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We show that the spaces of transfinite words, namely ordinalindexed words, over a Noetherian space, is also Noetherian, under a natural topology which we call the regular subword topology. We characterize its sobrification and its specialization ordering, and we give an upper bound on its sobrification rank and on its stature.

Introduction

Given a well-quasi-order X (wqo, for short), the space of infinite words X ω (of length ω) need not be wqo in the subword preordering. One way of correcting this anomaly is to turn to the stronger notion of better quasiorderings [START_REF] Nash-Williams | On better-quasi-ordering transfinite sequences[END_REF]. Another one is to turn to the weaker notion of Noetherian space. Noetherian spaces are a natural, topological generalization of wqos with many similar properties [START_REF] Goubault-Larrecq | Non-Hausdorff Topology and Domain Theory-Selected Topics in Point-Set Topology[END_REF]Section 9.7]. For example, there are Noetherian analogues of Higman's theorem and of Kruskal's theorem. Noetherianity is also preserved by some infinitary constructions such as powerset.

In part I of this work [START_REF] Goubault-Larrecq | Infinitary Noetherian constructions I. Infinite words. Colloquium Mathematicum[END_REF] we have shown that, given a Noetherian space X, X ω is again Noetherian, with a natural topology, the subword topology. The same works for the set of finite-or-infinite words X ≤ω . The purpose of the present paper is to extend this to spaces X <α of transfinite words, namely words indexed by ordinals strictly smaller than a fixed ordinal bound α.

The topology we choose is a natural generalization of that of part I. The bulk of the work consists in showing that if X is Noetherian, then so is X <α . Outline. Section 2 recapitulates a few basic notions, and is also where we state our basic tool for showing that X <α is Noetherian, as Proposition 2. 1. We define the regular subword topology on X <α in Section 3, based on socalled transfinite products. After a few basic results on transfinite words in Section 4, we show that the α-products, a specific kind of transfinite products, form an irredundant subbase of closed subsets of X <α , where α is a special kind of ordinal which we call a bound; this is one of the conditions of Proposition 2. 1. We characterize inclusion of transfinite products in Section 6, and we show that every transfinite product has a canonical form in Section 7. This allows us to show that the collection of α-products is wellfounded in Section 8; this is another condition of Proposition 2. 1. The final condition requires us to express finite intersections of α-products as finite unions of α-products, which we do in Section 9. In the process, we obtain an upper bound on the stature and reduced sobrification rank of X <α . Finally, we describe the specialization preordering of X <α in Section 10.

Preliminaries

2. 1. Topology. Most of the following can be found in [START_REF] Goubault-Larrecq | Non-Hausdorff Topology and Domain Theory-Selected Topics in Point-Set Topology[END_REF].

Every topological space has a specialization preordering ≤, defined by x ≤ y if and only if every open neighborhood of x contains y. The closure of {x} is the principal ideal ↓ x def = {y ∈ X | y ≤ x}. We silently consider any topological space as a preordered set under ≤.

The Alexandroff topology of a preordering ≤ is its family of upwardsclosed sets. Among the topologies with a given specialization preordering ≤, it is the finest. The coarsest is the upper topology, whose closed sets are intersections of sets of the form ↓ E, E finite; we write ↓ E for x∈E ↓ x.

A Noetherian space is a topological space in which every open set is compact. We do not require compactness to imply separation.

A strict partial ordering < is well-founded if and only if there is no infinite strictly descending chain. By a slight abuse of language, we say that a preordering ≤ is well-founded if and only if its strict part (x < y if and only if x ≤ y and y ≤ x) is well-founded. A space is Noetherian if and only if its set of closed subsets is well-founded under inclusion.

A closed subset C is irreducible if and only if C = ∅, and for all closed sets

F 1 , F 2 such that C ⊆ F 1 ∪F 2 , C is included in F 1 or in F 2 .
The closure ↓ x of every point x is irreducible closed. The product C 1 × C 2 of two irreducible closed subsets is irreducible in the product topology. A space is sober if and only if every irreducible closed subset is the closure ↓ x of a unique point x.

An important property is that, in a Noetherian space X, every closed subset is a finite union of irreducible closed subsets.

The sobrification SX of a topological space X is its set of irreducible closed subsets, with the sets

U def = {C ∈ SX | C ∩ U = ∅}, U open in X,
as open sets. The specialization ordering of SX is inclusion. SX is sober, and its lattice of open subsets is order-isomorphic to that of X, through U → U . In particular, X is Noetherian if and only if SX is.

S defines a functor: for every continuous map f : X → Y , Sf maps every

C ∈ SX to the closure cl(f [C]) in Y of f [C]. (We write f [C] for the direct image {f (x) | x ∈ C}.) In particular, cl(f [C]) is irreducible closed.
The sober Noetherian spaces can be characterized order-theoretically: they are exactly the sets X with a well-founded preordering ≤ such that every finite intersection of principal ideals can be expressed as a finite union of principal ideals; the topology of X is the upper topology of ≤. Then the closed subsets are exactly the sets ↓ E with E finite.

The following proposition refines this, and will be the core of our constructions. A family of sets P is irredundant if and only if every element of P is irreducible in P, namely: no element of P is empty, and for all P, P 1 , P 2 ∈ P, if P ⊆ P 1 ∪ P 2 then P ⊆ P 1 or P ⊆ P 2 .

Proposition 2.1. Let P be a family of subsets of a set X, such that:

(1) P is well-founded under inclusion;

(2) X can be written as a finite union of elements of P;

(3) for all P, Q ∈ P, P ∩ Q is a finite union of elements of P.

Then X, with the coarsest topology that makes every element of P closed, is Noetherian. If P is irredundant, its irreducible closed subsets are exactly the elements of P, and SX equals P with the upper topology of inclusion.

Proof.

By assumption, P is sober Noetherian in the upper topology of ⊆.

For every x ∈ X, since P is well-founded (property (1)), there is a minimal element P of P that contains x. For every Q ∈ P that contains x, we can write P ∩ Q as n i=1 P i where each P i is in P, by (3). Then x is in one P i , and by minimality of P , P = P i . It follows that P = P i ⊆ P ∩ Q, so P ⊆ Q. Hence P is the smallest element of P that contains x. Let us write that element as η(x); for every

Q ∈ P, η(x) ⊆ Q if and only if x ∈ Q.
This defines a map η : X → P. For every finite subset

E def = {P 1 , • • • , P n } of P, η -1 (↓ E) = {x ∈ X | ∃i, η(x) ⊆ P i } = n i=1 P i is closed in X.
Hence η is continuous. Taking n def = 1, we obtain that every element P of P can be written as η -1 (↓{P }). Since η -1 commutes with all intersections and (finite) unions, η is a full map, viz. every closed subset of X is the inverse image of some closed subset of P-this was called an initial map in [START_REF] Goubault-Larrecq | Infinitary Noetherian constructions I. Infinite words. Colloquium Mathematicum[END_REF]. Lemma 8 of that paper states that any space from which there is a full map to a Noetherian space is itself Noetherian. Therefore X is Noetherian.

By Lemma 9 of the same paper, every irreducible closed subset C of X is of the form η -1 (C) for some irreducible closed subset C of P. Since P is sober, C = ↓ P for some unique P ∈ P, hence C = P .

Conversely, and assuming P irredundant, we claim that every element P of P is irreducible in X. By assumption, P is non-empty. Since η is full, the closed subsets of X are exactly the inverse images of closed subsets of P, namely the finite unions of elements of P . Hence it suffices to show that if P is included in a finite union of elements of P, then it is included in one of them. This follows directly from the fact that P is irredundant.

2.2.

Ordinals. An indecomposable ordinal is one of the form ω β , where β is an ordinal; equivalently, an ordinal that cannot be written as the sum of two strictly smaller ordinals. The other ordinals are decomposable. For all ordinals α, β, γ, we have: (1) if γ is indecomposable and α, β < γ, then α + β < γ; (2) if γ is indecomposable, α < γ, and β ≤ γ, then α + β ≤ γ; (3) every ordinal α can be written in a unique way as a finite sum of indecomposable ordinals 4) the ordering on Cantor normal forms is lexicographic:

γ 1 + • • • + γ m (its Cantor normal form), where α ≥ γ 1 ≥ • • • ≥ γ m ; (
γ 1 + • • • + γ m < γ 1 + • • • + γ n (
where both sides are in Cantor normal form) if and only if for some i ≥ 1, γ 1 = γ 1 , . . . , γ i-1 = γ i-1 and either i = m + 1 ≤ n, or i ≤ m, n and γ i < γ i .

Transfinite words

We call transfinite word on a set X any map from α to X, where α is any ordinal. Such a word w has length |w| def = α. Seen as the set of ordinals β strictly less than α, |w| is also the domain of w, and we write w(β) for the letter at position β in w, for every β ∈ |w| (equivalently, β < |w|).

When X is preordered by ≤, the subword preordering ≤ is defined on transfinite words by w ≤ * w if and only if there is a strictly increasing map f : |w| → |w | such that w(β) ≤ w (f (β)) for every β, 0 ≤ β < |w|. We also say that f exhibits w as a subword of w .

We write X <α for the set of transfinite words w of length |w| < α. X ≤α denotes X <α+1 . For example, X <ω is the set X * of finite words on X, and X <ω+1 = X ≤ω is the set of finite-or-infinite words studied in Part I [START_REF] Goubault-Larrecq | Infinitary Noetherian constructions I. Infinite words. Colloquium Mathematicum[END_REF].

The concatenation ww of w and w is the transfinite word of length |w|+ |w | such that (ww )(β) = w(β) for every β < |w|, and (ww )(|w| + β) = w (β) for every β < |w |. We write AB for the set {ww | w ∈ A, w ∈ B}.

We are interested in the following topology. We cannot work on the (proper) class of all transfinite words over X, for foundational reasons. Instead we work on sets Y of transfinite words; this leads us to take intersections with Y here and there. Usually, Y will be a set of the form X <α . Definition 3.1 (Regular subword topology). The regular subword topology on any set of transfinite words Y on a space X is the coarsest topology that makes the sets (F <α 1 1

F <α 2 2 • • • F <αn n ) ∩ Y closed, where n ∈ N, F 1 , F 2 , . . . ,
F n are closed subsets of X, and α 1 , α 2 , . . . , α n are ordinals.

The following class of ordinals will be ubiquitous. Definition 3.2 (Bound). A bound is an ordinal of the form ω β or ω β + 1, β ≥ 0. The trivial bound is ω 0 (= 1), all others are non-trivial. A proper bound is one of the form ω β or ω β + 1 with β ≥ 1. Definition 3.3 (Preatom, atom, product). Let X be a topological space. A preatom is an expression of the form F <γ , where F is a closed subset of X and γ is a bound. An atom is a preatom F <γ such that γ is non-trivial, and if γ = ω 0 + 1 then F is irreducible closed in X.

A transfinite product P is any set of the form

A 1 A 2 • • • A n ,
where n ∈ N and each A i is an atom. We write ε when n = 0, namely ε def = { }.

When β = 0, F <ω 0 = ε = { }, and F <ω 0 +1 is sometimes written as F ? : that is the set of words of length at most 1, whose only letter if any is in F . Lemma 3. [START_REF] Fraïssé | Theory of Relations[END_REF]. For every set F , for every ordinal α, one can write F <α as

F <γ 1 F <γ 2 • • • F <γm ,
where m ∈ N and each γ i is a non-trivial bound.

Proof. If α = 0, we take m def = 0. Otherwise, let us write α in Cantor normal form, as a finite sum

γ 1 + • • • + γ m of indecomposable ordinals, where m = 0 and α ≥ γ 1 ≥ • • • ≥ γ m . We claim that F <α is equal to F ≤γ 1 F ≤γ 2 • • • F ≤γ m-1 F <γm .
The result will follow, since the latter is equal to

F <γ 1 +1 F <γ 2 +1 • • • F <γ m-1 +1
F <γm : when γ m = 1, all the superscripts are nontrivial bounds; when γ m = 1, this simplifies to

F <γ 1 +1 F <γ 2 +1 • • • F <γ m-1 +1
, where all superscripts are non trivial bounds, too. 

F ≤γ 1 • • • F ≤γ m-1 F <γm is included in F <α .
| = γ 1 , . . . , |w n | = γ n . Since |w| < α, there is a number i ≥ 1 such that γ 1 = γ 1 , . . . , γ i-1 = γ i-1 and either i = n+1 ≤ m, or i ≤ m, n and γ i < γ i . In the first case, w ∈ F ≤γ 1 • • • F ≤γn ⊆ F ≤γ 1 • • • F ≤γ m-1 F <γm . In the second case, since γ i > γ i ≥ γ i+1 ≥ • • • ≥ γ n and γ i is indecomposable, γ i + • • • + γ n < γ i . Then w 1 ∈ F ≤γ 1 , . . . , w i-1 ∈ F ≤γ i-1 , and w i w i+1 • • • w n is in F <γ i , hence in F ≤γ i • • • F ≤γ m-1 F <γm .
Proposition 3. [START_REF] Goubault-Larrecq | Non-Hausdorff Topology and Domain Theory-Selected Topics in Point-Set Topology[END_REF]. The regular subword topology on any set of transfinite words Y on a Noetherian space X is the coarsest topology that has the intersections of Y with transfinite products as closed sets.

Proof. Let us consider a set of the form

F <α 1 1 F <α 2 2 • • • F <αn n
, where F 1 , . . . , F n are closed subsets of X, and α 1 , α 2 , . . . , α n are ordinals. We claim that we can rewrite it as a finite union of transfinite products.

If some α i equals 0, then

F <α 1 1 F <α 2 2 • • • F <αn n
is empty. Otherwise, using Lemma 3.4, we may assume that every α i is a non-trivial bound. We may also remove the preatoms

F <α i i such that F i = ∅, since in that case F α i i = ε. Let I be the subset of those indices i, 1 ≤ i ≤ n, such that α i = ω 0 + 1.
For each i ∈ I, we can write F i as a finite union of irreducible closed subsets C i1 , . . . , C ik i (and

k i = 0 since F i = ∅), since X is Noetherian. For every function f mapping each i ∈ I to an element of {1, • • • , k i }, let P f be the transfinite product obtained from F <α 1 1 F <α 2 2 • • • F <αn n by replacing each preatom F <α i i , i ∈ I, by C ? if (i) . Then F <α 1 1 F <α 2 2 • • • F <αn n
is the finite union of the transfinite products P f , when f varies over the finitely many possible functions. (2) follows from (1) if γ is indecomposable. Otherwise, let us write γ as
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ω β +1. Then γ < γ means γ ≤ ω β . Since |u| < γ, |u| < ω β and since |v| < γ , |v| ≤ ω β . Hence |uv| = |u| + |v| ≤ ω β < γ , because ω β is indecomposable.
(3) Since γ is proper, we have |x| = ω 0 < γ; then (3) follows from (2). Proof. Given any two downwards-closed subsets A and B with respect to ≤ * , their product AB is, too: if w ≤ * w and w ∈ AB, then we can write w as u v where u ∈ A and v ∈ B, and it is then easy to show that w = uv for some u ≤ * u and v ≤ * v . It is clear that every atom is downwards-closed, as well as ε, so every transfinite product is downwards-closed, hence also every intersection of finite unions of transfinite products.

For every indecomposable ordinal γ, there is a so-called Hessenberg pairing map H : γ × γ → γ, which is injective; for all α < β < γ and δ < γ, H(α, δ) < H(β, δ) and H(δ, α) < H(δ, β) [10, Exercise 2.23 (ii)], and it is easy to see that H(α, 0) ≥ α for every α < γ.

Lemma 4.3. Let F be a non-empty subset of a set X. For every transfinite word w on X such that |w| is an indecomposable ordinal γ, and whose letters are in F , there is a word w of length γ, whose letters are in F again, such that for every way of writing w as a concatenation uv with |u| < γ, w ≤ * v.

Proof. Let us pick x ∈ F . We build w as the following word of length γ: w (H(α, β)) def = w(β) for all α, β < γ, and w (δ) def = x for every position δ < γ that is not in the range of H. Now let us write w as uv with |u| < γ. Then H(|u|, ) exhibits w as a subword of v, using the fact that H(|u|, 0) ≥ |u|.

Continuity and irredundancy

Lemma 5.1. Let X be a Noetherian space.

(1) For any set Y of transfinite words on X containing X ≤1 , the function i : X → Y mapping x ∈ X to the one-letter word x is continuous. (2) For every ordinal β, the concatenation map cat :

X <ω β × X ≤ω β → X ≤ω β (resp., cat : X <ω β × X <ω β → X <ω β ) is continuous.
Proof.

(1) For every preatom F <γ with γ non-trivial, i -1 (F <γ ) = F is closed. Then, the inverse image of any transfinite product

A 1 A 2 • • • A n ∩ Y is i -1 (A 1 ) ∪ • • • ∪ i -1 (A n ), which is closed.
(2) First, cat is well-defined by Lemma 4.1 (1). As far as continuity is concerned, let

P def = A 1 A 2 • • • A n be any transfinite product. We show that cat -1 (P ) (or rather, cat -1 (P ∩ X ≤ω β )) is (the intersection of X <ω β × X ≤ω β with) a finite union m i=1 P i × Q i of products of pairs of transfinite word products P i , Q i , by induction on n. If n = 0, then cat -1 (P ) only contains ( , ), hence is equal to ε × ε. Otherwise, let P def = A 2 • • • A n ,

and let us write

A 1 as F <γ , where γ is a non-trivial bound, and F is closed. By induction hypothesis, cat -1 (P ) is a finite union m i=1 P i × Q i , where P i and Q i are transfinite word products. The pairs of words u, v whose concatenation are in P are those such that u is of the form u 1 u 2 with u 1 ∈ A 1 and (u 2 , v) ∈ cat -1 (P ) (namely, the elements of m i=1 A 1 P i × Q i , since, as one sees easily, concatenation distributes over union) or such that v is of the form v 1 v 2 with uv 1 ∈ A 1 and v 2 ∈ P . In order to conclude, it therefore suffices to show that the set A of pairs (u, v) with v of the form v 1 v 2 , uv 1 ∈ A 1 and v 2 ∈ P , is a finite union of products of pairs of transfinite products.

If γ is of the form ω β , then uv 1 ∈ A 1 if and only if u ∈ F <γ and v 1 ∈ F <γ . The only if direction is clear, and the if direction is by Lemma 4.1 (1). Hence A = F <γ × F <γ P in this case.

If γ is of the form ω β + 1, then uv 1 ∈ A 1 if and only if u ∈ F <ω β and v 1 ∈ F ≤ω β , or u ∈ F ≤ω β and v 1 = . In the only if direction, we reason by cases, depending whether |u| = ω β or not. In the if direction, the case

v 1 = is obvious, while u ∈ F <ω β and v 1 ∈ F ≤ω β imply uv 1 ∈ A 1 = F <γ by Lemma 4.1 (2). Hence A = (F <ω β × F <γ P ) ∪ (F <γ × P ) in this case.
On spaces of the form X <α , the following refinement of the notion of transfinite product will be the family P we will use Proposition 2.1 on. Definition 5.2 (α-product). For a topological space X and a bound α, the α-products are the products of the form

F 1 <γ 1 F 2 <γ 2 • • • F n <γn where n ∈ N, • γ i ≤ α and F i is non-empty for each i, 1 ≤ i ≤ n,
• and if α is decomposable, then γ i < α for every i, 1 ≤ i < n; namely, the only γ i that is equal to α, if any, is obtained with i = n.

Proposition 5. 3. For every topological space X and every bound α, the α-products are closed in X <α , and their complements form a subbase of the regular subword topology.

Proof. 

Let P def = F 1 <γ 1 F 2 <γ 2 • • • F n <γn be an α-product.
i ≤ ω β for every i, 1 ≤ i < n, that n ≥ 1 and that γ n = ω β + 1 = α. Then |u n | < α; since |u n-1 | < γ n-1 < α, we obtain |u n-1 u n | < α by Lemma 4.1 (2); then |u n-2 u n-1 u n | < α, . .

. , and eventually |w| < α.

To show the second part of the proposition, we claim that the intersection of every transfinite product

P def = F 1 γ 1 F 2 <γ 2 • • • F n <γn with X <α is a finite
union of α-products. If n = 0, P is already an α-product, so let us assume n = 0. Given any w ∈ P ∩ X <α , we can write w as

u 1 u 2 • • • u n , where u i ∈ F i <γ i for each i. For each i, not only |u i | < γ i but also |u i | ≤ |w| < α, so
we can assume without loss of generality that γ i ≤ α for every i,

1 ≤ i ≤ n.
If α is indecomposable, then this makes P an α-product. Henceforth let us assume that α is decomposable, say α def = ω β + 1. Then we can rewrite every transfinite product of the form

F <α Q included in X <α as F <ω β Q ∪ F <α . Indeed, every word w def = uv with u ∈ F <α and v ∈ Q is either such that |u| < ω β (then w ∈ F <ω β Q), or |u| = ω β . If |u| = ω β , then v = , otherwise |w| > ω β , which is impossible since w ∈ X <α ; so w ∈ F <α .
We can therefore rewrite P as follows. Let i 1 < • • • < i k be the list of indices i between 1 and n -1 such that γ i = α. Let γ i def = γ i for every i different from i 1 , . . . , i k , and γ i def = ω β otherwise. (I.e., we replace the exponents equal to α = ω β +1 by ω β .) Then P is the union of the α-products

F 1 <γ 1 F 2 <γ 2 • • • F i j -1 <γ i j -1 F i j <α , 1 ≤ j ≤ k, and F 1 <γ 1 F 2 <γ 2 • • • F n <γ n .
Proposition 5. [START_REF] Fraïssé | Theory of Relations[END_REF]. Let X be a Noetherian space. For every bound α, every αproduct is irreducible in X <α . Hence the family of α-products is irredundant.

Proof. We first show that every atom F <γ is irreducible in

X <α . If γ = ω 0 +1 and F is irreducible, then i is continuous (Lemma 5.1 (1)), so Si(F ) = cl(i[F ]) is irreducible closed in X <α . Then cl(i[F ]
) is non-empty, and downwards-closed under ≤ * by Lemma 4.2, so it contains . Clearly

i[F ] ⊆ cl(i[F ]), so F <γ = F ? = { } ∪ i[F ] ⊆ cl(i[F ]). Also, i[F ] ⊆ F <γ , and F <γ is closed. Therefore F <γ = cl(i[F ]), so F <γ is irreducible.
Let now γ be a proper bound. We show that F <γ is directed in ≤ * , namely that F <γ = ∅ and that any two elements u, v of F <γ have an upper bound w in F <γ . If γ is indecomposable, then w def = uv fits, using Lemma 4.1 (1). Otherwise, let γ def = ω β +1. If |u| < ω β , then uv fits again, by Lemma 4.1 (2). If |v| < ω β , then we pick vu instead. Finally, if |u| = |v| = ω β , we define w as the one-for-one interleaving of u and v, namely as the word of length ω β such that, for every ordinal λ + n < ω β (where λ is 0 or a limit ordinal, and n ∈ N), w(λ + 2n) = u(λ + n) and w(λ

+ 2n + 1) = v(λ + n). Since F <γ is directed, F <γ is irreducible. Indeed, if F <γ ⊆ C 1 ∪ C 2 where C 1 and C 2 are closed in X <α , but F <γ ⊆ C 1 , C 2 ,
then we can pick u ∈ F <γ C 1 and v ∈ F <γ C 2 ; let w be an upper bound of u and v in F <γ , then w is neither in C 1 nor in C 2 , since those sets are downwards-closed under ≤ * (Lemma 4.2), and therefore w ∈ F <γ (C 1 ∪ C 2 ), which is impossible.

We now prove that every α-product P is irreducible in X <α , by induction on the number n of atoms in P . If n = 0, then P = ε, and this is clear. If n ≥ 1, we have just seen that P = F <γ is irreducible. If n ≥ 2, we write P as F <γ Q where Q is shorter, hence irreducible by induction hypothesis.

If α is indecomposable, then F <γ is irreducible in X <α , so

F <γ × Q is irreducible in X <α × X <α . By Lemma 5.1 (2), cat is continuous from the latter to X <α ; so Scat(F <γ × Q) = cl(cat[F <γ × Q]) is irreducible in X <α . Now cat[F <γ × Q] = F <γ Q is closed, hence equal to its own closure.
If α is decomposable, then let α def = ω β + 1. By the second item in the definition of α-products, we must have γ < α, hence γ ≤ ω β . Then F <γ is irreducible in X <ω β , while Q is irreducible in X ≤ω β . We use Lemma 5.1 (2): cat is continuous from X <ω β × X ≤ω β to X ≤ω β . Then we conclude as above that

F <γ Q = cat[F <γ × Q] = cl(cat[F <γ × Q]) is irreducible.

Inclusion of transfinite products

We start with necessary conditions for inclusion of transfinite products. We abbreviate "γ = γ and γ is decomposable" as "γ = γ is decomposable". Lemma 6.1. Let γ, γ be two non-trivial bounds, and let F <γ P , F <γ P be two transfinite products. If F <γ P ⊆ F <γ P , then:

(1) P ⊆ F <γ P .

(2) If F ⊆ F then F <γ P ⊆ P .

(3) If F is non-empty and if γ > γ , then F <γ P ⊆ P . (4) If F ⊆ F and F = ∅, and if γ = γ is decomposable, then P ⊆ P .

Proof. Let us assume that F <γ P ⊆ F <γ P .

(1) P ⊆ F <γ P , because ∈ F <γ , and F <γ P ⊆ F <γ P by assumption.

(2) Let us assume F ⊆ F . Then there is a letter x in F F . Let w ∈ F <γ P be arbitrary, and let us write w as uv where u ∈ F <γ and v ∈ P .

If γ is proper, then xu is in F <γ again, by Lemma 4.1 (3), so xw = xuv is in F <γ P , hence in F <γ P . Since x ∈ F , xuv is in P , so w = uv is in P , by Lemma 4.2 and since w ≤ * xuv. Since w is arbitrary, F <γ P ⊆ P .

It remains to deal with the case γ = ω 0 + 1, F irreducible. Let A def = {y ∈ X | ∀v ∈ P, yv ∈ P }. For every y ∈ F F , y is in A: indeed, for every v ∈ P , yv is in F ? P = F <γ P hence in F <γ P , and since y ∈ F , yv must be in P . This means that F ⊆ F ∪A. A is also equal to v∈P cat(i( ), v) -1 (P ), where cat(i( ), v) : y → cat(i(y), v) = yv is continuous by Lemma 5.1. Hence A is closed. Since F is irreducible, and since F ⊆ F , F must be included in A; equivalently, F P ⊆ P . Since P is downwards-closed with respect to ≤ * (Lemma 4.2), and since every element u of P is a subword of xu ∈ F P , F ? P = P ∪ F P is also included in P -namely, F <γ P ⊆ P .

(3) Let us assume F <γ P ⊆ F <γ P , with F = ∅ and γ > γ . We pick x ∈ F . For every α, let x α be the word of length α whose sole letter is x.

Whether γ is equal to ω β or to ω β +1 , we define γ -as ω β . For every transfinite word v, if x γ -v ∈ F <γ P , then v ∈ P . Indeed, assuming x γ -v ∈ F <γ P , we can write

x γ -v as v 1 v 2 where v 1 ∈ F <γ and v 2 ∈ P . If γ = ω β , then |x γ -| = ω β > |v 1 |; if γ = ω β +1 , then |x γ -| = ω β ≥ |v 1 |. In any case, |v 1 | ≤ |x γ -|, so v 1 is a prefix of x γ -,
and v 2 is of the form x α v for some ordinal α. Since v 2 ∈ P , and v ≤ * x α v = v 2 , v ∈ P by Lemma 4.2.

Let w ∈ F <γ P be arbitrary, and let us write w as uv where u ∈ F <γ and v ∈ P . With the aim of showing that w ∈ P , we form the transfinite word x γ -u. Its letters are in F , and its length is γ -+ |u|.

If γ -+ |u| < γ, then x γ -u is in F <γ , so x γ -w = x γ -uv is in F <γ P , hence in F <γ P . We have seen that this implies w ∈ P .

Henceforth, we assume that γ -+ |u| ≥ γ. We recall that γ -≤ γ < γ and that |u| < γ. If γ were indecomposable, then we would have γ -+ |u| < γ, contradicting our assumption. Hence γ = ω β + 1 for some ordinal β.

Then γ ≤ ω β and |u| ≤ ω β . If γ < ω β , then γ -+ |u| ≤ ω β < γ, which is impossible again. Therefore γ = ω β .
To sum up, |u| < γ = ω β + 1, and γ = ω β . Let W be u itself if |u| = ω β , else ux ω β . In each case, W is a word of length ω β whose letters are all in F , so W ∈ F <γ . We use Lemma 4.3: let W be a word of length ω β , whose letters are all in F , and such that for every way of writing W as U V with |U | < ω β , W ≤ * V . Then W v is in F <γ P , hence in F <γ P . Let us write W v as U v where |U | < γ and v ∈ P . Since |U | < γ = ω β , U is a prefix of W , and we can therefore write W as U V for some transfinite word V , and v as V v. By construction, W ≤ * V . Therefore u ≤ * W ≤ * V , and hence

w = uv ≤ * V v = v . Since v is in P , so is w, by Lemma 4.2.
(4) Since F = ∅, let us pick x ∈ F . We write γ = γ as ω β + 1. For every w ∈ P , x ω β w is in F <γ P , hence in F <γ P . Hence we can write x ω β w as uv where |u| < γ (namely, |u| ≤ ω β ) and v ∈ P . Since |u| ≤ ω β = |x ω β |, we can write v as x α w for some ordinal α. In particular, w ≤ * v, and since v ∈ P , w is in P , by Lemma 4.2.

We turn to sufficient conditions. There are three cases, depending on the relative positions and indecomposability statuses of γ and γ . Lemma 6.2. Let γ, γ be two non-trivial bounds, and let F <γ P , F <γ P be two transfinite products. Assuming that γ < γ , or that γ = γ is indecomposable, F <γ P ⊆ F <γ P if and only if:

(1) F ⊆ F and P ⊆ F <γ P , (2) or F ⊆ F and F <γ P ⊆ P .

Proof. The 'only if' direction is by Lemma 6.1 (1) and (2). We deal with the 'if' direction. Note that γ ≤ γ ; also, if γ is decomposable, then γ < γ .

(1) For every w ∈ F <γ P , let us write w as uv with u ∈ F <γ and v ∈ P . Since P ⊆ F <γ P , v is in F <γ P . Let us write v as v 1 v 2 with v 1 ∈ F <γ and v 2 ∈ P . Then the letters of uv 1 are all in F , and |uv 1 | < γ by Lemma 4.1 (2). It follows that uv 1 is in F <γ , so w = uv 1 v 2 is in F <γ P .

We will see that this leads to canonical forms for transfinite products. As in [7,Theorem 4.22], and to reduce excessive pedantry related to the difference between syntax and semantics, we write A, B (resp., P, Q) to denote atoms, resp. sequences of atoms (syntax), and A, B, P , Q for their respective semantics. Hence if

P = A 1 A 2 • • • A n (as a sequence), then P = A 1 A 2 • • • A n
(as a product). The (syntactic) atoms A are pairs (F, γ) of a closed set F and a non-trivial bound γ (with F irreducible if γ = ω 0 + 1), and then A = F <γ . Note that P = Q implies P = Q, but the converse may fail.

Definition 7.2 (Reduced). A sequence of atoms

P def = A 1 , A 2 • • • A n on X, where A i def = (F i , γ i ) for each i, is reduced if and only if: (1) F i is a non-empty closed subset of X (1 ≤ i ≤ n); (2) for every i, 1 ≤ i < n, such that γ i < γ i+1 , F i is not included in F i+1 ;
(3) for every i, 1 ≤ i < n, such that γ i = γ i+1 is indecomposable, F i and F i+1 are incomparable; (4) and for every i, 1 ≤ i < n, such that γ i is indecomposable and

γ i > γ i+1 , F i does not contain F i+1 .
Lemma 7. 3. For all non-empty closed subsets F and F of a space X, for all non-trivial bounds γ, γ ,

(1) F <γ = ε;

(2) F <γ ⊆ F <γ if and only if F ⊆ F and γ ≤ γ .

(3) F <γ = F <γ if and only if F = F and γ = γ .

Proof.

(1) Since F is non-empty, let us pick x in F . Since γ is non-trivial, the one-letter word x is in F <γ , whence the conclusion.

(2) If γ < γ or if γ = γ is indecomposable, then by Lemma 6.2, F <γ ⊆ F <γ if and only if F ⊆ F and ε ⊆ F <γ (true), or F ⊆ F and F <γ ⊆ ε (false, by ( 1)). Hence F <γ ⊆ F <γ if and only if F ⊆ F in this case. If γ > γ , by Lemma 6.3 F <γ ⊆ F <γ reduces to F <γ ⊆ ε, which is false by (1). If γ = γ is decomposable, then by Lemma 6.4,

F <γ ⊆ F <γ if and only if F ⊆ F and ε ⊆ ε, or F ⊆ F and F <γ ⊆ ε; equivalently, if F ⊆ F .
(3) follows immediately from (2).

Lemma 7. [START_REF] Fraïssé | Theory of Relations[END_REF]. The only reduced sequence of atoms with semantics { } is ε.

Proof. Let P be a reduced sequence of atoms of length n ≥ 1, say

A 1 • • • A n .
By Lemma 7.3 (1), each A i contains a non-empty word, and their concatenation is a non-empty word in P . We first claim that if A 1 ⊆ B 1 , then P = B 2 Q . Indeed, under that assumption, and since

P = A 1 A 2 P ⊆ Q = B 1 B 2 Q , we obtain P ⊆ B 2 Q by Lemma 7.5. In turn, B 2 Q ⊆ B 1 B 2 Q = Q = P , so P = B 2 Q . The induction hypothesis then yields P = B 2 Q . Similarly, if B 1 ⊆ A 1 then Q = A 2 P .
It follows that we cannot have

A 1 ⊆ B 1 and B 1 ⊆ A 1 . Otherwise, Q = B 1 B 2 Q = B 1 P = B 1 A 1 A 2 P = B 1 A 1 Q, which is impossible since |B 1 A 1 Q| = |Q|.
Hence A 1 is included in B 1 , or conversely. Without loss of generality, let us assume B 1 ⊆ A 1 . We claim that, in fact, A 1 = B 1 . We reason by contradiction, and we assume A 1 ⊆ B 1 . Then we have seen that P = B 2 Q . By syntactic matching, A 1 = B 2 (and Q = A 2 P ). Let us write B 1 as (F, γ) and B 2 as (F , γ ). Since B 1 ⊆ A 1 = B 2 , F ⊆ F and γ ≤ γ by Lemma 7.3 (2). By Definition 7.2 ( 2) and ( 3

) applied to B 1 B 2 Q , it is impossible that γ < γ , or that γ = γ is indecomposable. Hence γ = γ is decomposable. Now Q = B 1 B 2 Q = F <γ B 2 Q is included in P = A 1 A 2 P = B 2 A 2 P = F <γ A 2 P (since A 1 = B 2 and γ = γ ), so B 2 Q ⊆ A 2 P by Lemma 6.4 (2). Since A 2 P ⊆ P = B 2 Q (because P = B 2 Q ), A 2 P = B 2 Q . By induction hypothesis, A 2 P = B 2 Q , so A 2 P = P. This is impossible since P = A 1 A 2 P .
Having reached a contradiction, we conclude that A 1 = B 1 , so A 1 = B 1 by Lemma 7.3 (3).

We now claim that A 2 P ⊆ B 2 Q . We know that 

P = A 1 A 2 P is included in Q = B 1 B 2 Q = A 1 B 2 Q (since A 1 = B 1 ).
P ⊆ A 1 A 2 P ⊆ A 1 B 2 Q , so A 2 P ⊆ B 2 Q by Lemma 7.5. Symmetrically, B 2 Q is included in A 2 P , so A 2 P = B 2 Q . By the in- duction hypothesis A 2 P = B 2 Q . We remember that A 1 = B 1 , so P = Q.
We can always rewrite any transfinite product into a reduced product with the same semantics, using Lemma 7.1, whence the following. Corollary 7.9. Every transfinite product is equal to P for some unique reduced sequence of atoms P.

Corollary 7.9 allows us to conflate the notions of transfinite product and of reduced sequence of atoms. By abuse of language, we will call reduced product any transfinite product P written in such a way that P is reduced. A reduced α-product is an α-product that is reduced in this sense.

Well-foundedness

The rank (or height) of an element x in a well-founded poset P is defined by well-founded induction as the least ordinal strictly larger than the ranks of all elements y < x. We write ||F || for the rank of F in the lattice of closed subsets of a Noetherian space X. For any Noetherian space F , ||F || is the stature of F [START_REF] Goubault-Larrecq | Statures and sobrification ranks of Noetherian spaces[END_REF], generalizing the notion of the same name on wqos [1].

Given any two ordinals

α def = ω α 1 + • • • + ω αm and β def = ω β 1 + • • • + ω βn in Cantor normal form, their natural sum α ⊕ β is defined as ω γ 1 + • • • + ω γ m+n , where γ 1 ≥ • • • ≥ γ m+n is the list obtained by sorting the list α 1 , • • • , α m , β 1 , • • • , β n in
decreasing order. This operation is associative and commutative, and strictly monotonic in both arguments.

An ordinal δ is critical if and only if ω δ = δ. For every ordinal α, let α • be α+1 if α = δ+n for some critical ordinal δ and some n ∈ N, and α otherwise. Then α < ω α • , and → α • is strictly monotonic [START_REF] Goubault-Larrecq | Statures and sobrification ranks of Noetherian spaces[END_REF]Lemmata 12.3 and 12.4]. For every proper bound γ, we define [γ] as the rank of γ in the poset of all proper bounds less than or equal to γ. Explicitly, and writing n for a natural number and λ for a limit ordinal, [

ω n ] = 2n -2 and [ω n + 1] = 2n -1 if n ≥ 1, [ω λ+n ] = λ + 2n, and [ω λ+n + 1] = λ + 2n + 1.
Definition 8.1. Let X be a Noetherian space. For every atom F <γ , let ϕ(F <γ ) be ||F || if γ = ω 0 + 1, and ω (||F ||⊕[γ]) • otherwise. For every reduced product

P def = A 1 • • • A n , let ϕ(P ) def = n i=1 ϕ(A i ).
Proposition 8.2. Let X be a Noetherian space. For all reduced products P and P , P ⊆ P implies ϕ(P ) ≤ ϕ(P ), and P P implies ϕ(P ) < ϕ(P ).

Proof. We first claim that ϕ is strictly monotonic on reduced atoms: for all atoms F <γ and F <γ with F, F = ∅ and F <γ F <γ , ϕ(F <γ ) < ϕ(F <γ ). By Lemma 7.3, F ⊆ F and γ ≤ γ , and not both are equalities.

If γ = γ = ω 0 +1 and F F , then ϕ(F <γ ) = ||F || < ||F || = ϕ(F <γ ). If γ = ω 0 +1 < γ , then ϕ(F <γ ) = ||F || ≤ ||F ||⊕[γ] < ||F ||⊕[γ ] < ω (||F ||⊕[γ ]) • = ϕ(F <γ ).
If both γ and γ are proper, then ϕ(

F <γ ) = ω (||F ||⊕[γ]) • < ω (||F ||⊕[γ ]) • = ϕ(F <γ ) since ⊕, [ ],
• and || || are strictly monotonic. We prove the proposition by induction on the sum of the lengths of P and P . Let P ⊆ P . If P = ε, then ϕ(P ) = 0 ≤ ϕ(P ). If additionally P = ε, then ϕ(P ) is the natural sum of at least one term, and all those terms are non-zero: they are of the form ϕ(F <γ ), and when γ = ω 0 + 1, ϕ(F <γ ) = ||F || = 0 since F = ∅, otherwise ϕ(F <γ ) is a power of ω.

We now assume that P = ε. We write P as A 1 • • • A n , where A 1 , . . . , A n are atoms and n ≥ 1. Let also

Q def = A 2 • • • A n , so P = A 1 Q. Since P ⊆ P , P = ε, so P = A 1 Q
for some atom A 1 and some (reduced) product Q . We write A 1 as F <γ , and A i as F i <γ i for each i, 1 ≤ i ≤ n.

If A 1 ⊆ A 1 , then Lemma 7.5 entails that P = A 1 Q ⊆ Q . By induction hypothesis, ϕ(P ) ≤ ϕ(Q ). Now ϕ(P ) = ϕ(A 1 ) ⊕ ϕ(Q ) > ϕ(Q ),
so ϕ(P ) < ϕ(P ). We turn to the other cases: from now on,

A 1 ⊆ A 1 .
If γ is indecomposable. We say that A i is small if A i ⊆ A 1 , equivalently F i ⊆ F and γ i ≤ γ , by Lemma 7.3 (2). A 1 is small. Let k be largest such that A 1 , . . . , A k are small, and [START_REF] Goubault-Larrecq | Non-Hausdorff Topology and Domain Theory-Selected Topics in Point-Set Topology[END_REF]. By the induction hypothesis, ϕ(R) ≤ ϕ(Q ).

R def = A k+1 • • • A n . Then R ⊆ Q . This is clear if R = ε; otherwise k < n, A k+1 ⊆ A 1 , then R ⊆ P ⊆ P = A 1 Q implies R ⊆ Q by Lemma 7.
If some A i with 1 ≤ i ≤ k is equal to A 1 = F <γ , then γ i = γ is indecomposable, and F i = F . We cannot have i ≥ 2, since that would contradict Definition 7.2 (2) or (3) at positions i-1 and i; similarly, i ≤ k-1 would contradict Definition 7.2 (4) or (3) at positions i and i + 1. Hence

k = 1. Then ϕ(P ) = ϕ(A 1 ) ⊕ ϕ(R) ≤ ϕ(A 1 ) ⊕ ϕ(Q ) = ϕ(P ). Additionally, if P = P , then (since k = 1 and A 1 = A 1 ) R is strictly included in Q , so ϕ(R) < ϕ(Q ) by
induction hypothesis, from which ϕ(P ) < ϕ(P ) follows.

Otherwise, k ≥ 1 and A 1 , . . . , A k are all strictly included in A 1 . Then ϕ(A i ) < ϕ(A 1 ) for every i with 1 ≤ i ≤ k. Since γ is indecomposable,

γ = ω 0 + 1, so ϕ(A 1 ) = ω (||F ||⊕[γ ]) • . The latter is indecomposable, so ϕ(A 1 ) ⊕ • • • ⊕ ϕ(A k ) < ϕ(A 1 ). Together with ϕ(R) ≤ ϕ(Q ), this implies that ϕ(P ) = ϕ(A 1 ) ⊕ • • • ⊕ ϕ(A k ) ⊕ ϕ(R) < ϕ(A 1 ) ⊕ ϕ(Q ) = ϕ(P ).
If γ is decomposable. In that case, we say that A i is small if and only if F i ⊆ F and γ i < γ (not ≤). Let k be largest such that A 1 , . . . , A k are small, and

R def = A k+1 • • • A n . A 1 , . . . , A k are all strictly included in A 1 , so ϕ(A i ) < ϕ(A 1 ) for every i with 1 ≤ i ≤ k. If k ≥ 1, then γ 1 < γ , so γ = ω 0 + 1, and therefore ϕ(A 1 ) is indecomposable. Hence ϕ(A 1 ) ⊕ • • • ⊕ ϕ(A k ) < ϕ(A 1 ). If k = 0, the same inequality holds, vacuously. If R = ε, then ϕ(P ) = ϕ(A 1 ) ⊕ • • • ⊕ ϕ(A k ) < ϕ(A 1
) ≤ ϕ(P ). We now assume R = ε. Then, k < n, and A k+1 is not small.

If

A k+1 ⊆ A 1 , then R ⊆ P ⊆ P = A 1 Q implies R ⊆ Q by Lemma 7.5, hence ϕ(R) ≤ ϕ(Q ) by induction hypothesis. Then ϕ(P ) = ϕ(A 1 ) ⊕ • • • ⊕ ϕ(A k ) ⊕ ϕ(R) < ϕ(A 1 ) ⊕ ϕ(Q ) = ϕ(P ).
There remains one case, where A k+1 ⊆ A 1 and A k+1 is not small. Then

F k+1 ⊆ F and γ k+1 = γ , which is decomposable. Let R def = A k+2 • • • A n . R = A k+1 R ⊆ P ⊆ P = A 1 Q implies R ⊆ Q by Lemma 6.4. By induction hypothesis, ϕ(R ) ≤ ϕ(Q ). If k = 0, then P = A 1 R , P = A 1 Q , A 1 ⊆ A 1 , and R ⊆ Q , so ϕ(P ) = ϕ(A 1 ) ⊕ ϕ(R ) ≤ ϕ(A 1 ) ⊕ ϕ(Q ) = ϕ(P );
F <γ P and in (F ∩ F ) <ω β F γ P = F γ P (by Lemma 7.1 (1)). Finally, (F ∩ F ) <ω β (F <γ P ∩ P ) is included both in (F ∩ F ) <ω β F <γ P = F <γ P (by Lemma 7.1 (1)) and in (F ∩ F ) <ω β P ⊆ F <ω β P ⊆ F <γ P .

Corollary 9.2. Let X be a Noetherian space. The intersection of any two transfinite products is a finite union of transfinite products.

Proof. By induction on the sum of their sizes, using Lemma 9. 1. The case where one of them is ε is obvious, so we deal with the intersection of two transfinite products F <γ P and F <γ P . Without loss of generality, γ ≤ γ . By induction hypothesis, P ∩ F γ P , F <γ P ∩ P and P ∩ P are finite unions of transfinite products, say i P i , j Q j , and k R k respectively.

The intersection F <γ P ∩F <γ P can then be expressed as i (F ∩F

) <γ P i ∪ j (F ∩ F ) <γ Q j when γ < γ or if γ = γ is indecomposable. If γ = γ is of the form ω β + 1, then it can be expressed as the union k (F ∩ F ) <γ R k ∪ i (F ∩ F ) <ω β P i ∪ j (F ∩ F ) <ω β Q j .
This is a finite union of transfinite products, except when γ = ω 0 + 1. In that case, we need to refine the expressions above. If F ∩ F is empty, then (F ∩ F ) <γ = ε, so F <γ P ∩ F <γ P = i P i ∪ j Q j when ω 0 + 1 < γ , and

F <γ P ∩ F <γ P = k R k ∪ i P i ∪ j Q j otherwise.
We now assume that F ∩ F = ∅. F and F are irreducible closed, and since X is Noetherian, F ∩ F is a finite union n =1 C of irreducible closed subsets. Since F ∩ F = ∅, n is non-zero. Then (F ∩ F ) <γ = (F ∩ F ) ? = n =1 C ? (an equality that would fail if n were zero), and (F ∩ F ) <ω 0 = ε. Therefore F <γ P ∩F <γ P is equal to i, C ? P i ∪ j, C ? Q j when ω 0 +1 < γ , or to k,

C ? R k ∪ i P i ∪ j Q j if γ = ω 0 + 1.
We can now use Proposition 2.1. If X is Noetherian, the class P of αproducts is well-founded under inclusion by Corollary 8.3, X <α is a finite union of elements of P since it is, in fact, an α-product. The intersection of any two elements of P is a finite union of elements of P by Corollary 9.2, and P is irredundant by Proposition 5. [START_REF] Fraïssé | Theory of Relations[END_REF]. Moreover, the regular subword topology on X <α is the coarsest that makes every element of P a closed set, by Proposition 5. 3. Since every set of transfinite words on X is included in X <α for some bound α, we obtain the following.

Theorem 9. 3. For every Noetherian space X, every space Y of transfinite words on X is Noetherian in the regular subword topology. For every bound α, the irreducible closed subsets of X <α are the α-products.

For all ordinals β < γ < |w|, v γ ≤ * v β , so v γ ∈ v β by Lemma 4.2, and therefore v γ ⊆ v β . Hence the closed sets v β with β < |w| form a chain. Since X <α is Noetherian (Theorem 9.3), inclusion is well-founded on its closed subsets, so there is a non-empty suffix v β of w whose closure v β is smallest.

We claim that v β is topologically indecomposable. Let us write v β as uv with v = . Then v = v γ , where γ def = β + |u|, and u γ = u β u. Since v β is least and v γ ⊆ v β , owing to the fact that γ ≥ β, we deduce that v = v γ = v β .

By induction hypothesis (indeed, |u β | = β < |w|), u β is a finite concatenation of topologically indecomposable words; hence so is w = u β v β .

Lemma 10. 3. The length of a topologically indecomposable transfinite word is indecomposable.

Proof. Let w be topologically indecomposable in X <α , and let us assume that |w| is decomposable. We write |w| as β + γ, where 0 < β, γ < |w|, and then w as uv where |u| = β. We have

|v| = γ = 0, so v = . Since w is topologically indecomposable, w is in v. Now v is in X <γ+1 , which is closed, so v ⊆ X <γ+1 . Thus w is in X <γ+1 , which is impossible since γ < |w|.
Lemma 10.4. Let X be a Noetherian space and α be a bound. For every non-empty transfinite word w ∈ X <α , w is topologically indecomposable if and only if for every closed subset of X <α that is the concatenation

C 1 C 2 of two closed subsets of X α , if w ∈ C 1 C 2 then w is in C 1 or in C 2 .
Proof. Let w be topologically indecomposable. Since w ∈ C 1 C 2 , we can write w as uv where u

∈ C 1 and v ∈ C 2 . If v = , then w = u is in C 1 . Otherwise, since w is topologically indecomposable, v = w. But v ⊆ C 2 , so w ∈ w ⊆ C 2 .
Conversely, let us assume that w ∈ C 1 C 2 implies w ∈ C 1 or w ∈ C 2 for every concatenation of two closed sets C 1 C 2 . For any way of writing w as (2) Lemma 10.4 has the following consequence. Given any closed set of the form C 1 C 2 with C 1 and C 2 closed, for every transfinite word

uv with v = ∅, we let C 1 def = u and C 2 def = v. Then w ∈ u or w ∈ v. Let β def = |u|. We note that β < |w|, since |w| = β + |v| and v = . Clearly, u is in the closed set X <β+1 , so u ⊆ X <β+1 . If w ∈ u, then w is in X <β+1 , so |w| ≤ β < |w|, which is impossible. Therefore w is in v.
= i 0 ≤ i 1 ≤ • • • ≤ i n-1 ≤ i n = m such that for every j with 1 ≤ j ≤ n, i j i=i j-1 +1 supp w i ⊆ supp w j and |w i j-1 +1 | + • • • + |w i j | ≤ |w j |.
w def = w 1 • • • w m in C 1 C 2 ,
written as a finite concatenation of topologically indecomposable words, there is an index i with 0

≤ i ≤ m such that w 1 • • • w i ∈ C 1 and w i+1 • • • w m ∈ C 2 . Indeed, since w ∈ C 1 C 2 ,
there is an index j with 1 ≤ j ≤ m such that one can write w j as uv, and

w 1 • • • w j-1 u ∈ C 1 , vw j • • • w m ∈ C 2 . Since cat is continuous (Lemma 5.1 (2)), C 1 def = cat(w 1 • • • w j-1 , ) -1 (C 1 )
and C 2 def = cat( , w j • • • w m ) -1 (C 2 ) are closed. Now w j = uv ∈ C 1 C 2 , so w j is in C 1 or in C 2 ; we define i as j in the first case, as j -1 in the second case.

By induction on n, if w belongs to a finite product C 1 • • • C n of closed subsets of X <α included in X <α , we can find indices 0 = i 0 ≤ i 1 ≤ • • • ≤ i n-1 ≤ i n = m such that w i j-1 +1 • • • w i j ∈ C j for every j with 1 ≤ j ≤ n.

Let us assume that w ≤ top * w , namely w ⊆ w . By (1), w 1 • • • w m ⊆ w 1 • • • w n . Letting C j def = w j , we obtain indices 0 = i 0 ≤ i 1 ≤ • • • ≤ i n-1 ≤ i n = m such that w i j-1 +1 • • • w i j ∈ w j for each j. Since w j ∈ X <|w j |+1 , w j ⊆ X <|w j |+1 , so

|w i j-1 +1 | + • • • + |w i j | = |w i j-1 +1 • • • w i j | ≤ |w j |.
Also, for every i with i j-1 + 1 ≤ i ≤ i j , w i ≤ * w i j-1 +1 • • • w i j , so w i is in w j by Lemma 4.2; hence supp w i ⊆ supp w j , using Lemma 10.5 and Lemma 7.3 (2).

Conversely, if i j i=i j-1 +1 supp w i ⊆ supp w j and |w i j-1 +1 | + • • • + |w i j | ≤ |w j | for every j, then w i j-1 +1 • • • w i j is in (supp w j ) <|w j |+1 = w j (by Lemma 10.5); so w = w 1 • • • w m is in w 1 • • • w n = w , by (1).

How does this compare to the subword ordering ≤ * ? By Lemma 4.2, w ≤ * w implies w ≤ top * w . The converse holds on X * = X <ω [5, Exercise 9. 7.29], and on X <ω+1 if X is a wqo in its Alexandroff topology [START_REF] Goubault-Larrecq | Infinitary Noetherian constructions I. Infinite words. Colloquium Mathematicum[END_REF]Proposition 5.16]. Otherwise, the result may fail, as the following demonstrates.

Example 10.10. Let X be N with the cofinite topology. Since its nontrivial closed subsets are finite, X is Noetherian. In order to see that ≤ top * and ≤ * differ, let w def = 0 1 2 • • • . For every non-empty suffix v of w, Im v is infinite, so supp v = N. Hence w is topologically indecomposable. By Theorem 10.9 (1), w = X <ω+1 , so w ≤ top * w for every w ∈ X <ω+1 . Hence, for example, 0 ω ≤ top * w, but 0 ω ≤ * w.

For spaces X <α with α ≥ ω 2 , we have the following. Let w def = a ω 2 . This is also indecomposable, and supp w = ↓ a. Hence, by Theorem 10.9, w ≤ top * w . However, w ≤ * w , since there is no strictly increasing map from ω 2 into ω, the subset of positions of w where a occurs.

Conclusion and open problems

We have described a Noetherian topology on spaces of transfinite words over a Noetherian space X, in particular on spaces X <α , where α is a bound. In the latter situation, we have characterized its irreducible closed subsets, and given upper bounds on the stature and reduced sobrification rank of X <α . We have also characterized the specialization preordering ≤ top * of X <α . Although we have not stressed it, the syntax of α-products naturally yields an S-representation of X <α , in the sense of [3,[START_REF] Goubault-Larrecq | Infinitary Noetherian constructions I. Infinite words. Colloquium Mathematicum[END_REF], provided we restrict our bounds to lie in some class of ordinals with a computable representation, decidable ordering, and decidable equality. S-representations are important in forward analysis procedures for well-structured transition systems [2].

We finish with two questions. First, it is frustrating that ≤ top * and ≤ * differ in general. Is there a natural, finer Noetherian topology on X <α that would have ≤ * as specialization preordering? The specialization preordering of a Noetherian space is necessarily well-founded. Hence, if the desired topology exists, X <α is well-founded under ≤ * . By an argument similar to Lemma 10.2, every non-empty word w ∈ X <α would have an indecomposable suffix, in other words X would have to be β-better-quasi-ordered in the sense of [START_REF] Pouzet | Sur les prémeilleurordres[END_REF] or of [START_REF] Fraïssé | Theory of Relations[END_REF]Chapter 8,5.1], for every β < α.

Second, what is the exact stature of X <α ? its reduced sobrification rank?

Lemma 4 . 1 .( 1 )

 411 Let γ, γ be two bounds, and u and v be transfinite words. If γ is indecomposable and |u|, |v| < γ, then |uv| < γ. (2) If γ < γ and |u| < γ, |v| < γ , then |uv| < γ . (3) If γ is proper and |u| < γ, then for every x ∈ X, |xw| < γ. Proof. (1) By definition of indecomposability, using |uv| = |u| + |v|.

Lemma 4 . 2 .

 42 Every closed set in the regular subword topology is downwardsclosed with respect to ≤ * .

Lemma 7 . 5 .

 75 For all atoms A def = F <γ , B def = F <γ , with F, F = ∅, and all transfinite products P , Q, if AP ⊆ BQ and A ⊆ B, then AP ⊆ Q.

Lemma 7 . 3

 73 (3). Similarly if |P| = 1. The interesting case is the remaining one: |P|, |Q| ≥ 2. Let us write P as A 1 A 2 P and Q as B 1 B 2 Q .

  Let us write Im w for the set of letters in a transfinite word w. We call support supp w of w the closure cl(Im w) of Im w. Lemma 10.5. Let X be Noetherian, and α be a bound. For every topologically indecomposable word w ∈ X <α , w = (supp w) <γ+1 , where γ def = |w|. Proof. Let F def = supp w. Clearly, w is in F <γ+1 , so w ⊆ F <γ+1 . Conversely, w is irreducible closed, hence is an α-product P def = A 1 • • • A n , by Theorem 9.3.

( 1 )

 1 For every w ∈ X <α , one can write w as a finite concatenation of topologically indecomposable words w 1 • • • w n , and then η X <α (w) = w = w 1 • • • w n , and w i = (supp w i ) <|w i |+1 for every i, 1 ≤ i ≤ n. (2) For all transfinite words w def = w 1 • • • w m and w def = w 1 • • • w n written as finite concatenations of topologically indecomposable words, w ≤ top * w if and only if there are indices 0

Proof. ( 1 )

 1 We write w as w 1 • • • w n where each w i is topologically indecomposable by Lemma 10.2. By Lemma 10.7 (and since = ε in the base case n = 0), w = w 1 • • • w n . Finally, w i = (supp w i ) <|w i |+1 by Lemma 10.5. 

Example 10 . 11 .

 1011 Let X be any Noetherian space with two elements a and b such that a ≤ b (say, {a, b} with the discrete topology). We claim that ≤ top * and ≤ * differ on X <α , for any bound α ≥ ω 2 . Letw def = (ab ω ) ω (explicitly, w : ω 2 → X, w (ω.m + n) def = a if n = 0, botherwise); w is indecomposable, hence topologically indecomposable by Lemma 10.1, and supp w = ↓{a, b}.

  Conversely, let w ∈ F <α , and let us write |w| in Cantor normal form as γ 1 + • • • + γ n . We can write w as a concatenation w 1 • • • w n where |w 1

  Let us write A 1 as (F, γ) and A 2 as (F , γ ). If γ is decomposable, then A 2 P ⊆ B 2 Q by Lemma 6.4 (2). Let therefore γ be indecomposable. Since A 1 A 2 P is reduced, we cannot have F ⊇ F and γ ≥ γ , by Definition 7.2 (3) and (4), so A 2 ⊆ A 1 , by Lemma 7.3 (2). Then A 2
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Proof. Since A ⊆ B, we have F ⊆ F or γ > γ , by Lemma 7.3 (2).

If γ > γ , then Lemma 6.3 and F γ P ⊆ F <γ Q imply F <γ P ⊆ Q. Let us therefore assume γ ≤ γ , and F ⊆ F . If γ < γ or γ = γ is indecomposable, then by Lemma 6.2, F <γ P ⊆ Q again. If γ = γ is decomposable, then we reach the same conclusion by using Lemma 6.4.

Lemma 7. [START_REF] Goubault-Larrecq | Infinitary Noetherian constructions I. Infinite words. Colloquium Mathematicum[END_REF]. For any reduced sequence of atoms AP, AP = A implies P = ε.

Proof. By contradiction, let us assume that P = A Q, and let us write A as F <γ and A as F <γ . Since AP ⊆ A, either γ is indecomposable and P ⊆ A by Lemma 6.2, or γ is decomposable and P ⊆ ε by Lemma 6. [START_REF] Fraïssé | Theory of Relations[END_REF]. The latter is impossible by Lemma 7. [START_REF] Fraïssé | Theory of Relations[END_REF]. Hence γ is indecomposable, and P = A Q ⊆ A.

If γ ≤ γ, then by Lemma 6.2 F ⊆ F and Q ⊆ A, or F ⊆ F and P ⊆ ε. The latter is impossible, as above. The former is impossible, too, because AA Q is reduced, using Definition 7.2 (3), (4). If γ > γ, then P = A Q ⊆ ε by Lemma 6.3, which is impossible by Lemma 7.4.

Lemma 7. 7. For every reduced sequence of atoms AP and for every atom

Proof. By induction on the number

Then AP = A, so P = ε by Lemma 7. [START_REF] Goubault-Larrecq | Infinitary Noetherian constructions I. Infinite words. Colloquium Mathematicum[END_REF].

We now assume B ⊆ A, and we will show that this is impossible. By Lemma 7.5 applied to B ⊆ AP , we have B ⊆ P . Since P ⊆ AP = B, B = P . By induction hypothesis, if we write P as A Q where A is an atom, then Q = ε, so P = A . Then P = B entails P = A = B by Lemma 7.3 (3). Let us write A as (F, γ) and B as (F , γ ). Since A ⊆ AP = B, Lemma 7.3 (2) entails that F ⊆ F and γ ≤ γ . But AP = (F, γ)(F , γ ) is reduced, and this contradicts Definition 7.2 (2) 

Corollary 8.3. Let X be a Noetherian space. The inclusion ordering on transfinite products on X is well-founded. Additionally, the ordinal rank of X <α in the poset of all α-products is at most ω (||X||⊕[α]) • , for every bound α.

Intersections of transfinite products

Lemma 9.1. Let X be a topological space. The intersection of two transfinite products satisfies the following properties:

(1)

to the union of (F ∩F ) <γ (P ∩F <γ P ) and of (F ∩F ) <γ (F <γ P ∩P ).

is the union of (F ∩ F ) <γ (P ∩ P ), of (F ∩ F ) <ω β (P ∩ F <γ P ), and of (F ∩ F ) <ω β (F <γ P ∩ P ).

Proof.

(1) is clear. Let us deal with the left to right inclusions for the other cases, as a first step. For every w ∈ F <γ P ∩ F <γ P , let us write w as uv where u ∈ F <γ , v ∈ P and also as u v where u ∈ F <γ , v ∈ P .

(2) If |u| ≤ |u |, u is a prefix of u , so its letters are not just in F , but also in F . Therefore u ∈ (F ∩ F ) <γ . Also, v is in P , and is a suffix of w. In particular, v ≤ * w, so v ∈ F <γ P by Lemma 4.2. If |u | ≤ |u|, then symmetrically u is in (F ∩ F ) <γ and v is in P and in F <γ P .

(

Otherwise, w is in F <ω β P and in F <γ P , or in F <γ P and in F <ω β P . In the first case, by (2) with

In the second case, a similar argument leads to the same result.

We now deal with the right to left inclusions.

(2) (F ∩ F ) <γ (P ∩ F <γ P ) is included both in F <γ P (because F ∩ F ⊆ F ) and in (F ∩ F ) <γ F <γ P = F γ P , by Lemma 7.1 (1). Similarly for (F ∩ F ) <γ (F <γ P ∩ P ).

(3) (F ∩F ) <γ (P ∩P ) is included both in F <γ P and in Proposition 9. [START_REF] Fraïssé | Theory of Relations[END_REF]. For every Noetherian space X, for every bound α, we have rsob

It is not our purpose to give an exact formula for rsob X <α and ||X <α || here. When α = ω 1 , X <α = X * , [α] = 0, and Proposition 9. [START_REF] Fraïssé | Theory of Relations[END_REF] 

The specialization ordering

A non-empty transfinite word w is indecomposable if and only if for every way of writing w as uv where v = , we have w ≤ * v. Pouzet [START_REF] Pouzet | Sur les prémeilleurordres[END_REF], confirming a conjecture of Jullien [START_REF] Jullien | Contribution à l' Étude des Types d'Ordres Dispersés[END_REF], shows that ≤ is a better-quasi-ordering if and only if every transfinite word (of countable length) is a concatenation of finitely many indecomposable words.

Given a topological space X and an ordinal α, let us call w ∈ X <α topologically indecomposable if and only w = and, for every way of writing w as uv where v = , w is in the closure v of v in X <α . (We write v instead of the more cumbersome notation cl({v}).) When w = uv, we have v ≤ * w, so v ∈ w by Lemma 4.2. Hence w is topologically indecomposable if and only if for every way of writing w as uv where v = , v = w. Lemma 10.1. Let X be a topological space. Every indecomposable transfinite word w on X is topologically indecomposable.

Proof. Whenever w = uv with v = , w ≤ * v; so w ∈ v by Lemma 4.2.

Lemma 10.2. Every transfinite word w ∈ X <α , where X is Noetherian and α is a bound, can be written as a finite concatenation of topologically indecomposable transfinite words. Proof. By induction on |w|. The claim is clear if w = . Otherwise, for every β < |w|, we write w as u β v β where u β is its prefix of length β, and v β = .

Since w ∈ P is topologically indecomposable hence non-empty, n ≥ 1. Using Lemma 10.4, w is in some A i . Let us write A i as F <γ . Since |w| = γ, γ < γ . Every letter of w is in F , so Im w ⊆ F , and taking closures, F ⊆ F . Then F <γ+1 ⊆ F <γ , so F <γ+1 ⊆ P = w.

Lemma 10. [START_REF] Goubault-Larrecq | Infinitary Noetherian constructions I. Infinite words. Colloquium Mathematicum[END_REF]. Let X be a Noetherian space, β be an ordinal, and α be ω β or ω β + 1. The map cat is closed and continuous from X <ω β × X <α to X <α . Proof. It is well-defined and continuous by Lemma 5. 1. By Theorem 9.3, the closed subsets of X <ω β (resp., X <α ) are the finite unions of ω β -products (resp., α-products). Given any two such closed sets expressed as finite unions of such products

cat is the (finite) union over all i and j of the products P i Q j .

Lemma 10.7. Let X be a Noetherian space, and α be a bound. For all sets of transfinite words A and B such that AB ⊆ X <α , cl(AB) = cl(A)cl(B).

Proof. We use Lemma 10. [START_REF] Goubault-Larrecq | Infinitary Noetherian constructions I. Infinite words. Colloquium Mathematicum[END_REF]. If α is indecomposable, cat is continuous from X <α × X <α to X <α , so cl(A)cl(B) ⊆ cl(AB); cat is closed, so cl(A)cl(B) is closed, and contains AB, so it contains cl(AB).

If α = ω β + 1, then either B ⊆ { }, in which case cl(AB) = cl(A) = cl(A)cl(B); or A ⊆ X <ω β (else we could pick u ∈ A of length ω β , v = in B, and then uv ∈ AB would not be in X <α ), then we reason as above, using the fact that cat is closed and continuous from X <ω β × X <α to X <α . Proposition 10.8. For every Noetherian space X and every bound α, the regular subword topology on X <α is the coarsest one such that F <γ is closed for every closed subset F of X and every ordinal γ ≤ α, and such that C 1 C 2 is closed for all closed subsets C 1 and C 2 such that C 1 C 2 ⊆ X <α .

Proof. Let us call admissible any topology τ containing the sets F <γ as closed sets, and closed under concatenations C 1 C 2 , as described above. The regular subword topology is admissible, since C 1 C 2 = cl(C 1 )cl(C 2 ) = cl(C 1 C 2 ), by Lemma 10. 7. Given any admissible topology τ , we see that the α-products are closed in τ , so τ is finer than the regular subword topology.

There is a full, continuous map η Y : y → ↓ y from any space Y to SY . The specialization preordering ≤ on Y is characterized by y ≤ y if and only if y ∈ η Y (y ). We note that η X <α (w) is simply w. Theorem 10.9. Let X be a Noetherian space, α be a bound. Let ≤ top * be the specialization preordering of X <α .
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