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The analysis and modelling of high-resolution spectra of nonrigid molecules require

a specific Hamiltonian and group-theoretical formulation which differs significantly

from that of more familiar rigid systems. Within the framework of the Hougen-

Bunker-Johns (HBJ) theory, this paper is devoted to the construction of a nonrigid

Hamiltonian based on a suitable combination of numerical calculations for the non-

rigid part in conjunction with the irreducible tensor operator method for the rigid

part. For the first time, a variational calculation from ab initio potential energy

surfaces is performed using the HBJ kinetic energy operator build from vibrational,

large-amplitude motion and rotational tensor operators expressed in terms of curvi-

linear and normal coordinates. Group theory for nonrigid molecules plays a central

role in the characterization of the overall tunnelling splittings and is discussed in the

present approach. The construction of the dipole moment operator is also examined.

Validation tests consisting in a careful convergence study of the energy levels as well

as in a comparison of results obtained from independent computer codes are given

for the nonrigid molecules CH2, CH3, NH3 and H2O2. This work paves the way for

the modelling of high-resolution spectra of larger nonrigid systems.
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I. INTRODUCTION

Vibration-rotation spectroscopy remains a formidable tool to understand spectral features

of known molecules or to identify “unknown” molecules in astrophysics, either from labo-

ratory experimental spectra or from accurate theoretical calculations1,2. The standard and

historical way of interpreting high-resolution molecular spectra consists in using empirical

effective Hamiltonians suitable for data fitting3–6. In turn, it may arise that some result-

ing fitted parameters have a limited extrapolation power. With the increase in computing

capability, particular effort was made these past two decades in nuclear-motion theory to

obtain variational eigenpairs relying on the development of efficient and optimized meth-

ods for solving the time-independent Schrödinger equation7–35. Within this context, the

derivation of exact quantum kinetic energy operators (KEO) from different coordinate sys-

tems as well as the construction of highly accurate ab initio potential energy surfaces (PES)

remain an active field of research36–49. For semirigid molecules whose PES has a single,

well-defined equilibrium configuration, the use of normal coordinates within the framework

of the Eckart-Watson Hamiltonian formalism50 is well established. Recent papers23,51–55

devoted to the construction of accurate line lists for many polyatomic semirigid molecules

proved how the Watson Hamiltonian was still of primary importance for the modelling of

planetary atmospheres. For nonrigid “floppy” molecules exhibiting one or several large am-

plitude motions (LAM) connecting multiple potential wells, the use of rectilinear normal

coordinates designed for small amplitude vibrations is clearly prohibited. General internal-

coordinate Hamiltonians19,39,40,47,56–61 were thus constructed in order to study the complex

intra-molecular dynamics arising from inversion or internal rotational motions. Indeed, the

study of molecules undergoing LAMs is particularly challenging because of their dense and

rich spectra due to numerous tunnelling splittings62–65. With the spectacular advances in

modern experimental techniques, even small splittings can be now resolved, making neces-

sary the development of sophisticated theoretical models to analyse spectra.

Though it does not give any information about the magnitude of the splittings, group

theory plays a central role66–72 and is inseparable from the theory of the nonrigid molecules.

It helps to characterize all the tunnelling splitting patterns and to provide meaningful labels

to the vibration-LAM-rotation states. But in the absence of a unique equilibrium geom-

etry, it is of course obvious that the irreducible representations (irreps) of standard point
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groups cannot be used to properly label the wave functions of molecules with observable

tunnelling62,67,68,70,73. Instead, the wave functions of a nonrigid molecule can be classified

under the complete nuclear permutation inversion (CNPI) groups66,74. However, when the

number of permutation and permutation-inversion elements grows, the use of CNPI becomes

rapidly awkward. To avoid manipulating symmetry species associated with tunnelling split-

ting that will be never resolved, it is thus convenient to select only “feasible” operations that

bring the molecule into attainable geometries. All these elements form a molecular symme-

try (MS) group74 which can be seen as the point group counterpart for floppy molecules and

whose irreps help to classify unambiguously the molecular states.

Undoubtedly, the curvilinear coordinates are the best choice to describe LAMs but we

can wonder what kind of coordinates can be used to describe the small amplitude vibrations.

In 1970, Hougen, Bunker and Johns75,76 (HBJ) derived an exact kinetic energy operator for

nonrigid molecules, based on a clever combination of normal coordinates for the “rigid”

vibrations and of curvilinear coordinates for the LAM(s). The other major difference with

the standard treatment of rigid molecules lies in the fact that the equilibrium configuration

is now replaced by a so-called nonrigid reference configuration depending on the LAM coor-

dinate(s). These past four decades, the HBJ Hamiltonian led to the construction of different

types of effective Hamiltonians77–86, using different types of approximations, after applying

contact transformation perturbation theory to account for the effects of the small vibrations

(more references as well as a non-exhaustive list of computer programs can be found Section

III and Tab. 1 of Ref.87). To our knowledge, the HBJ Hamiltonian using a KEO expressed

in terms of normal coordinates was never used in a full variational calculation to compute

vibration-rotation spectra from ab initio PESs. Instead, other models also based on the HBJ

philosophy and using a KEO expanded in terms of valence or Morse-like coordinates were

developed and implemented in the MORBID56 and TROVE57 computer codes.

The aim of this paper is to provide a complete nuclear motion normal-mode HBJ-based

Hamiltonian where the LAM coordinate is defined on a grid, combined with advanced group-

theoretical methods and optimization tools for solving the Schrödinger equation. The rigid

part of the Hamiltonian is treated algebraically with the aid of irreducible tensor operators

(ITO) while the LAM coordinate is treated numerically. A so-called hybrid model is thus

proposed for the first time. Note that another hybrid model was developed in Ref.86, but

not in that same context. The computation of the vibration-LAM-rotation energy levels is
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performed variationally using symmetry-adapted primitive basis functions. The construction

of a hybrid dipole moment operator is also discussed for line intensity calculation. These past

few years, a set of optimized reduction-compression tools was developed to make variational

calculations as tractable as possible for semirigid molecules (see e.g. Refs.13,88–90), so that

at this stage a simple question is raised: Can the hybrid model benefit from already existing

reduction and symmetry tools initially designed for semirigid molecules? We will try to

respond this question along this paper, helped by a series of validation tests and illustrative

examples.

In this paper, we will focus on molecules with only one LAM, like inversion or internal ro-

tation, although the extension to several LAMs would be of course feasible. The next section

recalls the main recipe as well as the basic ingredients which are useful in the HBJ theory,

in particular around the choice of the molecule-fixed frame as well as coordinate transfor-

mations to conveniently rewrite the potential part. Section III first explains why the HBJ

theory is relevant, related to what was previously developed for semirigid molecules. Then

a normally-ordered form of the HBJ KEO will be proposed before focusing on symmetry

considerations. The construction of the “numerical-ITO” hybrid Hamiltonian and dipole

moment operator will be presented and the choice of the grid points will be also discussed

during the computation of the matrix elements. The validation of the present model will be

given in Section IV which will also provide a careful examination of the convergence of the

energy levels for four nonrigid molecules: CH2, CH3, NH3 and H2O2.

II. TREATMENT OF A MOLECULE EXHIBITING A LARGE

AMPLITUDE MOTION: PRELIMINARIES

A. Nonrigid reference configuration and choice of the molecule-fixed axis

system

In the standard treatment of semirigid molecules, the vibrational displacements of the

atomic nuclei are measured with respect to a rigid, equilibrium geometry configuration aei

(i = 1, · · · , N), with N the number of atoms, and in that case both the reciprocal µαβ tensor

contained in the KEO as well as the potential V are well approximated by the leading terms

in a Taylor series expansion. For nonrigid molecules for which the amplitude of at least
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one coordinate is not small compared to the equilibrium bond lengths and bond angles, the

representation of µαβ and V as a Taylor series fails. Thus, the potential function for the LAM

cannot be properly described, even by increasing the order of the polynomial expansion. In

order to prevent from such dramatic convergence issues, Hougen, Bunker and Johns75, in

their seminal work on quasilinear triatomic molecules, suggested to remove the bending

motion from the vibrational part and to incorporate this LAM into the rotational part.

To this end, they (i) introduced a so-called nonrigid reference configuration aref
i (ρ) instead

of aei where ρ is a coordinate describing the LAM and (ii) treated the remaining 3N − 7

small amplitude vibrations using the normal mode coordinates on a numerical grid in ρ. By

definition, the displacements of the coordinates describing the small amplitude motions are

assumed zero along the reference configuration. The HBJ approach thus ensures that these

3N − 7 coordinates vary smoothly around aref
i (ρ), making relevant a Taylor series expansion

of both the KEO and V in terms of normal coordinates.

Though initially developed for quasilinear triatomic molecules, the HBJ approach can

be finally applied to a wide class of nonrigid polyatomic molecules exhibiting different kind

of LAM (bending, inversion or internal rotation). The major difference between the HBJ

Hamiltonian75 and its rigid counterpart, namely the Eckart-Watson Hamiltonian50, lies in

the fact that all the coefficients involved in the KEO and in the Taylor expansion of the

potential part will be now ρ dependent (see Sections II B & III B).

At this stage, we need to choose the orientation of the molecule-fixed axis system for the

reference configuration. As usual, its origin will be placed at the center of mass. For semirigid

molecules, the frame is generally oriented to coincide with the principal axis system at the

equilibrium geometry. For nonrigid molecules, several choices arise. Among the possibilities,

the principal axis system (PAS), rho axis system (RAS) or internal axis system (IAS) can

be considered to vanish some coupling terms in the generalized inertia matrix Iref when

all the displacements di are zero (see e.g. the discussion of Flaud & Perrin in Ref.91).

The PAS allows to remove the inertial cross terms Iref
αβ. In order to minimize the rotation-

LAM coupling by removing the cross terms Iref
αρ (α = x, y, z) in Iref, IAS is good choice.

Mathematically speaking, this latter condition implies to vanish the angular-momentum-

like vector due to ρ

N∑
i=1

mia
ref,IAS
i (ρ)× daref,IAS

i (ρ)

dρ
= 0, (1)
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with aref,IAS
i (ρ) = U(ρ)aref,MF1

i (ρ) and
∑

imia
ref,IAS
i (ρ) = 0 . Here aref,MF1

i (ρ) is the reference

configuration in some arbitrary reference axis system MF1 and U(ρ) a ρ-dependent rotation

matrix to be determined. This choice is analogous to the original HBJ axis system for

triatomic molecules75, followed soon after by a series of works where an auxiliary angle79,81,92

ε(ρ) satisfying Eq. (1) was introduced instead of U(ρ). A recent method was proposed in

Ref.93 for the derivation of the rotation matrix U(ρ) and is briefly recalled in Appendix.

In the RAS, the angular momentum due to the LAM is not vanishing but is of constant

magnitude along the z axis6.

As an illustrative example, we have determined the rotation matrix U(ρ) in order to

compute a new reference configuration satisfying (1) for the H2O2 molecule. As a starting

point, we have considered the reference configuration given in Ref.94, called aref,ini
i (ρ) such

as Iyρ 6= 0. By solving Eq. (A6), the new IAS configuration is given by aref,IAS
i (ρ) =

U(ρ)aref,ini
i (ρ). The x components of the reference configuration for the atoms H1 and O1,

before and after transformation, are displayed in Fig. 1 as a function of ρ. It is worth

mentioning that within the IAS treatment the torsion angle ρ will be defined as half of the

dihedral angle when studying internal rotation. As a direct consequence, the rotational and

torsion angles, χ and ρ, will be double valued, making necessary the use of irreps of extended

MS groups to classify the rotational and torsional energy levels.

Moreover, according to the relation between the laboratory and molecule-fixed axis sys-

tems, it turns out that the infinitesimal vibrational displacement vectors di must be sub-

jected to 7 constrains. There are 3 equations corresponding to the center of mass condition,

3 other ones have a form similar to the Eckart conditions and a last one (the Sayvetz

condition95) minimizing the interaction between the small and large amplitude vibrations.

B. Coordinate transformation and expansion of the potential energy surface

In the previous section, the LAM coordinate ρ as well as the notion of reference configura-

tion attached to a molecule-fixed axis system have been introduced. As stated by Jensen and

Szalay81,96,97, ρ can be considered as a kind of “effective” coordinate which is different from

the geometrically defined curvilinear ρ̄ coordinate when the “rigid” vibrations are beyond

their equilibrium geometry. By construction, the HBJ KEO depends explicitly on ρ and

on 3N − 7 rectilinear, normal coordinates Qi while the ab initio potential function is built
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FIG. 1. Plot of the x components of the reference configuration as a function of ρ (in radian) for

the atoms H1 and O1 of H2O2 in the initial axis system (Iyρ 6= 0) and in the final IAS (Iyρ = 0)

computed from the transformation U(ρ) obtained by solving Eq. (A6).

from a function ū(ρ̄) where ρ̄ describes a bond, torsion or inversion angle, and from a set

of curvilinear coordinates (i.e. valence, Morse, cosine, etc.) to describe the small amplitude

vibrations. In this work, we assume that the potential function V is known and expressed

in terms of 3N − 6 coordinates S
(Γk)
k,σk

adapted to the symmetry of the molecule, where Γk

is an irreducible representation of a molecular symmetry group and σk a component when

dim(Γk) > 1. Among these S
(Γk)
k,σk

coordinates, one corresponds to ū(ρ̄) and needs to be

transformed to a ρ-dependent function to be consistent with the KEO. To this end, it is

more convenient to rewrite the PES in terms of the 3N−7 coordinates S
(Γr)
r,σr for the rigid part

and put the dependence in ρ̄ into the expansion coefficients. As a direct consequence, some

linear terms
∑

r F̄r(ρ̄)S
(Γr)
r will now appear in the potential while the quadratic part will be

written as
∑

r F̄r,r′(ρ̄)S
(Γr)
r S

(Γ′
r′ )

r′ . Thus, contrary to the “ordinary” treatment of semirigid

molecules, vibrations with different symmetries can interact in the quadratic part of the

potential for nonrigid molecules.

In order to solve the GF problem, we first need to express the PES as a function of the ρ

coordinate, instead of ρ̄. To this end, a general numerical recipe was proposed in Ref.87 to

find the relation ρ̄ = f(ρ, Sr) for any polyatomic molecules, so that the potential function
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transforms as V (Sr, ρ̄)→ V (Sr, ρ). The procedure can be summarized as follows.

− First, we assume that all calculations are performed on a grid composed of Mρ points

ρm ∈ [ρmin, ρmax], m = 1, · · · ,Mρ, (2)

where the choice of these points will be discussed in Section III C 4. As already mentioned,

the main drawback of the HBJ approach lies in the fact that the kinematic matrix of di-

mension (3N − 7)× (3N − 7) writes as G = G(ρm) due to its dependence to aref
iα (ρ) whereas

the elements of the force constant matrix write F̄rr′ = F̄rr′(ρ̄). The aim is thus to find the

transformation F̄(ρ̄) → F(ρm) to properly solve the GF problem on the grid. To this end,

we have shown in Ref.87 that ū(ρ̄) must be necessarily of the form

ū(ρ̄) = u(ρm) +
∑
r

Cr(ρm)S(Γr)
r +

∑
rr′

Crr′(ρm)S(Γr)
r S

(Γr′ )
r′ , (3)

where the Cr and Crr′ coefficients are to be determined. In this approach, only the linear

and quadratic terms are needed, unlike the MORBID approach where higher-order expansion

coefficients Crr′r′′ , Crr′r′′r′′′ , etc., were required56.

− In the next step, we expand the 3N − 7 coordinates S
(Γr)
r as well as the seven Eckart-

Sayvetz relations

Tα =
1√
M

∑
i

midiα,

Rα =
1√
Iref
αα(ρ)

∑
i

miεαβγa
ref
iβ (ρ)diγ,

S =
1√
Iref
ρρ (ρ)

∑
i,α

mi
daref

iα (ρ)

dρ
diα,

(4)

in terms of the 3N small amplitude Cartesian displacements di. Here, M is the total mass

of the system, ε corresponds to the Levi-Civita tensor and Iref
αα, Iref

ρρ are the diagonal elements

of the 4 × 4 inertia matrix75. In the standard treatment of semirigid molecules, only the

linearized part S = Bd is required for solving the GF problem, but here we also need to

compute the quadratic terms didj to determine the Cr and Crr′ coefficients in Eq. (3).

To this end, we first construct the 3N linear and 3N(3N + 1)/2 quadratic forms X lin
s and

Xquad
s′′ = X lin

s X lin
s′ (s, s′ = 1, · · · , 3N , s ≥ s′; s′′ = 1, · · · , 3N(3N + 1)/2) with Xlin =

(S, Tα,Rα,S). Similarly, we define the vector Ylin = (d1x, · · · , dNz) and also construct the

quadratic forms Y quad
s′′ = YsYs′ . Finally, we follow closely the strategy established in Ref.98

to make this problem linear by defining the transformation Bquad on the grid such that

(Xlin,Xquad)t = Bquad(ρm) (Ylin,Yquad)t. (5)

8



The Cartesian displacements contained in Y can be thus deduced by inverting Eq. (5) and

by using the seven constrains Tα = Rα = S = 0. We thus write

(d1, · · · ,dN)t = Ainv
quad(ρm) (Xlin,Xquad)t, (6)

with now Xlin = (S, 0, 0, 0) and where Ainv
quad is a sub-matrix extracted from B−1

quad. In this

scheme, the nuclear displacement vectors di are variables depending on both the symmetry

and ρ coordinates.

− In the last step, we express the function ū(ρ̄) in terms of Cartesian coordinates and

make the substitution (6) to finally get the desired coefficients Cr and Crr′ in Eq. (3). We

are now able to find the eigensolutions of the GF matrix and convert the ab initio curvilinear

potential function to a normal-mode polynomial expansion for each ρm

V (Sr, ρ̄)→ V (Qr, ρm) ≡ Vρm(Qr), r = 1, · · · , 3N − 7, (7)

using Eq. (3) as well as the 3N × (3N − 7) orthogonal transformation l(ρm) linking the

mass-weighted Cartesian displacements to the normal coordinates99.

In Ref.87, we intended at this stage to fit all the matrix elements liα,s(ρm) as well as

all the Coriolis coefficients ζαss′(ρm) to a polynomial function in u(ρ) in order to expand

both the KEO and potential parts in terms of the 3N − 6 coordinates (Qi, ρ), like for

semirigid molecules. In this work, the nonrigid part of the HBJ Hamiltonian will be treated

numerically for more flexibility, which is the best choice if certain values of ρ are near a

singularity.

III. CONSTRUCTION OF A HYBRID HBJ-BASED MODEL

A. Motivations

These past years, a general methodology based on the normal-mode Eckart-Watson for-

malism and on the extensive use of symmetry was proposed for semirigid molecules. It also

combines dimensionality reduction techniques to manage memory at each stage of calcula-

tion. All the procedure has been implemented in the TENSOR computer code and led to

the construction of accurate line lists for molecules up to seven atoms13,21,51–53. The main

motivations for the extension to nonrigid systems can be summarized as follows:

1 − Reduction-compression techniques. The use of the HBJ theory is a quite natural choice
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because most of the reduction-compression tools previously developed for semirigid molecules

can be also considered and adapted to tackle the problem of nonrigid polyatomic molecules.

2 − A general formulation. Like for the Watson KEO, the form of the HBJ KEO remains

the same whatever the number of atoms. Moreover, the use of the ρ coordinate allows an

optimal separation between small and large amplitude nuclear motions, achieved by the

Sayvetz condition.

3 − Variational calculation. The HBJ model inspired a series of works and led to the devel-

opment of both effective vibration-LAM-rotation Hamiltonians suitable for data fitting77–86

and nuclear-motion Hamiltonians, as those implemented in the MORBID56 and TROVE57

computer codes. In this work, we intend using the HBJ Hamiltonian in its original formula-

tion based on the 3N-7 normal coordinates, including all terms in Eqs. (10)-(14) below, for

solving variationally the vibration-LAM-rotation wave equation.

4 − Extensive use of symmetry. HBJ should also benefit from the use of the ITO formalism

for a full account of symmetry properties. The use of ITOs is probably the best efficient way

for dealing with degenerate vibrations when the molecular symmetry group is non-Abelian.

The suitable combination of ITOs with a numerical treatment of the LAM will lead to the

introduction of a so-called hybrid Hamiltonian model for the spectra calculation of nonrigid

molecules.

5 − Towards a nonrigid effective model. Effective Hamiltonian computer codes designed

to calculate and fit energy levels and line transitions for molecules containing one or sev-

eral internal rotors already exist and were developed these past three decades (see e.g. the

XIAM100, BELGI-C1
101, BELGI-Cs

102, BELGI-Cs-2Tops103, ERHAM104 or RAM3685 codes).

Recently, we have proposed a numerical approach for the construction of ab initio effective

models90 which is a clear alternative to the rather involved Van Vleck perturbation method.

Undoubtedly, this approach could be of great help to extract effective nonrigid Hamiltonian

from our hybrid model and to refine parameters on the experimental data, even when several

interacting vibrational states are involved.

B. Expansion of the HBJ kinetic energy operator

We have shown in the previous section how the ab initio potential energy function V in

Eq. (7) can be expanded on a numerical grid in terms of 3N − 7 normal coordinates Q.
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The KEO can be also expressed as a sum of products in the same fashion. In that case,

each integral is a product of integrals associated with each mode and the computation of

the matrix elements can benefit from the use of the Wigner-Eckart theorem (see Section

III C 4). In this work, we propose to put each term of the expansion into a better suited

normally-ordered form of the type X(Q)Y (P )Z(Jα) where X and Y are not necessarily

commuting functions. Such a form is quite convenient to build the KEO at any order and

in a systematic manner. Unless specified otherwise, the running indices j, k, l, r and s will

take values 1,· · · , 3N − 7 while the Greek letters α and β will equal x, y, z or ρ. We can

show that the HBJ KEO can be rewritten for each point ρm of the grid as

2THBJρm =
∑
jl

fjl(Q, ρm)PjPl +
∑
l

gl(Q, ρm)Pl

+
∑
lβ

tlβ(Q, ρm)PlJβ +
∑
β

hβ(Q, ρm)Jβ

+
∑
αβ

µαβ(Q, ρm)JαJβ +W (Q, ρm),

(8)

with the corresponding volume element of integration

dτ = sinθdθdφdχdρdQ1dQ2 · · · dQ3N−7. (9)

Here, Pj = −i~∂/∂Qj is the conjugate momentum of the normal coordinates Qj while Jα

(α = x, y, z) and Jρ = −i~d/dρ are the components of the total angular momentum and

LAM coordinate, respectively. If α 6= β, the terms containing JαJβ are sorted as JxJy,

JxJz and JyJz. For the sake of simplicity, the symmetry labels have been omitted in all the

coordinates and conjugate momenta that are simply denoted here by Q
(Γ)
kσ ≡ Qj, J

(Γ)
ρ ≡ Jρ,

etc. To be rigorous, these symmetry labels should appear everywhere and in that case the k

index in Q
(Γ)
kσ would run over the vibrational modes instead of the vibrational coordinates.

Each term in Eq. (8) is a polynomial function in (Qi, Pi, Jρ, Jα) and is computed for each

ρm, like for the potential part. Using the well-known commutation rules and after some

algebra, it is straightforward to show that

fjl(Q, ρm) =
∑
rkαβ

ζαrj(ρm)ζβkl(ρm)QrQkµαβ + δjl, (10)
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gl(Q, ρm) = −i~
∑
rskαβ

{
ζαrsζ

β
klQrQk

∂µαβ
∂Qs

− 1

4
ζαrsζ

β
klQrQkµαβ

∂lnµ

∂Qs

+ζαrsζ
β
klQrµαβδks +

1

4
ζαrlζ

β
ksQrQkµαβ

∂lnµ

∂Qs

}
+i~

∑
rα

ζαrlQr
dµαρ
dρ

+i~
∑
rα

dζαrl
dρ

Qrµαρ,

(11)

tlβ(Q, ρm) = −2
∑
rα

ζαrlQrµαβ (12)

hβ(Q, ρm) = −i~dµβρ
dρ

+ i~
∑
rsα

ζαrsQr
∂µαβ
∂Qs

, (13)

and with the pseudo-potential

W (Q, ρm) =
~2

16

∑
r

(
∂lnµ

∂Qr

)2

− ~2

4

∑
r

∂2lnµ

∂Q2
r

− ~2

4

(
dµρρ
dρ

)(
dlnµ

dρ

)
+
~2

16
µρρ

(
dlnµ

dρ

)2

− ~2

4
µρρ

(
d2lnµ

dρ2

)
+

~2

4

∑
rsα

µαρ

(
dζαrs
dρ

)(
∂lnµ

∂Qs

)
+
~2

4

∑
rsα

ζαrsQr

{(
dµαρ
dρ

)(
∂lnµ

∂Qs

)
− 1

2
µαρ

(
dlnµ

dρ

)(
∂lnµ

∂Qs

)
+2µαρ

d

dρ

(
∂lnµ

∂Qs

)
+

(
∂µαρ
∂Qs

)(
dlnµ

dρ

)}
−~2

4

∑
rsklαβ

ζαrsζ
β
kl

{
QrQk

(
dµαβ
dQs

)(
∂lnµ

∂Ql

)
− 1

4
QrQkµαβ

(
∂lnµ

∂Qs

)(
∂lnµ

∂Ql

)
+Qrµαβ

(
∂lnµ

∂Ql

)
δks +QrQkµαβ

(
∂2lnµ

∂Qs∂Ql

)}
,

(14)

where µ is the determinant of the 4 × 4 reciprocal inertia matrix with the components

µαβ computed from the inverse of I ′αβ (see e.g. Refs.75,81 for all the definitions and for the

expression of the Coriolis coefficients ζ). The various quantities involved in Eqs. (10)-(14)

are also evaluated for each ρm, that is µαβ = µαβ(Q, ρm), ζ = ζ(ρm), µ′αβ = µ′αβ(Q, ρm) or

(lnµ)′ = (lnµ)′(Q, ρm).

The expression (8) of the normally-ordered HBJ KEO as well as the numerical procedure

in Section II have been implemented in an updated version of our TENSOR computer code.

In order to find the Taylor series of (7) and (8) in terms of the 3N − 7 normal coordinates,

the crucial point is the computation of the successive derivatives.

− The first and second derivatives in ρ involved in (8) are evaluated numerically using the

5-points central finite difference formula and quadruple-precision floating-point numbers.
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− To circumvent the problem of round-off errors encountered in the finite difference

method for high-order derivatives with respect to the 3N−7 normal coordinates, a modified

version of the computer program COSY Infinity105, including now the dynamic allocation

and the quadruple precision, was implemented in the TENSOR code. It allows a high-

order multivariate automatic differentiation without almost no loss of precision. The Taylor

series expansions of V , µαβ, lnµ and their derivatives with respect to Qi and ρ are thus all

performed using the COSY algorithm. The mixed derivative d(∂lnµ
∂Qs

)/dρ involved in (14)

combines finite difference and COSY calculation. The convergence of both the KEO and

potential parts will be discussed in Section IV in the case of 3- and 4-atomic molecules

exhibiting a large bending, inversion and internal rotation motion.

Finally, though the current version of the TENSOR code is dedicated to molecules ex-

hibiting only 1 LAM, its extension to Nρ large amplitude coordinates (e.g. the hydrazine

or methylamine molecule63) could be carried out with only few modifications. As recalled

by Bunker and Jensen74 in their Eqs. (15-14) and (15-15), the new inertia matrix will be of

dimension (3 +Nρ)× (3 +Nρ), with some coupling terms between the different LAM coor-

dinates ρ1, ρ2, etc. Thus, the HBJ Hamiltonian could be expressed in terms of 3N − 6−Nρ

normal-mode coordinates and of the 3 +Nρ rotational components Jx, Jy, Jz, Jρ1 , Jρ2 , etc.

C. Tensorial Hamiltonian and dipole moment operators on a numerical grid:

the hybrid model

1. Symmetry considerations

We just recall here the basic principles and main definitions that can be useful when deal-

ing with symmetry which plays a central role in nonrigid molecules. Indeed, the formidable

development in experimental techniques make it possible to resolve small tunnelling split-

tings that are calculated quantum-mechanically while group theory provides meaningful

labels. It is not the purpose of the present work to give a detailed review of all the sym-

metry properties of a given molecule and to study how the vibration-LAM-rotation wave

functions transform in the operations of a symmetry group. Extensive group-theoretical con-

siderations can be found for example in the excellent reviews66,67,69,73,74,106–108 (and references

therein).
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By definition, a CNPI group is the direct product of permutation groups Sm with the

inversion group ε = {E,E∗} where E∗ is the laboratory-fixed inversion operation. For

example, the CNPI group Gn consists of n nuclear permutation and nuclear permutation

inversion operations. A molecular symmetry group is formed by all “feasible” operations

of the CNPI group and can be denoted to as Gn′ (n′ ≤ n) or as G(M), where G is the

corresponding point group. Typically, in the first version of the TENSOR computer code

designed for semirigid molecules, both the Abelian (C2, Ci, Cs, C2v,C2h, D2 and D2h) and

non-Abelian (Dn, Cnv, Dnh (n ≥ 3), Dnd, Td, Oh) point groups were implemented.

Non-tunnelling molecules: for molecules where no tunnelling splitting is observed, the

extension of TENSOR to the MS groups is direct because of their isomorphism with the

point groups. However, the MS group is not necessarily the same as the CNPI group. For

example, for ammonia the CNPI group S3× ε or G12 is isomorphic to the group D3h(M) or

to the point group D3h of the planar configuration while for phosphine G12 is not isomorphic

to the group C3v(M) or C3v.

Tunnelling molecules: if at least one barrier in the description of the LAM is not “in-

superable”, a tunnelling splitting may be observed and the analysis of spectra of nonrigid

molecules will require the use of MS groups that can be significantly different from the point

groups. It may also arise that the MS group of a tunnelling molecule is isomorphic to a

point group, but most of the time it is not really possible to classify the states of molecules

with a LAM using a familiar point group alone. For molecules containing identical coaxial

rotors such as ethane or hydrogen peroxide, it is necessary to use an extended MS group74

Gm(EM) = Gm × {E,E ′}, where the operation E ′ consists in increasing a rotational angle

(χa or χb) by 2π. Such groups can be also isomorphic to a point group (e.g. G4(EM) ∼ D2h

for hydrogen peroxide).

More generally, for symmetry groups consisting of many operations, we have to face

with the determination of the character tables and symmetry species which can be tedious.

In this context, Hougen109 presented a series of “recipes” aiming at helping the user to

handle permutation-inversion groups for practical spectroscopic applications. As stated by

Woodman67, the most common way to handle a large MS group is to find a structure with

smaller subgroups. Indeed, many large groups can be expressed as a group product, making

easier the determination of the symmetry species and generators. For example, for ethane-

like molecules we have the direct product structure72 G36 = C+
3v×C−3v, consisting of 36=6×6
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feasible operations, where +/− is used to distinguish the two methyl groups. It was also

shown in Ref.67 that the symmetry groups of nonrigid molecules can be expressed as semi-

direct products of the type A = B∧C if only B is an invariant subgroup of A. Alternatively,

a method based on the nonrigid group theory69,110 was also proposed to handle very large

MS groups.

Once the character table and generators of a given MS group known, the Clebsch-Gordon

coupling coefficients as well as the recoupling 6C and 9C Wigner’s symbols involved in the

calculation of matrix elements (see Eq. (30) below) can be thus deduced. For example,

the Clebsch-Gordon coefficients adapted to a MS group can be computed by following the

method presented in Ref.111. A set of irreducible tensor operators for the small-amplitude

vibrational, rotational and large-amplitude vibrational motions as well as symmetry-adapted

vibration-LAM-rotation wavefunctions can be also deduced from symmetry considerations.

We will assume hereafter that the character table, multiplication table and symmetry

species Γi of a given MS group are known in order to (i) compute and store the coupling,

recoupling and other related coefficients involved in the tensorial formalism and (ii) find the

transformation laws of the wavefunctions in the operations of the MS group. The general

theory presented in Section II as well as in the subsections III C 2, III C 3 and III C 4 below

is now implemented in the updated version of TENSOR.

2. Hybrid Hamiltonian

For asymmetric top molecules with only one-dimensional irreps, accounting for symmetry

is trivial because matrix and character coincide in group theory. Conversely, dealing with

non-Abelian groups whose the dimension of some irreps may be greater than 1 is somewhat

more challenging and requires more attention. For example, two-fold or three-fold degener-

ate vibrations are involved for point groups characterized by the presence of a symmetry axis

higher than two-fold or in MS (or double) groups like G6, G12, G24, G36, etc. Within this

context, the use ITOs is relevant to deal with degenerate vibrational modes like ν3 and ν4

of the NH3 molecule. Historically, and still nowadays, the ITOs were introduced to analyse

vibration-rotation infrared spectra of methane-like Td molecules using effective polyad mod-

els and the so-called tetrahedral formalism112. They have been extended later on to other

molecular species in various formalisms113–116. More recently, we have shown that the ITOs
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could be also used for the construction of complete nuclear-motion Hamiltonians and ab ini-

tio dipole moment operators88. They were thus employed with success in the construction

of spectroscopic line lists of semirigid molecules from the first-principles13,21,51–53.

In the present work, a HBJ-based nuclear-motion tensorial Hamiltonian for nonrigid

molecules is considered for the very first time. For a given value ρm, the “initial” HBJ

Hamiltonian HHBJ
ρm = THBJρm + Vρm writes as a sum of products and takes the simple form

HHBJ
ρm =

∑
j

hj(ρm)Tj, (15)

where TTT is a vector whose each entry contains a specific operator

Tj =

(
3N−7∏
k=1

Q
mj,k
k P

nj,k
k

)
Jnjρρ Jnjαα J

njβ
β . (16)

By considering all the values ρm in (2), the Hamiltonian parameters can be stored in a

2-dimensional array, that is hj(ρm) ≡ hjm. Each row is a parameter associated with a given

operator Tj and each column is a point of the numerical grid (2). At this stage, we follow

the strategy previously established for semirigid molecules and assume that the Hamiltonian

(15) can be rearranged into a sum of vibration-LAM-rotation ITOs

HHBJ
tens,ρm =

∑
j=1

(
εV

Ωv(Γv)
j ⊗

(
L

Ωρ(Γρ1Γρ2,Γρ)
j,ρm

⊗RΩr(Kr,αrΓr)
j

)(Γρr)
)(Γvρr)

. (17)

Each operator involved in the sum must transform as the totally symmetric irrep Γ0 of the

MS group, i.e. Γvρr = Γ0. In Eq. (17), V , R and L stand for the vibrational, rotational and

LAM irreducible tensors of degree Ωv, Ωr and Ωρ in (Q,P ), (Jx, Jy, Jz) and Jρ, respectively.

ε is the parity in the conjugate momenta P such that ε = (−1)Ωr+Ωρ due to the time reversal

invariance. More details about the definition and construction of V and R can be found

elsewhere112,115–121, even for open-shell molecules in a degenerate electronic state122–126, but

only in the frame of effective polyad Hamiltonians using creation-annihilation operators. Our

vibrational ITOs can be built in various coordinate systems and account for all intra-polyad

coupling terms.

Briefly, the vibrational part V is built as the tensor product of Nm− 1 operators V
Θk(Γk)
k

where Nm is the total number of vibrational modes, while the single mode associated with

the LAM is incorporated into L. Each V
Θk(Γk)
k is constructed from the symmetrized powers
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Qk and Pk of degree Ωkq and Ωkp in the small amplitude coordinates Q
(Γ)
s and conjugate

momenta and P
(Γ)
s involved in the vibrational mode k

V
Θk(Γk)
k,σk

=
(
QΩqk(αqαqαqkΓqk)

k ⊗ PΩpk(αpαpαpkΓpk
k

)(Γk)

σk
, (18)

where all the intermediate quantum numbers and symmetry labels are stored in αqαqαq and αpαpαp.

Here, Ωv =
∑

k Ωqk + Ωpk and σk is a component when dim(Γk) > 1. The rotational part R

is built recursively in terms of Jx, Jy and Jz, Kr is the rank of the tensor in SO(3) and αr

is a rotational labelling that will be different for spherical, symmetric and asymmetric-top

molecules (see Section III C 4).

Finally, we define in this work the LAM operators as

L
Ωρ(Γρ1Γρ2,Γρ)
j,ρm

= sj(ρm)
(
I(Γρ1) ⊗ J Ωρ(Γρ2)

)(Γρ)
, (19)

where J is an operator of degree Ωρ in Jρ and of symmetry Γρ2. To be consistent, the

ρ-dependent tensorial parameters sj to be determined have been naturally included into L.

The identity operator I introduced in (19) reflects the fact that the LAM function sj(ρ)

possesses a certain symmetry Γρ1 in the MS group (see Fig. 2). Usually, there are 2 types of

symmetry species Γρ1 for non-tunnelling molecules or for molecules with one tunnelling like

ammonia for which Γρ1 = A′1 or A′′2. When dealing with several tunnellings, more symmetry

species Γρ1 can be involved. For example, the allowed symmetry species Γρ1 of the extended

MS group G4(EM) will be Ags, Aus, Agd and Aud for the H2O2 molecule. Note that H2O2

is among these molecules for which the symmetry species of a point group (here, D2h) can

be used due to the one-to-one mapping of its elements with those of G4(EM).

The last step in the construction of the tensorial model is the determination of the

parameters sj(ρm). To this end, we expand the vibrational, rotational and LAM ITOs in

terms of elementary operators using the Clebsch-Gordan coefficients (e.g. see Eq. (21) of

Ref.98), sorted in such a way that the Hamiltonian (17) writes as

HHBJ
tens,ρm =

∑
j

sj(ρm)ZjkTk, (20)

where Z is a group symmetry transformation. By equating Eqs. (15) and (20) and bearing

in mind that the two sums involved in these two equations do not necessary contain the same

number of terms if degenerate vibrations are involved, a set of parameters {sj} is obtained

17



by solving for each point ρm the following overdetermined system of equations

Zts(ρm) = h(ρm). (21)

In order to solve this least squares problem, the dgels routine of the LAPACK library was

used. It takes generally few seconds per point ρm to solve (21) and obtain a set of tensorial

parameters {sj}. As an illustrative example, let us consider four vibration-rotation-torsion

coupling terms between the ν4(A1u), ν5(B1u) and ν6(B1u) modes of H2O2 written in the form

(17) as

Hcoupling
tens,ρm = s1(ρm)((Q

(B1u)
6 ⊗ J (Au)

ρ )(B1g) ⊗R1(1,0B1g))(Ag)

+s2(ρm)((Q
(B1u)
5 ⊗ (Q

(B1u)
6 )2 ⊗ P (B1u)

6 )(B1u))(Ag) ⊗R1(1,1B2g))(B2g)

+s3(ρm)((Q
(B1u)
6 )3 ⊗R1(1,1B3g))(B2u)

+s4(ρm)((Q
(B1u)
6 )3 ⊗R1(1,0B1g))(Au) + · · ·

(22)

where the symmetry species of D2h are used here instead of those of G4(EM). The four

parameters sj are plotted in Fig. 2 for each value ρm from 0 to 4π. In order to check the

overall symmetry of the Hamiltonian (22), these four grids composed of 100 points have been

fitted by analytical functions. When dealing with internal rotation, it is quite obvious that

the Fourier series (cos(kρ/2), sin(kρ/2)) are well adapted to describe periodic functions,

where the symmetry species will depend on the parity of k, also related to the parity K of

a rotational wave function (K is the projection of J on the molecule axis z). In our case,

we obtain

s1(ρ) = −1.031 + 0.274 cos(ρ)− 0.012 cos(2ρ) + 0.0022 cos(3ρ) + · · · −→ Ag,

s2(ρ) = −0.0012 sin(ρ/2)− 0.0011 sin(3ρ/2) + 0.0007 sin(5ρ/2) + · · · −→ B2g,

s3(ρ) = −0.0009 cos(ρ/2) + 0.0008 cos(3ρ/2)− 0.0001 cos(5ρ/2) + · · · −→ B2u,

s4(ρ) = 0.0001 sin(ρ)− 0.0005 sin(2ρ) + 0.0001 sin(3ρ) + · · · −→ Au,

(23)

and according to the operations E∗(ρ/2) = π − ρ/2 and E ′(ρ/2) = π + ρ/2, the functions

s1(ρ), s2(ρ), s3(ρ) and s4(ρ) transform as Ag, B2g, B2u and Au, making the Hamiltonian

(22) totally symmetric. We can thus see that the Ag/Au functions are 2π-periodic while the

B2g/B2u functions are 4π-periodic. Note that only the Ag/Au species are involved in the

vibration-LAM Hamiltonian.

18



FIG. 2. Plot of the four parameters sj (j = 1, · · · , 4) of the Hamiltonian (22) for each point ρm

(red circles) for H2O2 (see also Section IV). Each grid has been fitted using Fourier series (see Eq.

(23)) transforming respectively as the Ag, B2g, B2u and Au irreps of D2h (solid line).

3. Hybrid dipole moment

For the line intensity calculation of vibration-LAM-rotation transitions, we first have to

relate the components (SµX ,
SµY ,

SµZ) of the space-fixed dipole moment to the molecule-

fixed frame components (mµx,
mµy,

mµz) via the direction cosines. We assume here the

isotropy of the three dimensional space, so only the Z component is required. In order

to be consistent with the hybrid Hamiltonian model, (i) the Eckart-Sayvetz conditions are

used for the orientation of the molecule-fixed frame (xyz) to conveniently define the ab

initio components mµα and (ii) symmetry-adapted ITOs are used for the construction of
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the space-fixed frame Z component as follows:

Sµ
(Γ̃)
Z,ρm

=
(
mµ

(Γvρ)
tens,ρm ⊗ C

(Γ)
)(Γ̃)

. (24)

The ITOs mµ
(Γvρ)
tens,ρm have a form similar to (17) but with different symmetry species and are

constructed on the same grid as H. Moreover, we have the condition Ωp = Ωρ = Ωr = 0.

The tensor dipole moment parameters are determined by solving a system of equations like

(21) for each ρm. In Eq. (24), C is the direction cosine tensor112.

Finally, the quality of the line intensity calculation will be governed by two ingredients:

the calculation of the eigenpair {E,Ψ} by solving the time-independent Schrödinger equation

and an accurate dipole moment surface whose the construction is beyond the scope of this

work.

4. Hamiltonian matrix elements and choice of the LAM grid

In order to compute the matrix elements of the Hamiltonian (17), we have to pay attention

to the choice of the numerical grid (2) to simplify calculations. To this end, let us first

consider the LAM Hamiltonian obtained by setting V = R = I in (17)

HLAM
ρm = s1(ρm) + s2(ρm)Jρ + s3(ρm)J2

ρ . (25)

This Hamiltonian can be also seen as the analytical Hamiltonian

HLAM(ρ) = s1(ρ) + s2(ρ)Jρ + s3(ρ)J2
ρ , (26)

evaluated at ρ = ρm, where the sj(ρ) are not necessary known functions, though some of

them could be easily related to the potential or to the tensor inertia matrix. For example,

s1(ρ) writes as aρ4 − bρ2 + · · · for an inversion potential or s1(ρ) is expressed as a Fourier

series for a torsional potential, while s3(ρ) ∼ µref
ρρ (ρ)/2. If we consider a set of LAM basis

functions φ
(Cρ)
vρ of symmetry Cρ, the matrix elements for each term of the Hamiltonian (26)

can be computed numerically using the standard quadrature formula

Ljv′ρvρ =
∑
m

φ
(Cρ)
v′ρ

(ρm)sj(ρm)Jnjρ φ
(Cρ)
vρ (ρm)wm. (27)

where vρ is the principal LAM quantum number taking values 0, 1, · · · and wm are the

quadrature weights. It is thus demonstrated after a brief inspection of Eqs. (25) and (27)
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that the computation of the matrix elements for the LAM problem is greatly simplified if

a set of Mρ quadrature points is used to define the grid (2). In that case, we just need

to read the stored parameters sj(ρm) of the LAM Hamiltonian (15) to compute the matrix

elements (27). In this work, a Gauss-Legendre quadrature of ∼100 points at the quadruple

precision was considered to make a numerical integration between ρmin and ρmax. Moreover,

the quadrature points generally go around singularity points e.g. the singularity in µαβ at

the linear configuration of a triatomic molecule is avoided because the first quadrature point

takes a nonzero positive value when integrating from ρmin = 0 to ρmax.

Let us now focus on the calculation of the matrix elements for the parts V and R. In order

to compute the matrix elements of the full Hamiltonian (17), Eq. (26) can be generalized to

the whole vibration-LAM-rotation problem and the superscript j in Eq. (27) will run over

all the vibration-LAM-rotation tensor operators. The key of the present approach is thus

to compute and store in memory the matrix elements Ljv′lvl in a LAM basis set of all the

ρ-dependent Hamiltonian parameters. This procedure takes few seconds because the LAM

basis contains generally less than 20 functions and the Hamiltonian has few hundreds or

thousands parameters.

In order to be consistent with the Hamiltonian coupling scheme, our vibration-LAM-

rotation basis functions are written as

Φ(Cvρr)
σvρr =

(
Φ(Cv)
v ⊗

(
Φ(Cρ)
vρ ⊗ Φ

(J,αCr)
rot

)(Cρr)
)(Cvρr)

σvρr

, (28)

where Φv, Φrot and Φvρ are symmetry-adapted vibrational, rotational and LAM functions,

respectively, described briefly as follows.

Small amplitude basis functions: The vibrational function Φv is a product of Nm − 1

harmonic oscillator functions. Their construction is trivial for non-degenerate modes. The

treatment of two- and three-fold degenerate vibrations require more attention. For example,

a method was proposed in Ref.115 in the case of C3v and Td molecules and extended later on

to arbitrary point groups127. The treatment of MS groups can be carried out in the same

fashion.

Rotational basis functions: The construction of the symmetry-adapted Φrot rotational

functions will depend on which family the molecule belongs. For spherical top molecules,

a method was proposed in Ref.128 to build such functions for both integer and half-integer

J values, that is for both vectorial ans spinorial representations129. In that case, α in (28)
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plays the role of a multiplicity index. For symmetric and asymmetric tops, we can consider

symmetrized Wang-type basis functions

Φ
(J,kCr)
rot,σr =

∑
K=±k

(J)GK
ΓrσrΦ

(J)
K . (29)

where the G coefficients, including a consistent choice for the phase factors, have been also

determined127 for arbitrary point groups and implemented in TENSOR. Again, its extension

to MS groups can be carried out quite easily.

Large amplitude basis functions: The choice of the functions Φρ will depend on the nature

of the LAM (Section IV).

In the present study, the matrix elements are computed from a symmetry adaptation

of the standard Wigner-Eckart theorem in SO(3) found in many textbooks of quantum

mechanics and group theory130 for the small amplitude vibration and the rotation parts,

combined with a numerical integration for the LAM part. The matrix elements for each

term of the sum in Eq. (17) are given by

〈
Φ

(C′
vρr)

σ′
vρr
| (V LR)j | Φ(Cvρr)

σvρr

〉
= [Cvρr]([Γ

j
ρr][Cρr][C

′
ρr])

1/2


Γjv Cv C ′v

Γjρr Cρr C ′ρr

Γ0 Cvρr Cvρr


×


Γjρ Cρ C ′ρ

Γjr Cr C ′r

Γjρr Cρr C
′
ρr


(
φ(J,α′C′

r) || RΩr(Kr,αrΓr)
j || φ(J,αCr)

)
δσ′

vρrσvρrδC′
vρrCvρr

×Mj
v

Nm−1∏
k=1

(
Φ

(C′
vk)

v′k
|| V Θk(Γk)

k,j || Φ(C′
vk)

v′k

)
−→ Rigid vibrations

×Ljv′ρvρ −→ Nonrigid vibration(s)

(30)

In this expression, (· · · || V || · · · ) and (· · · || R || · · · ) are vibrational and rotational

reduced matrix elements112,115 and the 9C are the recoupling Wigner’s symbols computed

from the symmetry-adapted Clebsch-Gordan coefficients (see e.g. Ref.111 for their defini-

tion). The rotational reduced matrix elements involved the so-called isoscalar factors which

are computed from the G coefficients in (29), the Clebsch-Gordon coefficients as well as the

3j Wigner symbols. [C] is the dimension of the irrep C and Mj
v is a factor that contains

a product of 9C symbols characterizing the vibrational inner coupling scheme. Ljv′ρvρ are

the matrix elements (27) of the LAM operators computed by numerical quadrature. From
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the selection rules, the use of symmetry thus allows to diagonalize separately each block

labelled by J and Cvρr. The computation of the matrix elements for the dipole moment will

be similar.

Finally, our hybrid model combines the rapidity of group-theoretical methods (via the

use of ITOs and of the Wigner-Eckart theorem) for the rigid part and the flexibility of the

numerical quadrature integration for the nonrigid part. All the elements (30) are generally

computed from few seconds up to some tens of minutes by using standard libraries for a

massive parallel programming, even for large basis sets composed of ∼ 100000 functions.

Here, all the matrices were diagonalized using direct eigensolvers.

5. Reduced Hamiltonian and reduced vibrational eigenvectors

One of the main advantages of using the Watson or HBJ Hamiltonian lies in the fact

that the form of their KEO remains unchanged, whatever the number of atoms. In turn,

the number of terms in the Hamiltonian (15) may increase dramatically when performing a

Taylor series expansion of the multivariate µαβ and V functions. A similar problem arises

when managing the number of vibration-LAM functions in the direct-product basis (28) to

compute variational solutions for J > 0. The number of rovibrational functions becomes

rapidly huge, even by pruning the basis using Eq. (32).

In order to make vibration-LAM-rotation calculations as tractable as possible for the

user, a strategy was proposed in Refs.13,88–90 for semirigid molecules in order to drastically

reduce the number of terms in the sum (15) as well as the number of basis functions, with a

small loss of precision. We propose here to apply the same strategy for nonrigid molecules,

with illustrative examples given in Section IV. Very briefly:

Reduced Hamiltonian: the p-order polynomial expansion (15) expressed in terms of

(Qi, Pi, Jρ, Jα) is first transformed into a second-quantized form in terms of (a+
i , ai, Jρ, Jα).

Then, we define a new order p′ < p and we discard during the second-quantized transforma-

tion all the terms of degree > p′ in a+ and a. In a final step, a backward transformation of the

low-order second-quantized Hamiltonian allows to define a so-called reduced Hamiltonian

HHBJ
ρm −→ HHBJ

red,ρm . (31)

Then, the “pure” Taylor-based expansion (15) is substituted by (31). This procedure can

be thus seen as a polynomial reduction where an initial p-order polynomial is transformed
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to a p′-order polynomial. The advantage of this method is twofold: it allows reducing the

number of terms by at least one order of magnitude and it generally allows getting rid of

artefacts and spurious minima inherent to the high-order Taylor expansion of multivariate

functions.

Reduced eigenvectors: the J = 0 problem is first solved by using a suitable vibrational

basis F (m) (see Eq. (32)) to converge properly the desired eigenvalues. Then, we select

relevant vibrational eigenvectors, we define so-called reduced eigenvectors Ψ
(m→m′)
red , or simply

denoted to as the F (m → m′) reduction with m′ < m, and we compute the rovibrational

solutions by following the procedure described by Eqs. (7)−(11) of Ref.90.

IV. APPLICATIONS

In order to validate our HBJ-based hybrid model, we consider in this section four

molecules with one “floppy’ large amplitude vibration: the quasilinear CH2 methylene

molecule, the planar CH3 methyl radical, the NH3 ammonia molecule with inversion and

the H2O2 hydrogen peroxyde molecule with internal rotation. It is worth mentioning that

the proposed hybrid model was recently used to validate our new PESs131–133, but described

in a very sparse manner. In this work, the theory as well as the methodology illustrated

with practical applications are presented with more details.

Beyond the necessary validation step, this section also aims at carefully studying the

impact of the Hamiltonian and basis set truncation on the energy level calculation. Recent

papers89,134 studied the dependence of rovibrational calculations with respect to the trun-

cation order of the Watson Hamiltonian. A similar convergence study is proposed here for

nonrigid molecules and turns out very relevant for

(i) controlling carefully the precision of the calculated eigenvalues and eigenvectors,

(ii) constructing a tailor-made model suitable either for the analysis of high-resolution

spectra or for the modelling of some planetary atmospheres requiring less accuracy.

As usual, we discard in our variational calculation all the rigid and LAM vibrational basis

functions that do not satisfy the pruning condition

Fκ(p) = κρvρ +
3N−7∑
i=1

κivi ≤ p, vρ, vi = 0, · · · , p, (32)

where κρ, κi are some weight coefficients. Combined with symmetry, this condition can
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FIG. 3. (Left panel) Convergence of the J = 0 energies for CH2 using the F (27) basis set as

a function of the Hamiltonian order (17) with respect to the energies obtained from the model

truncated at order 20. (Right panel) Error between DVR135 and variational/HBJ (this work, using

the F (27) basis set and the hybrid Hamiltonian truncated at order 20) calculation for J = 0 and

J = 10.

reduce drastically the dimension of the Hamiltonian matrix to be diagonalized by several

orders of magnitude. Note that in all the calculations below, the rigid part of the Hamiltonian

(17) was rewritten in terms of dimensionless normal coordinates and conjugate momenta

(q, p) using the standard relation q = γ1/2Q.

A. CH2 molecule

These past four decades, published papers were dedicated to the energy level calculation

and line transition prediction of methylene in its ground electronic triplet state136–140. Due to

its large bending motion with a low barrier to linearity around 2000 cm−1, methylene turns

out a good first candidate to validate our hybrid model. A recent accurate ab initio PES

for CH2 has been calculated133, including both relativistic and diagonal Born-Oppenheimer

corrections as well as high-order electronic correlations. This PES will be naturally used in

the present paper for various validation tests.

Our grid is composed of 100 quadrature Gauss-Legendre points and the hybrid Hamil-

tonian (17) was computed from ρmin = 0 to ρmax = 3.1 radians. The construction of the

symmetrized powers for the two stretching coordinates is trivial when dealing with one-
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dimensional irreps. Indeed, for a symmetry species Γ, the symmetrized powers will be just

Γ0 (resp. Γ) for even (resp. odd) powers. The standard harmonic oscillator basis functions

(HOBF) were used for the stretching modes while the displaced HOBF NvHv(ρ
′)e−ρ

′2/2, with

ρ′ = 5(ρ−0.7), multiplied by a weight function
√

sin(ρ) were chosen for the bending mode to

properly treat the overall range of ρ, even near ρ = 0. These functions are ortho-normalized

using the standard Gram-Schmidt technique.

As a first test, the convergence of the KEO and potential developed in terms of q1 and q3

was studied. To this end, we have compared in Fig. 3 (left panel) the J = 0 energy levels

obtained from the Hamiltonian (17) truncated at order 10, 14, 18 with respect to those

obtained from the Hamiltonian truncated at order 20, taken as the benchmark calculation.

The 10th, 14th, 18th and 20th order Hamiltonians contains 378, 778, 1332 and 1648 ITOs,

respectively. The F (27) basis set defined in (32) and composed of 2135 A1 functions and 1925

B2 functions was used to compute the vibrational energy levels, which are converged within

10−4 cm−1 up to 10000 cm−1 using the Hamiltonian truncated at order 18. In Fig. 3 (right

panel), we show that our J = 0 and J = 10 levels are in very good agreement with those

obtained from the DVR3D computer code135. Indeed, using the 20th order Hamiltonian and

the F (27) basis, the error on the J = 0 and J = 10 levels between DVR and our variational

calculation is of 10−5 cm−1 up to 10000 cm−1. For J = 10, the basis contains about 22000

functions but can be drastically reduced by choosing conveniently the weights κi in (32). For

example, if κ1 = κ3 = 1.2 the number of basis functions is decreased by 35% and the rms

error becomes 0.0002 cm−1 up to 10000 cm−1. By taking 50% less functions (κ1 = κ3 = 1.4),

the convergence of the levels is not fully achieved (rms error of 0.001 cm−1) but the results

remain suitable for high-resolution spectroscopy.

B. CH3 molecule

The second candidate is the planar (D3h(M)) methyl radical CH3 for which the out-of-

plane ν2 mode exhibits a LAM behaviour. Recently, new ab initio CH3 PES and DMS in its

ground electronic state have been published132 and are thus considered in this work. The

hybrid Hamiltonian and dipole moment operator have been computed here on a numerical

grid from ρmin = 0.41 to ρmax = 2.69 radians. The construction of the vibrational operators

for the doubly degenerate modes ν3 and ν4 of symmetry E ′ in D3h(M) follows closely the
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FIG. 4. Convergence error of the J = 0 energies for CH3 as a function of the number of quadrature

points (top, left panel), the Hamiltonian truncation order (top, right panel) and the basis set

truncation (bottom, left panel), see text for more details. (Bottom, right panel) line intensities

computed from the DMS presented inf Ref.132

method presented in Ref.115 for the C3v and Td point groups. For twofold degenerate oscil-

lators, it is common to introduce the auxiliary boson operators141 b1 and b2 and form the

products bl1b
m
2 ≡ (lm), like in the u(2) formalism121. The same holds for the construction

of the creation part with b+
1 and b+

2 . It is quite straightforward to see how these operators

transform using the generators of D3h(M) and to show that the two quantities

T
(lm,Γ1)
σ1 = (lm) + (ml)

T
(lm,Γ2)
σ2 = eiφ(l,m)(−i)[(lm)− (ml)]

(33)

can be used to define our vibrational ITOs. Note that the phase conventions applied in

this work are different from those in Ref.115. By introducing j = l −m, we have Γ1 = A′1

when l = m, Γ1 = A′1, Γ2 = A′2 for j = 3p (p 6= 0) and (Γ1, σ1) = (E ′, a), (Γ2, σ2) = (E ′, b)

27



for j = 3p + 1 or 3p + 2, with p an integer number. All the factor eiφ(l,m) equal 1, except

for j = 3p + 2 where it equals −1. For a mode of symmetry E ′′, the symmetry rules will

slightly change. In the ITO formalism, the vibrational reduced matrix elements involved

in (30) take a quite simple form when using the creation-annihilation operators involved in

effective Hamiltonians. For this work, we have shown127 that the reduced matrix elements

of symmetrized powers for doubly degenerate modes can be also put in a closed form using

the (q, p) formalism. Concerning the rotational part, the symmetries Γr, involved in (29)

will differ according to the values of k, that is we will have Γr = A′1 +A′2 for k = 6p (p 6= 0),

Γr = A′′1 + A′′2 for k = 6p + 3, Γr = E ′ for k = 6p + 2 or k = 6p + 4 and Γr = E ′′ for

k = 6p+ 1 or k = 6p+ 5. Concerning the bending mode ν2, simple HOBF NvHv(ρ
′)e−ρ

′2/2,

with ρ′ = 8.1ρ, of symmetry A′1 for v even and A′′2 for v odd, were used.

As a first test, the number of quadrature points Mρ was gradually increased from 50 to

150 in order to see the impact on the energy level calculation. A variational calculation was

performed for different Mρ using the F (23) basis with κ1 = κ2 = 1.4 and κ3 = 1.3, resulting

in 11010, 9857, 20849, 7869, 8861 and 16719 basis functions of symmetry A′1, A′2, E ′, A′′1,

A′′2 and E ′′, respectively. The errors between the J = 0 levels computed from Mρ = 50,

80 and 150 and those computed from Mρ = 100, taken as the benchmark, are depicted in

Fig. 4 (top left panel). We clearly see that Mρ = 50 is not accurate enough for practical

applications, while the results become very similar from Mρ = 80.

In a second step, we have studied the convergence of the Hamiltonian expansion. Like

for CH2, we have gradually increased the order of the expansion (17) and computed the

vibrational levels for a given basis set (here, F (23)). The errors between the energy levels

computed from the Hamiltonian truncated at order 6, 8 and 11 and those computed from

the Hamiltonian truncated at order 12 are given in Fig. 4 (top right panel). We can see

quite large fluctuations beyond 5000 cm−1 between the order 12 and 11, proving that this

latter was not yet properly converged to study highly-excited (ro)vibrational state.

In a third step, the convergence of the variational calculation has been studied using dif-

ferent basis sets, namely F (12), F (14), F (17), F (20) and F (23). The number of vibrational

basis functions of symmetry E ′ increases as 525, 1071, 2556, 5536 and 11010, respectively.

It is seen in Fig. 4 (bottom left panel) that the convergence error of the vibrational levels

up to 5000 cm−1 is about of 10−3 cm−1 using the F (20) basis. The use of the F (23) basis

allows converging the levels within 10−4 cm−1 up to 5000 cm−1 and within 10−3 cm−1 up to
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FIG. 5. Convergence error of the J = 0 energies for NH3 as a function of the Hamiltonian truncation

order (left panel) and the basis set truncation (right panel). See text for more details.

6000 cm−1, which turns out enough for the modelling of high-resolution spectra. Finally, a

room-temperature CH3 line list up to 6000 cm−1, including both cold and hot bands (see Fig.

4, bottom right panel) was constructed using the DMS presented in Ref.132. Comparisons

with the results obtained in Ref.142 can be also found in Ref.132.

C. NH3 molecule

The ammonia molecule is a good candidate to be tested using the hybrid model because

its umbrella inversion is among the most prototypical cases of large amplitude motion.

These past two decades, many works were devoted to the construction of refined PESs and

published in the ExoMol group for the construction of molecular line lists143 combined with

a MARVELization procedure144. In this work, we have considered our recently published

“pure” (i.e. in the sense without applying empirical corrections) ab initio PES131 which

turns out accurate up to 6600 cm−1, with a root-mean-square error of 0.4 cm−1 between the

calculated and observed levels (see Tab. 3 of Ref.131).

For this molecule, a grid ρ ∈ [0.37, 2.83] radians was chosen to ensure a consistent en-

ergy calculation up to at least 6000 cm−1. The construction of ITOs adapted to both the

small amplitude vibrations and rotation is similar to the CH3 molecule. The major differ-

ence lies in the treatment of the LAM, in particular in the choice of the basis functions

adapted to the symmetric double-well potential. As usual, the two wells correspond to the

two equivalent pyramidal C3v(M) equilibrium configurations. However, C3v(M) is no longer
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suitable to describe the tunnelling because no operation in this group allows switching from

one configuration to another one. Thus, for a proper classification of the overall vibration-

inversion-rotation energy levels, we need to consider the larger permutation-inversion group

G12 isomorphic to the MS group D3h(M) = C3v(M) × {E,E∗} and consisting of 8 feasible

operations. In the case of ammonia, the tunnelling produces a splitting of the rigid-molecule

C3v(M) states in two components which are deduced from the reverse correlation (or induc-

tion) table between D3h(M) and C3v(M). For example, the A1 states split into A′1 and A′′2

components, the A2 states split into A′′1 and A′2 components whereas the E states split into

E ′ and E ′′ components. The question of how the energy levels of the infinite and low barrier

limits are correlated was first raised by Watson68.

Accordingly, a symmetric (A′1) and anti-symmetric (A′′2) linear combination of two dis-

placed HOBF centered around the two potential wells can be used in the variational calcu-

lation as primitive basis functions for the inversion mode ν2. In order to make the analogy

with the field of quantum optics, the basis functions used here are nothing but a linear

combination of displaced squeezed states (see e.g. Ref.145 and references within) of the type

Φ
(C)
v,inv(ρ) =

1√
2

2∑
j=1

D(λj)S(kj)e
iϕj(C)φv(ρ), (34)

with eiϕ1(C) = 1, eiϕ2(A′
1) = 1 and eiϕ2(A′′

2 ) = −1. The coherence (λj) and squeezing (κj)

parameters play the role of variational parameters to be optimized. Here, the functions

φv(ρ) are simply HOBF but Morse-like or Pöschl-Teller-like functions could be also used

instead. The matrix elements Dvv′ and Svv′ of the displaced and squeeze operators can be

computed analytically146.

Like for CH2 and CH3, the convergence of the Hamiltonian model is first studied and

shown in Fig. 5 (left panel). To this end, we have computed the energy levels for the

A′1 and A′′2 blocks composed of 17739 functions by using the F (17) basis and by gradually

increasing the Hamiltonian truncation order from 6 to 12. For the inversion motion, the new

coordinate ρ′ = ρ− π/2 was introduced for convenience so that the planar configuration is

now defined at ρ′ = 0. In this new coordinate system, the parameters of the basis function

(34) have been defined as follows: κ1 = κ2 = 9.45 and λ1 = −λ2 = 0.338. We can thus

estimate the precision of the Hamiltonian truncated at order 12 below 0.01 cm−1 up to 6000

cm−1. Starting from this Hamiltonian model, we have then examined the convergence of the

variational calculation by gradually increasing the number of basis functions. The results
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FIG. 6. (Left panel) Convergence error of the J = 10 energies for NH3 as a function of the number

of basis functions in the reduced basis (see text for more details). (Right panel) Reduced energy

levels NH3 up to Jmax=18. The colours correspond to the mixing between the vibrational states.

are displayed in Fig. 5 (right panel). We can see that the energy levels using the F (16)

basis, which is composed of 13185, 11700 and 24864 A′1/A
′′
2, A′′1/A

′
2 and E ′/E ′′ functions

respectively, are converged within 0.001 cm−1, with the only exception for the level near

5356.1 cm−1 corresponding to 5ν2(A′′2). In that case, the use of the F (17) basis composed of

17739, 15924 and 33642 A′1/A
′′
2, A′′1/A

′
2 and E ′/E ′′ functions is required to converge properly

the 5-quanta vibrational bands. Needless to say that converging levels above 6000 cm−1

within 10−3 cm−1 will probably require more basis functions, in particular for the inversion

mode.

For J > 0 calculations, the reduced basis functions F (17)→ F (p) initially introduced for

the rovibrational energy level calculation of semirigid molecules (see Section III C 5) have

been tested for the NH3 molecule for J = 10. The four weights κi associated with the

F (p) basis used here are 1.4, 1, 1.4, 1.3. In order to achieve a good convergence of the

energy levels for the block (J = 10, A′1), different values of p have been considered, namely

p = 10, 12, 13 and 14. The dimension of the corresponding blocks are 7278, 16474, 23555

and 34111, respectively, while that without using reduced functions is of 354222. Thus, such

functions allows to reduce the dimension of the problem by at least one order of magnitude

and thus to use direct eigensolvers for the diagonalization. As usual, the biggest calculation

corresponding to p = 14 will be taken as the benchmark.

The convergence of the levels with respect to p is depicted in Fig. 6 (left panel). We
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FIG. 7. Convergence error of the J = 0 energies for H2O2 with respect to the truncation order of

(top, left panel) the kinetic energy operator (8), (top, right panel) the potential (7), (bottom, left

panel) the reduced Hamiltonian (31) and (bottom, right panel) the basis set (32).

can see that the average error between p = 13 and p = 14 is 0.001 cm−1 up to 6000 cm−1,

which is the typical resolution of Fourier transform infrared spectra. Even the smaller basis

(p = 10) can produce qualitatively correct results, with errors around 0.01 cm−1 or less up to

4000 cm−1. We can conclude that the reduced basis functions can be also used for nonrigid

molecules to manage memory during high J calculations. In Fig. 6 (right panel), we have

plotted the reduced rovibrational energy levels up to J = 18 using p = 12. The different

colours represent the mixing coefficients in the eigenvector decomposition.

D. H2O2 molecule

Hydrogen peroxyde is the simplest molecule which undergoes an internal rotation motion.

It consists in a torsional motion of the O−H groups around the O−O bond, with a height of
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the trans barrier (ρ = π, symmetry point group C2h) around 400 cm−1 and of the cis barriers

(ρ = 0, symmetry point group C2v) around 2600 cm−1. Recently, a variational calculation

of the energy levels of H2O2 was presented in Ref.147, based on the PES of Malyszek and

Koput148. It is common to choose the torsion angle between the two “halves” as 2ρ, that is

a rotation of +ρ for the first half and of −ρ for the second half (see e.g. Refs.94,149), whereas

a torsional angle of ρ, with rotations of ±ρ/2, was considered in Ref.150 and in this work.

It is important to note that contrary to the three previous molecules, H2O2 will pass by

cis and trans configurations with different symmetries as ρ increases from 0 to π; the point

group for intermediate configurations being C2.

If only one barrier is not “insuperable”, for example the trans barrier, then the permutation-

inversion “four-group” G4 must be used to classify the overall vibration-rotation-torsion

energy levels. This group consists of four feasible operations and is isomorphic to the point

groups C2v and C2h. But, if the energy splitting due to both the cis and trans tunnellings

can be resolved in observed spectra, as in the case of H2O2, Hougen showed that this group

must be extended to G4(EM) in order to properly describe separately the torsional and

rotational states. This group is isomorphic to the MS group D2h(M) and to the point group

D2h which is already implemented in the TENSOR code. Accordingly, the symmetry species

of D2h can be used to classify the energy levels. If we refer now to the reverse correlation

table between D2h and C2, the rigid-molecule A states of C2 split into A1g, B2g, B2u and A1u

components. Alternatively, a quantum number τ taking the values 1, 2, 3 and 4 is generally

used to label these four components94,149.

For hydrogen peroxyde, our energy levels can be directly compared to those computed

from the WAVR4 code by Kozin et al.151. To this end, the ab initio PES parameters

determined by Malyszek and Koput148 were used to generate a grid of points that has been

fitted using a set of symmetry coordinates in order to be compatible with both TENSOR

and WAVR4. Trial calculations were first made using WAVR4 to ensure that the new fitted

PES has no hole. The Fortran code as well as the new fitted PES parameters are provided

in Supplementary Material. It is worth mentioning at this stage that the aim of the present

work was not to reproduce the observed data but to validate the convergence of our Taylor-

type expanded hybrid model with respect to the exact KEO model implemented in the

WAVR4 computer code. As already shown in Ref.147, the accuracy of the vibrational band

origins using the ab initio PES of Malyszek and Koput148 is within 1 cm−1, but can be
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drastically improved using a slightly adjusted PES.

In order to achieve a good convergence, we have studied the dependence of the vibrational

levels for the first symmetry block Ag with respect to the truncation order of (i) the kinetic

energy operator (8), (ii) the potential (7), (iii) the reduced Hamiltonian (31) and (iv) the

basis set (32) For the convergence studies (i), (ii) and (iii), the basis F (18) was employed

using the weight coefficients κ1 = κ5 = 1.2 and κ2 = κ6 = 1.1, κ3 = κρ = 1.

Convergence study (i). The convergence of the vibrational levels computed with a KEO

truncated at order 6, 8 and 10 with respect to that truncated at order 11 is shown in Fig.

7 (top, left panel). This amounts studying the dependence of the energy levels with respect

to the µαβ tensor truncation order. For these four calculations, the potential expansion was

truncated at order 16. We can see that the levels are converged within 0.001 cm−1 (and

even below) up to 4000 cm−1 using a KEO truncated at order 10.

Convergence study (ii). In Fig. 7 (top, right panel), we give the convergence of the vi-

brational levels computed with the potential truncated at order 10, 12 and 14 with respect

to that truncated at order 16 and by using the 10th order KEO expansion. Similarly to

the Watson Hamiltonian89, we can conclude that the convergence of µαβ is faster than the

convergence of V in the HBJ Hamiltonian.

Convergence study (iii). We have also tested the convergence of the reduced (31) and non-

reduced (15) Hamiltonian expansion with respect to the non-reduced 16th order Hamiltonian

H(16), consisting in a potential truncated at order 16 and a KEO truncated at order 10.

We can see in Fig. 7 (bottom, left panel) that the reduced Hamiltonian H(16 → 8) is

more accurate than the Taylor-based expansion H(10), using less parameters. The reduced

Hamiltonian H(16→ 10) is converged within 0.001 cm−1 up to 3000 cm−1 and within 0.01

cm−1 up to 4000 cm−1 with respect to the full H(16) expansion.

Convergence study (iv). From the Hamiltonian H(16), the convergence of the variational

calculation using the basis sets F (14), F (16), F (18) and F (19) with respect to the basis

F (20) is displayed in Fig. 7 (bottom, right panel). These basis sets contain 10871, 20961,

37820, 49780 and 64721 vibrational functions of symmetry Ag, respectively. We can see that

the F (16) basis would be suitable up to 4000 cm−1 for the modelling of low and medium

resolution infrared spectra while the F (19) basis allows converging vibrational levels within

0.001 cm−1 up to 3500 cm−1.
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TABLE I: Comparison of the vibrational band origins of H2O2 for the symmetry blocks Ag and

B1u obtained from the TENSOR (this work) and WAVR4151 computer codes. (i) Energy levels (in

cm−1) computed with the TENSOR code. The differences WAVR4−TENSOR (in cm−1) are given

for different WAVR4 parameters jmax, na and icutb. We have (jmax, n, icut) = (20, 10, 100) in (ii),

(20, 10, 200) in (iii), (20, 10, 300) in (iv),(25, 14, 100) in (v), (25, 14, 200) in (vi) and (25, 14, 300) in

(vii).

Band Sym (i) (ii) (iii) (iv) (v) (vi) (vii)

ν4 Ag 255.7882 0.0025 0.0019 0.0018 0.0008 0.0002 0.0001

2ν4 Ag 570.4892 0.0069 0.0043 0.0041 0.0025 −0.0002 −0.0004

ν3 Ag 865.9407 0.0056 0.0044 0.0044 0.0013 0.0002 0.0001

3ν4 Ag 1001.7398 0.0087 0.0047 0.0045 0.0034 −0.0007 −0.0008

ν3 + ν4 Ag 1120.4606 0.0075 0.0058 0.0051 0.0026 0.0008 0.0002

ν6 B1u 1264.3401 0.1387 0.1266 0.1263 0.0132 0.0003 0.0001

ν2 Ag 1394.5277 0.1271 0.1154 0.1152 0.0128 0.0003 0.0001

ν3 + 2ν4 Ag 1431.7821 0.0199 0.0148 0.0140 0.0057 0.0003 −0.0005

4ν4 Ag 1478.6183 0.0320 0.0241 0.0240 0.0076 −0.0010 −0.0011

ν4 + ν6 B1u 1505.3746 0.1540 0.1354 0.1351 0.0203 0.0003 0.0001

ν2 + ν4 Ag 1683.5634 0.1592 0.1349 0.1345 0.0269 0.0006 0.0002

2ν3 Ag 1714.5097 −0.0157 −0.0182 −0.0187 0.0029 0.0005 0.0001

2ν4 + ν6 B1u 1854.0556 0.2180 0.1825 0.1821 0.0364 0.0002 −0.0003

ν3 + 3ν4 Ag 1861.6873 0.0304 0.0214 0.0203 0.0093 −0.0002 −0.0011

5ν4 Ag 1945.9637 0.0574 0.0299 0.0296 0.0282 −0.0011 −0.0014

2ν3 + ν4 Ag 1967.5418 −0.0269 −0.0317 −0.0329 0.0055 0.0009 −0.0002

ν2 + 2ν4 Ag 1976.1079 0.2358 0.1855 0.1848 0.0561 0.0007 −0.0001

ν3 + ν6 B1u 2113.7491 0.2389 0.2156 0.2148 0.0263 0.0019 0.0011

ν2 + ν3 Ag 2241.9684 0.2514 0.2236 0.2225 0.0317 0.0022 0.0009

2ν3 + 2ν4 Ag 2277.3907 0.0012 −0.0143 −0.0157 0.0150 −0.0005 −0.0018

3ν4 + ν6 B1u 2306.8829 0.3843 0.3169 0.3139 0.0733 0.0028 −0.0007

6ν4 Ag 2316.7995 0.0758 0.0315 0.0302 0.0463 −0.0003 −0.0017

ν3 + ν4 + ν6 B1u 2354.2088 0.2863 0.2430 0.2421 0.0465 0.0016 0.0007
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TABLE I – continued

Band Sym (i) (ii) (iii) (iv) (v) (vi) (vii)

ν3 + 4ν4 Ag 2355.9264 0.0609 0.0266 0.0254 0.0354 −0.0006 −0.0018

ν2 + 3ν4 Ag 2392.7082 0.3737 0.2860 0.2817 0.0958 0.0043 −0.0006

2ν6 Ag 2505.3506 1.0302 0.9121 0.9043 0.1386 0.0119 0.0030

ν2 + ν3 + ν4 Ag 2530.0509 0.3083 0.2195 0.2176 0.0989 0.0028 0.0009

3ν3 Ag 2545.5883 −0.6603 −0.6702 −0.6718 0.0030 −0.0021 −0.0027

ν2 + ν6 B1u 2648.8057 1.8124 1.6103 1.5977 0.2427 0.0202 0.0061

ν3 + 2ν4 + ν6 B1u 2701.2782 0.3994 0.2994 0.2979 0.1012 0.0008 −0.0008

2ν3 + 3ν4 Ag 2705.2429 0.0315 −0.0012 −0.0030 0.0301 −0.0037 −0.0054

7ν4 Ag 2720.3876 0.1485 0.0579 0.0549 0.0964 −0.0011 −0.0043

ν4 + 2ν6 Ag 2743.9942 1.4453 1.1785 1.1665 0.3147 0.0169 0.0040

2ν2 Ag 2765.5520 1.0040 0.7899 0.7788 0.2444 0.0153 0.0028

3ν3 + ν4 Ag 2796.6891 −0.6625 −0.6821 −0.6856 0.0051 −0.0066 −0.0082

4ν4 + ν6 B1u 2799.9239 0.5421 0.2867 0.2796 0.3039 0.0054 −0.0022

ν3 + 5ν4 Ag 2809.5394 0.2537 0.1122 0.1106 0.1563 −0.0011 −0.0029

ν2 + ν3 + 2ν4 Ag 2824.6633 0.3854 0.1918 0.1894 0.2082 0.0012 −0.0016

ν2 + 4ν4 Ag 2861.3768 0.6177 0.2763 0.2684 0.3969 0.0066 −0.0017

ν2 + ν4 + ν6 B1u 2914.7957 2.6087 1.8111 1.7898 0.8872 0.0279 0.0072

2ν3 + ν6 B1u 2945.3719 0.2881 0.2364 0.2341 0.0554 0.0018 0.0000

rms error 0.6452 0.5064 0.5018 0.1851 0.0071 0.0026

a jmax and n are the numbers of angular and radial functions (see Ref.151 ).

b icut is the number of selected eigenvectors at each step (see Ref.151 ).

TABLE II: Comparison of the vibrational band origins of H2O2 for the symmetry blocks Au and

B1g obtained with the TENSOR (this work) and WAVR4 computer codes. See caption of Tab. I

for the definition of the different columns.

Band Sym (i) (ii) (iii) (iv) (v) (vi) (vii)

GS Au 11.2122 -0.0034 -0.0034 0.0033 -0.0003 0.0000 -0.0001

ν4 Au 371.3261 −0.0014 −0.0015 0.0015 −0.0001 −0.0001 −0.0002
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TABLE II – continued

Band Sym (i) (ii) (iii) (iv) (v) (vi) (vii)

2ν4 Au 776.8274 0.0119 0.0103 −0.0101 0.0014 −0.0018 −0.0006

ν3 Au 877.6885 0.0087 0.0077 −0.0078 0.0010 −0.0011 0.0000

ν3 + ν4 Au 1227.0708 0.0134 0.0112 −0.0109 0.0020 −0.0022 −0.0005

3ν4 Au 1245.4558 0.0155 0.0131 −0.0128 0.0023 −0.0025 −0.0006

ν6 B1g 1284.6829 0.1640 0.1548 −0.1546 0.0099 −0.0097 0.0000

ν2 Au 1400.7098 0.1674 0.1574 −0.1571 0.0107 −0.0104 0.0000

ν3 + 2ν4 Au 1638.1640 0.0202 0.0170 −0.0162 0.0039 −0.0038 −0.0007

ν4 + ν6 B1g 1648.4799 0.2196 0.2066 −0.2064 0.0138 −0.0136 0.0001

4ν4 Au 1720.1736 0.0330 0.0261 −0.0260 0.0066 −0.0077 −0.0011

3ν3 Au 1726.8764 −0.0076 −0.0101 0.0102 0.0025 −0.0025 0.0000

ν2 + ν3 Au 1772.8478 0.2064 0.1894 −0.1891 0.0181 −0.0178 0.0000

2ν4 + ν6 B1g 2072.6916 0.2268 0.2033 −0.2030 0.0269 −0.0269 −0.0004

2ν3 + ν4 Au 2076.4227 0.0016 −0.0028 0.0034 0.0044 −0.0043 −0.0005

ν3 + 3ν4 Au 2103.3759 0.0231 0.0160 −0.0152 0.0072 −0.0075 −0.0010

ν3 + ν6 B1g 2134.6189 0.2206 0.2036 −0.2025 0.0193 −0.0178 0.0005

ν2 + 2ν4 Au 2170.7709 0.2092 0.1735 −0.1730 0.0400 −0.0398 −0.0004

5ν4 Au 2205.8643 0.0567 0.0305 −0.0303 0.0267 −0.0280 −0.0014

ν2 + ν3 Au 2248.5455 0.2091 0.1873 −0.1864 0.0246 −0.0230 0.0008

2ν3 + 2ν4 Au 2483.5870 −0.0086 −0.0154 0.0168 0.0074 −0.0076 −0.0015

ν3 + ν4 + ν6 B1g 2496.0545 0.2672 0.2396 −0.2389 0.0297 −0.0282 0.0008

2ν6 Au 2538.4081 0.9592 0.8801 −0.8778 0.0921 −0.0864 0.0027

3ν4 + ν6 B1g 2551.8234 0.3660 0.3021 −0.2999 0.0689 −0.0670 −0.0006

3ν3 Au 2558.3483 −0.6483 −0.6569 0.6582 0.0035 −0.0048 −0.0015

ν3 + 4ν4 Au 2579.2230 0.0632 0.0440 −0.0435 0.0193 −0.0201 −0.0012

ν2 + ν3 + ν4 Au 2614.6564 0.3396 0.2791 −0.2773 0.0658 −0.0633 0.0005

ν2 + 3ν4 Au 2628.8437 0.3410 0.2729 −0.2703 0.0741 −0.0713 −0.0001

ν2 + ν6 B1g 2660.3104 1.4349 1.3261 −1.3199 0.1318 −0.1203 0.0045

6ν4 Au 2705.4012 0.1297 0.0716 −0.0697 0.0603 −0.0604 −0.0023
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TABLE II – continued

Band Sym (i) (ii) (iii) (iv) (v) (vi) (vii)

2ν2 Au 2768.9855 0.8934 0.7426 −0.7364 0.1715 −0.1623 0.0022

3ν2 + ν4 Au 2908.1590 −0.5381 −0.5535 0.5561 0.0049 −0.0089 −0.0050

ν4 + 2ν6 Au 2910.8426 1.1266 0.9862 −0.9787 0.1694 −0.1578 0.0027

ν3 + 2ν4 + ν6 B1g 2918.9996 0.4153 0.3473 −0.3461 0.0781 −0.0770 −0.0001

2ν3 + 3ν4 Au 2945.9496 −0.0863 −0.1090 0.1109 0.0182 −0.0222 −0.0053

2ν3 + ν6 B1g 2966.8810 0.2657 0.2261 −0.2239 0.0418 −0.0398 0.0001

rms error 0.4347 0.3932 0.3915 0.0569 0.0539 0.0018

Finally, we give in Tabs. I and II the differences between the vibrational energy lev-

els computed from the TENSOR and WAVR4151 computer codes for the symmetry blocks

(Ag, B1u) and (Au, B1g), respectively. We can see that the results obtained from WAVR4 are

quite sensitive to the input parameters (jmax, n, icut) (see Ref.151 for more explanations), in

particular for converging the overtones of the torsional mode ν4. Several days of calculation

were necessary to compute the J = 0 levels using WAVR4 for (jmax, n, icut) = (25, 14, 300)

against few hours using TENSOR. Finally, we can note the very good agreement between

both calculations, with errors ∼ 0.001 cm−1 up to 3000 cm−1, which is much better than

the agreement between TROVE and WAVR4 in Ref.147, with deviations up to 0.5 cm−1.

V. CONCLUSION

In this paper, we have proposed an hybrid nuclear-motion Hamiltonian based on the HBJ

formalism but written in terms of ITOs adapted to a given molecular symmetry group. The

treatment of the nonrigid coordinate is made numerically on a grid of points suitably chosen

in order to accelerate the computation of the energy levels. For each point of the grid, a set

of vibrational-rotational ITOs is constructed. In the introduction part, we asked a question

about the pertinence of using the tools which were developed for semirigid molecules. We

can answer positively to this question. Indeed, we have shown that the ITO formalism

initially introduced in the construction of effective Hamiltonian for semirigid spherical top

molecules as well as the Hamiltonian and basis-set reduction procedure introduced to ac-

celerate calculations are also both designed to nonrigid molecules. The hybrid model has
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been validated on small nonrigid systems (CH2, CH3, NH3, H2O2) and will pave the way

for the study of more complex molecules, with possibly several large amplitude motions, for

the analysis of high-resolution spectra and for the construction of molecular line lists.

Undoubtedly, the construction of nonrigid effective models, as proposed in Ref.90, would

be of great help to refine parameters quite easily on observed data. Moreover, an upcoming

version of TENSOR is in preparation and will benefit from the use of iterative eigensolvers

and nested contracted basis functions in conjunction with group-theoretical considerations

in order to consider molecules with more than 7 atoms, as ethane-like molecules.

SUPPLEMENTARY MATERIAL

Fortran code including the H2O2 PES in symmetry coordinates used in this work and

generated from the ab initio PES by Malyszek and Koput148.
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Appendix A: Derivation of the rotation matrix U(ρ) in Eq. (1)

Szalay and Ortigoso152 already derived the rotation matrix U(ρ) involved in Eq. (1)

using the Floquet theory153. More recently, an alternative method was proposed in Ref.93
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and consists in integrating the evolution equation

dU(ρ)

dρ
= U(ρ)Ω(ρ), (A1)

using the elements of the Lie group SO(3) and Lie algebra so(3). In Eq. (A1), Ω(ρ) is a

skew-symmetric matrix involving the LAM dependent angular velocity vector components

(ωx, ωy, ωz) defined by ω(ρ) = −(IRot-Rot)
−1IRot-LAM where IRot-Rot(ρ) is the rotational tensor

of inertia. Introducing the three generators of the so(3) Lie algebra

Sx =


0 0 0

0 0 −1

0 1 0

 , Sy =


0 0 1

0 0 0

−1 0 0



and Sz =


0 −1 0

1 0 0

0 0 0

 ,

(A2)

the elements of the SO(3) rotation Lie group can be obtained via the exponential map

U(ρ) = eP(ρ), (A3)

with P(ρ) =
∑

pα(ρ)Sα (α = x, y and z). Here, the three components px(ρ), py(ρ) and

pz(ρ) are to be determined. Similarly, we can write Ω(ρ) =
∑
ωα(ρ)Sα. After some algebra,

we can show that
dP

dρ
= ω · S + T · S, (A4)

where we have defined

Tα =
∞∑
r=1

(−1)r(ppp · ppp)r−1

{
[(ppp · ppp)ωα − (ppp · ω)pα]

B2r

(2r)!
+ (ppp× ω)α

B2r−1

(2r − 1)!

}
, (A5)

with Bk the Bernoulli numbers. Bearing in mind that the only non-vanishing term B2r−1

is given for r = 1 and using the expansion in Laurent series of cot(z) around z = 0, the

elements pα are determined by solving a system of three ordinary differential equations

p′α(ρ) =
1

2
(ppp× ω)α +

ωα
2
‖p‖ cot

(
‖p‖
2

)
− (ppp · ω)pα

2 ‖p‖2

[
‖p‖ cot

(
‖p‖
2

)
− 2

]
. (A6)

Finally, by employing the Rodrigues formula one calculate easily the desired rotation matrix

(A3). Alternatively, the exponential in (A3) can be disentangled as U(ρ) = egxSxegySyegzSz
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where the elements gα can be related to the pα’s as

gx = arcsin

(
− w√

1− v2

)
,

gy = arcsin(v),

gz = arcsin

(
− u√

1− v2

)
,

(A7)

with

u = − pz
‖p‖

sin(‖p‖) +
pxpy

‖p‖2 (1− cos(‖p‖)),

v =
py
‖p‖

sin(‖p‖) +
pxpz

‖p‖2 (1− cos(‖p‖)),

w = − px
‖p‖

sin(‖p‖) +
pypz

‖p‖2 (1− cos(‖p‖)).

(A8)

In order to make the link with the Hougen’s paper71, we could also introduce the Euler

angles as

θ = arccos [cos(gx)cos(gy)],

φ = arccos

[
sin(gy)√

1− cos2(gx)cos2(gy)

]
,

ψ = arccos

[
cos(gx)sin(gy)cos(gz)− sin(gx)sin(gz)√

1− cos2(gx)cos2(gy)

]
.

(A9)
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14D. Bégué, N. Gohaud, C. Pouchan, P. Cassam-Chenai, and J. Liévin, J. Chem. Phys.
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J. Chem. Phys. 135, 094307 (2011).

16S. Carter, A. Sharma, and J. Bowman, J. Chem. Phys. 137, 15 (2012).

17X.-G. Wang and J. Carrington, T., J. Chem. Phys. 144, 204304 (2016).

18P. Thomas and J. Carrington, T., J. Chem. Phys. 146, 204110 (2017).
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