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Abstract

The problem of Novel Class Discovery (NCD) consists in extracting knowledge
from a labeled set of known classes to accurately partition an unlabeled set of
novel classes. While NCD has recently received a lot of attention from the com-
munity, it is often solved on computer vision problems and under unrealistic
conditions. In particular, the number of novel classes is usually assumed to be
known in advance, and their labels are sometimes used to tune hyperparameters.
Methods that rely on these assumptions are not applicable in real-world scenarios.
In this work, we focus on solving NCD in tabular data when no prior knowledge
of the novel classes is available. To this end, we propose to tune the hyperpa-
rameters of NCD methods by adapting the k-fold cross-validation process and
hiding some of the known classes in each fold. Since we have found that meth-
ods with too many hyperparameters are likely to overfit these hidden classes, we
define a simple deep NCD model. This method is composed of only the essential
elements necessary for the NCD problem and performs impressively well under
realistic conditions. Furthermore, we find that the latent space of this method
can be used to reliably estimate the number of novel classes. Additionally, we
adapt two unsupervised clustering algorithms (k-means and Spectral Clustering)
to leverage the knowledge of the known classes. Extensive experiments are con-
ducted on 7 tabular datasets and demonstrate the effectiveness of the proposed
method and hyperparameter tuning process, and show that the NCD problem
can be solved without relying on knowledge from the novel classes.

Keywords: novel class discovery, clustering, tabular data, open world learning,
transfer learning
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1 Introduction

Recently, remarkable progress has been achieved in supervised tasks, in part with the
help of large and fully labeled sets such as ImageNet [1]. These advancements have pre-
dominantly focused on closed-world scenarios, where, during training, it is presumed
that all classes are known in advance and have some labeled examples. However, in
practical applications, obtaining labeled instances for all classes of interest can be a
difficult task due to factors such as budget constraints or lack of comprehensive infor-
mation. Furthermore, for models to be able to transfer learned concepts to new classes,
they need to be designed with this in mind from the start, which is rarely the case. Yet
this is an important skill that humans can use effortlessly. For example, having learnt
to distinguish a few animals, a person will easily be able to recognise and “cluster”
new species they have never seen before. The transposition of this human capacity to
the field of machine learning could be a model capable of categorizing new products
in novel categories.

This observation has led researchers to formulate a new problem called Novel Class
Discovery (NCD) [2, 3]. Here, we are given a labeled set of known classes and an
unlabeled set of different but related classes that must be discovered. Lately, this task
has received a lot of attention from the community, with many new methods such as
AutoNovel [4], OpenMix [5] or NCL [6] and theoretical studies [7, 8]. However, most
of these works tackle the NCD problem under the unrealistic assumption that the
number of novel classes is known in advance, or that the target labels of the novel
classes are available for hyperparameter optimization [9]. These assumptions render
these methods impractical for real-world NCD scenarios. To address these challenges,
we propose a general framework for optimizing the hyperparameters of NCD methods
where the ground-truth labels of novel classes are never used, as they are not available
in real-world NCD scenarios. Furthermore, we show that the latent spaces obtained
by such methods can be used to accurately estimate the number of novel classes.

We also introduce three new NCD methods. Two of them are unsupervised cluster-
ing algorithms modified to leverage the additional information available in the NCD
setting. The first one improves the centroid initialization step of k-means, resulting
in a fast and easy to use algorithm that can still give good results in many scenarios.
The second method focuses on optimizing the parameters of the Spectral Cluster-
ing (SC) algorithm. This approach has a potentially higher learning capacity as the
representation itself (i.e. the spectral embedding) is tuned to easily cluster the novel
data. Finally, the last approach is a deep NCD method composed of only the essential
components necessary for the NCD problem. Compared to SC, this method is more
flexible in the definition of its latent space and effectively integrates the knowledge of
the known classes.

While these contributions can be applied to any type of data, our work focuses
on tabular data. The NCD community has focused almost exclusively on computer
vision problems and, to the best of our knowledge, only one paper [9] has tackled the
problem of NCD in the tabular context. However, this work required the meticulous
tuning of a large number of hyperparameters to achieve optimal results. Methods
designed for tabular data cannot take advantage of powerful techniques commonly
employed in computer vision. Examples include convolutions, data augmentation or
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Self-Supervised Learning methods such as DINO [10], which have been used with great
success in NCD works [11–13], thanks to their strong ability to obtain representative
latent spaces without any supervision. On the other hand, tabular data methods have
to rely on finely tuned hyperparameters to achieve optimal results. For this reason,
we believe that the field of tabular data will benefit the most from our contributions.

By making the following contributions, we demonstrate the feasibility of solving
the NCD problem with tabular data and under realistic conditions:

• We develop a hyperparameter optimization procedure tailored to transfer the results
from the known classes to the novel classes with good generalization.

• We show that it is possible to accurately estimate the number of novel classes in the
context of NCD, by applying simple clustering quality metrics in the latent space
of NCD methods.

• We modify two classical unsupervised clustering algorithms to effectively utilize the
data available in the NCD setting.

• We propose a simple and robust method, called PBN (for Projection-Based NCD),
that learns a latent representation that incorporates the important features of the
known classes, without overfitting on them.

The code is available at https://github.com/PracticalNCD/ECMLPKDD2024.

2 Related work

The setup of NCD [2], which involves both labeled and unlabeled data, can make
it difficult to distinguish from the many other domains that revolve around similar
concepts. In this section, we review some of the most closely related domains and
try to highlight their key differences in order to provide the reader with a clear and
comprehensive understanding of the NCD domain.

Semi-supervised Learning is another domain that is at the frontier between
supervised and unsupervised learning. Specifically, a labeled set is given alongside
an unlabeled set containing instances that are assumed to be from the same classes.
Semi-supervised Learning can be particularly useful when labeled data is scarce or
annotation is expansive. As unlabeled data is generally available in large quantities,
the goal is to exploit it to obtain the best possible generalization performance given
limited labeled data.

The main difference with NCD is that the all the classes are known in advance.
Some works have shown that the presence of novel classes in the unlabeled set neg-
atively impacts the performance of Semi-Supervised Learning models [14, 15]. So as
these works do not attempt to discover the novel classes, they are not applicable to
NCD.

Transfer Learning aims at solving a problem faster or with better performance by
leveraging knowledge from a different problem. It is commonly expressed in computer
vision by pre-training models on ImageNet [1]. Transfer Learning can be either cross-
domain, when a model trained on a given dataset is fine-tuned to perform the same
task on a different (but related) dataset. Or it can be cross-task, where a model that
can distinguish some classes is re-trained for other classes of the same domain.
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NCD can be viewed as a cross-task Transfer Learning problem where the knowledge
from a classification task on a source dataset is transferred to a clustering task on a
target dataset. But unlike NCD, Transfer Learning typically requires the target spaces
of both sets to be known in advance. Initially, NCD was characterized as a Transfer
Learning problem (e.g. in DTC [16] and MCL [17]) and the training was done in two
stages: first on the labeled set and then on the unlabeled set. This methodology seemed
natural, as with Transfer Learning, both sets are not available at the same time.

Generalized Category Discovery (GCD) was first introduced by [11] and has
also attracted attention from the community [12, 18, 19]. It can be seen as a less
constrained alternative to NCD, since it does not rely on the assumption that samples
belong exclusively to the novel classes during inference. However, this is a more difficult
problem, as the models must not only cluster the novel classes, but also accurately
differentiate between known and novel classes while correctly classifying samples from
the known classes.

Some notable works in this area include ORCA [20] and OpenCon [21]. Namely,
ORCA trains a discriminative representation by balancing a supervised loss on the
known classes and unsupervised pairwise loss on the unlabeled data. And OpenCon
proposes a contrastive learning framework which employs Out-Of-Distribution strate-
gies to separate known vs. novel classes. Its clustering strategy is based on moving
prototypes that enable the definition of positive and negative pairs of instances.

Novel Class Discovery has a rich body of papers in the domain of computer
vision. Early works approached this problem in a two-stage manner. Some define a
latent space using only the known classes, and project the unlabeled data into it
(DTC[16] and MM [22]). Others train a pairwise labeling model on the known classes
and use it to label and then cluster the novel classes (CCN [3] and MCL [17]). But both
of these approaches suffered from overfitting on the known data when the high-level
features were not fully shared by the known and novel classes.

Today, to alleviate this overfitting, the majority of approaches are one-stage and
try to transfer knowledge from labeled to unlabeled data by learning a shared repre-
sentation. In this category, AutoNovel [4] is one of the most highly influential works.
After pre-training their latent representation with SSL [23], two classification networks
are jointly trained. The first simply learns to distinguish the known classes with the
ground-truth labels. And the other learns to separate unlabeled data from pseudo-
labels defined for each epoch based on pairwise similarity. NCL [6] adopts the same
architecture as AutoNovel, and extends the loss by adding a contrastive learning term
to encourage the separation of novel classes. OpenMix [5] utilizes the MixUp strategy
to generate more robust pseudo-labels.

As expressed before, although these methods have achieved some success, they are
not applicable to tabular data. To date, and to the best of our knowledge, only Tabu-
larNCD [9] tackles this problem. Also inspired by AutoNovel, it pre-trains a dense-layer
autoencoder with SSL and adopts the same loss terms and dual classifier architecture.
Pseudo-labels are defined between pairs of unlabeled instances by checking if they are
among the most similar pairs.

For a more complete overview of the state-of-the-art of NCD, we refer the reader
to the survey [2].
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3 Approaches

In this section, after introducing the notations, we define two simple but potentially
strong models derived from classical clustering algorithms (Sections 3.2 and 3.3).
The idea is to use the labeled data to improve the unsupervised clustering process,
and make the comparison to NCD methods more challenging. Then, we present a
new method, PBN (for Projection-Based NCD, Section 3.4), characterized by its low
number of hyperparameters needed to be tuned.

3.1 Problem setting

We start by describing the Novel Class Discovery setup and the necessary nota-
tions. Here, data is provided in two distinct sets: a labeled set of known classes

Dl =
{(
xli, y

l
i

)}N

i=1
with xli ∈ X = Rd and yli ∈ Y l =

{
1, . . . , Cl

}
the ground-truth

labels of xli. And an unlabeled set Du = {(xui )}
M
i=1 where the data samples xui ∈ X are

only from novel classes Yu = {1, . . . , Cu}, which are different but related to the known
classes. In other words, there is no overlap between the known and novel classes, so
Y l∩Yu = ∅. The objective is to exploit the knowledge from Dl to accurately partition
Du into the Cu clusters of the novel classes.

Following previous research, we first assume that the number of novel classes Cu

is known in advance, and later propose an approach to estimate this number in a later
section.

3.2 NCD k-means

This is a straightforward method that takes inspiration from k-means++ [24], which
is an algorithm for choosing the initial positions of the centroids (or cluster centers).
In k-means++, the first centroid is chosen at random from the data points. Then,
each new centroid is chosen iteratively from one of the data points with a probability
proportional to the squared distance from the point’s closest centroid. The result-
ing initial positions of the centroids are generally spread more evenly, which yields
appreciable improvement in the final error of k-means and convergence time.

As shown in Figure 1a, we naively adapt k-means++ to the NCD setting by defin-
ing Cl initial centroids. They are set as the mean class points of the known classes
using the ground-truth labels. Then, we follow k-means++ and randomly select Cu

new centroids in the unlabeled set, with similarly decreasing probability when closer
to existing centroids. We found experimentally (see Appendix D) that, after the ini-
tialization is complete, the best accuracy is achieved when only the centroids of the
novel classes are updated, and using the unlabeled data only. In other words, the data
of the known classes is only used during the initialization of the new centroids, but
not during the convergence phase. Intuitively, if the centroids of the known and novel
data are updated together, they have a higher risk of drifting and capturing data of
the other set.

Similarly to k-means++, we repeat the initialization process a few times and keep
the centroids that achieved the smallest inertia. Note that, to stay consistent with the
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(a) Before convergence. (b) After convergence.

Fig. 1: t-SNE plots of the Pendigits dataset depicting the centroids before and after
convergence. Note how the centroids of the known classes (the squares) don’t move,
as they stay the mean class point.

k-means algorithm, we use also the L2 norm (i.e. the Euclidean distance) for NCD
k-means.

3.3 NCD Spectral Clustering

Spectral Clustering (SC) is an alternative to distance-based clustering methods (such
as k-means). It makes no assumptions about the structure of the data and considers
the clustering problem as a graph partitioning problem and seeks to decompose the
graph into connected components [25]. The input of the Spectral Clustering algorithm
is an adjacency matrix (sometimes called similarity graph) which must accurately
represent the neighborhood relationships between data points. There are multiple ways
to construct such a graph, however there is no theoretical result on the relation between
the similarity graph construction method and the Spectral Clustering results. Here,
we employ a popular approach to construct the adjacency matrix, which is through
a Gaussian kernel: Ai,j = exp

(
−∥xi − xj∥22/σ2

)
,∀xi, xj ∈ X where the parameter σ

controls the width of the neighborhood.
Following the Ng-Jordan-Weiss algorithm [26], we use the symmetric normalized

Laplacian Lsym = D−1/2LD−1/2, where D is the degree matrix defined as: Di,i =∑n
j=1Ai,j , in which n is the number of data samples. The next step consists in finding

the first u eigenvectors of Lsym to form the spectral embedding U ∈ Rn×u, where row
i corresponds to point xi. Finally, the points in U are partitioned with k-means into
clusters.

The optimal value of σ in the Gaussian kernel can vary widely depending on
the distribution of inter-point distances. For this reason, we take inspiration from
the rules of thumb given in [25] and employ a minimum spanning tree (MST) to
choose σ. In the past few years, several graph-based clustering methods that use the
MST have been proposed [27], as it reliably represents the layout of the data and is
inexpensive to compute. In the approach proposed here, we denote dmax the length
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of the longest edge in the MST of inter-point distances. The longest edge of the MST
is a much studied object [28] and is representative of the scale of the dataset. The
scaling factor σ is then calculated such that, after applying the Gaussian kernel, dmax

is transformed into a chosen similarity smin. This ensures that the resulting graph is
safely connected. By optimizing this similarity smin we can accurately represent the
neighborhood relationships.

Therefore, for a given value of smin, we derive σ from the length of the longest
edge dmax in the MST:

exp
(
−d2max/σ

2
)
= smin

⇔ σ = dmax/
√
− ln (smin) (1)

Optimizing smin instead of σ should be more robust to variations in the distribution
of inter-point distances and give better results across different datasets or parts of a
dataset.

To incorporate the knowledge from the known classes in the Spectral Clustering
process, our initial approach was to utilize NCD k-means within the spectral embed-
ding. In short, we would initially compute the full spectral embedding for all the data
and determine the mean points of the known classes with the help of the ground
truth labels. These mean points would then serve as the initial centroids. However, the
observed performance improvement over the fully unsupervised SC was quite marginal.

Instead, the idea that we will use throughout this article (and that we refer to
as “NCD Spectral Clustering”) stems from the observation that SC can obtain very
different results according to the parameters that are used. Among these parameters,
the temperature parameter σ of the kernel holds particular importance, as it directly
impacts the adjacency matrix’s accuracy in representing the neighborhood relation-
ships of the data points. The rule of thumb of Equation 1 still requires to choose a
value, but significantly reduces the space of possible values. Additionally, while the lit-
erature often sets the number of components u of the spectral embedding equal to the
number of clusters, we have observed that optimizing it can also improve performance.

Therefore, rather than a specific method, we propose the parameter optimization
scheme illustrated in Figure 2. For a given combination of parameters {smin, u}, the

Fig. 2: NCD Spectral Clustering parameter optimization process.

corresponding spectral embedding of all the data is computed and then partitioned
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with k-means. The quality of the parameters is evaluated from the clustering per-
formance on the known classes, as the ground-truth labels are only available for the
known classes. Indeed an important hypothesis behind the NCD setup is that the
known and novel classes are related and share similarities, so they should have similar
feature scales and distributions. Consequently, if the Spectral Clustering performs well
on the known classes, the parameters are likely suitable to represent the novel classes.

Discussion. This idea can be applied to optimize the parameters of any unsuper-
vised clustering algorithm in the NCD context. For example, the Eps and MinPts
parameters of DBSCAN [29] can be selected in the same manner. It is also possible to
use a different adjacency matrix in the SC algorithm. One option could be to substi-
tute the Gaussian kernel with the k-nearest neighbor graph, and therefore optimise k
instead of σ. However, for the sake of simplicity, we will only investigate SC using the
Gaussian kernel.

3.4 Projection-Based NCD

Fig. 3: Architecture of the PBN model.

Projection-based NCD (PBN) can be seen as an extension of the baseline method
used in TabularNCD [9]. PBN is illustrated in Figure 3 and consists of 3 key com-
ponents: (1) an encoder that learns a shared representation between the known and
novel classes; (2) a classification network trained to distinguish the known classes of
Dl in order to incorporate their relevant features into the representation; and (3) a
decoder that reconstructs the data for both known and novel classes of Dl∪Du, ensur-
ing that the latent space contains the information necessary to represent all classes.
The decoder serves a dual purpose: it provides regularization and mitigates overfitting
on the known classes, thus improving generalization, as shown in [30].

The training loss is defined as:

LPBN = w × LCE + (1− w)× LMSE (2)

where w ∈ (0, 1) is a trade-off parameter that allows to balance the strength of the
cross-entropy loss and the reconstruction loss.
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The cross-entropy loss on the known classes is defined as:

LCE = −
Cl∑
c=1

yc log (ηc(z)) (3)

where η(z) = (ηc(z))
Cl

c=1 is the output of a classification network composed of a single
dense layer of neurons, z = ϕ(x) is the projection of instance x through the encoder

ϕ and (yc)
Cl

c=1 is the one-hot encoded ground-truth label of instance x.
The reconstruction loss of the instances from all classes is written as:

LMSE =
1

d

d∑
j=1

(xj − x̂j)2 (4)

where x̂ = ψ(z) is the reconstruction of instance x ∈ Rd.
Once the encoder, decoder and classification network have been trained (step 1),

unlabeled data Du is projected by the trained encoder into the latent space and then
clustered with k-means to discover novel classes (step 2).

Projection-based NCD requires tuning of four hyperparameters. The trade-off
parameter w is inherent to the method and the other three come from the choice of
architecture: the learning rate, the dropout rate and the size of the latent space.

Note that this method doesn’t employ complex schemes to define pseudo-labels
unlike many NCD works. They have been proven to be accurate with image data
(notably thanks to data augmentation techniques) [4, 31], but we found in preliminary
results not detailed here, that for tabular data, they introduce variability in the results
and new hyperparameters that need to be tuned.

Discussion. Similarly to PBN, the baseline method of TabularNCD [9] relies on
the assumption that known and novel classes share similar high-level features, and
defines a latent space that highlights these features. This baseline first trains a deep
classifier to distinguish only the known classes of Dl. After training, the output and
softmax layers are discarded, and the last hidden layer is now considered as the output
of an encoder. It then projects the novel data ofDu into this latent space and partitions
it using k-means. This is the basic workflow of two-stage latent space-based NCD
methods identified in [2]. It is also similar to DTC [16], which uses the more refined
DEC [32] clustering model instead of k-means in the baseline. The problem with such
two-stage methods is that the resulting representations are at risk of being heavily
biased towards the known classes. Thus, if some concepts or high-level features are
not shared between the known and novel classes, the novel classes will not be well
represented and these approaches will fail.

3.5 Summary of proposed approaches

In this section, we have proposed 3 distinct methods for solving the NCD problem, all
of which leverage knowledge from the known classes in different ways. Firstly, NCD
k-means uses the labeled data to improve the initialization of its centroids. Secondly,
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instead of using the labels of the known classes during the clustering process itself,
NCD Spectral Clustering uses them to find parameters that are likely to be suitable
for the whole domain. More precisely, by clustering Dl ∪Du together, the adequacy
of the parameters smin and u can be evaluated on the known classes. Finally, PBN
is a straightforward method that includes only the essential components to define a
latent representation suitable for clustering the novel classes. In this case, an encoder
is trained with a classification loss on the known classes and a reconstruction loss on
all the data to ensure that the novel classes are not misrepresented. The novel data is
then projected into this representation and clustered with k-means.

In the next section, we present an approach to finding hyperparameters without
using the labels of the novel classes, which are not available in realistic scenarios.
Indeed in the experiments (see Section 7), it should become clear why the simplicity
of the proposed approach is a desirable feature for hyperparameter optimization in
the NCD context.

4 Hyperparameter optimization

The success of machine learning algorithms (including NCD) can be attributed in part
to the high flexibility induced by their hyperparameters. In most cases, a target is
available and approaches such as the k-fold Cross-Validation (CV) can be employed to
tune the hyperparameters and achieve optimal results. However, in a realistic scenario
of Novel Class Discovery, the labels of the novel classes are never available. We must
therefore find a way to optimize hyperparameters without ever relying on the labels of
the novel classes. In this section, we present a method that leverages the known classes
to find hyperparameters applicable to the novel classes. This tuning method is designed
specifically for NCD algorithms that require both labeled data (known classes) and
unlabeled data (novel classes) during training1. This is the case for Projection-based
NCD, as described in Section 3.4.

The process that we devised is represented in Figure 4. For each of the splits, the
instances of around half of the known classes are selected to form the set Dhid and
their labels are hidden. The labeled set now becomes the instances of Dl \Dhid and
the unlabeled set becomes the instances of Du ∪Dhid. After training the model with
this new data split, it is evaluated for its performance for partitioning the instances
of Dhid only since their labels are available.

To illustrate, in the split 1 of Figure 4, the model will be trained with the subsets
of classes {C2, C3, C4} as known classes and {C0, C1, C5, . . . , C9} as novel classes. It
will be evaluated for its performance on the hidden classes {C0, C1} only.

To evaluate a given combination of hyperparameters, this approach is applied to all
the splits, and the performance on the hidden classes is averaged. After repeating this
process for many combinations, the combination that achieved the best performance
is selected. For the final evaluation on the novel classes, in a realistic scenario of NCD
their labels are never available. However, in the datasets employed in this article, the
novel classes are comprised of pre-defined classes. Therefore, even though these labels

1To optimize purely unsupervised clustering methods for NCD, we refer the reader to the optimization
process of Section 3.3.
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Fig. 4: The k-fold cross-validation approach for hyperparameter optimisation of NCD
methods.

are not employed during training, they can still be used to assess the final performance
on the novel classes of different models and compare them against each other.

This tuning method stems from the same idea behind the NCD Spectral Cluster-
ing parameterization process. Namely, if the clustering in the learned representation
successfully partitions the hidden classes in Dhid, it is also likely suitable for the novel
classes in Du. Furthermore, keeping the unlabeled data during training even though
the model is not evaluated on the novel classes is important, as it increases the chances
of the representation being adapted for all the classes. For the same reason, the k-
means of PBN (see Section 3.4) is fitted on Du ∪Dhid together (instead of just Dhid)
and the performance is then computed on Dhid only. So cases where the classes in Du

and Dhid are tangled will be penalized.
In Table 1, we report for all datasets used in our experiments the number of known

classes that are hidden in each split, as well as the number of splits. Note that when
the number of known classes is small (e.g. 3 for Human), this approach may be difficult
to apply.

Discussion. Similarly to NCD, there are no labels available in unsupervised clus-
tering problems, which makes the task of hyperparameter selection very difficult. To
address this issue, clustering algorithms are sometimes tuned using internal metrics
that do not rely on labeled data for computation. These metrics offer a means of com-
paring the results obtained from different clustering approaches. Examples of such
metrics include the Silhouette coefficient, Davies-Bouldin index, or Calinski-Harabasz
index [33]. However, it is important to note that these metrics make assumptions about
the structure of the data and can be biased towards algorithms which make a simi-
lar assumption. But unlike unsupervised clustering, the NCD setting provides known
classes that are related to the novel classes we are trying to cluster.
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Table 1: Classes splits of the k-fold cross-
validation.

Dataset
Known Novel Hidden

Splits
classes classes classes

Human 3 3 2 3
Letter 19 7 7 5
Pendigits 5 5 2 5
Census 12 6 6 5
m feat 5 5 2 5
Optdigits 5 5 2 5
CNAE-9 4 5 2 5

5 Estimating the number of novel classes

Cluster Validity Indices (CVIs) are commonly used in unsupervised data analysis to
estimate the number of clusters and are also applicable to the NCD problem. CVIs
are scores that compare the compactness and separation of clusters without the help
of external information such as ground truth labels. However, the knowledge from the
known classes isn’t used if the CVIs are directly applied to estimate the number of
novel classes. Therefore, we propose to apply the CVIs in the latent representation
learned by PBN. Projection-based NCD methods such as PBN are designed to create
a latent space that emphasizes the relevant features of the known classes. Since these
features are shared to some extent with the novel classes, this representation should
be better at revealing the clusters we are trying to discover than the original feature
space. Consequently, it makes sense that applying the different estimation techniques
in the learned latent space should yield better results.

Note that this is only applicable to NCD methods such as PBN that don’t require
the number of novel classes Cu to train their latent space (unlike TabularNCD). For
the others, the estimation can be done once in the original feature space, but should
have higher error.

Some NCD works have also previously attempted to estimate the number of novel
classes. For instance, [3] defines a large number of output neurons in their cluster-
ing network (e.g. 100). In this case, the clustering network is expected to use only
the necessary number of clusters while leaving the remaining output neurons unused.
Clusters were counted if they contained more instances than a certain threshold. How-
ever, since, with the exception of TabularNCD, the models studied in this paper do
not use a clustering network, we will not evaluate this method.

Another technique, proposed by [11], consists in training a k-means on the com-
bined dataset Dl ∪ Du and selecting the k that yielded the highest accuracy on
Dl. While this approach worked well for balanced datasets [12], it has been shown
to underperform in the case of unbalanced class distributions [34]. For the sake of
simplicity, we will call this method KM-ACC (for k-means ACC) in the remainder of
this paper.
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To select the CVI that we will use for our application, we rely on the results of
[33]. Here, the authors conducted an extensive performance evaluation of 30 CVIs.
They concluded that the Silhouette, Davies–Bouldin, Calinski–Harabasz and Dunn
indices behaved better than other indices in almost all cases. In the experiments,
the performance of these 4 indices will be compared, with the addition of the elbow
method and the NCD-specific method KM-ACC.

6 Full training procedure

In the previous sections, we presented the models, the hyperparameter optimization
and the estimation procedure of the number of novel classes independently. In this
section, these components are brought together to form a complete training procedure.
To ensure that no prior knowledge about the novel classes is ever used in this process,
the number of novel classes is naturally estimated during the k-fold CV introduced
in Section 4. As the whole process is quite complex, we try to summarize it in clear
terms in this section and in Algorithm 1.

To gauge a given set of hyperparameters, we evaluate the performance of the model
over nfolds, where in each fold, a random combination of known classes is “hidden”
and merged with the unlabeled data of Du. In a fold, the encoder of the NCD model
is first trained on this new data split. The number of novel classes is then estimated
with a CVI in the projection of the unlabeled data. At this point, the novel and
hidden classes are partitioned by the model in the latent space using the previous
estimate of the number of clusters. And the accuracy for this fold is calculated on the
hidden classes. This process is repeated for all folds and for many combinations of
hyperparameters, and the combination that achieved the best performance on average
is selected for the final evaluation of the model.

Algorithm 1 Agnostic NCD model evaluation

Require: Training data {Dl, Du}, hyperparameters θ, number of classes to hide nhid,
number of folds nfolds

1: Initialize: folds← set of nfolds random combinations of nhid known classes
2: for each fold in folds do
3: Dhid ← the data from Dl of the classes in fold
4: Dl′ ← Dl \Dhid

5: Du′ ← Du ∪Dhid

6: Train model on {Dl′ , Du′} with hyperparameters θ
7: Zu ← ϕθ(X

u) the projection of the novel data
8: k′ ← the estimation of Cu in Zu with a CVI
9: Get the clustering prediction of the model for Du′

using k = nhid + k′

10: ACChid ← clustering performance on Dhid

11: end for
12: Return: Average of all the ACChid
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7 Experiments

7.1 Experimental setup

Datasets. To evaluate the performance of the methods compared in this paper,
7 tabular classification datasets were selected: Human Activity Recognition [35], Let-
ter Recognition [36], Pen-Based Handwritten Digits [37], 1990 US Census Data [37],
Multiple Features [37], Handwritten Digits [37] and CNAE-9 [37].

Following the previous NCD works [4, 6, 16], the instances of about 50% of the
classes are hidden a priori to form the unlabeled set of novel classes Du, while the
rest form the labeled set Dl. We use a 70/30% train/test split if it was not already
provided. Statistical information on the datasets is shown in Table 2, and the number
of known/novel classes (along with the number of classes hidden during the k-fold CV)
can be found in Table 1. The numerical features of all the datasets are pre-processed to
have zero mean and unit variance, while the categorical features are one-hot encoded.

Table 2: Details of the datasets.

Dataset Human Letter Pendigits Census m feat Optdigits CNAE-9
Features 562 16 16 67 515 62 856
Known classes 3 19 5 12 5 5 4
Known data 3733 10229 3777 12000 802 1918 377
Novel classes 3 7 5 6 5 5 5
Novel data 3619 3770 3717 6000 798 1905 487
Test data 1453 1704 1734 6000 202 905 113

Metrics. We report the clustering accuracy (ACC) on the unlabeled data. It is
defined as:

ACC = max
perm∈P

1

M

M∑
i=1

1 {yi = perm(ŷi} (5)

where yi and ŷi are the ground truth labels and predicted labels for instance xi respec-
tively. Here,M = |Du|. P is the set of all possible permutations between ground truth
and predicted labels. It can be easily computed using the Hungarian algorithm [38].
The Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI) are also
reported in Annex A.

Competitors. We report the performance of k-means and Spectral Clustering,
along with their NCD-adapted versions introduced in Sections 3.2 and 3.3. We also
include PBN and the pioneering NCD work for tabular data, TabularNCD [9]. Finally,
we implement the same baseline used in [9]. It is a simple deep classifier that is first
trained to distinguish the known classes. Then, the penultimate layer is used to project
the data of the novel classes before clustering it with k-means. See the discussion of
Section 3.4 for more details. We will call this approach the “baseline” for the remainder
of this article.

Implementation details. The neural-network based methods (i.e. PBN, Tabu-
larNCD and the baseline) are trained with the same architecture: an encoder of 2
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hidden layers of decreasing size, and a final layer for the latent space whose dimension
is optimized as an hyperparameter. The dropout probability and learning rate are also
hyperparameters to be optimized. The classification networks are all a single linear
layer followed by a softmax layer. All methods are trained for 200 epochs and with a
fixed batch size of 512. For a fair comparison, the hyperparameters of these neural-
network based methods are optimized following the process described in Section 4
(whereas the parameters of NCD SC are simply optimized following Section 3.3).
Thus, the labels of the novel classes are never used except for the computation of the
evaluation metrics reported in the result tables. The hyperparameters are optimized
by maximizing the ARI, and their values can be found in Annex B.

7.2 Results analysis

7.2.1 Results when the number of novel classes is known in advance

Clustering. In Table 3, we first examine the performance of the unsupervised
clustering methods when the number of novel classes Cu is known in advance. The
aim is to determine which of the clustering algorithms performs best and should be
compared with the NCD methods. We observe that NCD k-means is never worse than
k-means, and NCD SC is only once worse than SC. This result confirms the efficacy
of both NCD approaches and demonstrates that even simple clustering techniques
can benefit from the known classes, although the improvements are sometimes only
marginal.

The comparison between NCD k-means and NCD SC confirms the idea that no
single clustering algorithm is universally better than the others in all scenarios, as
noted by [39]. However, NCD SC outperforms its competitors on 4 occasions and has
a the highest average accuracy. Therefore, this algorithm is selected for the next step
of comparisons.

Table 3: Test ACC of the clustering algorithms aver-
aged over 10 runs.

Dataset k-means
NCD

SC NCD SC
k-means

Human 75.7±0.2 75.9±0.0 76.3±0.3 93.1±9.7
Letter 50.7±0.2 51.9±2.3 55.9±0.0 57.4±5.8
Pendigits 81.7±0.0 81.7±0.0 83.0±0.0 81.7±2.7
Census 49.9±4.0 50.4±1.1 48.5±0.3 48.0±1.8
m feat 89.1±0.3 89.7±0.4 89.6±0.3 89.2±2.3
Optdigits 79.1±4.5 94.2±0.0 89.7±0.0 95.4±5.3
CNAE-9 60.6±5.9 61.2±4.5 53.8±4.8 69.0±6.7
Average 69.5 72.1 71.0 76.3

NCD. As shown in Table 4, PBN outperforms both the baseline and TabularNCD
by an average of 21.6% and 12.9%, respectively. It is only outperformed by the baseline
on the Letter Recognition [36] dataset. This dataset consists of primitive numeric
attributes describing the 26 capital letters in the English alphabet, which suggests a
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high feature correlation between the features used to distinguish the known and novel
classes. Since the baseline learns a latent space that is strongly discriminative for
the known classes, this gives the baseline model a distinct advantage in this specific
context. On the other hand, we observe that it is at a disadvantage when the datasets
do not share as many high-level features between the known and novel classes.

Table 4 also demonstrates the remarkable competitiveness of the NCD Spectral
Clustering method, despite its low complexity. On average, it trails behind PBN by
only 1.0% in ACC and manages to outperform PBN twice over 7 datasets.

Table 4: Test ACC of the NCD methods averaged over 10
runs.

Dataset Baseline NCD SC TabularNCD PBN
Human 71.6±1.7 93.1±9.7 72.2±2.6 76.7±1.8
Letter 64.9±2.6 57.4±5.8 62.1±3.0 62.4±2.0
Pendigits 53.4±6.6 81.7±2.3 57.0±6.0 82.8±0.6
Census 59.1±0.8 48.0±1.8 45.2±4.8 62.4±0.9
m feat 66.7±4.1 89.2±2.3 90.2±2.7 91.7±0.8
Optdigits 40.7±5.1 95.4±5.3 73.0±8.4 92.6±2.3
CNAE-9 40.2±3.2 69.0±6.7 51.3±5.2 72.6±4.6
Average 55.7 76.3 64.4 77.3

To investigate the reasons behind the subpar performance of TabularNCD, we look
at the correlation between the ARI on the hidden classes and the final ARI of the model
on the novel classes. A strong correlation would imply that if a combination of hyper-
parameters performed well on the hidden classes, it would also perform well on the
novel classes. To examine this, we plot the average ARI on the hidden classes against
the ARI on the novel classes. Figure 5 is an example of such a plot. It shows that, in
the case of the Letter Recognition dataset, PBN has a much stronger correlation than
TabularNCD. We attribute this difference to the large number of hyperparameters of
TabularNCD (7, against 4 for PBN), which causes the method to overfit on the hidden
classes, resulting in a lack of effective transfer of hyperparameters to the novel classes.

(a) PBN (b) TabularNCD

Fig. 5: Comparison between the ARI on the hidden and novel classes. Each point is
a different hyperparameter combination.

16



In conclusion, this section has shown that when the number Cu of novel classes is
known, NCD SC performs almost as well as PBN. Therefore, in this specific scenario,
NCD SC is a viable candidate for addressing the NCD problem due to its lower
complexity and shorter training time. Conversely, despite its strong learning capacity,
TabularNCD is penalized by its high number of hyperparameters.

7.2.2 Results when the number of novel classes is estimated

As expressed in Section 5, we leverage the representation learned by PBN during the
k-fold CV to estimate the number of clusters. The result is a method that never relies
on any kind of knowledge from the novel classes. This approach is also applicable to
the baseline and the spectral embedding of SC, but not to TabularNCD as it requires
a number of clusters to be defined during the training of its representation. For a fair
comparison, TabularNCD is trained here with a number of clusters that was estimated
beforehand with a CVI.

To determine which CVI will perform the best in this application, we estimate
the number of classes in the latent spaces learned by PBN when Cu was known in
advance. Figure 6 displays the average ranks of the CVIs in the latent spaces, and the
details of the results can be found in Annex C. The Nemenyi post-hoc test was used to
compare the methods against all others. However, given the relatively small number
of datasets, the Critical Difference (CD) is large and the CVIs are not statistically
different from each another according to the Nemenyi test.

Fig. 6: Comparison of the CVIs in the latent space of PBN using the Nemenyi test
with a 95% confidence interval.

Nevertheless, we find that the Silhouette coefficient performed the best in the latent
space of PBN, closely followed by the Calinski-Harabasz index. The elbow method is
ranked last, which could be explained by the difficulty in defining an elbow 2.

To summarize, in the following results, the Silhouette coefficient will be used for
all estimations of Cu. The full training procedure described in Section 6 will be used
to train the baseline and PBN, with Cu estimated in their latent spaces as detailed in
Algorithm 1. For TabularNCD, Cu is estimated once in the original feature space (see
Annex C Table C4 for the values used). And NCD SC is trained as it was described
in Section 3.3, but with Cu estimated in its spectral embedding.

2There are no widely accepted approaches, as the concept of an “elbow” is subjective. In this study, we
employed the kneedle algorithm [40] through the kneed Python Library [41].
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Table 5: Test ACC averaged over 10 runs. With Cu esti-
mated with the Silhouette coefficient.

Dataset Baseline NCD SC TabularNCD PBN
Human 70.8±2.9 30.2±4.2 71.1±0.0 71.1±0.0
Letter 64.0±6.1 34.8±2.3 41.8±4.9 61.3±4.7
Pendigits 46.7±3.6 74.1±2.1 57.0±6.0 83.0±0.3
Census 56.6±3.6 29.0±3.5 35.7±1.6 49.8±0.1
m feat 59.5±7.7 73.2±3.9 41.1±0.2 90.6±2.2
Optdigits 42.1±4.6 79.5±4.0 96.9±1.3 90.5±4.8
CNAE-9 33.8±3.8 44.6±3.9 39.3±0.2 50.8±1.5
Average 53.4 52.2 54.7 71.0

As emphasised earlier, Table 5 reports the results of the different NCD algorithms
in the most realistic scenario possible, where both the labels and the number of novel
classes are not known in advance. This is the setting where PBN exhibits the greatest
improvement in performance compared to the other competitors, achieving an ACC
that is 17.6%, 18.8% and 16.3% higher than the baseline, NCD SC, and TabularNCD,
respectively.

Remarkably, TabularNCD outperforms PBN on the Optdigits datasets where the
number of clusters was overestimated by the Silhouette coefficient in the original fea-
ture space. This suggests that TabularNCD probably only utilized the output neurons
necessary for clustering, leaving the others unused, which was the method proposed
in [3] for estimating Cu. This, however, is not true for the Letter dataset where Cu

was significantly overestimated, indicating that accurate estimations will likely result
in improved performance.

Compared to the case where Cu is known in advance, the ACC of the baseline falls
from 55.7% to 53.4% and NCD SC falls from 74.3% to 52.2%. This shows that they
are both unable to find a latent space suitable for the estimation of Cu.

However, the ACC of PBN remains an impressive 71.0%, demonstrating that this
simple method, comprising of only two loss terms, is the most appropriate for tack-
ling the NCD problem in a realistic scenario. In contrast to the baseline and NCD
SC methods, its reconstruction term enables it find a latent space where the unla-
beled data are correctly represented. And unlike TabularNCD, it has a low number of
hyperparameters which decreases the probability of overfitting on the hidden classes
during the k-fold CV procedure.

8 Conclusion

In this article, we have shown that in the NCD setting, unsupervised clustering algo-
rithms can benefit from knowledge of the known classes and reliably improve their
performance by implementing simple modifications. We have also introduced a novel
NCD algorithm called PBN, which is characterized by its simplicity and low number of
hyperparameters, which proved to be a decisive advantage under realistic conditions.
In addition, we have proposed an adaptation of the k-fold cross-validation process to
tune the hyperparameters of NCD methods without depending on the labels of the
novel classes. Finally, we have demonstrated that the number of novel classes can be
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accurately estimated within the latent space of PBN. These two previous contribu-
tions have shown that the NCD problem can be solved in realistic situations where no
prior knowledge of the novel classes is available during training.
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Appendix A Additional result metrics

In this section, in addition to the ACC results discussed in Section 7.2.2, we present
the NMI (Table A1) and ARI (Table A2) for the NCD methods when the number
of novel classes Cu is unknown and has to be estimated. Our results are consistent
with those shown in Table 5: the PBN method largely outperforms its competitors in
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this realistic scenario. In particular, PBN achieves an average NMI higher than the
baseline, NCD SC and TabularNCD by 23.5%, 8.6% and 13.5% respectively. Similarly,
the ARI is 24.5%, 12.4% and 17.5% higher on average.

Table A1: Test NMI averaged over 10 runs. With Cu esti-
mated with the Silhouette coefficient.

Dataset Baseline NCD SC TabularNCD PBN
Human 56.1±8.9 45.8±3.0 75.2±0.0 75.2±0.0
Letter 54.4±3.3 52.6±1.0 37.2±3.2 59.2±2.4
Pendigits 41.0±6.7 79.5±1.4 48.0±6.5 73.4±2.5
Census 59.7±0.6 33.5±1.0 42.6±1.5 60.6±0.5
m feat 50.0±3.9 71.9±2.9 44.8±2.1 79.1±3.3
Optdigits 28.5±6.0 77.3±2.0 93.1±2.0 84.9±2.0
CNAE-9 23.0±1.5 56.5±2.0 42.0±1.3 45.2±13.4
Average 44.7 59.6 54.7 68.2

Table A2: Test ARI averaged over 10 runs. With Cu esti-
mated with the Silhouette coefficient.

Dataset Baseline NCD SC TabularNCD PBN
Human 48.7±4.0 20.3±3.0 61.4±0.0 61.4±0.0
Letter 44.3±4.1 29.5±2.2 23.4±5.6 48.9±3.1
Pendigits 29.8±5.7 73.7±1.7 37.6±6.5 65.3±3.4
Census 42.6±3.7 23.0±3.8 26.7±0.8 35.5±0.2
m feat 40.9±5.3 64.1±4.5 21.5±0.2 79.1±4.2
Optdigits 16.9±6.5 75.6±3.6 94.1±2.7 84.4±4.4
CNAE-9 11.6±1.9 33.2±4.0 18.8±0.4 31.5±1.7
Average 33.5 45.6 40.5 58.0

Appendix B Hyperparameters

The Table B3 shows the hyperparameters found by the full procedure described in
Section 6.

Appendix C Cluster Validity Indices numerical
results

An estimate of the number of clusters in the 7 datasets considered in this paper can
be found in Table C4. Among the 6 CVIs reported here, the Silhouette coefficient
performed the best. Furthermore, compared to the original feature space, its average
estimation error significantly decreased in the latent space, validating our approach.
For some datasets, the Davies-Bouldin index continued to decrease and the Dunn
index continued to increase as the number of clusters increased, resulting in very large
overestimations. Note that the estimates of the number of novel classes in Table C4 are
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Table B3: Hyperparameters of the methods found when Cu is estimated.
Parameter Human Letter Pendigits Census m features Optdigits CNAE-9

B
a
se
-

li
n
e

latent dim 560 9 9 30 34 42 569
lr 0.0001543 0.0013334 0.0055179 0.0020210 0.0001187 0.0033302 0.0001676
dropout 0.1680448 0.1400953 0.0525056 0.4678363 0.5648556 0.0751809 0.2577655

N
C
D

S
C

smin 0.293960 0.981371 0.861477 0.635344 0.700053 0.204129 0.831326
u 144 14 18 53 16 26 14

T
a
b
u
la
rN

C
D

k neighbors 70 29 73 45 15 48 7
latent dim 372 14 13 56 98 62 791
lr 0.009614 0.000365 0.004648 0.001248 0.008400 0.007554 0.001296
dropout 0.154362 0.066725 0.278239 0.274898 0.013843 0.091586 0.082204
top k 0.610971 0.165173 0.467394 0.939568 0.590449 0.995869 0.942106
w1 0.047453 0.413677 0.139925 0.312476 0.301939 0.785324 0.196314
w2 0.702652 0.970951 0.605445 0.882650 0.834274 0.933564 0.641289

P
B
N

latent dim 504 22 12 13 172 53 579
learning rate 0.000101 0.000588 0.001076 0.002111 0.004675 0.000364 0.004400
dropout 0.509847 0.027456 0.011264 0.167778 0.239342 0.066065 0.081317
w 0.467146 0.722411 0.106714 0.960869 0.670342 0.189179 0.698152

not needed in the experiments of Section 7.2.2, since Algorithm 1 directly incorporates
such estimates in the training procedure. This table has only helped us to identify
the most appropriate CVI for our problem. The only exception is the TabularNCD
method, which requires an a priori estimation of the number of novel classes in the
original feature space.

Table C4: An estimation of the number of novel classes with some CVIs in the
latent space of PBN.

Dataset Human Letter Pendigits Census m feat Optdigits CNAE-9
Ground-truth 3 7 5 6 5 5 5

PBN latent space
Silhouette 2 8 5 3 5 5 5
CH 2 3 5 4 2 2 5
Dunn 2 3 98 3 2 95 2
KM ACC 1 2 3 3 5 6 1
Davies-B. 2 63 6 3 99 4 96
Elbow 9 14 10 7 16 13 9

Original feature space
Silhouette 2 45 5 3 2 9 2

Appendix D NCD k-means centroids convergence
study

In this appendix, we aim to determine how to achieve the best performance with
NCD k-means. Specifically, after the centroid initialization described in Section 3.2,
we investigate: (1) whether it is more effective to update the centroids of both known
and novel classes, or only the centroids of novel classes; (2) whether the centroids
need to be updated using data from both known and novel classes, or only using data
from novel classes. The results are presented in Table D5 and show that for 5 out of 7
datasets, the best results are obtained when only the centroids of the novel classes are
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updated on the unlabeled data. Updating the centroids of the known classes always
leads to worse performance, as the class labels are not used in this process. Thus, the
centroids of the known classes run the risk of capturing data from the novel classes
(and vice versa).

Table D5: ACC of NCD k-means averaged over 10 runs.

Dataset
Converging the On unlabeled On labeled and
centroids... data only unlabeled data

Human
novel only 75.9±0.0 77.4±0.0
known and novel - 75.1±0.5

Letter
novel only 51.9±2.3 39.5±1.9
known and novel - 42.3±2.6

Pendigits
novel only 81.7±0.0 72.7±0.9
known and novel - 75.3±4.0

Census
novel only 50.4±1.1 50.4±4.8
known and novel - 44.6±8.3

m feat
novel only 89.7±0.4 69.1±0.2
known and novel - 84.1±7.0

Optdigits
novel only 94.2±0.0 70.8±7.8
known and novel - 74.0±14.7

CNAE-9
novel only 61.2±4.5 48.3±8.5
known and novel - 68.1±7.5
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