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RECURRENCE THEOREMS FOR TOPOLOGICAL MARKOV
CHAINS

CÉDRIC HO THANH, NATSUKI URABE, AND ICHIRO HASUO

Abstract. In the theory of probabilistic model checking, recurrence theo-
rems play crucial roles in reducing an infinitary question to finitary—and
thus machine-checkable—ones. They do so specifically by (1) reducing re-
currence specifications—which speak about infinite future—to finding bottom
strongly connected components (BSCCs), much like the lasso-based algorithm
for non-emptiness of Büchi automata, and (2) reducing (quantitative) com-
putation of some probabilities to the (qualitative) graph-theoretic question
of strong connectedness. In this paper, we present infinitary extensions of
those recurrence theorems, ones that apply to Markov chains with infinite
(and even continuous) state spaces. The extension calls for careful general-
ization of the original finitary arguments to topological ones. We conduct the
extension, imposing Polishness and compactness as key conditions, and using
upper semicontinuity as an important technical notion in our proofs.

1. Introduction

1.1. Model checking, qualitative and quantitative. The theory of model check-
ing [CGP99] is one of the major successes of theoretical computer science. In prin-
ciple, it features the combination of two different modeling formalisms, namely
(inductive) logical specifications and (coinductive) automata-theoretic modeling.
Practically, the theory allows one to reduce the logical problem of satisfaction of
a temporal formula to an automata-theoretic problem, the latter being handled by
efficient algorithms. Model checking is therefore a powerful methodology in auto-
mated formal verification, whose importance is ever-growing in the modern world.
It has resulted in a number of real-world verification tools, including SPIN [Hol19],
mCRL2 [GM14, BGK+19], and NuSMV [CCG+02].

The theory of model checking was initially developed in qualitative settings,
where target systems are typically nondeterministic, and the satisfaction of a spec-
ification is boolean. Its success, however, made the community turn to its quanti-
tative extension—extension to settings where continuous values are involved, e.g.
transition probabilities, continuous time, satisfaction probabilities, rewards, costs,
etc.

It should be noted that a straightforward formalization of quantitative model
checking leads to an infinitary problem—dealing with the continuum of real num-
bers, the set of “configurations” is continuous as well—that is not subject to au-
tomated exhaustive search. This is for example the case with model checking of
hybrid automata [Hen96, ACH+95], where reachability is undecidable even if a hy-
brid automaton has a finite set of control states.
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Nevertheless, the community has found a few special classes of quantitative
model checking problems that can be effectively decided. Among them is model
checking of timed automata, where the continuous set of clock values allows finite
partitioning by the “region” and “zone” constructions. See e.g. [BY04, And19].

1.2. Probabilistic model checking. Another effective setting of quantitative
model checking—one of interest in this paper—is probabilistic model checking. Here,
target systems (such as Markov chains and Markov decision processes) exhibit prob-
abilistic branching, and the satisfaction of (at least some) specifications is given by
a real number (such as the satisfaction probability).

In the theory of probabilistic model checking, the crucial fact is that reachability
in many types of probabilistic systems can be computed efficiently by linear pro-
gramming, as long as the systems have finitely many states. Suitable temporal logics
have been devised for the purpose of specification. Furthermore, several mathemat-
ical results have been developed that allow reduction of the satisfaction of those
temporal formulas to computation of reachability probabilities and graph-theoretic
properties of the underlying graphs. See [BK08, chapter 10] for a comprehensive
account on the theory.

In this paper, we take interest in one of those “reduction” results, namely recur-
rence theorems.

1.3. A lasso-based algorithm for qualitative model checking. Before we dis-
cuss the probabilistic recurrence results, we briefly discuss a lasso-based algorithm
for (qualitative, non-probabilistic) model checking. It sets the right context for
interpreting the probabilistic recurrence results discussed in section 1.4.

Recurrence refers to the event that a certain property ϕ becomes true infinitely
often over time. In the usual syntax of linear time logic (LTL), recurrence is ex-
pressed as ◻◊ϕ or GFϕ, meaning that at any moment in the future, there is
another moment in its future where ϕ holds. Note that recurrence speaks about in-
finity: the ◻ modality refers to the (whole, unbounded) future, and the ◊ modality
poses no finite bound whatsoever.

In classical qualitative model checking, e.g. [Var96], recurrence is checked in the
following manner:

(1) a temporal formula, e.g. a recurrence formula ◻◊ϕ, gets translated into a
Büchi automaton;

(2) this automaton is combined with a system model, also expressed as an
automaton;

(3) the combination (a product automaton) is checked for emptiness.
The last problem is decidable by exhaustive search for a lasso, i.e. a shape in a
graph with a lead and a loop. The finiteness of the relevant automata is essential
here, since it justifies the search for a lasso via the infinitary pigeonhole principle.
This way, we can reduce the truth of (an infinitary property of) recurrence to (a
finite shape of) a lasso.

1.4. Finitary recurrence in probabilistic model checking. A counterpart for
the above lasso-based reduction in probabilistic model checking is the following
results.

Theorem (Finitary weak recurrence [BK08, corollary 10.30]). Let (X,γ) be a
finite Markov chain, and U ⊆ X be such that X ⊧ P(◊U) > 0, i.e. the probability
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of eventually reaching U is non-zero starting from everywhere in X. Then X ⊧
P(◻◊U) = 1.

Theorem (Finitary strong recurrence [BK08, corollary 10.30 and 10.33]). Let
(X,γ) be a finite Markov chain that is strongly connected, and U ⊆ X non-empty.
Then X ⊧ P(◻◊U) = 1.

Corollary. Let (X,γ) be a finite Markov chain, x ∈ X be a state, Y ⊆ X form
a bottom strongly connected component (BSCC), and U ⊆ Y be non-empty. If
x ⊧ P(◊Y ) = r for r ∈ [0,1], then x ⊧ P(◻◊U) = r.

Weak recurrence states that, if U is reachable from every state, then it is almost
surely visited infinitely often, starting from any state. Strong recurrence states
that, if the Markov chain (X,γ) is strongly connected—meaning that every state
is reachable from any other state with a non-zero probability—then a nonempty U
is almost surely visited infinitely often.

Finally, the corollary is what enables efficient probabilistic model checking. It
enables the computation of the probability of a recurrence formula ◻◊U , by sepa-
rating the problem into (1) finding a BSCC Y , and (2) computing the reachability
probability to Y . Compared to the qualitative lasso-based algorithm in section 1.3,
(1) the BSCC Y corresponds to the loop part of a lasso in section 1.3, and (2) the
reachability probability to Y corresponds to the lead part of a lasso.

These results reduce infinite to finite, in the following two ways. Firstly, the
infinitary specification of recurrence is reduced to a BSCC, exploiting the finiteness
of the state space X, much like in section 1.3. Secondly, the quantitative question
of reachability probability is partially reduced to the qualitative question of finding
a BSCC—note that a BSCC is a qualitative notion that can be found by examining
the underlying graph of the Markov chain (where there is an edge if the transition
probability is non-zero). The only quantitative question is to compute P(◊Y ),
which can be done efficiently by linear programming.

1.5. Our contribution: infinitary recurrence via topology. In this paper, we
study infinitary extensions of the recurrence results above, that is, when the Markov
chain in question can have an infinite (possibly even continuous) state space.

We found that naive generalizations of the finitary statements are not true, see
remark 6.11 for a simple counterexample. Moreover, graph-theoretic analysis is no
longer possible. For example, if the state space is the unit interval [0,1], and if the
transition distribution from any state is the uniform distribution on [0,1], then the
probability to transition from any state to any other is 0. Yet this Markov chain is
not trivial.

In this paper, we show that suitable topological machineries can lift the finitary
results of section 1.4 to the infinitary setting. The usefulness of topology is hardly
surprising: topology is a mathematical language about size, neighborhood, and
observability, that is used in numerous branches of mathematics. In theoretical
computer science specifically, the use of topology to describe infinity in finitary
terms is standard [Joh92, Vic96]. In the study of probabilistic systems too, topology
have been commonly used [Dob07, DGJP04, DEP02]. Nevertheless, we believe that
the topological theory developed in the paper is non-trivial, novel, and of potential
practical importance.

The statements that we will prove as the counterpart to section 1.4 are as follows.
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Theorem (Topological weak recurrence). Let (X,γ) be a (not necessarily finite)
topological Markov chain. If X is compact and U ⊆ X is an open set such that
X ⊧ P(◊U) > 0, then X ⊧ P(◻◊U) = 1.
Theorem (Topological strong recurrence). Let (X,γ) be a (not necessarily finite)
topological Markov chain. If X is compact and (X,γ) is irreducible, then for all
measurable sets U ⊆X with non-empty interior, we have X ⊧ P(◻◊U) = 1.
Corollary. Let (X,γ) be a be a (not necessarily finite) topological Markov chain,
x ∈ X be a state, Y ⊆ X be an irreducible subchain of (X,γ), and U ⊆ Y be a
measurable set with non-empty interior. If x ⊧ P(◊Y ) = r for r ∈ [0,1], then
x ⊧ P(◻◊U) = r.

We note that the statements involve many topological conditions. Some of them
come quite naturally. For example, the definition of topological Markov chains
requires the underlying state space X to be a Polish space [Kec95]. The use of such
spaces is standard in the study of probabilistic systems, see e.g. [Dob07, DGJP04,
DEP02]. The assumption of compactness of X is crucial: it represents “topological
finiteness” and allows reasoning that is somewhat similar to the finitary case.

The theory involved in the proof of these theorems is not trivial. We encountered
subtle issues about the topology of the Giry monad and the continuity of certain
measure extension operators. In fact, said continuity seems to fail in general, which
made our efforts much more difficult. Our solution is the use of a suitable compro-
mise, namely upper semicontinuity [Bou98, definition IV.6.2.1].

1.6. Organization of the paper. We begin by recalling elements of the theory of
measurable spaces, Polish spaces, and the Giry monad ∆ in section 2. In sections 3
and 4, we introduce two constructions that are foundational to this work, namely the
path space X⊙n of a Markov chain (X,γ), and the probability extension operator
extn ∶ ∆X Ð→ ∆X⊙n. In section 5, we make use of this topological framework to
define a semantics for linear temporal logic (LTL) and probabilistic computation
tree logic (PCTL). With all these preparations in place, we develop the topological
recurrence theorems in section 6. We conclude in section 7.

1.7. Acknowledgments. We would like to warmly thank Shin-ya Katsumata for
his help and insightful comments.

2. Preliminaries

We recall elements of measure theory and descriptive set theory. Refer to [Hal74,
Tay06, Kle13, Kec95] for more comprehensive accounts.

2.1. Measurable spaces. A measurable space X = (X,Σ) consists of a set X and
a σ-algebra Σ on X, which is a collection of subsets of X such that (1) X ∈ Σ;
(2) Σ is closed under complementation; (3) Σ is closed under countable unions.
Elements of Σ are called measurable subsets. If (X ′,Σ′) is another measurable
space, then a set-map f ∶ X Ð→ X ′ is measurable if f−1 maps measurable subsets
of X ′ to measurable subsets of X. Let Meas be the category of measurable spaces
and measurable maps.

A measure on X is a map µ ∶ ΣÐ→ [0,+∞] such that (1) µ(∅) = 0; (2) µ is count-
ably additive: if E1, . . . ∈ Σ are pairwise disjoint, then µ (∑n∈NEn) = ∑n∈N µ(En).
A measure µ is finite if µ(X) < ∞. It is a probability measure (or probability
distribution) if µ(X) = 1.
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Theorem 2.1 (Carathéodory, [Kle13, theorem 1.41]). Let Γ ⊆ 2X be a ring of sets,
i.e. a set of subsets of X such that (1) ∅ ∈ Γ; (2) Γ is closed under binary unions;
(3) Γ is closed under subtractions, i.e. if A,B ∈ Γ, then A − B ∈ Γ. Let Σ be
the smallest σ-algebra containing Γ. If µ ∶ Γ Ð→ [0,+∞] is a map satisfying the
same conditions as a probability measure, then it extends uniquely into an actual
probability measure µ ∶ ΣÐ→ [0,1].

2.2. Integration. Let X = (X,Σ) be a measurable space and µ be a measure on
X. For E ⊆X, let χE ∶X Ð→ {0,1} be the characteristic map of E. A simple map
is a map g ∶ X Ð→ R of the form g = ∑n

i=1 riχEi , where r1, . . . , rn ∈ R − {0}, and
E1, . . . ,En ∈ Σ are pairwise disjoint. The integral of such a g is ∫ gdµ ∶= ∑i riµ(Ei).
Let now f ∶X Ð→ R be a measurable positive map, and define

∫ f dµ ∶= sup{∫ g dµ ∣ g ≤ f, g simple positive}

Finally, if f ∶X Ð→ R is a measurable map, write f = f+ −f−, where f+ ∶=min(0, f)
and f− ∶=max(0, f), and let ∫ f dµ ∶= ∫ f+ dµ − ∫ f− dµ. If A ∈ Σ, we write ∫A f dµ
as a shorthand for ∫ χAf dµ. In the sequel, it will sometimes be convenient to use
the verbose notation ∫x∈A f(x)µ(dx) for ∫A f dµ.

2.3. Borel σ-algebra. We write Top for the category of topological spaces and
continuous maps. Let X = (X,T) ∈ Top. The Borel σ-algebra B(X) of X is the
σ-algebra generated by T. In the sequel, all topological spaces will be implicitely
considered as measurable spaces in this way. Note that continuous maps are mea-
surable.

If µ is a measure on X, then its support is
suppµ ∶= {x ∈X ∣ ∀U ∈ T, x ∈ U Ô⇒ µ(U) > 0} .

It is a closed set since its complement is the union of all open sets of measure 0. In
particular, suppµ is measurable, and if µ is a probability measure, µ(suppµ) = 1.

2.4. Polish spaces. A topological space X = (X,T) is a Polish space if it is (1) sep-
arable: it admits a countable dense subset; (2) completely metrizable: there exists
a complete metric on X that generates T. Let Pol be the full subcategory of Top
spanned by Polish spaces.

Theorem 2.2 ([Kec95, theorem 4.14]). A topological space is a Polish space if and
only if it is homeomorphic to a Gδ-set (i.e. a countable intersection of open sets) of
the Hilbert cube [0,1]∞. In particular, a Gδ-set of a Polish space is itself a Polish
space.1

Lemma 2.3 ([Wil70, problem 15.C]). In a metrizable space, every closed set is Gδ.

The following fundamental result is expected, but we were not able to find a
complete demonstration in the literature. We include a proof for reference.

Proposition 2.4. The category Pol has all countable limits.

Proof. It is well-known that Pol has countable products, see e.g. [Kle13, theorem
14.8]. We now show that it has equalizers. Let f, g ∶ X Ð→ Y be two morphisms
in Pol, and let k ∶K Ð→X be the equalizer of f and g computed in Top. In other

1In fact, this is also a necessary condition, see [Kec95, theorem 3.11].
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words, K = {x ∈ X ∣ f(x) = g(x)} with the subspace topology. We show that K is
a Polish space.

For r > 0, consider the infinite product Hr ∶= [−r, r]∞ with the product topol-
ogy. It is homeomorphic to the Hilbert cube, and by theorem 2.2, there exists
an embedding i ∶ Y Ð→ H1. For j ∶ H1 Ð→ H2 the natural inclusion, define
k ∶= jif − jig ∶ X Ð→ H2, and note that K = k−1((0,0, . . .)). This show that K is
closed in X, and by lemma 2.3 and theorem 2.2 again, it is a Polish space. □
2.5. The Giry monad. IfX is a topological space, we write Cb(X) (resp. M b(X))
for the set of all bounded continuous (resp. bounded measurable) maps X Ð→ R.

Definition 2.5. The Giry monad [Gir82, section I.2] ∆ ∶ PolÐ→ Pol maps a Polish
space X to the set of all probability distributions over X, endowed with the coarsest
topology T∆ such that for all f ∈ Cb(X), the map

If ∶= ∫ f d(−) ∶∆X Ð→ R (2.6)

is continuous. On morphisms, ∆ maps f ∶ X Ð→ Y to f∗ ∶ ∆X Ð→ ∆Y , where for
µ ∈∆X and E ∈ B(Y ), f∗µ(E) ∶= µ(f−1(E)).

The monad unit δ ∶X Ð→∆X maps x ∈X to its Dirac distribution δx, given by
δx(E) = 1 if x ∈ E and 0 otherwise.

The monad multiplication ∆∆X Ð→∆X is defined naturally but is not needed
in this paper—see e.g. [Gir82, theorem 1].

The topology T∆ of ∆X is the weakest topology with respect to integration of
continuous bounded maps. We shall reuse this formulation in the sequel. It is easy
to see that T∆ is generated by sets of the form

β&p(f) ∶= {µ ∈∆X ∣ If(µ) & p} ,
where & ∈ {>,<}, p ∈ R, and f ∈ Cb(X). We extend the notation β&p(f) to & ∈ {≥,≤}
and any measurable map f ∶ ∆X Ð→ R in the obvious way. If f = χE for some
E ∈ B(X), then we write β&p(E) as a shorthand for β&p(χE).

Remark 2.7. The Giry monad also has a version for the category Meas [Gir82,
section I.2], which we denote by ∆′ ∶MeasÐ→Meas. Here, if M ∈Meas, then the σ-
algebra on ∆′M is the smallest such that for all f ∈M b(X), the map If ∶∆′X Ð→ R
from (2.6) is measurable. In other words, it is the smallest σ-algebra with respect
to integration of measurable bounded maps

With this in mind, and coming back to Polish spaces, one could think that a
more natural topology on ∆X than in definition 2.5 would be the weakest w.r.t.
the integration of measurable (instead of continuous) bounded maps. Unfortunately,
this topology, which we shall denote by Twrong, is usually not desirable. For example
the Dirac map δ ∶ X Ð→ (∆X,Twrong) is continuous only when X is discrete. To
see this, take f ∈M b(X). Since f(x) = ∫ f dδx for all x ∈X, the following diagram
commutes.

X R

(∆X,Twrong)

f

δ If
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So assuming that δ is continuous, X has the property that every measurable
bounded map X Ð→ R is continuous. In particular, any characteristic map is
continuous, forcing X to be discrete...

Still, the following result shows that the Borel σ-algebra of the wrong topology
Twrong, the right topology T∆ of definition 2.5, and the σ-algebra on ∆′(X,B(X)),
where ∆′ ∶ Meas Ð→ Meas is the Giry monad on Meas [Gir82, section I.2], all
coincide. In the sequel, we shall not consider Twrong any further.
Proposition 2.8 ([Kec95, theorem 17.24], [Dob07, proposition 1.80]). The Borel
σ-algebra B(∆X) is the smallest σ-algebra w.r.t. the integration of bounded mea-
surable maps. In other words, the following square commutes:

Pol Pol

Meas Meas

∆

∆′

where the vertical arrows are the forgetful functors. Incidentally, B(∆X) is also
the smallest w.r.t. evaluation of measures on measurable sets.
Theorem 2.9 (“Portmanteau”, [Kec95, theorem 17.24], [Dob07, proposition 1.66]).
For µ,µ0, µ1, µ2, . . . ∈∆X, the following are equivalent:

(1) the sequence (µn)n∈N converges to µ;
(2) for all f ∈ Cb(X), we have limn ∫ f dµn = ∫ f dµ;
(3) for all open U ⊆X, we have lim infn µn(U) ≥ µ(U);
(4) for all closed F ⊆X, we have lim supn µn(F ) ≤ µ(F ).

2.6. Markov chains. As we announced earlier, we work on Markov chains in the
setting of Polish spaces. The usual definition in terms of stochastic kernels can be
simply presented in the following categorical terms.
Definition 2.10 (Markov chain). A Markov chain X = (X,γ) is the datum of a
Polish space X together with a morphism γ ∶ X Ð→ ∆X in Pol. In other words, a
Markov chain is simply a ∆-coalgebra. Elements of X are called states, and γ is
called the transition kernel.

For x, y ∈ X and E ∈ B(X), we write γ(x,E) instead of γ(x)(E) and γ(x, y)
instead of γ(x,{y}).2

3. Path spaces

Let X = (X,γ) be a Markov chain. In this section, we define a Polish subspace
X⊙n ⊆Xn of paths of length n in X, where n ≤∞. Elements of X⊙n are sequences
of states that can result from a random walk in X.

In what follows, we study the topological and measurable structures of the path
spaces X⊙n (where n ≤ ∞). We do so because (1) the finitary theory in [BK08,
chapter 10] is built similarly on top of path spaces; (2) path spaces are such fun-
damental constructs that their topological/measurable structures are interesting in
themselves. In particular, we will see in proposition 3.8 that the Borel σ-algebra
on X⊙∞ is generated by the well-known cylinder sets of X, much like in [BK08,
definition 10.9] and [Kle13, definition 14.9].

2Recall that since X is Hausdorff, every singleton is closed, thus measurable.
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3.1. Finite paths.

Definition 3.1. We construct the space X⊙n of paths of length n, for n ∈ N. First,
let X⊙0 be the singleton space ∗, and X⊙1 ∶= X. If n = 2, let X⊙2 ⊆ X2 be the
subspace of all pairs (x, y) such that y ∈ suppγ(x). If n ≥ 3, let X⊙n be the limit
(in Top) of the following diagram

X⊙2 X⊙2 ⋯ X⊙2

X X X

p2 p2p1 p2p1 p1

where p1 and p2 are the projections on the first and second component respectively,
and where there are n − 1 instances of X⊙2.

It is easy to see that X⊙n is the subspace of Xn of sequences (x1, . . . , xn) such
that for 1 ≤ i < n, xi+1 ∈ suppγ(xi). In particular, the topology of X⊙n is spanned
by subsets of the form

U1 ⊙⋯⊙Un ∶=X⊙n ∩ (U1 ×⋯ ×Un),
called open sequence sets, where U1, . . . , Un ∈ T.

Our topological framework is based in Polish spaces, so it is important that path
space construction yields Polish spaces as well. We show this in the next two “sanity
check” results.

Lemma 3.2. The subspace X⊙2 ⊆X2 is Polish.

Proof. By definition, (x, y) ∈ X⊙2 if and only if for all open set U , y ∈ U implies
γ(x,U) > 0. In other words, for all open set U , gU(x, y) > 0, where gU(x, y) ∶=
1 − δy(U) + γ(x,U). This gives X⊙2 ∶= ⋂U g

−1
U (0,+∞), and U can even range over

a countable topological basis of X. Unfortunately, this is not enough to prove the
proposition, as gU is not continuous in general. The crux of this proof is to replace
gU by some continuous map that allows for a similar characterization of X⊙2.

Choose a metric compatible with the topology of X, and write Bx,n (resp. B̄x,n)
for the open (resp. closed) ball centered around x with radius 1

n
. Let Q be a

countable dense subset of X, and recall that {Bq,n ∣ q ∈ Q, n ≥ 1} is a topological
basis of X. Using the Tietze extension theorem [Mun00, theorem 35.1], choose a
continuous map bq,n ∶ X Ð→ R that is 1 on B̄q,2n and 0 on X −Bq,n. Consider the
following continuous map fq,n ∶X2 Ð→ R:

fq,n(x, y) ∶= 1 − bq,n(y) +∫ bq,n dγ(x).

We claim that y ∈ suppγ(x) if and only if for all q ∈ Q and n ≥ 1 we have fq,n(x, y) >
0. This implies that, X⊙2 = ⋂q,n f

−1
q,n(0,+∞), which Gδ-set of X2, and therefore a

Polish space by theorem 2.2.
We now prove our claim. If y /∈ suppγ(x), then since suppγ(x) is closed, there

exists q ∈ Q and n ≥ 1 such that y ∈ Bq,2n but Bq,n ∩ suppγ(x) = ∅.3 In particular,
fq,n(x, y) = 0. Assume now that y ∈ suppγ(x), and take q ∈ Q and n ≥ 1. We
distinguish two cases.

(1) If bq,n(y) = 0, then fq,n(x, y) ≥ 1.

3If d is the chosen metric on X and r ∶= infz∈suppγ(x) d(y, z) (which is necessarily > 0), choose
n such that 3

2n
< r, and q ∈ Q ∩By,2n.
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(2) If bq,n(y) > 0, then there exists an open neighborhood U of y and ε > 0 such
that bq,n > ε on U .4 Then, fq,n(x, y) ≥ ∫ bz,n dγ(x) ≥ ε × γ(x,U) > 0 since
y ∈ suppγ(x).

In both cases, fq,n(x, y) > 0. □
Proposition 3.3. The path space X⊙n is Polish for all n ∈ N.

Proof. The cases n = 0,1 are trivial, n = 2 is treated by lemma 3.2, and n ≥ 3 follows
from proposition 2.4. □

The next two results provide elementary insights into the Borel σ-algebra of
X⊙n.

Proposition 3.4. The Borel σ-algebra B(X⊙n) is generated by sets of the form
E1 ⊙⋯⊙En ∶= X⊙n ∩ (E1 ×⋯ ×En), where E1, . . . ,En ∈ B(X), called measurable
sequence sets.

Proof. Open sequence sets are by definition measurable sequence sets. Conversely,
note that E1 ⊙ ⋯ ⊙ En = ⋂n

i=1X ⊙ ⋯ ⊙ Ei ⊙ ⋯ ⊙X, and clearly, the sets in this
intersection are measurable. □
Proposition 3.5. Let SX be the set of all finite unions of measurable sequence sets
of X⊙n. Then SX forms a ring of sets.

Proof. Let us use MSS as an acronym for “measurable sequence set”. Trivially, SX

contains ∅ and is closed under binary unions. We now prove that SX is closed
under subtractions. First, note that the intersection of two MSSs is again an MSS:

(E1 ⊙⋯⊙En) ∩ (F1 ⊙⋯⊙Fn) = (E1 ∩ F1)⊙⋯⊙ (En ∩ Fn),
where Ei, Fi ∈ B(X). Since elements of SX are finite unions of MSSs, it follows
that SX is closed under finite intersections. From here, to show that SX is closed
under subtractions, it is enough to show that it is closed under complementation.
Observe that for E1, . . . ,En ∈ B(X), we have

X⊙n − (E1 ⊙⋯⊙En) =⋃
J

E1,J ⊙⋯⊙En,J ,

where J ranges over the non-empty subsets of {1, . . . , n}, and where Ei,J ∶=X −Ei

if i ∈ J , or Ei otherwise. Therefore, the complement of an MSS is in SX . Now,
let S ∈ SX , and write it as a finite union of MSSs, say S = ⋃iEi,1 ⊙⋯⊙Ei,n. We
have X⊙n − S = ⋂iX

⊙n − (Ei,1 ⊙⋯⊙Ei,n), which by the previous observation is a
finite intersection of elements of SX . Since SX is closed under finite intersections,
we conclude that X⊙n − S ∈ SX . □
3.2. Infinite paths. Building on the finitary case, we now define the space X⊙∞

of infinite paths (or infinite random walks) in X. There is an obvious projection
X⊙n Ð→X⊙(n−1) that “pops” the last state of a path.

Definition 3.6. Let X⊙∞ be the limit (in Pol, see proposition 2.4) of the following
diagram:

⋯Ð→X⊙n Ð→X⊙(n−1) Ð→ ⋯Ð→X⊙2 Ð→X.

4e.g. ε = bq,n(y)
2

and U = b−1q,n(ε,+∞).
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It is easy to see that X⊙∞ is the subspace of X∞ of all sequences (xi)i∈N ∈ X∞

such that for all i ∈ N we have xi+1 ∈ suppγ(xi). In particular, the limit topology
is spanned by subsets of the form

Cyl(U1, . . . , Un) ∶= U1 ⊙⋯⊙Un ⊙X⊙∞

=X⊙∞ ∩ (U1 ×⋯ ×Un ×X∞),
called open cylinder sets, where n ∈ N and U1, . . . , Un ∈ T.

Example 3.7. If X is discrete, then X⊙∞ matches the definition of Path(X) of
[BK08, defintion 3.6]. Further, the limit topology is spanned by sets of the form

Cyl ({x0}, . . . , {xn−1}) = {(yi)i∈N ∈X⊙∞ ∣ yj = xj , j < n}
where (x0, . . . , xn−1) ∈ X⊙n and n ∈ N, which are precisely the cylinder sets of
[BK08, definition 10.9].

Proposition 3.8. The Borel σ-algebra B(X⊙∞) is generated by sets of the form
Cyl(E1, . . . ,En) ∶= E1⊙⋯⊙En⊙X⊙∞, where E1, . . . ,En ∈ B(X), called measurable
cylinder sets.

Proof. Similar to the proof of proposition 3.4. □
The next two results extend the insights of propositions 3.4 and 3.5 regarding

the Borel σ-algebra of X⊙n to that of X⊙∞.

Proposition 3.9. Let CX be the set of all finite unions of measurable cylinder
sets. Then CX forms a ring of sets.

Proof. This proof is similar to that of proposition 3.5. Let us use MCS as a acronym
for “measurable cylinder set”. Trivially, CX contains ∅ and is closed under binary
unions. We now prove that CX is closed under subtractions. First, note that the
intersection of two MCSs is again an MCS. Indeed, if E1, . . . ,Em, F1, . . . , Fn ∈ B(X),
then without loss of generality, we may assume m ≤ n, and

Cyl(E1, . . . ,Em) ∩Cyl(F1, . . . , Fn)
= Cyl ((E1 ∩ F1), . . . , (Em ∩ Fm), Fm+1, . . . , Fn) .

Since elements of CX are finite unions of MCSs, it follows that CX is closed under
finite intersections. From here, to show that CX is closed under subtractions,
it is enough to show that it is closed under complementation. Observe that for
E1, . . . ,En ∈ B(X), we have

X⊙∞ −Cyl(E1, . . . ,Em) =⋃
J

Cyl(E1,J , . . . ,Em,J),

where J ranges over the non-empty subsets of {1, . . . ,m}, and where Ei,J ∶=X −Ei

if i ∈ J , or Ei otherwise. Therefore, the complement of an MCS is an element
of CX . Now, let C ∈ CX , and write it as a finite union of MCSs, say C =
⋃iCyl(Ei,1, . . . ,Ei,mi). Then, we have X⊙∞ − C = ⋂iX

⊙∞ − Cyl(Ei,1, . . . ,Ei,mi),
which by the previous observation is a finite intersection of elements of CX . Since
CX is closed under finite intersections, we conclude that X⊙∞ −C ∈ CX . □
Lemma 3.10. Let m ∈ N and n ∈ N∪{∞}. If E ∈ B(X⊙m) and F ∈ B(X⊙n), then
E ⊙ F ∈ B(X⊙(m+n)).
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Proof. By definition, we have X⊙(m+n) ⊆ X⊙m × X⊙n ⊆ Xm+n. Since E × F ∈
B(X⊙m ×X⊙n), there exists K ∈ B(Xm+n) such that E × F = K ∩ (X⊙m ×X⊙n).
Finally, E ⊙ F =K ∩X⊙(m+n) ∈ B(X⊙(m+n)). □

4. Extension of probability measures

Let X = (X,γ) be a Markov chain. In this section, we give a sense to the idea
of “probability to follow a given path” in X. In formal terms, for µ ∈ ∆X (which
acts as an initial distribution), we define a probability distribution extn µ on X⊙n,
where n ≤∞.

4.1. Finitary extension.

Definition 4.1. We now define the finitary extension operator extγn ∶ ∆X Ð→
∆X⊙n. Take µ ∈ ∆X. First, extγ0 µ is the unique distribution on the singleton
space X⊙0, while extγ1 µ ∶= µ. For n ≥ 2 and E1, . . . ,En ∈ B(X), the probability
extγn µ (E1 ×⋯ ×En) is given by

∫⋯∫
xi∈Ei

µ(dx1) × γ(x1,dx2) ×⋯ × γ(xn−2,dxn−1) × γ(xn−1,En).

Using Carathéorody’s theorem 2.1, this gives rise to a fully fledged probability
distribution on Xn. It clearly has support in X⊙n, so we consider extγn µ as a
distribution on X⊙n, which completes the definition.

In the sequel, we shall write extn instead of extγn if γ is clear from the context.

Example 4.2. If X is discrete and E1, . . . ,En ∈ B(X) are finite, then
extn µ(E1 ⊙⋯⊙En) = ∑

xi∈Ei

µ(x1) × γ(x1, x2) ×⋯ × γ(xn−1,En).

This expresses the probability to follow a path that leads from E1 to E2 to E3 to...
to En, weighted by an initial distribution µ.

In the infinite case, this intuition still holds. In particular, the following lemma
is not surprising:

Lemma 4.3. For n ≥ 1 and E ∈ B(X⊙n), we have
extn+1 µ(E ⊙X) = extn µ(E),

extn+1 µ(X ⊙E) = ∫
x∈X

µ(dx) × (extn γ(x)(E)) .

Remark 4.4. The extension extn µ admits an alternative description in terms of
string diagrams, one that can be more familiar to category theorists.

Let Stoch be the Kleisli category of the Giry monad, also known as the category
of Markov kernels. A morphism f ∶ X Ð→ Y can be understood as a probability
distribution on Y parametrized by X. In particular, Stoch(∗,X) =∆X as sets. We
use the string diagrams of [CJ19] to describe morphisms in Stoch. In this context,
for n ≥ 2, extn µ ∶ ∗Ð→Xn can be drawn as

µ

γ γ⋯

XX X X
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This diagram highlights the same idea as in example 4.2, namely that of sampling
a state of X using µ, and then applying transition kernel γ n times, yielding a
random walk of length n. Therefore, this combination samples paths of length n,
a.k.a. elements of X⊙n. Note that extn µ can also be described as

µ

extn γ(−)

X Xn−1

Here, the pointwise-extended probability kernel extn γ(−) walks through n states
of X, instead of just one for γ.

The following theorem, and its infinitary counterpart theorem 4.7, provide a
crucial (yet loose) control over the way probabilities are extended.
Theorem 4.5. The finitary probability extension operator is measurable.
Proof. The cases n = 0,1 are trivial, so we assume n ≥ 2. Recall from proposition 3.4
that B(X⊙n) is generated by measurable sequence sets, so by proposition 2.8,
B(∆X⊙n) is generated by sets of the form β&p(E1⊙⋯⊙En), where & ∈ {>,≥,≤,<},
p ∈ R, and E1, . . . ,En ∈ B(X). We simply show that the preimage of these sets
under extn is measurable.

If µ ∈∆X, then by definition, extn µ(E1 ⊙⋯⊙En) = If(µ), where
f(x) ∶= χE1(x) × (extn−1 γ(x)(E2 ⊙⋯⊙En)) .

By induction, f is measurable and bounded, so by proposition 2.8 again, If ∶
∆X Ð→ R is measurable. Finally, the preimage ext−1n β>p(E1⊙⋯⊙En) = I−1f (p,+∞)
is measurable. The cases β≥p, β≤p and β<p are completely analogous. □
4.2. Infinitary extension.
Definition 4.6. Making use of proposition 3.9, lemma 4.3, and Carathéodory’s
theorem 2.1, we can define a probability distribution extγ∞ µ on X⊙∞ by

extγ∞ µ (Cyl(E1, . . . ,En)) ∶= extγn µ(E1 ⊙⋯⊙En),
where E1, . . . ,En ∈ B(X). This gives rise to the infinitary extension operator
extγ∞ ∶∆X Ð→∆X⊙∞.

Akin to definition 4.1, we shall write ext∞ instead of extγ∞ if γ is clear from the
context.
Theorem 4.7. The infinitary probability extension operator is measurable.
Proof. Recall from proposition 3.8 that B(X⊙∞) is generated by measurable cylin-
der sets. Thus, by proposition 2.8, the Borel σ-algebra B(X⊙∞) is generated by sets
of the form β&p (Cyl(E1, . . . ,En)), where & ∈ {>,≥,≤,<}, p ∈ R, and E1, . . . ,En ∈
B(X). We simply show that the preimage of these sets under ext∞ is measurable.
We have

ext−1∞ β&p (Cyl(E1, . . . ,En))
= {µ ∈∆X ∣ ext∞ µ (Cyl(E1, . . . ,En)) & p}
= {µ ∈∆X ∣ extn µ(E1 ⊙⋯⊙En) & p}
= ext−1n β&p(E1 ⊙⋯⊙En)
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which is measurable by theorem 4.5. □

5. Logic

In this section, we demonstrate how two standard logics for Markov chains can
be given a natural semantics in our topological framework.

The first, linear time logic (thereafter LTL) [Pnu77] [BK08, chapter 5] is used
to express properties about paths, or execution traces of a Markov chain. As such,
it appeals to its underlying graph-theoretic nature. A topological Markov chain X
can also make sense of the notion of path via the spaces X⊙n and X⊙∞ constructed
in section 3. LTL is necessary to define our second logic, probabilistic computation
tree logic (PCTL) [HJ94] [BK08, section 10.2], which deals with the probability
that, starting at some state, an execution trace satisfies a given LTL formula. It is
this syntax that we shall use to formulate our recurrence theorems in section 6.

5.1. Linear temporal logic.

Definition 5.1. For X = (X,γ) a Markov chain, LTL (for X) is defined by the
following grammar:

ϕ ::= E E ∈ B(X)
| ⊺ | ¬ϕ | ϕ ∧ ϕ
| ◯ϕ
| ϕU≤n ϕ n ≤∞

The usual logical connectives are defined in terms of ⊺, ¬, and ∧. We write ◯n ϕ for
◯⋯◯ϕ where there are n instances of the “next” modality ◯, and ϕUψ instead of
ϕU≤∞ψ. The “eventually” and “always” modalities are defined as ◊≤n ϕ ∶= ⊺U≤n ϕ
and ◻≤n ϕ ∶= ¬◊≤n ¬ϕ respectively.

Definition 5.2. The semantics ⟦ϕ⟧ ∈ B(X⊙∞) of an LTL formula ϕ is given as
follows:

(1) (Atomic predicates) ⟦E⟧ ∶= Cyl(E);
(2) ⟦⊺⟧ ∶=X⊙∞; ⟦¬ϕ⟧ ∶=X⊙∞ − ⟦ϕ⟧; ⟦ϕ ∧ ψ⟧ ∶= ⟦ϕ⟧ ∩ ⟦ψ⟧;
(3) (Next) ⟦◯ϕ⟧ ∶=X ⊙ ⟦ϕ⟧, which is a measurable set by lemma 3.10;
(4) (Until)

⟦ϕU≤n ψ⟧ ∶=
n

⋃
i=0
(⟦◯i ψ⟧ ∩

i−1
⋂
j=0
⟦◯j ϕ⟧) .

For n ≤∞, one can check that

⟦◊≤n ϕ⟧ =
n

⋃
i=0
⟦◯i ϕ⟧ , ⟦◻≤n ϕ⟧ =

n

⋂
i=0
⟦◯i ϕ⟧ .

Given a probability distribution µ ∈ ∆X, the probability of an LTL formula ϕ is
simply µ(ϕ) ∶= ext∞ µ(⟦ϕ⟧). If x ∈ X, we write γ(x,ϕ) instead of γ(x) (⟦ϕ⟧). This
abuse of notation may seem ambiguous if ϕ is an atomic predicate, but by definition,
ext∞ µ(⟦E⟧) = ext∞ µ(Cyl(E)) = µ(E).

The following lemma explores the interplay between the “next” modality ◯ and
the transition kernel γ. Intuitively, for ϕ a LTL formula, the probability that ◯ϕ
(or “next, ϕ”) happens starting from state x should be the probability that ϕ (or
“now, ϕ”) happends starting from a successor state of x, weighted by the transition
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probability γ(x). This fact is stated a bit more generally, but the proof in our
framework is straightforward.
Lemma 5.3. For µ ∈∆X and ϕ an LTL formula, we have µ(◯ϕ) = ∫x∈X µ(dx)γ(x,ϕ).
In particular, for a state x ∈X, we have δx(◯ϕ) = γ(x,ϕ).
Proof. Define two maps µ′, µ′′ ∶ B(X⊙∞)Ð→ [0,1] as µ′ ∶= ext∞ µ(X⊙−) and µ′′ ∶=
∫x∈X µ(dx) ext∞ γ(x)(−). Clearly, µ′ and µ′′ are probability measure. Further,
they agree on measurable cylinder sets, for if E1, . . . ,En ∈ B(X), then

µ′ (Cyl(E1, . . . ,En))
= ext∞ µ (Cyl(X,E1, . . . ,Xn))
= extn+1 µ (X ⊙E1 ⊙⋯⊙Xn)

= ∫
x∈X

µ(dx) × (extn γ(x)(E1 ⊙⋯⊙En)) ♠

= µ′′ (Cyl(E1, . . . ,En)) ,
where ♠ follows from lemma 4.3. Therefore, µ′ and µ′′ agree on the ring CX of
proposition 3.9. By Carathéodory’s theorem 2.1, µ′ = µ′′. □
5.2. Probabilistic computation tree logic.
Definition 5.4. For X = (X,γ) a Markov chain, PCTL (on X) is defined by the
following grammar:

Φ ::= E E ∈ B(X)
| ⊺ | ¬Φ | Φ ∧Φ

| P(ϕ) & p ♠
where in ♠, ϕ is an LTL formula, p ∈ [0,1], and & ∈ {>,≥,≤,<}. The usual logical
connectives are defined in terms of ⊺, ¬, and ∧.
Definition 5.5. We how define the semantics ⟦Φ⟧ ∈ B(X) of a PCTL formula
Φ. The only non-obvious case is when Φ is of the form P(ϕ) & p. Consider the
pointwise-extended kernel D ∶= ext∞ δ− ∶ X Ð→ ∆X⊙∞, that maps x ∈ X to the
infinitary extension of its Dirac distribution δx, and let

⟦P(ϕ) & p⟧ ∶=D−1 (β&p (⟦ϕ⟧)) = {x ∈X ∣ δx(ϕ) & p} .
By theorem 4.7, this is a measurable set. If Φ is an PCTL formula and Y ⊆ ⟦Φ⟧,
then we write Y ⊧ Φ.
Remark 5.6. In [BK08, definition 10.36], PCTL is defined differently:

Θ ::= E

| ⊺ | ¬Θ | Θ ∧Θ

| P(θ) ∈ J ♠
θ ::= ◯Θ

| ΘU≤n Θ n ≤∞.

where in ♠, J is an interval contained in [0,1].5 In other words, θ is an LTL formula
that does not contain any logical connective, and where atomic predicates are of

5For algorithmic purposes, it is usually assumed that the bounds of J are rational, but we omit
this requirement for simplicity.
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the form ⟦Θ⟧, where Θ is a PCTL formula in the present sense (also called state
formula in [BK08, definition 10.36]).

Clearly, this “standard” PCTL (thereafter sPCTL) is a subset of our PCTL
(thereafter simply PCTL). Conversely, formulas in PCTL can be translated to
sPCTL using the (−) ∶ Φ z→ Θ and (̃−) ∶ ϕ z→ θ operators defined as follows (for
the non-trivial cases):

P(ϕ) > p ∶= P(ϕ̃) ∈ (p,1] and likewise for ≥,≤,<,
Ẽ ∶= ⊺U≤0 E, ⊺̃ ∶= X̃,

¬̃ϕ ∶= X̃ − ⟦ϕ⟧, ϕ̃ ∧ ϕ′ ∶= ̃⟦ϕ⟧ ∩ ⟦ϕ′⟧.
Note that this translation assumes that every measurable set E ⊆ X corresponds
to an atomic predicate in sPCTL.

6. Recurrence

Let X = (X,γ) be a Markov chain. The goal of this section is to place conditions
on X and E ∈ B(X) under which the following statements hold: X ⊧ P(◊E) > 0
(reachability), and X ⊧ P(◻◊E) = 1 (recurrence). Reachability results serve as
a stepping stone to establish recurrence, which is the subject of our main results:
theorems 6.10 and 6.20.

6.1. Preliminaries on recurring properties. We start off with a few fairly in-
tuitive observations. The first considerably simplifies the proof of statements of the
form “event E almost surely eventually happens”, i.e. X ⊧ P(◊E) = 1, for some
E ∈ B(X). The intuition is that if starting from any state, “E probably happens
soon”, and that this probability and “soonness” are globally bounded, then surely,
avoiding E forever is impossible.

Lemma 6.1. Let E ∈ B(X), k ≥ 1, and r > 0 be such that X ⊧ P(◊≤kE) > r. Then
X ⊧ P(◊E) = 1.

Proof. By assumption, for all x ∈ X we have δx(◻≤k ¬E) < 1 − r. In plain words,
starting from any state x, the probability of staying out of E for the next k steps
is < 1 − r. So by taking increasingly many successive k-steps walks, the probability
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of never reaching E should shrink to 0. Formally,
1 − δx(◊E) = δx(◻¬E) = lim

n→∞
δx(Cyl(X −E, . . . ,X −E

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nk

))

= lim
n→∞

χX−E(x)∫⋯∫
yi∈X−E

(

γ(x,dy2) ×⋯ × γ(yk−1,dyk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<δx(◻≤k ¬E)

× γ(yk,dyk+1) ×⋯ × γ(y2k−1,dy2k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<δyk (◻≤k ¬E)

×⋯ ×⋯× γ(ynk−1,XE)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<δy(n−1)k (◻

≤k ¬E)

)

≤ lim
n→∞
(1 − r)n

= 0.
□

Next, if an event E eventually happens starting from any state, then surely, it
must happen infinitely often. Indeed, once a run has reached E, then by assump-
tion, E must eventually happen again. The following lemma formalizes this.

Lemma 6.2. Let E ∈ B(X) be such that X ⊧ P(◊E) = 1. Then X ⊧ P(◻◊E) = 1.

Proof. Recall from section 5.1 that ⟦◻◊E⟧ = ⋂n∈N ⟦◯n ◊E⟧. For x ∈ X, we have
δx(◊E) = 1 by assumption, and if n ≥ 1,

δx(◯n ◊E) = ∫⋯∫
yi

γ(x,dy1) ×⋯ × γ(yn−1,dyn) × γ(yn,◊E)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= ∫⋯∫
yi

γ(x,dy1) ×⋯ × γ(yn−1,dyn) × γ(yn,X)

= δx(◯nX) = 1.
□

6.2. Upper semicontinuity and some semantics sets. The purpose of the
next few technical results is to prove that the semantics of PCTL formulas of the
form P(◊≤k U) ≤ r is closed, where U is an open set. As we will see later, this
is an important step towards bounding reachability probabilities, i.e. the value of
δx(◊U) for x ∈ X, which is central to our recurrence theorems 6.10 and 6.20. The
overall plan is to express the semantics set ⟦P(◊≤k U) ≤ r⟧ as the preimage of some
convenient function X Ð→ R that we define in lemma 6.6.

In remark 2.7, we briefly discussed the subtle topological properties of ∆X.
The core difficulty we encounter is that for f ∈ M b(X), the integration operator
If ∶ ∆X Ð→ R is not continuous in general. Nonetheness, certain properties of f
can be reflected in If .

Definition 6.3 ([Bou98, definition IV.6.2.1]). For K a topological space, a set-map
f ∶ K Ð→ R is upper semicontinous (USC for short) if for all sequence (xn)n∈N of
elements of K converging to x, we have lim supn f(xn) ≤ f(x). Equivalently, for all
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r ∈ R, the preimage f−1[r,+∞) is closed (this is the dual6 of [Bou98, proposition
IV.6.2.1]).

Lemma 6.4 ([Bou98, proposition IV.6.2.2]). The product of two positive USC maps
K Ð→ R is also USC.

Let f ∶ X Ð→ R and consider the integration operator If ∶ ∆X Ð→ R. By
definition 2.5, if f is continuous, then so is If . By proposition 2.8, if f is measurable,
then so is If . For our purpose, measurability of If is too weak, and continuity is
too restrictive on f (see remark 2.7). The following key result asserts that upper
semicontinuity is the compromise we need.

Theorem 6.5 ([DE97, Theorem A.3.12]). If f ∶X Ð→ R is a bounded positive and
USC map, then If ∶ ∆X Ð→ R (see definition 2.5) is USC as well. In particular,
the expression ∫ f dγ(x) is USC in x.

We saw in definition 6.3 that for f a USC map, certain preimage sets of f are
closed. The goal of the next two results is to express the semantics set ⟦P(◊≤k U) ≤ r⟧
as the preimage of some desirable USC f .

Lemma 6.6. Let F ⊆ X be closed, k ≥ 1, and consider the map ΓF,k ∶ X Ð→ R
mapping x ∈X to extk γ(x)(F⊙k).7 Then ΓF,k is USC.

Proof. We proceed by induction. If k = 1, then ΓF,k(x) = γ(x,F ). Take r ∈ R, write
Ar ∶= Γ−1F,1[r,+∞). Let (xn)n∈N be a sequence of elements of Ar that converges to
some x ∈X. Recall that by continuity of γ, (γ(xn))n∈N is a sequence of probability
measures that converges to γ(x). By the Portmanteau theorem 2.9, γ(x,F ) ≥
lim supn γ(xn, F ) ≥ r, so that x ∈ Ar. This shows that Ar is closed for all r ∈ R,
and thus that ΓF,1 = γ(−, F ) is USC.

Assume now that k ≥ 2, and note that
ΓF,k(x) = extk γ(x)(F⊙k)

= ∫
y∈F

γ(x,dy) × (extk−1 γ(y)(F⊙k−1))

= ∫ χF × ΓF,k−1 dγ(x).

Since F is closed, χF is USC, and by induction, so is ΓF,k−1. Using lemma 6.4
and theorem 6.5, we conclude that ΓF,k is USC. □

Lemma 6.7. For U ⊆X open, k ∈ N, and r > 0, the set ⟦P(◊≤k U) ≤ r⟧ is closed.

Proof. We write Rk as a shorthand for ⟦P(◊≤k U) ≤ r⟧. Note that

Rk = ⟦P(◻≤k F ) ≥ 1 − r⟧ = {x ∈X ∣ δx(◻≤k F ) ≥ 1 − r} ,

where F ∶= X − U . In order to show that Rk is closed, we show that δx(◻≤k F ) is
USC (in x). We proceed by induction on k.

(1) If k = 0, then δx(◻≤0 F ) = δx(F ) = χF (x), which is USC since F is closed.

6[Bou98, section IV.6.2] mostly deals with lower semicontinuous (LSC) functions. However,
properties of a USC f can be transposed from “dual” properties of −f which is LSC, or even
(max f) − f if f is bounded.

7In details, this is the evaluation of extk γ(x) ∈ ∆X⊙k (the k-ary extension of the transition
distribution γ(x) ∈∆X) at the measurable sequence set F⊙k ⊆X⊙k.
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(2) If k = 1, then we have δx(◻≤1 F ) = ext2 δx (F ⊙ F ) = χF (x)γ(x,F ), which
is USC by lemmas 6.4 and 6.6.

(3) Assume now that k ≥ 2. We have
δx(◻≤k F )

= extk+1 δx(F⊙k+1)

= χF (x)∫
y∈F

γ(x,dy) × (extk−1 γ(y)(F⊙k−1))

= χF (x)∫ χF × ΓF,k−1 dγ(x).

By lemmas 6.4 and 6.6 and theorem 6.5, this is USC in x. □
6.3. Weak recurrence. In what follows, we impose compactness on the state
spaces of Markov chains. Here we view compactness as “topological finiteness”;
using the property, the essence of some arguments in the finitary setting (such as
in [BK08]) can be carried over to our current infinitary and topological setting.

In terms of the dynamics of Makov chains, compactness can be understood as
a condition that the underlying topology “does not allow for escapes”, that is to
say, does not allow for paths to “stray” forever (see remark 6.11). This collective
containment property that execution traces share is what allows us to deduce re-
currence theorems, namely that some events must happen with a certain positive
probability.

In lemma 6.7, we showed that semantics sets of the form ⟦P(◊≤k U) ≤ r⟧ are
closed. This allows us to leverage certain interesting properties of compact spaces:

Lemma 6.8. Let K be a compact topological space. Then for every descending
chain F0 ⊇ F1 ⊇ ⋯ of non-empty closed sets, the intersection ⋂n Fn is not empty.

Proposition 6.9. Assume that X is compact, and let U ∈ T be such that X ⊧
P(◊U) > 0. Then X ⊧ P(◊U) = 1.

Proof. By lemma 6.7, the set Rk,n ∶= ⟦P(◊≤k U) ≤ 1
n
⟧ is closed. Towards a contra-

diction, assume that Rk,n ≠ ∅ for all k and n. Note that Rk,n ⊇ Rk+1,n,Rk,n+1.
By assumption, X is compact, so by lemma 6.8 (applied twice), the intersection
⋂k⋂nRk,n is not empty. However,

⋂
k
⋂
n

Rk,n =⋂
k
⋂
n

⟦P(◊≤k U) ≤ 1

n
⟧

=⋂
k

⟦P(◊≤k U) = 0⟧

= ⟦P(◊U) = 0⟧ ,
which contradicts the assumption that X ⊧ P(◊U) > 0. Therefore, there exists k
and n such that Rk,n = ∅. In particular, X ⊧ P(◊≤k U) > 1

n
, and lemma 6.1 applies.

□
We now arrive at our first recurrence theorem, which is a simple combination of

proposition 6.9 and lemma 6.2.

Theorem 6.10 (Topological weak recurrence). Assume that X is compact, and let
U ∈ T be such that X ⊧ P(◊U) > 0. Then X ⊧ P(◻◊U) = 1.
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Remark 6.11. Unfortunately, the compactness condition of proposition 6.9 (and
thus of theorem 6.10) cannot be dropped. Indeed, consider the discrete space
X ∶= {u,x1, x2, . . .} with the transition kernel given by γ(u,x1) ∶= 1 and γ(xi, xi+1) =
1 − γ(xi, u) ∶= pi, with pi ∶= 1 − 1

(i+1)2 . Graphically,

u

x1 x2 x3 . . .

1 1 − p1

p1

1 − p2

p2

1 − p3

p3

Clearly, this Markov chain is irreducible (every state is reachable from every other),
but we have

δx1(◊{u}) = 1 − ext∞ δx1({(x1, x2, . . .)}) = 1 −
∞
∏
i=1
pi =

1

2
.

Additionally, it is easy to see that δxn(◊{u}) < δx1(◊{u}) for all n ≥ 2.

6.4. Subchains and irreducibility. We argued that compact Markov chains are
the suitable generalization of finite ones. Another important notion is that of strong
connectedness, whereby every state is reachable from every other. Consequently,
no state can be removed from the chain, i.e. the chain is irreducible:

Definition 6.12. A subchain (or subcoalgebra) of X is a Polish subspace Y ⊆ X
such that for all y ∈ Y , γ(y) has support in Y .

We say that X is irreducible if it is non-empty and does not admit a proper
subchain. In particular, for every x ∈X, there exist y ∈X such that x ∈ suppγ(y).8

Remark 6.13. Classically, such a subspace Y is also called closed, as in closed with
respect to the coalgebra structure γ [Num84, definition 2.1] [PGS00, section 2.1]
[Bré20, definition 2.3.2]. Unfortunately, Y is not necessarily closed in the topological
sense. In fact, it may not even be measurable. Indeed, consider X ∶= R with the
Euclidean topology, and γ(x) ∶= δx for all x ∈ X. In this case, every subset of X
is a subchain. In particular, Vitali sets [Her06, section 5.7] are subchains despite
being non-measurable.

However, measurability can be guaranteed if Y is an irreducible subchain, see
proposition 6.15.

Lemma 6.14. If (µn)n∈N is a sequence of elements of ∆X that converges to µ,
then suppµ ⊆ lim infn suppµn.

Proof. Follows from the Portmanteau theorem 2.9. □
Proposition 6.15. If Y is an irreducible subchain of X, then it is an Fσ-set (i.e.
a countable union of closed sets).

Proof. By irreducibility, Y = ⋃y∈Y suppγ(y). Let Q ⊆ Y be countable dense subset.
By definition, any state y ∈ Y is the limit of some sequence (qn)n∈N of elements of Q.
By lemma 6.14, suppγ(y) ⊆ lim infn suppγ(qn). Therefore, Y = ⋃y∈Y suppγ(y) =
⋃q∈Q suppγ(q). □

8This condition is not sufficient, however.
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Remark 6.16. Unfortunately, irreducibility of Y cannot be leveraged to obtain any
basic topological property, as the few following counterexamples show.

(1) Y is not closed in general. Let the state space be X ∶= [0,+∞) with the
Euclidean topology, and γ(x) ∶= δ0 if x = 0, or the uniform distribution on
[x
2
, 3x

2
] if x > 0. Then Y ∶= (0,+∞) is an non-closed irreducible subchain.

In particular, Y is not compact.
(2) Y is not open in general. Like in remark 6.13, consider X ∶= R with the

Euclidean topology, and γ(x) ∶= δx for all x ∈ X. Any singleton is a non-
open irreducible subchain.

(3) Y is not connected in general. Consider X ∶= {x0, x1} with the discrete
topology, and γ(xi) ∶= δx1−i . Then X is irreducible but not connected.

6.5. Strong recurrence.
Definition 6.17. We say that a subchain Y ⊆ X has the reachability property (in
X) if for all non-empty open subset U ⊆X, we have Y ⊧ P(◊U) > 0.
Proposition 6.18. Every dense irreducible subchain of X has the reachability
property. Conversely, if X has the reachability property (in itself), then every
irreducible subchain is dense.
Proof. (1) Take U ∈ T non-empty, and write RU ∶= Y ∩ ⟦P(◯◊U) > 0⟧. Since

RU ⊆ Y ∩ ⟦P(◊U) > 0⟧, it is enough to show that RU = Y . Towards a
contradiction, assume that RU ≠ Y . First, we show that RU ≠ ∅. Since
Y is dense, Y ∩ U ≠ ∅, and let x ∈ Y ∩ U . By irreducibility, there exist
y ∈ Y such that x ∈ suppγ(y). In particular, γ(y,U) > 0, so y ∈ RU .
Consequently, Y − RU = Y ∩ ⟦P(◯◊U) = 0⟧ is a proper subset of Y . We
now show that it is a proper subchain. If not, then there exists x ∈ Y −RU

such that γ(x,RU) > 0. Thus, δx(◯◊U) ≥ δx(◯◯◊U) > 0, a contradiction
with the fact that x ∈ Y −RU . We arrive at the conclusion that Y −RU is a
proper subchain of Y , which contradicts the irreducibility of Y . Therefore,
RU = Y .

(2) Let Y ⊆ X be an irreducible subchain, and let U be the interior of X − Y .
If U ≠ ∅, then by assumption, Y ⊧ P(◊U) > 0. This means that there
exists an element y ∈ Y such that γ(y) does not have all its support in Y ,
a contradiction. Therefore U = ∅ and Y is dense. □

Remark 6.19. Unfortunately, a Markov chain X that has the reachability property
is not necessarily irreducible. For example, consider X ∶= [0,1]A+(0,1]B , where the
subscripts are purely decorative, and each component has the Euclidean topology.
If x ∈ [0,1], let xA be the corresponding element in the A component, and likewise
for xB (if x > 0). The transition kernel γ ∶ X Ð→ ∆X is given as follows: γ(xA) is
the uniform distribution on (0,1]B , while γ(xB) = δxA

. This Markov chain clearly
has the reachability property, but it is not irreducible, for Y ∶= (0,1]A + (0,1]B is a
proper subchain. Still, as predicted by proposition 6.18, Y is dense.
Theorem 6.20 (Topological strong recurrence). If X is a compact and irreducible
Markov chain, and U ∈ T is non-empty, then X ⊧ P(◻◊U) = 1.
Proof. Follows from the weak recurrence theorem 6.10 and proposition 6.18. □

Using the above results, it is easy to derive the following corollaries, which are
most important when it comes to the application to model checking.
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Corollary 6.21. If X is compact and irreducible, then for all E ∈ B(X) with
non-empty interior, X ⊧ P(◻◊E) = 1.

Corollary 6.22. Let Y ⊆X be an irreducible subchain, x ∈X, and E ∈ B(Y ) have
a non-empty interior. We have δx(◻◊E) = δx(◊Y ).9

7. Conclusions and future work

We developed a mathematical theory for infinitary probabilistic model checking,
focusing on the recurrence theorems in the existing finitary theory and extending
them to the infinitary setting. This endeavor was enabled by the use of a suitable
topological machinery. In the end, we formulated and proved topological recurrence
theorems, which reduce different aspects of infinitary probabilistic model checking
to problems that are easier to solve, such as irreducibility, which is qualitative
rather than quantitative.

For future works, we shall lift our current theory from Polish spaces to the more
general framework of analytic spaces, as is done in [DEP02, DGJP04].

Another important direction is to build a bridge from outside theoretical com-
puter science to the theory of Markov chains. The study of Markov chains in
theoretical computer science has been centered around probabilistic model check-
ing and thus on finitary cases. The current paper makes a topological step towards
the study of infinite Markov chains, and it is natural to pursue the connection to
other fields, where their interests are often in stationary distributions, ergodicity,
and other dynamical properties, see e.g. [Chu60, Num84].

Finally, the application of the current results to practical formal verification
is also a relevant topic for future works. Probabilistic verification of continu-
ous systems is studied energetically in the community of hybrid systems, see e.g.
[MMS20, FCX+20]. Relationship to these works should be investigated. Another
community to which the present paper is relevant is that of probabilistic program-
ming languages. In particular, we shall look into semantical works such as [VKS19].
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