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Abstract: Transcription factors (TFs) and microRNAs (miRNAs) are co-actors in genome-scale 1

decoding and regulatory networks, often targeting common genes. In this paper, we describe 2

the algebraic geometry of both TFs and miRNAs thanks to group theory. In TFs, the generator of 3

the group is a DNA-binding domain while, in miRNAs, the generator is the seed of the sequence. 4

For such a generated (infinite) group π, we compute the SL(2,C) character variety, where SL(2,C) 5

is simultaneously a ‘space-time’ (a Lorentz group) and a ‘quantum’ (a spin) group. A noteworthy 6

result of our approach is to recognize that optimal regulation occurs when π looks like a free group 7

Fr (r = 1 to 3) in the cardinality sequence of its subgroups, a result obtained in our previous papers. 8

A non free group structure features a potential disease. A second noteworthy result is about the 9

structure of the Groebner basis G of the variety. A surface with simple singularities (like the well 10

known Cayley cubic) within G is a signature of a potential disease even when G looks like a free 11

group Fr in its structure of subgroups. Our methods apply to groups with a generating sequence 12

made of two to four distinct DNA/RNA bases in {A, T/U, G, C}. Several human TFs and miRNAs 13

are investigated in detail thanks to our approach. 14

Keywords: Transcription factors; micro-RNAs; diseases; finitely generated group; SL(2,C) character 15

variety, algebraic surfaces 16

0. Introduction 17

Recently, we wrote a paper about a common algebra possibly ruling the beauty and 18

structure in poems, music and proteins [1]. We found that free groups govern the structure 19

of such disparate topics where a language emerges from pure randomness. We coined 20

the concept of ‘syntactical freedom’ for qualifying this occurrence of symbols organized 21

according to aperiodicity [2,3]. According to our view, the escape to ‘syntactical freedom’ 22

means a lack of beauty and the signature of a potential disease at the genome scale. The 23

secondary structures in the sequence of proteins or viruses are, most of the time, organized 24

according to the rules of free groups and, otherwise they may be a witness of a potential 25

aberrant topology. One favorite decomposition of the secondary structure of proteins is in 26

term of α-helices, β-sheets and coils [4] but this decomposition and the resulting syntax is 27

model dependent [1]. 28

Apart from the canonical double helix B-DNA we now know that there exists a 29

diversity of non-canonical coding/decoding sequences organized in structures such as 30

Z-DNA (often encountered in transcription factors), G-quadruplex (in telomeres) and other 31

types that are single-stranded, two-stranded or multistranded [5]. RNA is usually a single- 32

stranded molecule in a short chain of nucleotides, as is the case for a messenger RNA 33

(mRNA) or a (non-coding) microRNA (miRNA). 34

In our approach, the investigated sequences define a finitely generated group fp 35

whose structure of subgroups is close or away from a free group Fr of rank r, where r + 1 is 36
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Figure 1. Left: the Nanog transcription factor (PDB 9ANT). Right: the pre-miR-155 secondary
structure [10].

the number of distinct amino acids in the sequence (or the number of distinct secondary 37

structures considered in the protein chain). Recently, we also introduced concepts for 38

representing the groups fp over the Lie group SL(2,C). The SL(2,C) character variety 39

of fp and its Groebner basis are topological ingredients, they feature algebraic geometric 40

properties of the group fp under question [6,7]. For the definition of the Groebner basis of 41

an ideal containing multivariate polynomial rings, the reader may consult Reference [8]. 42

In this paper, we will focus upon transcription factors and miRNAs, both serve at 43

properly decoding and regulating the genes and their action, either independently of 44

each other or together by targeting common genes [9]. Figure 1 (Left) is a picture of the 45

pluripotent transcription factor Nanog. Figure 1 (Right) is an example of a pre-miRNA 46

associated to a disease [10]. Both will be investigated in detail in this paper. 47

In Section 1, we describe the mathematical methods and the software needed for 48

describing the algebraic surfaces relevant to DNA/RNA sequences. This includes the 49

definition of infinite groups under question, of the free groups Fr of rank r = 1 to 3 50

corresponding to 2- to 4-base sequences and the calculation of SL(2,C) representation of 51

such groups. A special care is needed to compute a Groebner basis of the character variety. 52

Section 2 is a discussion about the type of singular surfaces encountered in this research. 53

They play an imprtant role in our view of a potential disease. 54

In Section 3, the methods are applied to representative examples of sequences taken 55

from transcription factors and microRNAs whose group is close or away from a free group, 56

and whose Groebner basis of the variety contains simple singularities. Figures 2 to 6 feature 57

the main topological ingredients resulting from this research. 58
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1. Materials and Methods 59

1.1. Finitely generated groups, free groups and their conjugacy classes 60

A free group Fr on r generators (of rank r) consists of all distinct words that can be 61

built from r letters where two words are different unless their equality follows from the 62

group axioms. The number of conjugacy classes of Fr of a given index d is known and is 63

a good signature of the isomorphism, or the closeness, of a group π to Fr [3,11]. In the 64

following, the cardinality structure of conjugacy classes of index d in Fr is called the card 65

seq of Fr, and we need the cases from r = 1 to 3 to correspond to the number of distinct 66

bases in a DNA/RNA sequence. The card seq of Fr is in Table 1 for the 3 sequences of 67

interest in the context of DNA/RNA. 68

Table 1. Number of conjugacy classes of subgroups of index d in free group of rank r = 1 to 3. The
last column is the index of the sequence in the on-line encyclopedia of integer sequences [12].

r card seq sequence code
1 [1, 1, 1, 1, 1, 1, 1, 1, 1, · · · ] A000012
2 [1, 3, 7, 26, 97, 624, 4163, 34470, 314493, · · · ] A057005
3 [1, 7, 41, 604, 13753, 504243, 24824785, 1598346352, · · · ] A057006

Next, given a finitely generated group f p with a relation (rel) given by the sequence 69

motif, we are interested in the cardinality sequence (card seq) of its conjugacy classes. 70

Often, the DNA/RNA motif in the sequence under investigation is close to that of a 71

free group Fr, with r + 1 being the number of distinct bases involved in the motif. But 72

the finitely generated group fp = ⟨x1, x2|rel(x1, x2)⟩, or fp = ⟨x1, x2, x3|rel(x1, x2, x3)⟩, or 73

fp = ⟨x1, x2, x3, x4|rel(x1, x2, x3, x4)⟩ (where the xi are taken in the four bases A, T/U, G, C 74

and rel is the motif) may not be the free group F1 = ⟨x1, x2|x1x2⟩, or F2 = ⟨x1, x2, x3|x1x2x3⟩, 75

or F3 = ⟨x1, x2, x3, x4|x1x2x3x4⟩. The closeness of fp to Fr can be checked by its signature in 76

the finite range of indices of the card seq. 77

1.2. The SL(2,C) character variety of a finitely generated group and a Groebner basis 78

Let fp be a finitely generated group, we describe the representations of fp in the 79

(double cover of the) Lorentz group SL(2,C), the group of (2 × 2) matrices with complex 80

entries and determinant 1. The group SL(2,C) may be seen simultaneously as a ‘space-time’ 81

(a Lorentz group) and a ‘quantum’ (a spin) group. 82

Such a group contains representations as degrees of freedom for all quantum fields 83

and is the gauge group for Einstein-Cartan theory which contains the Einstein-Hilbert 84

action and Einstein’s field equations [13]. The Holst action used in loop quantum gravity 85

has quantum gravity states given in terms of SL(2,C) representations [14]. 86

Representations of fp in SL(2,C) are homomorphisms ρ : fp → SL(2,C) with char- 87

acter κρ(g) = tr(ρ(g)), g ∈ fp. The set of characters allows to define an algebraic set by 88

taking the quotient of the set of representations ρ by the group SL(2,C), which acts by 89

conjugation on representations [15,16]. 90

For the effective calculations of the character variety, we make use of a software on 91

Sage [17]. We also need Magma [18] for the calculation of a Groebner basis, at least for 3- 92

and 4-base sequences. 93

1.3. Algebraic geometry and topology of DNA/RNA sequences 94

1.3.1. Two-base sequences 95

Following [19], in this section, we describe the special case of representations for the 96

punctured torus S1,1 and the relevance of the extended mapping class group Mod±(S1,1) 97

in its action on surfaces of type κd(x, y, z), d ∈ C. 98

Let us take the example of the punctured torus T1,1 whose fundamental group, that
we denote π, is the free group F2 = ⟨a, b|∅⟩ on two generators a and b. The boundary
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component of T1,1 is a single loop around the puncture expressed by the commutator
[a, b] = abAB with A = a−1 and B = b−1. We introduce the traces

x = tr(ρ(a)), y = tr(ρ(b)), z = tr(ρ(ab)).

The trace of the commutator is the surface [15,19]

tr([a, b]) = κ2(x, y, z) = x2 + y2 + z2 − xyz − 2.

Another noticeable surface is obtained from the character variety attached to the
fundamental group of the Hopf link L2a1 that links two unknotted curves. For the Hopf
link, the fundamental group is

π(S3 \ L2a1) = ⟨a, b|[a, b]⟩ = Z2,

and the corresponding character variety is the Cayley cubic [6]

κ4(x, y, z) = x2 + y2 + z2 − xyz − 4.

Surfaces κ2 and κ4 have been obtained from two different mathematical concepts, from
topological and algebraic concepts in dimension 2, respectively. To relate them one makes
use of the Dehn-Nielsen-Baer theorem applied to the once punctured torus [20]. According
to this theorem, for a surface of genus g ≥ 1, we have

Mod±(Sg) ∼= Out(π(Sg)),

where the mapping class group Mod(S) denotes the group of isotopy classes of orientation- 99

preserving diffeomorphisms of S (that restrict to the identity on the boundary ∂S if ∂S ̸= ∅), 100

the extended mapping class group Mod±(S) denotes the group of isotopy classes of all 101

homeomorphisms of S (including the orientation-reversing ones) and Out(π) This leads to 102

the (topological) action of Mod± on the punctured torus as follows 103

Mod±(S1,1) = Out(F2) = GL(2,Z). (1)

The automorphism group Aut(F2) acts by composition on the representations ρ and in-
duces an action of the extended mapping class group Mod± on the character variety by
polynomial diffeomorphisms of the surface κd defined by [19]

f (4)H (x, y, z) = κd(x, y, z) = xyz − x2 − y2 − z2 + d. (2)

The Cayley surface κ4(x, y, z) possesses 4 simple singularities. We already showed 104

that it plays a role in the context of Z-DNA conformations of transcription factors [7, Tables 105

2 and 5]. See also the section 3 below and notably Figures 3 (Left) and 6 (Left). 106

The surface κ3(x, y, z) lies within the character variety for the fundamental group of 107

the link L6a1 [21]. We show below that this surface also lies in the generic Groebner basis 108

obtained for 4-base sequences, see Figure 6 (Right) below. 109

1.3.2. Three-base sequences 110

Our main object in this section is the four punctured sphere for which the fundamental 111

group is the free group F3 of rank 3 whose character variety generalizes the Fricke cubic 112

surface (2) to the hypersurface Va,b,c,d(C) in C7. 113

We follow the work of references [15,19,22]. 114

Let S4,2 be the quadruply-punctured sphere. The fundamental group for S4,2 can be ex- 115

pressed in terms of the boundary components A, B, C, D as π(S4,2) = ⟨A, B, C, D|ABCD⟩ ∼= 116

F3. 117
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A representation π → SL(2,C) is a quadruple

α = ρ(A), β = ρ(B) γ = ρ(C), δ = ρ(D) ∈ SL(2,C) where αβγδ = I.

Let us associate the seven traces 118

a = tr(ρ(α)), b = tr(ρ(β)), c = tr(ρ(γ)), d = tr(ρ(δ))

x = tr(ρ(αβ)), y = tr(ρ(βγ)), z = tr(ρ(γα)),

where a, b, c, d are boundary traces and x, y, z are traces of elements AB, BC, CA represent- 119

ing simple loops on S4,2. 120

The character variety for S4,2 satisfies the equation [15, Section 5.2],[19, Section 2.1],[22,
Section 3B], [23, Eq. 1.9] or [24, Eq. (39)]

Va,b,c,d(x, y, z) = x2 + y2 + z2 + xyz − θ1x − θ2y − θ3z − θ4 = 0 (3)

with θ1 = ab + cd, θ2 = ad + bc, θ3 = ac + bd and θ4 = 4 − a2 − b2 − c2 − d2 − abcd. 121

The 4-punctured sphere, whose fundamental group is the free group F3 with generator 122

the product of the 4 letters, is a generic topology. It is straightforward to check that the 123

Groebner basis for F3 contains (among other surfaces and depending on the choice of 124

parameters) a single copy of the generic surfaces κ4(x, y, z), κ3(x, y, z) and V1,1,1,1(x, y, z) = 125

xyz + x2 + y2 + z2 − 2x − 2y − 2z + 1, a surface we also denote f (3A1)(x, y, z) because it 126

contains 3 simple singularities of type A1 as shown in Figures 2 and 6 (Right). 127

There are other surfaces encountered in our study of the Groebner basis for transcrip- 128

tion factors and miRNAs when the generated group is close or away from the free group 129

F2 (for 3-base sequences) or the free group F3 (for 4 base sequences). These surfaces are 130

described in Section 3. 131

1.3.3. Four-base sequences 132

There does not exist a huge difference in the structure of a Groebner basis of the 133

character variety in the case of a 4-base sequence compared to the case of a 3-basis 134

sequence. One difference is that one has to manage a 14-dimensional hypersurface 135

Va,b,c,d,e, f ,g,h(x, y, z, u, v, w) in C14 (instead of a 7-dimensional one as in the previous sub- 136

section). In general, after the appropriate choice of the 8 parameters a, b, c, d, e, f , g, h, the 137

Groebner basis contains more than one copy of the generic Groebner basis, as shown in 138

Table 4. Each copy S of a relevant surface may be of the form S(x, y, z), S(x, u, v), S(y, u, w) 139

or S(z, v, w). 140

2. Discussion 141

Given an ordinary projective surface S in the projective space P3 over a number field, 142

if S is birationally equivalent to a rational surface, the software Magma [18] determines the 143

map to such a rational surface and returns its type within five categories. The returned 144

type of S is P2 for the projective plane, a quadric surface (for a degree 2 surface in P3), a 145

rational ruled surface, a conic bundle or a degree p Del Pezzo surface where 1 ≤ p ≤ 9. 146

A further classification may be obtained for S in P3 if S has at most point singularities. 147

Magma computes the type of S (or rather, the type of the non-singular projective surfaces 148

in its birational equivalence class) according to the classification of Kodaira and Enriques 149

[25]. The first returned value is the Kodaira dimension of S, which is −∞, 0, 1 or 2. The 150

second returned value further specifies the type within the Kodaira dimension −∞ or 0 151

cases (and is irrelevant in the other two cases). 152

Kodaira dimension −∞ corresponds to birationally ruled surfaces. The second return 153

in this case is the irregularity q ≥ 0 of S. So S is birationally equivalent to a ruled surface 154

over a smooth curve of genus q and is a rational surface if and only if q is zero. 155
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Kodaira dimension 0 corresponds to surfaces which are birationally equivalent to a K3 156

surface, an Enriques surface, a torus or a bi-elliptic surface. 157

Every surface of Kodaira dimension 1 is an elliptic surface (or a quasi-elliptic surface 158

in characteristics 2 or 3), but the converse is not true: an elliptic surface can have Kodaira 159

dimension −∞, 0 or 1. 160

Surfaces of Kodaira dimension 2 are algebraic surfaces of general type. 161

One important attribute of a surface is its degree of singularity. Most surfaces S 162

of interest below are almost not singular in the sense that they have at worst simple 163

singularities. The type and the number of simple singularities are denoted in an exponent 164

such as S(lA1) for l singularities of type A1. The notation A1 refers to the type of a Coxeter 165

root system. No other types of singular surfaces are encountered in our paper. All such 166

surface are degree 3 del Pezzo surfaces. For the Cayley cubic f (4)(x, y, z), the exponent (4) 167

means (4A1). Of course there are non singular surfaces in the character variety for some 168

sequences, corresponding to the other types. But we do not discuss them in this paper. 169

There are additional facilities offered by Magma for studying a singular scheme. A 170

scheme in Magma is any geometric object defined by the vanishing of polynomials in 171

a projective space. An algebraic surface is a scheme. If the scheme is singular, one can 172

calculate its singular subscheme, its degree and its support, that are important signatures 173

of the scheme. Most of the time, in the examples of this paper, for a singular surface S(lA1), 174

the degree is l and the support contains l simple singular points. Otherwise, we add a 175

lower index to S(lA1) to qualify the index and the support of the singular subscheme. The 176

notation S(lA1)
m,{} means that there are l singularities of type A1, that the degree of the singular 177

subscheme is m and that the support is the empty set. 178

By the way, transcription factors and microRNAs seem to have smooth rules underly-
ing the singularities of their sequences. This contrasts with some sequences encountered in
another context. In [7], we found two cases of two-base sequences whose corresponding
Groebner basis contains the surfaces

fH̃(x, y, z) = z4 − 2xyz (+z3) + 2x2 + 2y2 − 3z2(−4z)− 4. (4)

A plot of one of them in [7, Figure 3 (Right)] shows that they look like a generalization 179

fH̃(x, y, z) of the Cayley cubic f (4)H (x, y, z). These surfaces are conic bundles in the family of 180

K3 surfaces. In contrast to f (4)H (x, y, z), according to Magma, the resolution of such singular 181

surfaces fH̃(x, y, z) leads to many non isolated singularities (one cannot desingularise the 182

surfaces by blow up). 183

To summarize the important issues below, a noticeable result of our approach is to 184

recognize that optimal regulation occurs when the group underlying the sequence looks 185

like a free group Fr (r = 1 to 3) in the cardinality sequence of its subgroups, a result obtained 186

in our previous papers. A non free group structure features a potential disease. A second 187

noticeable result is about the structure of the Groebner basis of the variety. A surface with 188

simple singularities (like the well known Cayley cubic) within the Groebner basis is a 189

signature of a potential disease even when the generated group looks like a free group Fr 190

in its structure of subgroups. Our methods apply to groups with a generating sequence 191

made of two to four distinct DNA/RNA bases in {A, T/U, G, C}. Several human TFs and 192

miRNAs are investigated in detail thanks to our approach. 193

3. Results 194

In this section, we apply the SL(2,C) representation theory to groups generated by 195

DNA/RNA sequences occurring in transcription factors and microRNAs. Both play a 196

leading role in the decoding of the genome and in genome-scale regulatory networks. 197

Two-letter transcription factors (TFs) whose structure is close or away from the free group 198

F1 were already investigated in [7, Table 2]. The occurrence of the Cayley cubic κ4(x, y, z) 199

in the Groebner basis of the character variety was found to be a signature in the former 200

case. In this case this surface seems to possess a regulatory action that may be lost in the 201
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latter case. In [7, Table 3], the potential diseases associated to a non-free group structure are 202

mentioned. In the present section, one explores in Table 2 the case of a 3-letter sequence of 203

a TF and in Table 3 the case of 3-letter sequence of a miRNA. The case of 4-letter sequence 204

of a miRNA is summarized in Table 4. The role of surfaces with simple singularities in the 205

Groebner basis is emphasized. 206

3.1. Algebraic morphology of the transcription factor Prdm1 207

The transcriptional repressor PR domain containing 1 (Prdm1), also known as B- 208

lymphocyte-induced maturation protein-1 (Blimp1), is essential for normal development 209

and immunity [26]. It is of a zinc finger type. The consensus sequence ACTTTC corresponds 210

to the code MA0508.2 in [27]. 211

Figure 2. The Fricke surface V1,1,1,1(x, y, z) = f (3A1)
a (x, y, z) (with three simple singularities of type

A1).

The character variety 212

The ideal for the character variety fPrdm1(a, b, c, d)(x, y, z) for a few values of the 213

parameters is 214

fPrdm1(0, 0, 0, 0) = κ−4(x, y, z)(yz + x + 2),

fPrdm1(0, 1, 1, 0) = yκ−2(x, y, z)(x − 1),

fPrdm1(0, 1, 0, 0) = zκ−3(x, y, z)(z2 + 1)(yz + x + 1)(yz + x + 2),

fPrdm1(1, 1, 1, 1) = f (3A1)
a (x, y, z)(y + 1)(y + z − 1),

where κ−2(x, y, z), κ−3(x, y, z) are Fricke surfaces [21] and f (3A1)
a (x, y, z) = xyz + x2 + 215

y2 + z2 − 2x− 2y− 2z+ 1 is the surface drawn in Figure 2. The subscript 3A1 is for featuring 216

the three singularities of type A1. 217

The Groebner basis 218

The singular surfaces found in the Groebner basis of the ideal are not similar to those 219

in the ideal. One of them S1 = S(A1 A3)
3,{0:1:0:1} = 2yz2 + x2 + 3z2 − 2xz − 2yz − 2y − 2z − 2 is 220

obtained at values (a, b, c, d) = (1, 1, 1, 1) featuring two simple singularities of type A1 and 221

A3 with a singular subscheme of degree 3 and the singular point of type A3 in its support. 222

The other surface obtained in the Groebner basis at values (a, b, c, d) = (0, 0, 0, 0) is a conic 223
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bundle of the K3 type S2 := z4 + 2yz3 + x2 − 6yz − 2x − 8 whose singular subscheme is 224

non zero dimensional and of degree 1. 225

These two surfaces are non standard in our context of TFs and miRNAs. 226

3.2. Algebraic morphology of homeodomains for Nanog and Xvent 227

The pluripotency in embryonic stem cells and their regulation is characterized by the 228

expression of several transcription factors [28,29]. Among them, the transcription factor 229

Nanog is present in the embryonic stages of life of several vertebrate species. Nanog binds 230

to promoter elements of hundreds of target genes as a regulatory element. It has a conserved 231

DNA-binding homeodomain with consensus sequence TAATGG. The closest homolog 232

of Nanog is the (nonmammalia) Xenopus, a Xvent transcription factor with consensus 233

sequence CTAATT [29]. In this subsection, we investigate the algebraic morphology of both 234

transcription factors Nanog and Xvent thanks to their consensus sequences. 235

Table 2. A few (three-base) transcription factors whose group structure is away from a free group
or whose Groebner basis of the SL(2,C) character variety contains a (possibly almost) singular
surface. The symbol gene is for the identification of the transcription factor in the Jaspar database
[27], motif is for the consensus sequence of the transcription factor, card seq is for the cardinality
sequence of conjugacy classes of subgroups of the group whose motif is the generator, sing is for the
identification of a singular surface within the Groebner basis, the last columnn is for a reference paper
and the corresponding disease. The group F2 is the free group of rank two. The card seq for π2 is
[1, 3, 10, 51, 164, 1230, 7829, 59835, 491145 · · · ], close to the card seq of the group ⟨x, y, z|(x, (y, z)) = z⟩.
The later group is found as governing the structure of many transcription factors and is associated to
the link found in [7, Figure 2]. The card seq for π3 is [7, 14, 89, 264, 1987, 11086, 93086 · · · ]. The surface

f (A1)
b (x, y, z) = x2 + y2 − 6z2 + 4xyz (not defined in the text) is part of the character variety for the

genes Pitx1, OTX1, ...

gene motif card seq sing ref & disease

Prdm1 ACTTTC F2 S1, S2(x, y, z) [27],MA0508.2
lupus, rheumatoid arthritis

POU6F1 TAATGAG π2 no sing .,MA1549.1
lung adenocarcinoma

ELK4 CTTCCGG . no sing, Fricke .,MA0076.2
gastric cancer

OTX2 GGATTA π3 no sing .,[MA0712.2, MA0883.1]
medulloblastomas

N-box TTCCGG . no sing, Fricke [30]
drug sensitivity

Pitx1,OTX1,· · · TAATCC . f (4)H , f (A1)
b (x, y, z) [27],[MA0682.1,MA0711.1]

autism, epilepsy, · · ·
Nanog TAATGG . f (4)H , f (A1)

a (x, y, z) [28]
cancer cells

Xvent CTAATT F2 f (2A1)
4,{} , f (A2)(x, y, z) [29]

The Groebner basis for Xvent fNanog(0, 0, 0, 0) takes the form 236

fNanog(0, 0, 0, 0) = f (4)H (x, y, z) f (A1)
a (x, y, z) · · ·

where f (4)H (x, y, z) is the Cayley cubic (with its 4 simple singularities) and f (A1)
a (x, y, z) = 237

x2 + y2 − z2 + xyz (a surface with a single simple singularity of type A1) as shown in Figure 238

3 (Right). The forgotten factors are factors for planes or trivial smooth surfaces. 239

The Groebner basis for Xvent fXvent(1, 1, 1, 1) takes the form 240

fXvent(1, 1, 1, 1) = f (3A1)
b (x, y, z) · · ·
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Figure 3. Left: the Cayley cubic κ4(x, y, z). Right: the surface f (A1)
a (x, y, z).

where f (3A1)
b (x, y, z) = x2 + y2 + xyz − xy − z − 1 (a surface with three simple singularity 241

of type A1). The missing term does not contain surfaces with singularities. The character 242

variety fXvent(0, 0, 0, 0) contains the cubic surface f (2A1)
4,{} (x, y, z) = 2z3 + x2z + 2xyz + 243

2y2 − z2 − 6z (with two simple singularities of type A1) and other factors for planes or 244

trivial smooth surfaces. Both surfaces f (3A1)
b (x, y, z) and f (2A1)

4,{} (x, y, z) are pictured in Figure 245

4. 246

Figure 4. Left: the cubic surface f (2A1)
4,{} (x, y, z). Right: the cubic surface f (3A1)

b (x, y, z).

Table 2 lists a few selected transcription factors, their card seq and the corresponding 247

singular surfaces, if any As announced, in the selected transcription factors, there exists a 248

correlation between the lack of ‘syntactical freedom’, or the presence of a singular surface 249

in the character variety, with an identified disease. 250

3.3. Algebraic morphology of microRNAs 251

MicroRNAs (miRNAs) play a fundamental role in the expression and regulation of 252

genes by targeting specific messenger RNAs (mRNAs) for degradation or translational 253

repression. The miRNAs are approximately 22 nt long single-stranded RNA molecules. 254

The genes encoding miRNAs are much longer than the processed mature miRNA molecule. 255

Many miRNAs are known to reside in introns of their pre-mRNA host genes and share their 256

regulatory elements, primary transcript, and have a similar expression profile. MicroRNAs 257

are transcribed by RNA polymerase II as large RNA precursors called pri-miRNAs. The pre- 258

miRNAs are aproximately 70-nucleotides in length and are folded into imperfect stem-loop 259

structures, see Figure 1 (Right) for an example. 260

Each miRNA is synthesized as a miRNA duplex comprising two strands (-5p and -3p). 261

However, only one of the two strands becomes active and is selectively incorporated into 262
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the RNA-induced silencing complex in a process known as miRNA strand selection [31,32]. 263

For details about the mirRNA sequences we use the Mir database [33,34]. 264

Plant miRNAs usually have near-perfect pairing with their mRNA targets so that 265

gene repression proceeds through cleavage of the target transcripts. In contrast, animal 266

miRNAs are able to recognize their target mRNAs by using as few as 6 to 8 nucleotides 267

(the seed region) which is not enough pairing for leading to cleavage of the target mRNAs. 268

A given miRNA may have hundreds of different mRNA targets, and a given target might 269

be regulated by multiple miRNAs. 270

Disregulation of miRNAs may lead to a disease like cancer. A key microRNA known 271

as an oncommir (involved in immunity and cancer) is mir-155. 272

Specifically the -3p strand is mir-155-3p. Figure 5 (top) illustrates the complementary 273

base-pairing between miR-155-3p and the human IRAK3 (interleukin-1 receptor-associated 274

kinase 3) mRNA [10, Figure 4] and the relevant seed sequence UCCUAC. The card seq for 275

this sequence is the two-letter free froup F2 and the Groebner basis for the corresponding 276

character variety contains the surface f (A1)
b (x, y, z) = x2 + y2 − 6z2 + 4xyz that has a single 277

simple singularity as shown at the bottom of Figure 5. If one retains the full seed sequence 278

is UCCUAC(A) then the card seq passes to that of the free group F2 to the group π2 and the 279

singular surface is lost. This is a case where the ‘bandwidth’ of the seed is critical in the 280

(dis)regulation of the miRNA. These results are transcribed in Table 3. 281

Figure 5. Up: Complementary base-pairing between miR-155-3p and the human Irak3 (interleukin-1
receptor-associated kinase 3) mRNA [10, Figure 5]. The requisite‘seed sequence’ base-pairing is

denoted by the bold dashes. Down: the surface f (A1)
b (x, y, z) = x2 + y2 − 6z2 + 4xyz.

For the case of -5p strand mir-155-3p, the seed sequence UUAAUGCUA contains 282

four distinct letters. This case is similar to generic Groebner bases obtained from four 283

letter seeds. Depending on the choices of parameters a, b, c, d, e, f , g, h, the Groebner basis 284

contains the Cayley cubic f (4)H (x, y, z), the Fricke surface κ3(x, y, z) (that is related to the 285

link L6a1 [21, Figure 2]), the surface f (3A1)
a (x, y, z) shown in Figure 2 and other surfaces. In 286

this generic case, the surface is found with (at most) 4 copies where each copy is attached 287

to a distinct puncture of the 4-punctured 4-sphere S4,2. 288

In table 3, this generic case is denoted 4 × generic (or 3 × generic for mir-133-5p). 289

These results are transcribed in Table 4. 290

A small list of huma miRNAs is investigated in Tables 3 and 4 corresponding to 3-letter 291

and 4-letter seeds. the prefix ‘hsa’ is for the human specie. Like for transcription factors 292
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Table 3. A few human (prefix ‘hsa’) microRNAs whose group structure is away from a free group or
whose Groebner basis of the SL(2,C) character variety contains a singular surface. The symbol mir is
for the identification in the Mir database [34], seed is for the seed of the miRNA, card seq is for the
cardinality sequence of conjugacy classes of subgroups of the group whose seed is the generator, sing
is the identification of a singular surface within the Groebner basis, the last columnn is for a reference
paper and the corresponding disease [31]. The card seq for π1 and π′

1 are given in [3, Table5]. The
card seq for π′

2 is [1, 3, 7, 34, 139, 931, 5208, 43867 · · · ]. For hsa-mir-124-1-3p, one encounters the Fricke

surface f (A1)
2,{} = xyz + x2 + y2 + z2 − 2y in the character variety.

mir seed card seq sing ref & disease

hsa-mir-193b-5p GGGGUU π1 no sing [31,34]
GGGGUUU π′

1 no sing lung cancer

hsa-mir-155-3p UCCUAC F2 f (A1)
b (x, y, z) [31,32,34]

UCCUACA π2 no sing multiple sclerosis

hsa-mir-193a-5p GGGUCUU F2 f (A1)
b (x, y, z) [31,34]

breast cancer
hsa-mir-223-5p GUGUAUU . . .

hsa-mir-133-3p UUGGUC F2 f (3A1)
b (x, y, z) [31,34]

UUGGUCC π′
2 no sing atrial fibrillation

hsa-mir-124-3p AAGGCA F2 f (3A1)
b , f (A1)

2,{} [34,35]
AAGGCAC . no sing Alzheimer’s disease

Table 4. The opposite strand of the microRNA considered in Table 3. The seed sequence is made
of 4 distinct bases and the corresponding card seq is the free group F3 of rank 3. The Groebner
basis contains 4 copies of the generic collection of surfaces κ4(x, y, z), f (3A1)(x, y, z), κ3(x, y, z), etc, as
shown in Figure 6, except for the -5p strand of mir-133 where there are only 3 copies of the generic
surfaces.

mir seed card seq sing ref & disease

hsa-mir-193b-3p ACUGGCC F3 4× generic [31,34]
hsa-mir-155-5p UUAAUGCUA . . [31,32,34]

hsa-mir-193a-3p ACUGGCC . . [31,34]
hsa-mir-223-3p GUCAGUU . . .
hsa-mir-124-5p GUGUUCA . . .
hsa-mir-133-5p GCUGGUA . 3× generic . [34,35]

in Table 2, the lack of ‘syntactical freedom’, or the occurrence of a singular surface in the 293

character variety, is symptomatic of a disease. 294

4. Conclusion 295

We found in this work that a signature of a disease may be given in terms of the 296

group structure of a DNA/RNA sequence and the related character variety representing 297

the group. The DNA motif of a transcription factor, or the seed of a microRNA, defines 298

the generator of a group π. As soon as π is away from a free group Fr (with r + 1 the 299

number of distinct bases in the sequence) or the SL(2,C) character variety G of π contains 300

singular surfaces with isolated singularities, a potential disease is on sight. One would like 301

to be more predictive in identifying the potential disease with peculiar groups or singular 302

surfaces. 303

First of all, most of the time, the surfaces encountered in the context of TFs and miRNAs 304

are degree 3 del Pezzo, in contrast to surfaces obtained from other DNA sequences, as 305

in Equation 4. But the degree 3 del Pezzo family is very rich. For instance, the singular 306

surface f (A1)
b = x2 + y2 − 6z2 + 4xyz (see Figure 5) is part of the character variety of TF 307
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Figure 6. Up: Complementary base-pairing between miR-155-5p and the human Spi1 (spleen focus
forming virus proviral integration oncogene) [10, Figure 4]. The requisite ‘seed sequence’ base-pairing

is denoted by the bold dashes. Down (from left to right): the surfaces f (4)H = κ4(x, y, z), f (3A1)(x, y, z)
and κ3(x, y, z), four copies of them are contained within the Groebner basis for the character variety.

Pitx1 (see Table 2) and of miRNAs 155-3p and 193a-5p (in Table 3). Then, the singular 308

surface f (A1)
2,{} = x2 + y2 + z2 + xyz − 2y is part of the character variety of mirRNA 133-3p. 309

Both surfaces have a simple singular point of type A1 but distinct singular subschemes (see 310

Section 2 for the notation). 311

An exception to the degree 3 del Pezzo rule was found in investigating the character 312

variety for the Prdm1 transcription factor in subsection 3.1. 313

Do these features and other ones to be described later may help for the diagnostic of a 314

potential disease? There is room for much work in the future along these lines. 315
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