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Abstract1

Computation of long-wave run-up has been of high interest in the fields of ocean sciences and2

geophysics - particularly for tsunami and river flood modeling. An accurate calculation of run-up and3

inundation requires the numerical model to account for a sequence of critical processes - each of them4

posing a different challenge to the numerical solution. This study presents the strategic development of5

a numerical solution technique for Shallow Water Equations with a focus on accuracy and efficiency for6

long-wave run-up. The present model is based on an explicit second-order Finite Volume scheme over7

a staggered grid that efficiently achieves fundamental properties such as well-balance and preservation8

of shock fronts without the need for computationally expensive solvers. The streamlined code serves9

as a foundation for the implementation of nested grids. Computations of commonly used long-wave10

benchmark tests showcase that accurate predictions of local extreme run-up can often be achieved11

with highly refined yet spatially focused nested grids. Strategic grid nesting can lead to stable and12

accurate solutions of run-up at locations of interest and reduce the computational load to a fraction of13

what is usually necessary for a comparable solution over a single grid.14

1. Introduction15

The estimation of run-up from long waves is crucial for the assessment and prediction of16

hazardous flooding scenarios associated with tsunamis and storm surges. As wave run-up is the final17

stage a water wave undergoes when it reaches the shore, it depends on multiple processes such as wave18

transformation, breaking, and interaction with dry land. Consequently, a substantial and continuous19

effort has been made to better understand and compute the run-up processes of long waves (Liu20

et al. (1991)). This includes studies with respect to the derivation of analytical solutions for simplified21

geometries (e.g., Carrier and Greenspan (1958), Synolakis (1987), Thacker (1981), Mayer and Kriebel22

(1995)), laboratory experiments (e.g., Hall et al. (1953), Briggs et al. (1995, 1996)), and development23

of new numerical methods (e.g., Liu et al. (1998), Titov and Synolakis (1995)). The latter provides24

approximate yet valid run-up solutions in more general settings suitable for the reconstruction of past25

events, forecasting, and practical engineering applications.26

Numerical models for long waves, such as tides, storm surges, and tsunamis, have traditionally27

been based on Shallow Water Equations (SWE). Despite their simplistic hydrostatic assumptions,28

the SWE provide a valid basis for many long-wave problems and are often preferred over more29

complete equations thanks to their hyperbolic nature in which shocks can form as part of the solution.30

These depth-averaged equations have proven to give a reasonable balance between the accuracy and31

numerical cost (Brocchini and Dodd (2008)) and serve by far as the most commonly used baseline for32

run-up calculations (e.g., Titov et al. (2016), George and LeVeque (2006), Hervouet (2007)). Various33

numerical techniques have been proposed for the discretization of the SWE, ranging from conventional34

mesh-based methods such as Finite Difference (FD), Finite Volume (FV), or Finite Element (FE) to35

unconventional mesh-free methods such as smooth particle hydrodynamics (SPH) Wei et al. (2015).36

The numerical solutions of SWE have been subject to many trends. Earlier solutions were based37

on traditional FD schemes solved on a staggered grid (Arakawa and Lamb (1981)). This approach38

has been successfully employed in many first-generation tsunami models (e.g. TUNAMI Imamura39
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(1989), COMCOT Wang (2009)). Several wetting-drying techniques have been proposed to achieve40

a reasonable representation of the run-up heights. Shuto and Goto (1978) used a staggered scheme41

with a Lagrangian description for the moving boundaries. Another approach has been based on the42

Neumann-type technique, which has been used to extrapolate the velocity at the wet-dry fronts (Titov43

and Synolakis (1998)), while Liu et al. (1995) modeled the run-up based on water-level changes through44

flooding and drying of the cells.45

FD methods offer a simplified solution for hyperbolic equations. However, they are known to46

exhibit deficiencies when dealing with flow discontinuities (Wei et al. (2006), Olabarrieta et al. (2011)),47

which particularly require local conservation of both mass and momentum. These conservation48

properties are necessary for the transport of breaking waves toward the shore and, hence, are important49

for the accuracy of the run-up computation. FV methods, on the other hand, solve the integral form of50

the SWE and directly benefit from conservation and shock-capturing capabilities. For this reason, FV51

methods such as Godunov (1954), and Roe (1986) solvers, which were previously used in gas dynamics,52

have become increasingly popular for the solution of long wave problems. A new generation of53

tsunami and flooding models has been developed (Berger et al. (2011), Macías et al. (2017), Dutykh54

et al. (2011), Yuan et al. (2020)) based on a finite volume interpretation of the equations, where the55

in-going and out-going fluxes over a control volume are computed with approximate Riemann solvers56

(e.g., Roe (1997), Harten et al. (1983), and Toro (1989)). These solvers are designed to preserve the57

hyperbolicity of the governing equations to allow for the formation of discontinuities in the numerical58

system. However, hyperbolicity can be a source of problems for the solution of the SWE. One drawback59

of this property is the well-balance between flux gradient, and source terms (Zijlema (2019)). This60

means that models based on the FV approach often require computationally expensive techniques to61

ensure the well-balance of the scheme - especially in the presence of dry cells (Wei et al. (2006), LeVeque62

(1998), Zhou et al. (2001), Brufau et al. (2002), Toro (2001), Audusse et al. (2015)). With respect to run-up63

and as a way to deal with the numerical problems of the moving shoreline, many FV schemes employ64

an artificial bed-wetting algorithm. These work through the definition of a minimum value of the65

water depth in the dry cells adjacent to the wet cells for computation of the numerical flux (Toro (2001),66

Dodd (1998)). Another difficulty for these schemes lies in the conservation of the non-negativity of67

the water depth - especially in the case of run-down (Audusse et al. (2004)). Nevertheless, several68

operational models such as FUNWAVE (Shi et al. (2012), COULWAVE (Kim et al. (2009)), and BOSZ69

(Roeber and Cheung (2012)) successfully utilize these schemes.70

Another approach for solving the SWE is linked to the use of conservative staggered schemes.71

These methods benefit from the efficiency and robustness of the FD approximations while achieving72

conservative and shock-capturing properties. Such schemes have been successfully applied to flows at73

high Froude numbers, including hydraulic jumps and inundation of dry areas (e.g., Zhou and Stansby74

(1999), Stelling and Duinmeijer (2003), Madsen et al. (2005), Doyen and Gunawan (2014), Yamazaki et al.75

(2009)). These schemes are based on specific FD approximations, which satisfy the Rankine-Hugoniot76

jump condition at a discrete level (Zijlema (2019)), and achieve valid solutions for rapidly varying77

flows. The concept from Stelling and Duinmeijer (2003) has been widely used in many operational78

wave and run-up models (e.g., SWASH Zijlema et al. (2011), NEOWAVE Yamazaki et al. (2012) and79

Xbeach Roelvink et al. (2018)). This scheme guarantees the positivity of the water depth under the80

standard Courant-Friedrichs-Lewy (CFL) condition and therefore is very efficient for the computation81

of large-scale inundation problems.82

The design of the numerical solutions of long-wave run-up requires taking the multi-scale nature83

of the problem into account, i.e., large-scale long-wave propagation in combination with the small-scale84

run-up and inundation processes. High spatial resolution is necessary for a detailed representation85

of the run-up process. However, computing a high-resolution grid over the entire domain is often86

unnecessarily expensive and can hinder the applicability of the model to real problems. With the87

objective of achieving efficient long-wave run-up computations, it is therefore desirable to utilize88

different grid sizes - each appropriate for the particular problems in the propagation and the run-up89
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stages. Different approaches have been used to obtain local mesh refinement. For example, traditional90

nested grid methods have been implemented in tsunami models (Imamura (1989), Wang (2009),91

Yamazaki et al. (2011)). These techniques are usually built into structured grids where the refinement92

arises from the insertion of a sub-grid with higher resolution. The exchange of information between93

the grids is achieved either with one-way or two-way interactions. On the other hand, for unstructured94

grids, an adaptive mesh refinement technique has been successfully implemented in a number of95

long-wave models (e.g., Berger et al. (2011), Sætra et al. (2015), Donat et al. (2014)). The adaptive mesh96

refinement generates locally refined cells adapted to the flow condition without the need to use fixed97

sub-grid Liang (2011). The refined region is, therefore, able to move with the area of interest, and98

unnecessary refinement is avoided. The disadvantage of these methods lies mainly in the complexity99

of the grid generation techniques, which require intensive data storage. In addition, the time step100

constraint is bound to the smallest grid cell that can hinder the efficiency of the implementation for101

explicit schemes (Debreu and Blayo (2008)).102

This paper presents the rigorous development of a stable and accurate numerical framework for103

the computation of long-wave run-up. We address the details of the numerical scheme and outline the104

strategy for grid nesting to achieve a fast and low-cost numerical tool for run-up computations. The105

verification process checks off the fundamental properties necessary for the computation of run-up:106

shock-capturing capabilities, moving boundaries with bottom friction, and exchange of information107

across nested grids. Two standard tsunami benchmark datasets are then employed to demonstrate the108

sensitivity of long-wave run-up to the overall grid resolution as well as to the extent of the nested grid109

and the refinement factor.110

2. Methodology111

2.1. Governing equations112

The present study considers the two-dimensional, depth-averaged Shallow Water equations113

(SWE). These equations provide a powerful baseline for long-wave modeling thanks to their wave-like114

hyperbolic structure. Moreover, the SWE serve as the backbone for many numerical models that115

address nearshore wave propagation and inundation. This is the case for dispersive Boussinsq-type116

and non-hydrostatic models in which the governing equations contain the SWE as a subset.117

The SWE are derived from the Navier-stokes equations under the following assumptions: (a)118

the pressure is hydrostatic, and (b) the vertical distribution of the horizontal velocity is uniform (no119

variation). Under these assumptions, the equations take the following differential form in Cartesian120

coordinates:121

∂h
∂t

+
∂hu
∂x

+
∂hv
∂y

= 0 (1)

∂hu
∂t

+
∂hu2

∂x
+

∂huv
∂y

+ gh
∂η

∂x
= −gn2 u

√
u2 + v2

h1/3 (2)

∂hv
∂t

+
∂huv

∂x
+

∂hv2

∂y
+ gh

∂η

∂y
= −gn2 v

√
u2 + v2

h1/3 (3)

We define t as the time variable, x and y are the space variables, h is the water depth, u and v122

are the depth-averaged velocities in the x and y -directions, respectively. η refers to the free surface123

elevation: η (x, y, t) = h (x, y, t)− d (x, y), where d is the positive bottom topography (1). The constant124

g is the gravitational acceleration and n is the Manning roughness coefficient
[
s.m−1/3

]
.125
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Figure 1. Definition sketch for the free surface flow problem with key variables.

We write the SWE, Eqs. 1- 3 in a conservative form to ensure the conservation of mass and126

momentum across discontinuities. The conserved variables, in this case, are the total water depth h127

and its product with the velocity components: hu and hv. In this form of the equations, we avoid the128

splitting of the free surface gradient into an artificial flux gradient and a source term that includes129

the effect of bed slope. This improves the well-balance properties of the numerical solution. The130

preservation of shocks and discontinuities will consequently depend on the numerical approximations131

of the scheme, which have to satisfy the Rankine-Hugoniot jump condition at the discrete level (Zijlema132

(2019)).133

We introduce the auxiliary variables p and q, which denote the mass fluxes:134

p = hu q = hv (4)

We rewrite the SWE in the following form:135

∂h
∂t

+
∂p
∂x

+
∂q
∂y

= 0 (5)

∂hu
∂t

+
∂pu
∂x

+
∂qu
∂y

+ gh
∂η

∂x
= −gn2 u

√
u2 + v2

h1/3 (6)

∂hv
∂t

+
∂pv
∂x

+
∂qv
∂y

+ gh
∂η

∂y
= −gn2 v

√
u2 + v2

h1/3 (7)

It is worth mentioning that in the momentum equations Eqs. 6 and 7, the variables hu and hv in136

the local acceleration and the variables p and q in the convective acceleration play different roles. The137

former is a storage quantity, while the latter is a transport quantity. Consequently, these terms are138

approximated differently, and in order to avoid confusion, we avoid using the same symbols.139

2.2. Conservative Staggered scheme140

As detailed in the introduction, a variety of numerical schemes have previously been developed141

for the solution of the SWE. The choice of the numerical scheme depends mainly on the problem being142

addressed, which defines the requirements for the scheme properties. For the computation of long143

wave run-up, a conservative shock-capturing scheme is crucial for the preservation of momentum and144

propagation of shocks at the correct speed and height. Other important properties are well-balance145

and non-negativity of the water depth to ensure mass conservation across wet/dry transitions without146

parasitic waves. This adds to the stability and robustness of the numerical model - particularly over147

irregular bathymetry. Consequently, a scheme that provides these features is suitable for computing148

wave-breaking processes and, subsequently, wave run-up estimations.149
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In this study, the objective is to develop a lightweight yet accurate and stable solution structure150

that keeps the computational expenses at a low level. For these reasons, we utilize a conservative151

scheme on a staggered grid where the numerical fluxes are computed with simple FD approximations152

instead of Riemann solvers. The SWE variables, in this case, are approximated on a staggered C-grid:153

the total water depth h and the bed topography d are defined at the cell center, and the depth-averaged154

velocities (u, v) are stored at the cell interfaces (see Figure. 2).155

For the discretization, we consider a 2D rectangular computational domain with a uniform grid156

spacing of ∆x and ∆y in the x and y directions, respectively. The variables stored at the cell center are157

expressed as xi,j, where i and j are the spatial indices in the x and y directions. The variables stored158

at the cell interface are denoted by xi± 1
2 ,j or xi,j± 1

2
in the x- and y- directions, respectively. The time159

stepping is based on discrete, non-uniform time intervals tn = n∆t, where n is the time index and ∆t is160

the adaptive time step. The value of each variable a at the time level tn is denoted with an. The water161

depth h is evaluated at each time step level t = n∆t, whereas, the depth-averaged velocities u and v162

are evaluated halfway between the present and the following time step t =
(

n + 1
2

)
∆t. This leads to163

the staggering of spatial and temporal information and facilitates consistent second-order accuracy in164

space and time.165

Figure 2. Schematic of the 2D staggered grid

The present scheme first requires the solution of the continuity equation, which is subsequently166

used in the momentum equation. The discretization of the continuity equation, Eq. 5, is expressed as:167

hn+1
i,j − hn

i,j

∆t
+

pn
i+ 1

2 ,j
− pn

i− 1
2 ,j

∆x
+

qn
i,j+ 1

2
− qn

i,j− 1
2

∆y
= 0 (8)

Where:168

pn
i+ 1

2 ,j = ĥn
i+ 1

2 ,ju
n+ 1

2
i+ 1

2 ,j
qn

i,j+ 1
2
= ĥn

i,j+ 1
2
vn+ 1

2
i,j+ 1

2
(9)

ĥn
i± 1

2 ,j
and ĥn

i,j± 1
2

are the water depths at the cell interfaces computed with an upwind169

approximation:170
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ĥn
i+ 1

2 ,j =


hn

i,j if un+ 1
2

i+ 1
2 ,j

≥ 0

hn
i+1,j if un+ 1

2
i+ 1

2 ,j
< 0

ĥn
i,j+ 1

2
=


hn

i,j if vn+ 1
2

i,j+ 1
2
≥ 0

hn
i,j+1 if vn+ 1

2
i,j+ 1

2
< 0

(10)

The next step is the solution of the momentum equation, Eq. 6. First, we consider the momentum171

equation without the friction term; the approximation of this term will be detailed later. We employ172

the FD approximations recommended in Zijlema (2019) to achieve conservation of the momentum flux173

across discontinuities, as:174

h̄n+1
i+ 1

2 ,j
un+ 3

2
i+ 1

2 ,j
− h̄n

i+ 1
2 ,j

un+ 1
2

i+ 1
2 ,j

∆t
+

ûn+ 1
2

i+1,j p̄
n
i+1,j − ûn+ 1

2
i,j p̄n

i,j

∆x
+

ûn+ 1
2

i+ 1
2 ,j+ 1

2
q̄n

i+ 1
2 ,j+ 1

2
− ûn+ 1

2
i+ 1

2 ,j− 1
2
q̄n

i+ 1
2 ,j− 1

2

∆y

= −gh̄n+1
i+ 1

2 ,j

ηn+1
i+1,j − ηn+1

i,j

∆x

(11)

Regarding the free surface gradient term, the use of the updated variable h̄n+1
i+ 1

2 ,j
is necessary for the175

scheme to guarantee the entropy inequality as demonstrated in Doyen and Gunawan (2014). Further,176

it is necessary to approximate the convective acceleration with an upwind scheme, where the mass177

fluxes p and q are the criteria for upwinding and the velocities u and v are the upwinded quantities:178

ûn+ 1
2

i,j =


un+ 1

2
i− 1

2 ,j
if p̄n

i,j ≥ 0

un+ 1
2

i+ 1
2 ,j

if p̄n
i,j < 0

ûn+ 1
2

i+ 1
2 ,j+ 1

2
=


un+ 1

2
i+ 1

2 ,j
if q̄n

i+ 1
2 ,j+ 1

2
≥ 0

un+ 1
2

i+ 1
2 ,j+1

if q̄n
i+ 1

2 ,j+ 1
2
< 0

(12)

It is important to note, that a reversed approach where the upwinded quantities are p and q, leads179

to errors in the computation of the momentum fluxes across discontinuities as demonstrated in Zijlema180

(2019).181

Since the mass fluxes p and q are continuous quantities, an averaged approximation of these182

quantities can be applied in the computation of the convective acceleration terms:183

p̄n
i,j =

1
2

(
pn

i+ 1
2 ,j + pn

i− 1
2 ,j

)
q̄n

i+ 1
2 ,j+ 1

2
=

1
2

(
qn

i,j+ 1
2
+ qn

i+1,j+ 1
2

)
(13)

The flow depth, originally defined at the cell centroid, is approximated at the cell interface with184

arithmetic averaging to be used in the computation of the local acceleration:185

h̄n+1
i+ 1

2 ,j
=

1
2

(
hn+1

i,j + hn+1
i+1,j

)
(14)

Finally, the momentum equation, Eq. 7, in the y-direction is solved in an analogous way as:186

h̄n+1
i,j+ 1

2
vn+ 3

2
i,j+ 1

2
− h̄n

i,j+ 1
2
vn+ 1

2
i,j+ 1

2

∆t
+

v̂n+ 1
2

i,j+1q̄n
i,j+1 − v̂n+ 1

2
i,j q̄n

i,j

∆y
+

v̂n+ 1
2

i+ 1
2 ,j+ 1

2
p̄n

i+ 1
2 ,j+ 1

2
− v̂n+ 1

2
i− 1

2 ,j+ 1
2

p̄n
i− 1

2 ,j+ 1
2

∆x

= −gh̄n+1
i,j+ 1

2

ηn+1
i,j+1 − ηn+1

i,j

∆y

(15)

where:187
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v̂n+ 1
2

i,j =


vn+ 1

2
i,j− 1

2
if q̄n

i,j ≥ 0

vn+ 1
2

i,j+ 1
2

if q̄n
i,j < 0

v̂n+ 1
2

i+ 1
2 ,j+ 1

2
=


vn+ 1

2
i,j+ 1

2
if p̄n

i+ 1
2 ,j+ 1

2
≥ 0

vn+ 1
2

i+1,j+ 1
2

if p̄n 1
2

i+ 1
2 ,j+ 1

2
< 0

(16)

and:188

q̄n
i,j =

1
2

(
qn

i,j+ 1
2
+ qn

i,j− 1
2

)
p̄n

i+ 1
2 ,j+ 1

2
=

1
2

(
pn

i+ 1
2 ,j+1

+ pn
i+ 1

2 ,j

)
(17)

The flow depth in this case is approximated as:189

h̄n+1
i,j+ 1

2
=

1
2

(
hn+1

i,j + hn+1
i,j+1

)
(18)

2.2.1. Second-order numerical accuracy190

Staggering of the variables both in space and time and utilization of the Leapfrog scheme lead to191

second-order accuracy for both the continuity and the momentum equations, except for the advection192

terms, (Stelling and Duinmeijer (2003), Zijlema et al. (2011)). The flux terms are responsible for193

transporting the conserved quantities, and consequently, the construction of the advection terms with194

upwind differencing is necessary for the robustness and stability of the computed solution. However,195

first-order upwind methods are diffusive, and it is, therefore, useful to target second-order accuracy196

for all terms in the equations. One way to counter unnecessary numerical dissipation is based on197

extending the upwind scheme to the second order in combination with a slope limiter.198

The approximations in Eqs. 10, 12, 16, and 17 can be improved by including two neighbouring199

data points instead of only one, as is the case in the first-order upwind approach. The second-order200

upwind discretization is shown for Eq. 10 and applied to Eqs. 12, 16, and 17 in the same way.201

ĥn
i+ 1

2 ,j =


hn

i,j +
1
2 ψ

(
r+

i+ 1
2 ,j

)(
hn

i,j − hn
i−1,j

)
, if un

i+ 1
2 ,j

≥ 0

hn
i+1,j +

1
2 ψ

(
r−

i+ 1
2 ,j

)(
hn

i+1,j − hn
i+2,j

)
, if un

i+ 1
2 ,j

< 0
(19)

r+
i+ 1

2 ,j
and r−

i+ 1
2 ,j

are respectively the left and right gradients of the flow depth:202

r+
i+ 1

2 ,j
=

hn
i+1,j − hn

i,j

hn
i,j − hn

i−1,j
, r−

i+ 1
2 ,j

=
hn

i+1,j − hn
i,j

hn
i+2,j − hn

i+1,j
(20)

ψ(r) is the slope limiter function, which locally reduces the solution from second to first order.203

This is often necessary at locations with opposite slopes, zero gradients, or sharp transitions. Here, a204

Generalized MinMod slope limiter is used :205

ϕ (r, θ) = max
(

0, min
(

θr,
1 + r

2
, θ

))
(21)

θ is a parameter that controls the diffusivity. The generalized MinMod limiter is most dissipative206

for θ = 1 when it reduces to the traditional MinMod limiter, and it is least diffusive for θ = 2.207

A predictor-corrector method can be used to improve the temporal accuracy of the advection208

terms to retain second-order accuracy in time. Here, we employ the Total Variation Diminishing (TVD)209

Runge-Kutta method. This method enhances the accuracy of the scheme in time while maintaining210

the strong stability property of the first-order Euler integration (Gottlieb et al. (2001)). It is worth211

mentioning that other time integration methods can be combined with the above-described spatial212
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discretization. For example, Zijlema et al. (2011) used a MacCormack approach for the second-order213

integration in time.214

We split the SWE equations into a convective acceleration term F and a free surface gradient215

term G , which simplifies the description of the multi-step method:216

∂U
∂t

+F (U) + G (U) = 0 (22)

Where:

U =

 h
hu
hv

 F (U) =


∂p
∂x + ∂q

∂y
∂pu
∂x + ∂qu

∂y
∂pv
∂x + ∂qv

∂y

 G (U) =

 0
gh ∂η

∂x
gh ∂η

∂y

 (23)

The discretization described in Eqs. 8, 11, and 15 can be summarized in the following expression:217

Un+1
ij = Un

ij − ∆tF
(

Un
ij

)
− ∆tG

(
Un+1

ij

)
(24)

Where218

Un
ij =


hn

ij

h̄n
i+ 1

2 ,j
un+ 1

2
i+ 1

2 ,j

h̄n
i,j+ 1

2
vn+ 1

2
i,j+ 1

2

 (25)

At each time step, the variables (h, hu, hv) are solved using a two-stage time integration with an219

intermediate solution obtained by the predictor step. In the first step, we solve the equations with only220

the advection terms on the right-hand side:221

U∗
ij = Un

ij − ∆tF
(

Un
ij

)
(26)

This leads to a predictor solution of first-order accuracy for the complete continuity equation222

and incomplete momentum equations due to the lack of source terms. In the second step, the surface223

gradient terms are added to the momentum equations, and the predicted variables are corrected to full224

second-order accuracy in time by:225

Un+1
ij =

∆t
2

(
Un

ij + U∗
ij

)
− ∆t

2
F
(

U∗
ij

)
− ∆tG

(
Un+1

ij

)
(27)

It is important to emphasize that the predictor step of the time integration should only involve226

the convective acceleration terms. The source terms attain second-order accuracy by staggering the227

flow speed variables in time, and an application of Eq. 26 to the source terms would lead to inaccurate228

results.229

The last term on the right-hand side of Eq. 27 applies only to the momentum equations and230

involves the corrected flow depth value hn+1. This completes the fully explicit time integration where231

no system of equations with data dependencies has to be solved.232

2.2.2. Flooding and drying233

The wetting and drying process requires the model’s performance for two fundamental processes.234

The well-balance and the preservation of positivity of the water depth across wet/dry boundaries.235

An explicit time integration is bound to the Courant–Friedrichs–Lewy (CFL) condition given by:236
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max
(

un+ 1
2

i+ 1
2 ,j

, 0
)
− min

(
un+ 1

2
i− 1

2 ,j
, 0
)

∆x
+

max
(

vn+ 1
2

i,j+ 1
2
, 0
)
− min

(
vn+ 1

2
i,j− 1

2
, 0
)

∆y

∆t ≤ 1 (28)

Under this condition, the scheme preserves the non-negativity of the water depth (Zijlema (2019),237

Gunawan (2015)). This has the advantage that the run-up and inundation limits are inherent solutions238

of the numerical scheme and are not subject to additional ad-hoc flooding and drying treatments or239

require particular restructuring of the flux and source terms.240

The time step that satisfies Eq. 28 is computed in dependence of the Courant number Cr ≤ 1, grid241

spacing, and maximum flow speed as:242

∆t =
Cr

max

 |u
n+ 1

2
i+ 1

2 ,j
|+
√

gĥn
i+ 1

2 ,j

∆x ,
|v

n+ 1
2

i,j+ 1
2
|+
√

gĥn
i,j+ 1

2
∆y


(29)

Since the flow depth can become arbitrarily small at the wet-dry transitions and, therefore, can243

lead to excessively high-velocity values, it makes sense to limit the minimum flow depth at the run-up244

front to a physically and numerically meaningful level. For efficiency reasons, the velocity values can245

be set to zero when the local water level falls below a threshold value hmin, and the calculation of the246

momentum equations can be skipped.247

un+ 3
2

i+ 1
2 ,j

= 0 if
hn+1

i,j + hn+1
i+1,j

2
< hmin (30)

vn+ 3
2

i,j+ 1
2
= 0 if

hn+1
i,j + hn+1

i,j+1

2
< hmin (31)

The value of hmin should be chosen as small as possible to accurately resolve the wet-dry front248

(Toro (2001)), but large enough to avoid physically questionable values in the local flow speed, which249

can cause excessively small time steps as shown in Eq. 29. It should be noted that the present scheme250

is not particularly sensitive to this threshold, and values between 10−8 and 10−4 m lead to virtually251

identical results. For the sake of quality verification and validation, we are using hmin = 10−8 m in the252

subsequent examples.253

2.2.3. Friction term254

The friction terms added to the momentum equations are discretized as:255

gn2
un+ 3

2
i+ 1

2 ,j

√(
un+ 1

2
i+ 1

2 ,j

)2
+

(
v̄n+ 1

2
i+ 1

2 ,j

)2

(
h̄n+1

i+ 1
2 ,j

)1/3 and gn2
vn+ 3

2
i,j+ 1

2

√(
ūn+ 1

2
i,j+ 1

2

)2
+

(
vn+ 1

2
i,j+ 1

2

)2

(
h̄n+1

i,j+ 1
2

)1/3 (32)

Where:256

v̄n+ 1
2

i+ 1
2 ,j

=
1
4

(
vn+ 1

2
i,j− 1

2
+ vn+ 1

2
i,j+ 1

2
+ vn+ 1

2
i+1,j− 1

2
+ vn+ 1

2
i+1,j+ 1

2

)
ūn+ 1

2
i,j+ 1

2
=

1
4

(
un+ 1

2
i− 1

2 ,j
+ un+ 1

2
i+ 1

2 ,j
+ un+ 1

2
i− 1

2 ,j+1
+ un+ 1

2
i+ 1

2 ,j+1

) (33)
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and n, with units [sm−1/3], is the Manning roughness coefficient representing the bottom property.257

Using the variables
(

hn+1
i,j+ 1

2
, un+ 3

2
i+ 1

2 ,j
, vn+ 1

2
i+ 1

2 ,j

)
from the next time step in the friction terms improves the258

accuracy and the robustness of the solution (Zijlema et al. (2011)).259

Some of the following numerical tests, presented in section 3, are computed with the260

Darcy-Weisbach formulation, which requires replacement of the term gn2

h1/3 by f
8 . f is the dimensionless261

Darcy-Weisbach coefficient.262

2.3. Nested grid method263

The accuracy and applicability of a numerical model for free surface flows can substantially264

benefit from an efficient mesh refinement technique. Here, we concentrate on the nested grid method,265

which provides a reasonable trade-off between computational complexity and the gain in accuracy of266

the numerical solution for long wave run-up. A simplified approach for mesh refinement involves267

the insertion of a high-resolution Child grid into a surrounding Parent grid of coarser resolution. The268

grids are herein fixed in space and predefined before the computation is executed. The SWE are solved269

independently in each grid. Consequently, the overall solution structure of the governing equations270

remains untouched as the exchange between the grids only requires interpolation of the key variables.271

The staggered C-grid has been widely used in combination with embedded grid models due to272

its simplicity and conservative properties (Debreu and Blayo (2008), Liu et al. (1995), Herzfeld and273

Rizwi (2019)). In this study, we build the nested grid approach on some of the techniques used and274

validated by several previously developed tsunami models (Imamura (1989), Wang (2009)). Several275

performances are expected from a functioning grid nesting technique:276

Data exchange: The exchange of information between the grids occurs along the boundary of the277

inner grid. The Parent grid provides the boundary conditions to the Child grid in a one-way interaction.278

The flux variables (i.e., hu and hv) from the coarse grid are linearly interpolated in time and space and279

then dynamically imposed in each time step as boundary conditions to the solution of the Child grid280

(See Figure. 3). For a two-way interaction, the high-resolution free-surface elevation from the Child281

grid is used to update the information in the Parent grid via an averaging operator. The update of the282

free-surface only occurs inside the feedback interface in the Parent grid (See Figure. 3), rather than283

in the domain occupied by the Child grid. Several authors have proposed separating the feedback284

interface from the dynamic interface where the boundary values are interpolated (Phillips and Shukla285

(1973), Zhang et al. (1986), Oey and Chen (1992). This separation helps to avoid inconsistencies between286

the solutions and stability problems that often arise from forcing the solution of the Parent grid with287

the updated values of the inner grid (Debreu and Blayo (2008)).288
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Figure 3. Schematic illustrating the two-way nesting process on a Arakawa C grid

Time synchronization : The use of an explicit time integration means that the model needs to289

verify the CFL stability condition, and the ratio ∆t/∆x must be kept smaller than a given value on290

the whole grid hierarchy. Consequently, a temporal refinement must be applied in addition to the291

spatial mesh refinement. The integration algorithm for a time refinement of 3 is depicted in Figure. 4.292

The model is first integrated on the Parent grid Ωp with a time step equal to ∆tp1, the model is then293

advanced multiple times on the Child grid Ωc to reach the same physical time as the outer grid. To294

synchronize the two solutions, the last time step in the inner grid is imposed: ∆tc3 = ∆tp1 − ∑ ∆tci.295

Figure 4. Schematic illustrating the two-way nesting process

• 1 : Model integration on the Parent grid Ωp296

• 2 : Model integration on the Child grid Ωc297

• 3 : Time and space interpolation of the boundary values298

• 4 : Update of the Parent Grid in feedback domain299

3. Verification300

A systematical analysis of a numerical solution for long-wave run-up requires benchmarking.301

Since the model was developed from scratch and involves a combination of adapted numerical features,302

it is required to first verify its performance for idealized flow problems, for which analytical solutions303
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have been derived. These tests examine the model’s ability to handle important flow processes, such304

as flow discontinuities and wet/dry transitions. These features are particularly critical for the quality305

of the computed run-up and can often pose numerical challenges. The implementation of the nested306

grid approach is then verified with a 2D moving boundaries problem.307

3.1. Shock-capturing capabilities308

Shock-capturing schemes refer to numerical methods that can directly solve wave propagation309

with large gradients and rapid changes in the free-surface and velocity regimes. Such nonlinear310

phenomena are present in many wave problems (e.g., wave breaking, dam-break wave propagation,311

and propagation of wet/dry fronts). Consequently, a lot of effort is made to compute shock waves as312

part of the complete solution (Toro (2001)). A stable numerical solution for shock waves targets the313

generation and propagation of an oscillation-free discontinuity without excessive smearing across the314

shock front.315

In the following, we examine the solution of the present model in handling discontinuities316

and assess the accuracy and quality of the results. Since many shock-capturing flow models are317

built around Riemann solvers, we compare the solution from the presented scheme, referred to as318

"Present Scheme", with the solution obtained by a 1D HLLC Riemann solver ("HLLC Scheme"). The319

HLLC scheme used for comparison was coded based on the techniques given by Toro (2001). For320

consistency with the presented scheme, the first-order HLLC scheme is extended to second-order321

accuracy through a MUSCL reconstruction (Van Leer (1979)) combined with a generalized MinMod322

limiter and a predictor-corrector Runge-Kutta time integration.323

The dambreak problem is a widely used test to demonstrate the shock-capturing capabilities of
numerical schemes. We consider a one-dimensional dambreak over a wet bed of uniform depth. The
domain is 1 m long and the initial condition is:

h (x, 0) =

{
1 m if x ≤ 0.5 m

0.2 m otherwise
u (x, 0) = 0 m/s

The analytical solution for this test was derived by Stoker (1957) and consists of a shock and a324

rarefaction wave moving in opposite directions from the center of the domain. The solutions of the325

dambreak test for 100 grid cells (∆x = 1 cm) and at t = 0.1 sec are shown in Figure. 5. For both schemes,326

we use a constant Courant number of CN = 0.7 and a diffusion parameter in the generalized MinMod327

limiter θ = 1.5.328

Both numerical schemes correctly capture the rarefaction and shock waves despite small329

discrepancies in comparison to the analytical solution. This small mismatch can be reduced significantly330

with a reduction in grid size. In general, the Present scheme achieves slightly sharper solutions around331

the flow transitions compared to the HLLC scheme. Consequently, the Present scheme contains332

smaller L1-norm errors than the HLLC scheme, as listed in Table 1, albeit the fact that both solutions333

converge towards the exact solution with mesh refinement. The presented model is able to compute the334

propagation of shocks with the correct wave speed and height, proving its powerful shock-capturing335

capability without the need for the computationally expensive sampling of the solution as it is necessary336

for the HLLC scheme.337
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Figure 5. Dambreak over wet bed: Water height profiles from the Present and HLLC schemes at t =
0.1 sec for a cell size ∆x of 1 cm.

Number of cells h hu

Present HLLC Present HLLC

100 3.69 × 10−3 5.20 × 10−3 6.37 × 10−3 1.24 × 10−2

200 1.85 × 10−3 2.56 × 10−3 3.17 × 10−3 6.22 × 10−3

400 7.90 × 10−4 1.29 × 10−3 1.90 × 10−3 3.22 × 10−3

800 4.44 × 10−4 6.36 × 10−4 7.76 × 10−4 1.52 × 10−3

Table 1. Dambreak over a wet bed: L1-norm error

3.2. Moving boundaries338

An essential feature of shallow water models used for flood and inundation mapping is the ability339

to compute wet-dry transitions and track moving boundaries. The biggest challenges are associated340

with the definition of the numerical fluxes and source terms in the presence of dry cells. A clean and341

stable representation of the moving boundary is essential for the correct description of run-up and342

inundation limits independent of the previous stages of wave propagation and breaking.343

We investigate the performance of the present model in describing fast sheet flows induced by a344

dambreak over a dry bed with and without frictional resistance. This test is also used to verify the345

implementation of the friction term.346

The test case involves a 2000 m long horizontal channel of uniform depth with ∆x = 5 m grid347

spacing and the following initial condition:348

h (x, 0) =

{
6 m if x ≤ 1000 m

0 m otherwise
u (x, 0) = 0 m

The test is computed with a minimum water depth of hmin = 10−8 m and a Courant number of 0.7.349

Two cases are taken into account:350
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1. Dambreak without friction. The numerical results are compared with the Ritter solution. The351

solution involves a wet-dry front propagating downstream and a rarefaction wave moving352

upstream into the reservoir.353

2. Dambreak with friction. In this case, the Darcy-Weisbach friction law with a coefficient f =354

8g/402 is utilized in the friction source term of the momentum equations. The reference solution355

is based on the Dressler/Whitham/Chanson conceptual model (Dressler (1952), Whitham (1955),356

Chanson (2009)), which is based on the assumption that near the wavefront, frictional resistance357

controls the fluid motion. The exact shape of the wavefront can be found in Chanson (2009). In358

contrast to the process at the downstream wave, the frictional resistance in the rarefaction regime359

is neglected, and the solution at the front can be described by a modified Ritter’s solution as360

presented in Delestre et al. (2013).361

Figure 6. Dambreak on dry bed: Water height profiles after t = 40 sec for grid spacing ∆x = 10 m. The
wave front around 1250 m corresponds to the solution with a friction coefficient of f = 8g/402.

In both cases, good agreement between the reference and the numerical solutions is obtained362

(Fig. 6). In the case of bottom friction, the model accurately captures the deceleration of the wavefront,363

which verifies its capability of correctly handling bottom roughness. As before, the results can be364

improved through mesh refinement but not through further reduction of the predefined minimum365

water depth hmin.366

3.3. Nested grid implementation367

In this section, we examine the accuracy of the nested grid implementation. This step is important368

to scrutinize the model performance with respect to the information exchange across different grid369

resolutions, especially in the presence of wet/dry transitions. For applications related to long-wave370

run-up, the nested grid approach is expected to deal with moving boundaries and fast flows over371

varying topography in two-dimensional settings. A few analytical solutions of the SWE exist for372

problems in the 2D horizontal plane. The oscillation in a parabolic basin is one of them, as it addresses373

a two-dimensional run-up problem, which helps examine the validity of the numerical structure in the374

combined xy-directions.375

The water oscillation is induced inside a [0, L]× [0, L] parabolic basin given by:376
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z (r) = −h0

(
1 − r2

a2

)
where r =

√(
x − L

2

)2
+

(
y − L

2

)2

The value of h0 represents the still water depth at the basin center, and a is the radius of the wetted377

perimeter. The exact solution for this test was derived by Thacker (1981). For a smooth bed with no378

friction, the analytical solution for the water depth is described as:379

h (r, t) = h0

( √
1 − A2

1 − Acos (ωt)
− 1 − r2

a2

(
1 − A2

(1 − Acos (ωt))2 − 1

))
− z (r)

where ω =
√

8gh0/a is the frequency of the oscillation, and the coefficient A =380 (
a2 − r2

0
)

/
(
a2 + r2

0
)

with r0 the radius of the initial shoreline. For the setup of the dimensions of381

the parabola and the initial condition of the free surface, we use a=1 m, r0 = 0.8 m, h0 = 0.1 m and L382

=4 m.383

The analytical solution is used to verify the symmetry and accuracy of the nested grid384

implementation. Here, we place a nested domain off-center, including the moving waterline, with a385

refinement factor of 4. The use of an off-center nested grid is critical to verifying the grid exchange for386

both the normal and cross fluxes. The Parent grid is computed with a quadratic cell size of 2 cm by387

2 cm. The inner Child grid is computed with ∆x = ∆y = 0.5 cm.388

The water height evolution at the center of the basin is shown in Fig. 7 after 40 sec corresponding389

to over 17 full cycles in the Parent grid. The present solution convinces through the maintenance of390

amplitude and phase over multiple oscillation cycles the quality of the second-order numerical scheme.391

These results confirm not only the low numerical diffusion but also the smooth transition across the392

wet/dry boundary inherent to the model without the need for excessively small grid sizes.393

Fig. 8 depicts the free surface transect across the basin center line at several stages, t = T,394

t = T + T/4, and t = T + T/2, where T = 2π/ω denotes the oscillation period. The run-up is well395

described, and no numerical artifact arises from the exchange between the Parent and Child grid. In396

addition, Fig. 9 gives a visual impression of the three-dimensional problem and showcases that the397

definition of the run-up outline benefits from mesh refinement.398

Figure 7. Time series of water height at center point of parabolic basin (x = L/2, y = L/2). Grid
spacing ∆x = ∆y = 2cm. The numerical solution is of low diffusion without requiring excessively fine

mesh sizes.
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Figure 8. Oscillation in a parabolic basin:
Cross-section of water height after one full
oscillation. Each circle represents the solution
from the numerical model at each grid cell
across the transect. The solution from the
nested grid is indicated with blue circles.

Figure 9. Free surface elevation of oscillation
in parabolic basin with grid nesting after 4.5
cycles (9.9 sec). The refined Child grid is
denoted by the dashed line and shows a more
detailed run-up limit than the coarse Parent
grid.

4. Effect of grid nesting on wave run-up399

Previous verification efforts have ensured that the present model correctly handles the400

fundamental features that are essential for the accurate computation of long-wave run-up. The401

following tests examine the sensitivity of the computed results to grid nesting for efficient computation402

of local run-up problems. For this purpose, we utilize two standard experimental benchmark tests403

that have been widely used in the tsunami community and that highlight the complexity of the local404

long-wave run-up. The two tests present common long-wave features such as the increase in local405

wave run-up from the collision of two or more waves as well as extreme run-up over highly detailed406

terrain. We will present an analysis of the sensitivity of the computed run-up to the general mesh size407

and further investigate the sensitivity of the maximum run-up extent to the size of the nested grid and408

the refinement factor.409

4.1. Solitary wave run-up around a conical island410

The transformation of long waves around islands has attracted a lot of attention in the past -411

especially among tsunami researchers. A common observation is that long waves can refract and412

diffract around an island from both sides and collide in the back. In some cases, the maximum413

run-up occurs counter-intuitively at the island’s lee side due to a superposition effect when the414

refracted/diffracted waves from both sides run into each other and double up. The problem of the415

conical island is exemplary since the high run-up and inundation at the lee side cannot be approximated416

with empirical formulae or computationally cheap 1D calculations. Instead, the problems require a full417

2D solution that naturally exhibits a substantial computational effort.418

Briggs et al. (1995) conducted a large-scale laboratory experiment to investigate solitary wave419

transformation around a conical island. The basin is 25 m by 30 m with a circular island in the shape of420

a truncated cone constructed of concrete with a diameter of 7.2 m at the bottom and 2.2 m at the top.421

The island is 0.625 m high and has a side slope of 1:4. A 27.4-m long directional wavemaker consisting422

of 61 paddles generated the input solitary waves for three laboratory tests. Wave absorbers at the three423

remaining sidewalls reduced reflection in the basin. Further details about the laboratory model setup,424

the location of the wave gauges, and the numerical setup can be found in NTHMP (2012).425

The present study focuses on experiments with a water depth h = 0.32m and solitary wave426

heights of A/h = 0.1. Consistent with NTHMP benchmark problem 6 (NTHMP (2012)), our numerical427
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test uses the measured wave heights of A/h = 0.096 from the laboratory experiment instead of the428

target wave heights as they better represent the recorded data and thus the incident wave conditions to429

the conical island. A reflective boundary condition is imposed at the lateral sides. The wave absorbers430

from the laboratory layout are not considered since their absorbing performance is unknown. The431

model is set up with a reference grid of ∆ x = ∆ y = 5 cm. A Manning roughness coefficient of n = 0.012432

s/m1/3 accounts for the smooth concrete finish according to Chaudhry (2007). The Courant number433

is set to Cr = 0.5. The model setup is comparable to earlier work and will be used as a reference as434

it is expected to return solutions of similar and comparable quality to previously published studies.435

The results from the free surface elevation observed at five wave gauges are omitted here as they are436

comparable to previously published results.437

Sensitivity to grid resolution:438

In view of sensitivity to the grid size, Fig. 10 shows the run-up limits for the reference scenario439

with ∆x = ∆y = 5 cm, as well as the solutions of the model with coarser grid sizes of ∆x = ∆y = 10 cm440

and ∆x = ∆y = 20 cm, respectively. The reference mesh size of 5 cm returns the closest agreement441

overall with the run-up data - particularly at the lee side of the island. Nevertheless, a numerical442

domain with four times fewer cells, i.e., uniform 10 cm grid spacing, still provides a decent estimate443

of the run-up, albeit with less precision at the lee side. It is not really surprising that a grid size of444

∆x = ∆y = 20 cm is too coarse to represent the details of the run-up outline, and virtually no run-up is445

recorded in the lee of the island.446

Careful examination of the temporal evolution of the wave field at ∆x = ∆y = 5 cm resolution447

shows that the colliding waves in the back of the island locally and momentarily augment the water448

level, but then pass through each other and continue the refraction/diffraction process. The locally449

high run-up in the back of the island results to a great extent from the two waves that shoal and spill450

up on either flank of the leeward side. It often goes unnoticed that the steepened refracted waves451

then meet head-on over the leeward topography, i.e. the initially dry beach, from where a substantial452

portion of maximum run-up and inundation originates. For a relatively steep slope, this wrapping453

process requires rather fine resolution to properly account for the flooding process, and insufficient454

grid cells over the beach can lead to an under-representation of the run-up.455
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Figure 10. Grid size sensitivity of maximum
run-up outlines for the test with A/h = 0.096
of Briggs et al. (1995). Black dots denote
experimental data, solid lines represent results
from the present model.

Figure 11. Maximum run-up outlines for
the test with A/h = 0.096 of Briggs et al.
(1995). Each model run uses a Parent grid
with ∆x = ∆y = 20 cm resolution and one
Child grid of ∆x = ∆y = 5 cm. The three
individual nested grid set-ups (a), (b), and
(c) and their corresponding maximum run-up
limits are color-coded and denoted by the
dashed rectangle and the solid lines within.

Sensitivity to grid nesting:456

It is understood that any reduction in the total cell count will reduce the computational load. A457

nested grid approach caters to lowering the computational effort without compromising too much on458

the quality of the results. A question of practical interest is whether the overall wave transformation459

around the island could potentially be computed over a coarse grid, from which information is fed460

into a nested inner grid of higher resolution that is placed only over a local area of interest. Fig. 10461

demonstrates that a grid resolution of 5 cm is an adequate choice for the resolution of the wave run-up462

along the beach of the conical island and that coarser mesh sizes, in particular the 20 cm resolution, are463

insufficient to resolve most of the run-up.464

The solitary input wave has a length of several meters. As shown in the previous benchmark465

tests, e.g. 3.3, the present model computes long waves with minimal numerical diffusion and hence is466

expected to handle the general processes of the solitary wave transformation around the island even467

over a rather coarse mesh. Inspection of the full free surface evolution has shown that even a grid of468

20 cm mesh size can account for the overall wave processes in the vicinity of the conical island and469

that it only fails in computing the detailed run-up.470

Fig. 11 shows the results from three nested grid approaches - all with an inner grid of 5 cm471

resolution placed into an outer grid of 20 cm resolution. The individual inner domains are color-coded472

and of 2 m by 4 m, 1.2 m by 4 m and 0.8 m by 1.2 m. The additional computational load arising from473

the inner grid is associated with 3200, 1920, or 384 cells, respectively. It can be seen that the run-up474

outline in the nested grid (a) denoted by the cyan line in Fig. 11 is nearly identical to the outline of475

the uniform 5 cm reference grid. This implies that the overall wave processes are sufficiently resolved476

by the coarse outer grid up to the boundary of the nested grid (a), which subsequently takes care of477

the detailed wave transformation and run-up processes at the back side of the conical island. The478
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domain size of the nested grid is then reduced behind the island, as illustrated by the red dashed479

rectangle. The corresponding run-up limit (red line) remains nearly identical to the run-up outline480

from the largest nested grid setup. The run-up at the lee side, therefore, depends only minimally on481

the higher resolution in the area behind the island where the wave collision process occurs. The nested482

grid extends to a very small area just around the hotspot of run-up, as denoted by the green dashed483

rectangle. Surprisingly, the run-up along the center lee side remains qualitatively very similar to the484

run-up computed by the larger nested grids.485

The effect of the nested grid approaches can be seen in Fig. 12 in more detail. Row 1 shows the486

free surface evolution over the 5 cm uniform reference grid. The corresponding alternate solutions,487

denoted by the black dashed rectangles, illustrate the nested grid solutions. As the wave is moving488

around the island, the nested grid (a) (second row) picks up its energy and resolves the wrap of the489

run-up tongue in detail, though with slightly less steepness at the leading edge compared to the490

reference solution. The maximum run-up after 9.2 sec in the nested grid is nearly identical to the491

uniform reference solution. The third row shows the free surface elevation from the red rectangle492

and the run-up limit from Fig. 11. The high-resolution inner grid extends only marginally over the493

bathymetry behind the island and mostly covers the topography. The detailed solution of the colliding494

waves behind the island is less critical for the maximum run-up than a high-resolution computation of495

the two refracted run-up tongues that meet each other over the dry slope. The last row shows that496

a representative run-up limit is achievable even by only using an extremely small inner grid of high497

resolution at the location where the refracted waves collide over the beach.498

The long-wave refraction and collision processes do not necessarily require high grid resolution499

given that a low-diffusive coarse solution captures the main energy flux. Counter-intuitively, the500

locally high run-up of long waves, as illustrated in this example, is often driven by wave processes in501

the immediate vicinity of the shoreline and over the beach. Accurate run-up results can potentially be502

obtained with locally very small nested grids as long as they cover the entire run-up zone over the503

beach. This is particularly true for locations with steep beach slopes.504

As for the results from Figs. 10 to 12, the computed wave field is symmetric to machine precision505

with respect to the horizontal center line at 15 m in the y-direction. This supports the quality of the506

numerical results as any instability arising from the interface at the boundary of the nested grids would507

have eliminated the perfect symmetry.508
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(a) Solution after 7.3 sec (b) Solution after 9.2 sec

Figure 12. Free surface elevation at lee side of conical island computed over the single reference grid of
∆x = ∆y = 5 cm (first row) and with three separate grid nesting approaches each combining a coarse
outer grid of ∆x = ∆y = 20 cm mesh size with inner fine grids of ∆x = ∆y = 5 cm resolution (2nd, 3rd,
4th row). First column: Refraction/diffraction of solitary wave around flank of conical island. Second
column: Maximum run-up from superposition of refracted/diffracted waves. The extent of the nested
grid is outlined by the black dashed line in row 2 to 4.

4.2. Long-wave run-up at Monai Valley509

The second benchmark is testing the sensitivity of the present model to the mesh size and510

refinement of the solution with a nested grid for the computation of nonlinear wave processes over an511
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irregular terrain that favors extreme run-up. The 1993 Hokkaido Nansei-Oki tsunami is a well-studied512

event thanks to the laboratory experiments conducted by Matsuyama and Tanaka (2001) at the Central513

Research Institute for Electric Power Industry (CRIEPI) in Japan. The down-scaled laboratory test514

examined the extreme run-up of over 30 m at Monai Valley, located between two headlands and515

sheltered by the small Muen Island. The area around Monai Valley was reconstructed with a plywood516

model at 1:400 scale based on bathymetric and topographic data as shown in Fig. 13.517

A wave gauge near the wavemaker recorded the initial low amplitude N-wave used in the518

present numerical model as boundary input with the free surface elevation interpolated from the519

data according to the model time step. As in the previous test, we first examine the sensitivity of the520

numerical solution to the grid size over a single domain with uniform resolution. Again, the Courant521

number is kept constant at Cr = 0.5. A Manning coefficient of n = 0.012 sm−1/3 accounts for the surface522

roughness of the plywood model (Chaudhry (2007)).523

Sensitivity to grid resolution:524

Fig. 14 shows the comparison between the computed and recorded data at the wave gauges placed525

in the numerical and experimental setup between Muen Island and Monai Valley. The computed526

results are of similar quality as the solutions from previous studies. The wave regime at the locations527

of the gauges is still reasonably well resolved with a rather coarse mesh. Even with a 10 cm grid size,528

the general shape of the free surface time series is captured, and the overall energy of the wave field529

behind Muen island is accounted for.530

Figure 13. Outline of the bathymetry from the
1:400 scaled model used by Matsuyama and
Tanaka (2001). The black dashed and dotted

lines denotes the boundaries of two
individual inner nested grids (a) and (b).

Figure 14. Free surface time series at
the gauges shown in the left panel from
computations over the entire domain with
different uniform mesh sizes.

Fig. 15(A) illustrates the sensitivity of the computed maximum run-up to different uniform grid531

sizes of 1.25 cm, 2.5 cm, 5 cm, and 10 cm. The local run-up in Monai Valley is more sensitive to the grid532

resolution than the nearshore wave field in front of the beach. Since the terrain is steep and narrow, the533

computations with the present model show that a rather fine grid of 1.25 cm is necessary to obtain a534

proper outline of the run-up envelope. NTHMP (2012) confirms that most previous numerical studies535

utilized a mesh size of ∆ x = ∆ y < 1.5 cm to obtain a consistent definition of the wave run-up in the536

narrow and steep valley. The fine grid of 1.25 cm in the second row of Fig. 16 resolves the details537

of wave refraction and collision in front of the steep cliff, whereas a coarser option of 10 cm resolves538

neither the flow details nor the small-scale flow features over the topography and consequently leads539

to a significant underestimation of the run-up in the Monai Valley.540
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Figure 15. Maximum run-up limits around Monai Valley.
Left (A): Uniform grid with different resolutions.
Center (B): Nested grid (a) with 1.25 cm resolution and different Parent grid resolutions of 2.5 cm, 5 cm,
and 10 cm leading to refinement factors of RF = 2, RF = 4, and RF = 8
Right (C): Nested grid (a) and (b) with 1.25 cm resolution and Parent grid resolution 10 cm.

Sensitivity to grid nesting:541

Similar to the previous benchmark test the question arises whether it is possible to utilize a coarse542

mesh for the overall flow field in combination with a fine nested grid for the detailed run-up in an area543

of interest like Monai Valley. Knowing that the run-up over terrain with irregular and steep slopes544

requires small grid sizes, we utilize a 1.25 cm nested grid (a) inside a Parent grid as outlined in Fig. 13.545

The inner nested grid starts offshore of Muen island, similar to what Yamazaki et al. (2011) have used.546

The Parent grid is of 5.5 m by 3.4 m size. It contains only 1870 cells with a 10 cm resolution. The two547

nested grid options (a) and (b) have dimensions of 2.3 m by 1.8 m and 1.3 m by 2.3 m and consequently548

add 26, 496 or 14, 976 grid cells, respectively, to the computation. Hence, the two nested grid options549

reduce the total cell count by 76% and 86% in comparison to a single grid of uniform 1.25 cm resolution550

with 119,680 cells.551

The sensitivity of the results with respect to the refinement factor is analyzed by increasing the552

Parent grid resolution by factors of 2, 4, and 8 with respect to the nested grid. Consequently, the553

individual run-up limits of Fig. 15(B) refer to the results from a 1.25 cm nested grid in combination554

with different Parent grids of 2.5 cm, 5 cm, and 10 cm. The refinement factor hardly influences the555

run-up limit with a nested grid domain that covers most of the nearshore area (dashed line of the556

domain (a) in Fig. 13). Again, a basic requirement for the utilization of a coarse Parent grid is a low557

diffusivity of the numerical scheme. It is understood that the interpolation in the nesting process558

between the individual grids can lead to small discrepancies in comparison to a uniform grid with559
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high resolution. This can be seen in Fig. 15. The grid nesting strategy should therefore always be seen560

as method to primarily reduce the computational load by still retaining an acceptable quality of the561

solution.562

It is finally shown how the computed results are sensitive to the nested domain size. This is563

analyzed through reduction of the area covered by the nested grid (see dotted line (b) in Fig. 13).564

The resolutions of the Parent and Child grid are identical to the setup with nested grid (a). The two565

scenarios only differ in the domain size of the nested grids. Fig. 15(C) highlights that the run-up limit566

from the two scenarios varies only at some locations. Though the flow details of the overtopping and567

refraction processes around Muen island are resolved in detail with a fine grid as shown in rows two568

and three of Fig. 16, they do not have a substantial influence on the run-up. It is sufficient that the569

outer grid resolves the overall wave energy and the inner grid accounts for the run-up process.570
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(a) Solution after 13.7 sec (b) Solution after 16.4 sec

Figure 16. Free surface elevation in front of Monai Valley with single Parent grid of ∆x = ∆y = 10 cm
(first row) and ∆x = ∆y = 1.25 cm (second row) mesh size. Results from embedded nested Child grids
(a) and (b) of ∆x = ∆y = 1.25 cm in a Parent grid of ∆x = ∆y = 10 cm are shown in the second row
and third row. The extent of the respective Child grid is outlined by the black dashed lines.
First column: Drawdown from leading depression of N-wave and approaching wave crest upstream of
Muen island. Second column: Maximum run-up from superposition of refracted and reflected waves.
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5. Conclusions and Perspectives571

We have shown the performance of a newly developed model for long-wave run-up with respect572

to standard analytical solutions and laboratory experiments. The model was demonstrated to be573

shock-capturing, well-balanced, and water-depth positivity preserving, which are crucial properties574

for the correct estimation of long-wave-driven run-up. The model was proven to be stable and efficient575

in dealing with wet/dry transitions without the need for computationally expensive treatment of576

the moving boundary. The numerical scheme is based on a Finite-Volume staggered approximation577

with second-order accuracy in space and time. The accuracy in time arises from a combination of the578

Runge-Kutta method for the convective acceleration and the Leapfrog method for the surface gradient579

and friction terms. Similarly, the spatial accuracy comes from a second-order upwinded advection580

along with a second-order central difference scheme for the remaining terms.581

The model performs consistently for shock-driven problems and compares to established Riemann582

solver-based TVD methods. The wet-dry interface is stable and well-defined without the need for583

additional treatment of the moving boundary. The model contains a two-way grid nesting scheme584

that allows for local refinement of the solution. The implementation has been verified and proven to585

be accurate and stable for moving boundaries and was shown to be applicable to long-wave run-up586

problems.587

The performance and sensitivity of long-wave run-up was then investigated in dependence of588

the nested grid’s domain size and the level of its refinement. Two standard benchmark tests from the589

tsunami community were chosen for the investigation. Though there are no universal rules for the size,590

position, and refinement factor of nested grids, our results from the two benchmark tests reveal that591

computations of high quality can be achieved with small nested grids placed strategically at a location592

of interest such as in areas where locally high run-up occurs. The refinement factor was found to have593

only small influence on the run-up limit, if the solution in the Parent grid is representative of the wave594

envelope and the grid nesting method accounts for the correct exchange of the total wave energy flux.595

Further, it was demonstrated that it is possible to place a nested grid rather close to the initial596

still-water level as long as the long-wave flow regime prevails across nested grid’s offshore boundary.597

Long-wave run-up is often more subject to the resolution of the local topography than it is influenced598

by the detailed wave processes over the bathymetry. This is line with commonly used empirical run-up599

formulae for swell waves where the maximum run-up envelope is controlled by the overall wave600

energy and the slope.601

The quality of the computed results encourages to expand the development of the model with602

respect to frequency dispersion. This will allow for a further investigation of how grid nesting603

can affect the run-up from swell waves. In the same context, the model can be optimized through604

implementation of massive parallelization techniques commonly used to reduce the computation605

time associated with large flow problems. It is evident that a low overall cell count reduces the606

model’s computation time and that the insights gained from the present study can be used to efficiently607

decrease the computational load for computations of long waves by retaining accuracy and quality of608

the solutions.609
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