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Abstract: Selective Harmonics Elimination is a high-efficiency modulation method for multilevel
inverters that allows handling very high voltage applications. It eliminates the most significant
harmonics and fixes the desired fundamental component. The main issue of these techniques is
the complex process to obtain the appropriate switching-angles, being necessary to calculate them
offline, meaning that if some disturbances occur, the system will not be compensated. This article
proposes a real-time selective harmonic elimination for a single-phase cascaded multilevel inverter.
The control strategy maintains constant the fundamental component of the output voltage while
removing its third, fifth, and seventh order harmonics. The switching-angles are dynamically
adapted to compensate for variations in the input voltage and the load. This is done by obtaining a
virtual dynamic system using Groebner basis, an adaptation of the Newton-Raphson method, and
implementing a digital PI controller into the virtual dynamical model. This adaptive modulation
technique is validated experimentally in a 200 W, 9-levels Cascaded Full Bridge Inverter, canceling
the harmonics and regulating the fundamental components in all the tests. The developed theory can
be adapted or extended for any multilevel inverter modulated by selective harmonic elimination.

Keywords: multilevel inverter; selective harmonic elimination; polynomial transform; newton-
raphson method; closed-loop system

1. Introduction

Multilevel converters are becoming more popular in high power and high voltage
applications. They distribute the power in sub-cells and reduce the size of the passive
elements of the converter. This characteristic is due to the apparent frequency observed at
the output voltage that is proportional to the switching frequency of the semiconductor
devices multiplied by the number of cells [1–7]. For DC/AC conversion, the cascaded
topology is an alternative when multiple independent voltage sources are available [8–11].
Even if these multilevel converters allow to reduce the cell switching frequency for the
same number of passive components, switching losses are still a concern. In order to
reduce those losses, low-frequency modulation techniques can also be employed, also
helping in the minimization of electromagnetic interference due to the high number of
switches. Low frequency modulations have several applications. One of them is to feed
motors powering by multi-level inverter [12], where due to the slow motor dynamic, the
presence of high-order harmonics on the resulting voltage waveform is not a real issue.
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Hence, it is possible to improve the efficiency by switching only a few times per cycle.
In this case, an outer loop for managing the frequency of the fundamental component is
necessary. Another application is to generate Medium-Voltage AC (MVAC) [13], which
handles around 10 kV. Commonly, switching devices that support these values of voltages
are expensive or slow. Hence, using low frequency modulation techniques, a suitable
manner to generates MVAC is obtained. Generating MVAC from several DC sources would
allow to supply current to the grid at this voltage levels from several renewable sources, or
to manage motors at theses voltages. Indeed, Two different approaches of low frequency
modulation exist: minimization of THD [14,15], and Selective Harmonic Elimination
(SHE) [16–18], where both approaches maintain the desired fundamental component. Both
methods are based on finding the switching-angles that satisfy the given conditions. Some
of the techniques used to find these angles are: intelligent methods as Generic Pattern
Search [19] or swarm particles [20]; numeric methods as Newton-Raphson [21,22]; and
algebraic methods as the conversion of the system to symmetrical polynomials or to its
Groebner Basis [17,23,24]. Ref. [25] proposes another method to find the switching-angles
with another polynomial approach. The algebraic methods allow finding all the solutions
of the system in case more than one solution exist. However, its computation time is
considerably high due to the search for the roots of a polynomial system. Indeed, the
micro-controller must solve radicals and divisions if the polynomial degree is less than
four, otherwise, according to Galois theory [17,23,24,26], in most cases numerical methods
are available. The intelligent and numeric methods, besides the processing time, are not
able to determine if whether there is another solution that minimizes or eliminates the
desired harmonics. Furthermore, if a disturbance occurs in the input voltages or the
load, all of these solving methods take excessive processing time to adjust the switching-
angles to compensate the disturbance. In other cases, the solution of the switching-angle
equations can be complex values, making impossible its implementation. This affirmation
is validated, taking into account the equations found in [17,23,24], where the polynomial
roots can produce complex-values for the switching-angles. This fact generates instability
in the system. One solution is to set-up a look-up table. However, if a robust system
is desired, able to provide the angles for different values of the input voltages, a large
look-up table is necessary, requiring a considerable amount of computation resources.
Ref. [27] proposes a closed-loop solution, linearizing the system and involving an Integral
controller. However, if the disturbance is high enough, the system can present a change
in the direction of the gradient, causing the controller to destabilize the system. Ref. [28]
implements an interesting control using the Groebner basis and Sturm chain, and evaluates
the performance between some micro-controllers

None of the previously presented methods allows the switching-angles to be recal-
culated in real-time in order to adapt to fast disturbances or parametric changes. The
present article proposes an adaptive control strategy for SHE that readjusts dynamically
the switching-angles for compensating the disturbances produced in the input voltages
or the load, maintaining a desired fundamental component, and eliminating the most
significant harmonics. This regulation is carried out by obtaining a virtual dynamical
model of the harmonics. Then a Proportional-Integral (PI) controller is implemented to
cancel the errors between the real Fourier components and the desired ones. This control
method is computed for an inverter of 9 levels, eliminating the third, fifth and seventh
order harmonics.

The article is organized as follows: Section two describes the inverter, the obtention
of a static model of the harmonics according to the switching-angles, and the conversion
to Groebner basis. The third section studies the switching-angle solution when the funda-
mental component changes, analyzing the feasible regions, and the behavior of the angles
in those regions. The fourth section introduces a conversion of the static model into a
dynamical system, using a modification of Newton Raphson and proposes a linear con-
troller design. Section five shows the simulation and experimental results with a 9-levels
full-bridge cascaded multilevel inverter prototype, inserting a 200 W load and changing
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one of the input voltages. Finally, the conclusions and future works are developed in the
last section.

2. Description of the System

The proposed work describes an adaptive modulation technique for selective har-
monic elimination applied to a multilevel inverter, using 4-cells maximum. This limitation
will be explained at the end of section 3. The system described in this article corresponds
to a Cascaded Full-Bridge Multilevel Inverter (CFBMI), composed of 4 Full-Bridge Cells
(FBC), as shown in Figure 1a, where Ek and vHk are the input and output voltages of the kth

FBC (FBk), respectively, for k = {1, 2, 3, 4}. van is the output voltage of the entire system,
corresponding to the sum of all the vHk . In this work, each FBC switches once per quarter
of the cycle. The aims are to control the fundamental component and to eliminate as many
harmonics as possible. Figure 1b shows the waveform of the output voltage, neglecting the
effects of inductors and capacitors of the input filters, and Figure 1c shows the harmonics
analysis of the produced waveform when all the switching-angles are equally separated
(θk = 2πk/5).
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Figure 1. (a) Cascaded-Full-Bridge Multilevel Inverter with 4 FBCs, (b) Waveforms of van,
vH1, vH2, vH3 and vH4, (c) harmonic analysis of van.

Notice that the waveforms are symmetric in both axes, as FBk commutes at θk, π −
θk, π + θk, and 2π − θk, producing that the even order harmonics and the quadrature
components of all the harmonics are eliminated as it is mentioned in [17,23,24]. Further-
more, it can be observed that if there is no specific control law for the computation of the
switching-angles, harmonics at different orders are produced as shown in Figure 1c.

2.1. Computing the Output Voltage Harmonics

In this subsection, an analytical expression of the harmonics, as a function of the
switching-angles is obtained. Based on Figure 1b, the Fourier components of vHk are
defined as:

vHk =
∞

∑
l=1

(bkl sin(lωt) + akl cos(lωt)) (1)

As mentioned previously, all the quadrature components and the even order harmon-
ics are eliminated. Hence the lth Fourier coefficient of the kth FBC can be described as:

bkl =

{ 4Ek
lπ cos(lθk) ; l is odd; ∀k = {1, 2, 3, 4}

0 ; l is even; ∀k = {1, 2, 3, 4} (2a)

akl = 0 ; ∀k = {1, 2, 3, 4}; ∀l ≥ 1 (2b)
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Then, defining van as the sum of all the vHk :

van = 4
π

∞
∑

l=1

(
1
l

4
∑

k=1
(Ek cos(lθk)) sin(lωt)

)
(3)

According to (3), the lth Fourier components (hl) of van is defined as:

hl =
4

lπ

4

∑
k=1

(Ek cos(lθk)) (4)

Assuming that all the sources are identical, the nominal value of Ek is noted E. There-
fore, Ek can be defined as Ek = E(1 + δk), δk is a disturbance in the input voltage E. Then,
defining h′l as:

h′l =
hl
E

(5)

It follows,

h′l =
4

lπ

4

∑
k=1

(1 + δk) cos(lθk) (6)

Knowing that cos(lθ) = Tl(cos(θ)) where Tl(•) is the Chebyshev polynomial of first
kind of lth degree, then:

h′l =
4

lπ

4

∑
k=1

(1 + δk)Tl(xk) (7)

where xk = cos(θk).
As it is mentioned previously, this strategy aims to impose the fundamental component

and to eliminate the most significant harmonics. In this work, those correspond to the first
three odd order harmonics. For that reason, expanding Tl(xk) for l = {1, 3, 5, 7}:

h′1 =
4
π

4

∑
k=1

(1 + δk)xk

h′3 =
4

3π

4

∑
k=1

(1 + δk)
(

4x3
k − 3xk

)
h′5 =

4
5π

4

∑
k=1

(1 + δk)
(

16x5
k − 20x3

k + 5xk

)
h′7 =

4
7π

4

∑
k=1

(1 + δk)
(

64x7
k − 112x5

k + 56x3
k − 7xk

)
(8)

Expressing (8) as a matrix form:

H′R = Π(X)(V1 + ∆) (9)

where V1 =
[
1 1 1 1

]T , H′R =
[
h′1 h′2 h′3 h′4

]T , ∆ =
[
δ1 δ2 δ3 δ4

]T , X =[
x1 x2 x3 x4

]T ,

Π(X) = 4
π


T1(x1) T1(x2) T1(x3) T1(x4)

1
3 T3(x1)

1
3 T3(x2)

1
3 T3(x3)

1
3 T3(x4)

1
5 T5(x1)

1
5 T5(x2)

1
5 T5(x3)

1
5 T5(x4)

1
7 T7(x1)

1
7 T7(x2)

1
7 T7(x3)

1
7 T7(x4)
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Equation (9) expresses the Fourier components that are managed as a function of the
cosine of the switching-angles defined as X. Lets define H′e, as the estimated harmonics,
corresponding to the harmonics with no disturbances. Hence:

H′e = Π(X)V1 (10)

Notice that if there is no disturbance, it follows H′R = H′e. The next subsection shows
a method to solve (10).

2.2. Solving the Polynomial Equation

To solve (10), this paper uses an algebraic method that converts (10) into its Groebner
Basis. The groebner basis conversion is developed in Maple. There exists several algorithm
for that. However, the most used, the most efficient and also compact to use is the
Buchberger’s Algorithm [29] which consists in developing several polynomial divisions
to meet a predefined condition. The resulting system is another polynomial system of
equations with the same solution set where the coefficients of the variables are polynomial
functions of H′e following the form:

p1(x1, H′e) = 0

p2(x1, x2, H′e) = 0
...

pN(x1, x2, . . . xN , H′e) = 0

(11)

This conversion decouples the independent variables, simplifying the solving process
of the system. Refs. [23,29] explain this polynomial conversion. Furthermore, according
to [17], this system corresponds to a symmetric polynomial system, meaning that the
solution set of any xk is a permutation of the solution set of x1. For that reason, finding
the solution set of p1(x1, H′e), the solution set of the other xk is also found. Therefore, it is
possible to define the system as:

q(x1, H′e) = 0
...

q(xN , H′e) = 0

(12)

where q(xk, H′e) = p1(xk, H′e).
Grouping (12), it follows:

Q(X, H′e) = 0 (13)

where Q(X, H′e) represents all the polynomials obtained by the Groebner basis conversion.
Equation (14) describes q(xk, H′e), where its roots corresponds to the solution set of all

the cosine of the switching-angles.
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(268.8π4h′1
6 − 16128π2h′1

4 − 16128π2h′1
3h′3 + 193536h′1

2
+ 193536h′1h′3 + 193536h′1h′5 − 193536h′3

2
)x4

k

− (67.2π5h′1
7 − 4032π3h′1

5 − 4032π3h′1
4h′3 + 48384πh′1

3
+ 48384πh′1

2h′3 + 48384πh′1
2h′5 − 48384πh′1h′3

2
)x3

k

+ (720π6h′1
8 − 604.8π4h′1

6 − 604.8π4h′1
5h′3 + 16128π2h′1

4
+ 24192π2h′1

3h′3 + 8064π2h′1
3h′5 − 145152h′1

2

− 193536h′1h′3 − 193536h′1h′5 − 48384h′1h′7 + 145152h′3
2
+ 48384h′3h′5)x2

k − (40π7h′1
9 − 50.4π5h′1

7 − 50.4π5h′1
6h′3

− 2016π3h′1
5
+ 3024π3h′1

4h′3 + 1008π3h′1
4h′5 − 24192πh′1

3 − 24192πh′1
2h′3 + 36288πh′1

2h′5 + 12096πh′1
2h′7

+ 36288πh′1h′3
2 − 24192πh′1h′3h′5 + 12096πh′3

3
)xk + π8h′1

10 − 1.8π6h′1
8 − 1.8π6h′1

7h′3 + 100.8π4h′1
6

+ 151.2π4h′1
5h′3 + 50.4π4h′1

5h′5 − 2016π2h′1
4 − 3024π2h′1

3h′3 − 2016π2h′1
3h′5 − 1008π2h′1

3h′7 + 3024π2h′1
2h′3h′5

− 30.24π2h′1h′3
3
+ 120.96h′1

2
+ 24192h′1h′3 + 12096h′1h′5 + 12096h′7h′1 − 12096h′3h′5 + 12096h′3h′7 − 12096h′5

2
= 0

(14)

3. Analysis of the Solutions

To validate the Groebner conversion described in (14), the parameters are set to
E = 48 V, h1 = 155 V. Therefore, according to (5), h′e1

= 3.23. Furthermore, taking into
account that the objective is to eliminate the third, fifth and seventh order harmonics (h3, h5
and h7). Those harmonics are equaled to 0. Based on these parameters, the solution set of
(14) is: x1 = 0.9842, x2 = 0.8958, x3 = 0.6187, x4 = 0.0468, resulting the switching-angles:
θ1 = 0.1780 rad, θ2 = 0.4606 rad, θ3 = 0.9037 rad, θ4 = 1.5240 rad. Figure 2a shows
the waveform of van, vH1 , vH2 , vH3 and vH4 with the respective switching-angles, and
Figure 2b shows the Harmonics analysis.
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Figure 2. (a) Waveforms of van, vH1, vH2, vH3, vH4, (b) Harmonics analysis of van.

Comparing Figure 1c and Figure 2b it is shown that the third, fifth and seventh order
harmonics are eliminated, while the fundamental value is the desired one. Furthermore,
Figure 2a shows that all the FBCs present a positive step in the first quarter of the cycle.
However, for different values of h1, xk can be negatives or higher than one. When xk is
negative, the switching-angle is higher than π/2, producing a negative step. Figure 3a
shows the behavior of the waveform when xk is positive and Figure 3b shows the output
voltage when x4 < 0.

According to Figures 2a and 3a when all the switching-angles are lower than π/2,
all the xk values are positives, presenting the levels: 4E, 3E, 2E, E, 0, −E, −2E, −3E, −4E;
meaning that for this case the van has 9 levels.
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(a) (b)

Figure 3. Waveforms of van and vH4, shifting x4 (a) for x4 > 0 and θ4 < π/2, (b) for x4 > 0 and
θ4 < π/2.

For the case of Figure 3b, which shows the waveform of van and vH4 when x4 < 0, it
can be inferred that the van has the following levels: 3E, 2E, E, 0 E, 2E, 3E; meaning that for
one xk value less than zero, the van presents seven levels, two levels less than the previous
case, one level less for the positive part and one less for the negative one. Hence, if E is high
enough, it is possible to remove the third, fifth and seventh order harmonics, having the
same fundamental component with less than nine levels, switching four times per quarter
of the cycle. Thus, it is possible to deduce that the number of levels is not relevant in the
solution and only the number of commutations per quarter of cycles and the value of E
care. It should be noted that having more levels than switching-angles is equivalent to
have asymmetric levels with steps of more than twice the minimum level.

In other cases, depending on h′1, the solution set of (14) can present complex values,
higher than 1 or lower than −1. Then, there are no switching-angles that satisfy the desired
h′e1

and the nullity of h′e3
, h′e5

, h′e7
. To analyze the behavior of the solution set when the

system eliminates h′e3
, h′e5

and h′e7
, Figure 4 shows X vs h′e1

when the third, fifth and seventh
order harmonics are zero.

Figure 4. Behavior of the cosine of the switching-angles (X) according to the fundamental component,
h′1, when the third, fifth and seventh order harmonics are equal to 0.

Note that there are three regions where a feasible solution of the system does not exist:
1.19 < h′e1 < 1.52; 2.07 < h′e1 < 2.28 and h′e1 > 3.44. Figure 4 also shows that in other
regions, the values of xk are negative, meaning that the step is negative in the positive semi
cycle. This paper focuses in the feasible region 2.28 < h′e1 < 3.44, because in this region
the maximum number of levels (9) with 4 FBCs is generated. In this region only x4 can be
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negative, meaning that it is possible to produce 7 or 9 levels, according to the value of the
fundamental component.

To prove that the Groebner conversion is valid for cases where x4 < 0, Figure 5a
shows van and vHk when E = 54 V and h1 = 155.5 V. With these parameters, h′e1

= 2.88 and
the solution set of X is: x1 = 0.9797, x2 = 0.8661, x3 = 0.4744, x4 = −0.0582, generating
the switching-angles of: θ1 = 0.2020 rad, θ2 = 0.5235 rad, θ3 = 1.0765 rad, θ4 = 1.629 rad.
Note that θ4 > π/2 means that the step in FB4 is negative during the first quarter of cycle.
Notice in Figure 5a that vH4 starts with a negative step and van has 2 levels less than the
van shown in Figure 2a. To validate this result, Figure 5b shows the Harmonic analysis
of Figure 5a, where the fundamental component does not change and the third, fifth and
seventh order harmonics, h′e3

, h′e5
, h′e7

, are eliminated again.
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Figure 5. (a) Waveforms of van, vH1, vH2, vH3, vH4 when θ4 > π/2, (b) Harmonics analysis of of van

when θ4 > π/2.

This result indicates that it is possible to analyze mathematically this system accord-
ing to the number of switching-angles without taking into account the number of FBCs,
knowing that xk > 0 and xk < 0 produces positive and negative step the first quarter of
cycle, respectively.

Apparently, this method could work for any number of switching-angles. However,
for more than 4 commutations per quarter of cycle, the software never find the Groebner
basis. This is because it is necessary to express the coefficients of the Groebner basis as a
function of the harmonics; and those are found solving another polynomial equation. If the
degree of this polynomial equation is higher than four, according to Galois theory, it is not
possible to find its roots in a explicit manner [26].

4. Closing the Loop

In this section, a control law is proposed to ensure a desired fundamental component
and the elimination of the selected harmonics when a disturbance occurs. According
to (9) and (13), the system is modeled as a static one. The proposed computation method
consists of two steps. The first one corresponding to (13), indicates that for a given estimated
harmonics, He, the polynomial Q(X, H′e) provides a solution set for X. Then in the second
step, modeled by (9), the switching-angles θk are obtained from X and applied to the
inverter, generating the output voltage, van. Then, the normalized harmonics of van, H′R,
are computed. Figure 6 shows a diagram of the implemented system and the static model
that represents it.
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Figure 6. static model and block diagram of the system.

The model shown in Figure 6 is static, nonlinear, and presents an implicit system
Equation (13). However, for designing a controller aimed to cancel some specific harmonics,
it is necessary to obtain an explicit, dynamic model. To achieve these requirements, a
Newton Raphson (NR) method with modifications is shown in (15).

��>
0

Qt = Qt−1 +

(
∂Q
∂X

∣∣∣∣
t−1

)
(Xt − Xt−1) +

(
∂Q
∂H′e

∣∣∣∣
t−1

)(
H′et −H′et−1

)
(15)

Hence,

Xt = Xt−1 −
(

∂Q
∂X

∣∣∣∣
t−1

)−1
Qt−1 +

(
∂Q
∂X

∣∣∣∣
t−1

)−1( ∂Q
∂H′e

∣∣∣∣
t−1

)(
H′et −H′et−1

)
(16)

According to (16), if the harmonics do not change, the equation corresponds to the
solving process of the classical NR method. Hence, the new system corresponds to a
“virtual" dynamical system, composed of two stages. The first one corresponds the iterative
equation that solves X, while the second stage corresponds to the static, explicit equation
that represents the inverter, the computations of the switching-angle from X and the compu-
tation of the normalized harmonics H′R from the sensed output voltage van. Equation (17)
shows the proposed dynamical model of the system and a block diagram of (17) is shown
in Figure 7. [

Xt
H′Rt

]
=

[
F(Xt−1, H′et, H′et−1)

Π(Xt)(V1 + ∆)

]
(17)

�� � ��− ���
′ ���−

′ ���
′

Π �� 
 ��

−

−

��

���
′

Variation of NR method for finding X

Inverter plus computation

of switching angles and

harmonics

���
′

Figure 7. virtual dynamic model of the system.

Based on this model, the proposed control law is composed of the desired normalized
harmonics plus a discrete PI controller, as shown by (18).

H′et = H′ref + a1ξt − a0ξt−1 (18)

where ξt = Href −HRt.
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Inserting the PI controller in (16), it follows:

Xt =Xt−1 −
(

∂Q
∂X

∣∣∣∣
t−1

)−1
Qt−1 −

(
∂Q
∂X

∣∣∣∣
t−1

)−1( ∂Q
∂H′e

∣∣∣∣
t−1

)(
a1H′Rt− (a1 + a0)H′Rt−1 + a0H′Rt−2

)
(19)

where HRt = Π(Xt)(V1 + ∆)
It can be observed that when the angles are found, Qt = 0 and the harmonics do not

change. Hence, X does not change, meaning that the system reaches a stable operating
point. It should be mentioned that the controller works only in the feasible regions of
Figure 4 without passing from one feasible region to another one. Figure 8 shows the block
diagram of the closed-loop system. To validate this control law, the next section shows the
simulation and experimental results.

�� � ��− ���
′ ���−

′ ���
′ Π �� 
 ��

−

−

��

���
′

Method to find X

Inverter plus computation

of switching angles and

harmonics

� −

�
��

����
′

−−

−

���
′

Proposed PI controller

Figure 8. Block diagram of the CFBMI with the solving method of the Groebner basis conversion, the
PI controller and the acquisition of the harmonics.

5. Results

This section develops and comments the obtained simulation and the experimental
results. The tests are carried out using the prototype shown in Figure 9, with the parameters
described in Table 1.

Table 1. Parameters of the inverter.

Parameter Value Parameter Value

E 48 V Rx 100 mΩ
Li 1.8 mH Ro 52 Ω

RLi 200 mΩ h1re f 145 V
Rs 200 mΩ Po 200 W
Ci 4 mF a1 0.12

RDS 58 mΩ a0 0.012

Where the input voltages, E, come from 4 li-ion batteries of 25Ah; RLk is the DC
Resistance (DCR) of the inductance Lk, Po is the output power, RDS is the series ON
resistances of the IRFI4212 switches, and the Si8274 is used as the gate driver.

Rs and Rx are the resistances associated with the wires at the input of each FBC, and
at the output of the inverter, respectively. For the acquisition of the harmonics, the DSP
captures the output voltage during 20 periods of van, with a sampling time of 66 µs. Indeed,
according to signal processing theory shown in [30], in order to have good accuracy, the
period of acquisition must be 10 times higher than the period of the minimum Fourier
coefficient. The oscilloscope used correspond to a DSOX3034 of Keysight, which has a
bandwidth of 350 MHz. The tests developed hereafter correspond to an insertion of a load
and a disturbance in one of the input voltages.
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Cell input 

capacitor

Cell input

inductor Voltage

sensor of van

Resistive

Load

DSP launch

XLF28379D

Full-Bridge

Cells

Figure 9. Prototype.

5.1. Response to a Load Transient

This test analyzes the system when a load of 200 W is inserted at t = 7.5 s. Figure 10a,b
show the simulation and experimental results, respectively, validating its similarity. Before
the load insertion, one can observe a negative step in FB4, because of according to Table 1
and (5), h1 = 145 V, E = 48 V and h′1 = 3.02, which produces a negative value of x4,
as Figure 4 indicates. When the load is inserted, there is a voltage drop caused by the
impedance of the converter. Hence, to regulate the fundamental component, the inverter
must produce a higher fundamental component. According to Figure 4, to increase the
fundamental component from h′1 = 3.02, it is necessary to increase x4 to reach values higher
than 0. For that reason, when the controller acts to regulate the fundamental component and
the harmonics, x4 changes from a negative value to a positive value, as shown in Figure 11a.
The desired fundamental component is recovered and the third, fifth, and seventh order
harmonics are reduced again close to zero volts, as shown in Figure 11b. The fundamental
component reaches the reference value in about 6 s. All the selected order harmonics
remain between 0 and 1.45 V, meaning they reach a value less than 1% of the fundamental
component. After 30 s, these harmonics are less 0.34 % of the fundamental component.

(a)

Scale: 100V/div, 5ms/div Scale: 100V/div, 5ms/div

Scale: 100V/div, 10s/div

(b)

Figure 10. (a) Simulation result of 200 W load insertion, (b) Experimental result of 200 W load insertion.

5.2. Disturbance on a Cell Input Voltage Source

This test shown in Figure 12a,b is carried out with the converter connected to a 200 W
load while applying a step transient to E1 from 55 V to 48 V. It should be noted that before
the voltage step, the fourth FBC presents a negative step. This is because E1 is higher than
the other sources, seven levels being enough, instead of nine, producing a steady-state of
x4 lower than 0, while the others xk are higher than 0, as shown in Figure 13a. When E1
goes back to 48 V, all the xk are positive, producing a positive step and reaching the desired
fundamental component. All the FBs show positive steps because E1 is reduced. For that
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reason, the inverter presents lower voltage in the inputs. Hence the FBs must increase the
value of the fundamental component. Figure 13b shows the behavior of the harmonics
during this test, presenting overshoots in h1, h3, h5, that correspond to 4%, 1.1% and 0.4%
of the reference of h1, respectively. h7 is almost not affected. h1 is stabilized after 5 s. In this
test, the harmonics present a very low oscillations representing 0.48% of the fundamental
component in the worst case, validating the robustness of the controller.

(a)
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(b)

Figure 11. (a) Cosine of the switching-angles xks in 200 W load insertion test, (b) Harmonics behavior
after a 200 W load insertion

(a)

Scale: 100V/div, 5ms/div Scale: 100V/div, 5ms/div

Scale: 100V/div, 10s/div

(b)

Figure 12. (a) Simulations of E1 disturbance, (b) Experimental result of E1 disturbance.
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Figure 13. (a) Cosine of the switching-angles xks in 200 W load insertion test, (b) Harmonics behavior
of E1 disturbance experimental test.

6. Conclusions

This article has presented a control law applied to low frequency modulation strategy,
regulating the fundamental component and eliminating the third, fifth and seventh order
harmonics for the case of a multilevel inverter involving 6 to 8 cells.

Implementing real-time switching angle computations for SHE control method is not
common due to its complexity. Using Groebner basis approach to decouple the equations
and Newton Rapshon to emulate a virtual dynamical model allows to control the funda-
mental and harmonics with an additional PI controller. This process relaxes the complexity
and saves processing time to compensate the switching-angles if a disturbance in the input
voltage or in the load occurs.

This control method is validated both by observing the response of the system during
a load transient and disturbing one of the cell input voltage sources, canceling practically
the harmonics of third, fifth and seventh order and regulating the fundamental components
in all the tests.

Concerning the future works, proving that the proposed controller can operate for a
higher number of commutations, meaning eliminating more harmonics, is under investiga-
tion. This will allow to use more cells in the multilevel inverters.
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