from
the boundedness4 of the sigmoid function f . Let us prove by induction that the sequence (un)n

4Notice that in the case where the response function f is only Lipschitz continuous (with the Lipschitz constant
equal to f Õ(0) = 1) but not bounded, the sequence (un)n is still bounded, via

|un| Æ VŒ + µ0
µ0 ≠ µ

, ’n œ N.
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is increasing. Due to the inequality (101), one has

u1 = g(u0) = 1 + µ

µ0
f(u0) = 1 + µ

µ0
f(VŒ) Ø VŒ = u0.

If un Ø un≠1 then, since f is non-decreasing, one obtains

un+1 = g(un) = 1 + µ

µ0
f(un) Ø 1 + µ

µ0
f(un≠1) = g(un≠1) = un,

showing that (un)n is a non-decreasing sequence. The monotone convergence and fixed point
Theorems, we have that (un)n converges to the smaller fixed point g1 > 0 of the function g, and
(96) follows. ⇤

Let 1 Æ p Æ Œ, we introduce for every I œ Lp(R2), the map �I : Lp(R2) ‘æ Lp(R2) defined
for all v œ Lp(R2) by
(103) �I(v) = I + µÊ ú f(v).

Theorem B.3. Let 1 < p Æ Œ. If µ < µ0, then � belongs to C1(Lp(R2); Lp(R2)) and the
di�erential at I œ Lp(R2) is given by

(104) D�(I)h = (Id ≠D�(I))≠1h, ’h œ Lp(R2).

The proof of Theorem B.3 is a consequence of the following two lemmas.

Lemma B.2. Let 1 < p Æ Œ, and I œ Lp(R2). Then for every µ > 0, the map �I belongs to
the space C1(Lp(R2); Lp(R2)) and the di�erential at v œ Lp(R2) is given by

(105) (D�I(v)h)(x) = µ
⁄

R2
Ê(x ≠ y)f Õ(v(y))h(y)dy, ’h œ Lp(R2), x œ R2.

Moreover, it holds

(106) ÎD�I(v)ÎL (Lp(R2)) Æ
µ

µ0
, ’v œ Lp(R2).

Proof. It is straightforward to show that for all 1 Æ p Æ Œ, and I œ Lp(R2), the map �I is
Gateau-di�erentiable at every v œ Lp(R2), the Gateau-di�erential is given for every h œ Lp(R2)
by (105). Since f Õ is bounded by 1, we find

(107) ÎD�I(v)hÎp Æ
µ

µ0
ÎhÎp.

Let us now show that for all 1 < p Æ Œ, the Gateau-di�erential
D�I : Lp(R2) ≠æ L (Lp(R2))

v ‘≠æ D�I(v),(108)
is continuous. To this end, let (vn) µ Lp(R2) be a real sequence converging in the Lp-norm to
v œ Lp(R2). We want to prove that D�I(vn) converges to D�I(v) in L (Lp(R2)). Let h œ Lp(R2)
and set

(109) Rn : x œ R2
‘≠æ Rn(x) =

⁄

R2
Ê(x ≠ y)[f Õ(vn(y)) ≠ f Õ(v(y))]h(y)dy.

It is immediate to obtain the result when p = Œ. Indeed, since f Õ is Îf ÕÕ
ÎŒ-Lipschitz continuous,

one immediately gets that
ÎRnÎŒ Æ Îf ÕÕ

ÎŒÎÊÎ1Îvn ≠ vÎŒÎhÎŒ,
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so that
ÎD�I(vn) ≠ D�I(v)ÎL (LŒ(R2)) = sup

hœLŒ(R2)
ÎhÎŒ=1

ÎD�I(vn)h ≠ D�I(v)hÎŒ

Æ µÎf ÕÕ
ÎŒÎÊÎ1Îvn ≠ vÎŒ ≠≠≠æ

næŒ
0.(110)

Let us turn to an argument for the cases 1 < p < Œ. Since (vn) tends in the Lp-norm to
v œ Lp(R2), for every Á > 0, there exists a positive integer N œ N such that for any n Ø N it
holds Îvn ≠ vÎp Æ Á. In the following, we fix Á > 0 and N defined previously. For every n œ N
such that n Ø N , we consider En := {y œ R2

| |vn(y) ≠ v(y)| >
Ô

Á}, one has for every x œ R2,
(111)
Rn(x) =

⁄

R2\En

Ê(x ≠ y)[f Õ(vn(y)) ≠ f Õ(v(y))]h(y)dy

¸ ˚˙ ˝
�1(x)

+
⁄

En

Ê(x ≠ y)[f Õ(vn(y)) ≠ f Õ(v(y))]h(y)dy
¸ ˚˙ ˝

�2(x)

.

By Chebyshev’s inequality, it holds that

(112) |En| Æ
Îvn ≠ vÎ

p
p

Á
p
2

Æ Á
p
2 ,

where |En| denotes the Lebesgue measure of the measurable set En µ R2.
On one hand, using Hölder inequality and the fact that f Õ is Îf ÕÕ

ÎŒ-Lipschitz continuous, one
has

|�1(x)| Æ Îf ÕÕ
ÎŒ

Ô
ÁÎÊÎ

1
q
1

I⁄

R2\En

|Ê(x ≠ y)||h(y)|pdy

J 1
p

, ’x œ R2.

Taking the p-th power on both sides of the above inequality and integrating it with variable x
over R2, we find, thanks to Fubini’s theorem,

(113) Î�1Îp :=
;⁄

R2
|�1(x)|pdx

< 1
p

Æ Îf ÕÕ
ÎŒÎÊÎ1

Ô
ÁÎhÎp.

On the other hand, using Hölder inequality and the fact that f Õ is bounded by 1, one has

|�2(x)|p Æ 2p
|En|

p
q

⁄

En

|Ê(x ≠ y)|p|h(y)|pdy, ’x œ R2.

Integrating the above inequality with variable x over R2, we find, thanks to Fubini’s theorem,

(114) Î�2Îp :=
;⁄

R2
|�2(x)|pdx

< 1
p

Æ 2|En|
1
q ÎÊÎpÎhÎp Æ 2ÎÊÎpÎhÎp(

Ô
Á)p≠1,

where the last inequality is obtained thanks to (112) and p/q = p ≠ 1.
Taking now the p-th power on both sides of inequality (111), integrating it with variable x

over R2, applying Minkowski’s inequality and using (113) and (114), one gets

ÎRnÎp Æ (Îf ÕÕ
ÎŒÎÊÎ1 + 2ÎÊÎp) max(

Ô
Á, (

Ô
Á)p≠1)ÎhÎp.

Therefore,
ÎD�I(vn) ≠ D�I(v)ÎL (Lp(R2)) = sup

hœLp(R2)
ÎhÎp=1

ÎD�I(vn)h ≠ D�I(v)hÎp

Æ µ(Îf ÕÕ
ÎŒÎÊÎ1 + 2ÎÊÎp) max(

Ô
Á, (

Ô
Á)p≠1).(115)
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Letting Á tend to zero, one deduces that D�I is continuous. Finally, using (107) we find for all
v œ Lp(R2),

ÎD�I(v)ÎL (Lp(R2)) = sup
hœLp(R2)
ÎhÎp=1

ÎD�I(v)hÎp Æ
µ

µ0
.

⇤
Lemma B.3. Let 1 < p Æ Œ. Under assumption µ < µ0, the map

G : Lp(R2) ◊ Lp(R2) ≠æ Lp(R2)
(I, a) ‘≠æ G(I, �(I)) = a ≠ �I(a),(116)

belongs to C1(Lp(R2) ◊ Lp(R2); Lp(R2)) and the partial derivative DaG(I, a) is invertible in
L (Lp(R2)).

Proof. Since �I is di�erentiable at a œ Lp(R2) for all I œ Lp(R2), one has for all (J, b) œ

Lp(R2) ◊ Lp(R2),

G(I + J, a + b) = a + b ≠ �I+J(a) ≠ D�I+J(a)b + o(ÎbÎp)
= G(I, a) + (Id ≠D�I(a))b ≠ J + o(ÎbÎp).

The map L(I,a) : Lp(R2) ◊ Lp(R2) ≠æ Lp(R2), L(I,a)(J, b) = (Id ≠D�I(a))b ≠ J , is linear and
bounded,

ÎL(I,a)(J, b)ÎLp(R2) Æ

3
1 + µ

µ0

4
Î(J, b)ÎLp(R2)◊Lp(R2).

It follows that G is di�erentiable at (I, a) œ Lp(R2) ◊ Lp(R2) and

DG(I, a)(J, b) = (Id ≠D�I(a))b ≠ J, ’(J, b) œ Lp(R2) ◊ Lp(R2).

We now show that the map (I, a) œ Lp(R2)2
‘æ DG(I, a) œ L (Lp(R2)2, Lp(R2)) is continuous.

Let (I1, a1), (I2, a2) œ Lp(R2) ◊ Lp(R2). One has for all (J, b) œ Lp(R2) ◊ Lp(R2),

ÎDG(I1, a1)(J, b) ≠ DG(I2, a2)(J, b)Îp = ÎD�I1(a1)b ≠ D�I2(a2)bÎp

Æ ÎD�I1(a1) ≠ D�I1(a2)ÎL (Lp(R2))Î(b, J)ÎLp(R2)2 .

It follows by Lemma B.2 that

ÎDG(I1, a1) ≠ DG(I2, a2)ÎL (Lp(R2)2,Lp(R2)) Æ ÎD�I1(a1) ≠ D�I2(a2)ÎL (Lp(R2))

Æ µÎfÎŒÎÊÎ1Î(I1, a1) ≠ (I2, a2)ÎLp(R2)2 ,

showing that G belongs to C1(Lp(R2) ◊ Lp(R2); Lp(R2)). Finally, if I œ Lp(R2), aI := �(I) œ

Lp(R2) then DaG(I, aI) = Id ≠D�I(aI), is invertible in L (Lp(R2)) if µ < µ0. ⇤

We now can present the proof of Theorem B.3.

Proof of Theorem B.3. Let µ < µ0. For fixed I œ Lp(R2), aI := �(I) œ Lp(R2), we have
G(I, aI) = 0, and DaG(I, aI) is invertible in L (Lp(R2)) by Lemma B.3. It follows by the
implicit function Theorem that there is an open neighbourhood V of I in Lp(R2), an open
neighbourhood W of aI in Lp(R2) and a map � : V æ W of class C1 such that the following
holds

(I œ V, a œ W and G(I, a) = 0) ≈∆ (I œ V and a = �(I)).
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Thereby, �(·)|V = �(·) and then � is C1 at I. Since I œ Lp(R2) is arbitrary, it follows that
� belongs to C1(Lp(R2); Lp(R2)). Moreover, taking the derivative of G(I, �(I)) = 0 at I, we
deduce that
(117) (Id ≠D�I(�(I))) (D�(I)h) = h, ’h œ Lp(R2).
Thus, (104) is an immediate consequence of (106), (117) and Neumann expansion lemma. ⇤
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