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Abstract 160 

Obesity is caused by prolonged positive energy balance1,2. Whether reduced energy 161 

expenditure stemming from reduced activity levels contributes, is debated3,4. Here we used the 162 

IAEA DLW database on energy expenditure of adults in the USA and Europe (n = 4799) to 163 

explore patterns in total (TEE: n=4799), basal (BEE: n = 1432) and physical activity energy 164 

expenditure (AEE: n = 1432) over time. In both sexes total energy expenditure (TEE) adjusted 165 

for body composition and age declined with time, while adjusted AEE increased over time. In 166 

males adjusted BEE decreased significantly, but in females this didn’t reach significance.   A 167 

larger dataset of basal metabolic rate (BMR equivalent to BEE) measurements of 9912 adults 168 

across 163 studies spanning 100 years replicated the decline in BEE in both sexes. Increasing 169 

obesity in the USA/Europe has probably not been fueled by reduced physical activity leading to 170 

lowered TEE. We identify here decline in adjusted BEE, as a previously unrecognized novel 171 

factor.  172 

 173 

Main text: Obesity is a global health threat5. Although excess body fat is a result of prolonged 174 

positive energy balance1,2, the exact causes of this imbalance remain elusive. Two major 175 

potential factors have been suggested. First, food consumption (net energy consumption 176 

accounting for losses in feces) may have increased2. Alternatively, declines in energy 177 

expenditure, due to reduced work-time physical activity4, combined with increases in sedentary 178 

behavior, partly linked to elevated ‘screen time’ (TV, computer and phone use)6,7 may be a key 179 
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driver. These may be linked in a vicious cycle8, where low activity leads to weight gain, which 180 

inhibits activity, leading to further weight gain.  181 

Although there is direct evidence, that physical activity levels have declined and 182 

sedentary time has increased4,6,7,8,  these changes do not necessarily translate into alterations in 183 

total energy expenditure (TEE). As individuals get larger the energy cost of movement also 184 

increases9. Thus, the same amount of energy may be utilized even though the actual time spent 185 

active has declined. Moreover, increases in one type of activity/behavior may be replaced by 186 

decreases in another behavior of equal cost. Consequently, apparently large behavior changes 187 

may result in only minor alterations in expenditure. Finally, it has been suggested that we may 188 

compensate for changes in physical activity by adjusting expenditure on other physiological 189 

tasks10,11. Although low TEE is repeatable, and having low TEE is not a risk factor for future 190 

weight gain over short timescales12, this does not negate a possible impact over longer periods. 191 

In the present paper we address the idea that reduced physical activity leading to reduced 192 

activity energy expenditure (AEE) may have fueled the epidemic.   193 

The doubly-labelled water (DLW) method is a validated isotope based methodology for 194 

the measurement of free-living energy demands13. A previous analysis using this method 195 

suggested there had been no change in TEE between 1986 and 2005, calling into question the 196 

reduced physical activity hypothesis14. Nevertheless, these observations were based on a 197 

limited sample (n = 314) from a single European city over a restricted timespan of about 20 198 

years. Here we expanded this analysis using data for 4799 adults living across Europe and the 199 

USA drawn from the IAEA DLW database15 for which we also had BEE measures in 1429 200 
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individuals. All estimates of TEE were recalculated using a common equation16 that has been 201 

shown to perform best in validation studies16. 202 

We split the data by sex, because this may affect the etiology of energy balance17,18. This 203 

resulted in 1672 measurements of males and 3127 measurements of females. In addition, for 204 

632 of the males and 800 of the females we also had measurements of basal energy 205 

expenditure (BEE) from which we derived activity energy expenditure (AEE) and physical 206 

activity level (PAL) – for calculations see methods. The data span a period of over 30 years with 207 

the first measurements in late 1981 and the latest measurements made in late 2017, with most 208 

data obtained between 1990 and 2017.  The distribution of BMI in the sample for both males 209 

and females is shown in Supplementary Fig S1. Overall females had higher BMI than males. In 210 

the pooled sample the distribution was BMI < 18.5 = 2.3%, BMI 18.5 to 25 = 40.3%, BMI 25 to 211 

30 = 35.1% and BMI >30 = 22.2%. Combined overweight and obesity was 57.3%. In both males 212 

and females body weight increased over time (Figure S1) reflecting the secular trend in body 213 

weight over the same interval.  214 

We first explored the changes in the unadjusted levels of TEE, BEE and AEE over time 215 

(Supplementary Fig S2: Table 1). In males there was no significant relationship between TEE and 216 

the date of measurement (date coded as months since Jan 1982) (r2 = 0.0015, p = 0.14 (ns): Fig 217 

S2a) the least squares regression fit gave a gradient of +1.5 kJ/month (95%CI =  ±2.06 218 

kJ/month). This gradient leads to an estimated change in average TEE over 30 years of + 0.55 219 

MJ/day (95%CI = ±0.727 MJ/day). Contrasting the lack of significant change in TEE, there was a 220 

significant decline in BEE over time (Fig S2b) (r2 = 0.029, p = 0.000018). The gradient of decline 221 

(3.3 kJ/month, 95%CI =  ±1.4 kJ/month) was equivalent to an average fall in BEE by 1.19 MJ 222 
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(9.7%) over 30 years (95%CI = ±0.54 MJ/day). As might be anticipated since TEE*0.9 = BEE + 223 

AEE, the absence of a change in TEE and declining BEE was reflected by an increase in AEE over 224 

time, but this did not reach significance (Fig S2c) (r2 = 0.003, p = 0.16). The gradient of the 225 

change in AEE (1.4 kJ/month, 95%CI =  ±1.8 kJ/month) was equivalent over 30 years to an 226 

increase by 0.50 MJ/day (95%CI = ±0.69 MJ/day). In females, unadjusted levels of TEE, BEE and 227 

AEE did not change significantly over time (supplementary Fig S3, Table 1).  228 

All the energy expenditure variables (TEE, BEE and AEE) in both sexes were dependent 229 

on body mass (BM) and BMI (illustrated for BMI in supplementary Fig 4). Because of these 230 

relationships it is necessary to adjust the raw expenditure data over time (Figs S2 and S3) to 231 

account for any changes in body composition over time that might generate a biased estimate 232 

of the change in expenditure variables. We adjusted the levels of log transformed TEE, BEE and 233 

AEE for body size and composition using residuals from general linear models with loge fat-free 234 

mass, loge fat mass and age as predictors. In this analysis the data were logged because the 235 

relationships between energy expenditure components and body composition follow power 236 

law relationships. In males, adjusted TEE significantly declined over the measurement period 237 

(Fig 2a: r2 = 0.0103, p < .0001). The gradient of the fitted regression was -32.5 kJ/month (95%CI 238 

=  ±1.20 kJ/month) leading to an estimated average change over 30 years of -0.93 MJ/day in 239 

adjusted TEE (95%CI = ±0.465 MJ/day), a decline on average of 7.7%. The adjusted BEE showed 240 

a highly significant decline over time (Fig 2b: r2 = 0.064, p < 10-9) with the gradient of 2.67 241 

kJ/month (95%CI =  ±0.82 kJ/month) being equivalent to an average fall in BEE of 0.96 MJ/day 242 

(14.7%) over 30 years (95%CI = ±0.15 MJ/day). In contrast, the adjusted AEE increased over 243 
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time (Fig 2c: r2 = 0.0221, p < .0003). The gradient of +2.8 kJ/month (95%CI =  ±1.4 kJ/month) 244 

was equivalent to a rise of 1.01 MJ/day over 30 years (95%CI =  ±0.53 MJ/day).   245 

In females as well, there was a significant decline in the adjusted TEE over time (Fig 3a: 246 

r2 = 0.006, p < .00002). The gradient of the effect 1.42 kJ/month was equivalent to a reduction 247 

in TEE over 30 years of 0.51 MJ (95%CI = ±0.22 MJ/day) or 5.6%. This decline was paralleled by a 248 

reduction in adjusted BEE of 2.0% but this did not reach significance (Fig 3b: r2 = 0.0015, 249 

p > .05). The gradient of the fall in adjusted BEE was 0.3 kJ/month, equivalent to a reduction in 250 

adjusted BEE over 30 years of 0.11 MJ/day (95%CI = ±0.21 MJ/day). In contrast, and again 251 

similarly to the males, adjusted AEE significantly increased over time (Fig 3c: r2 = 0.0063, p = 252 

0.026). The gradient of increase in AEE of 1.16 kJ/month was equivalent to an increase in AEE of 253 

0.42 MJ/day over 30 years (95% CI = ± 0.37 MJ/day).  254 

Because there was a small sample of measures in the early 1980s in males these may 255 

have exerted undue leverage in the regression models. We therefore repeated the analysis 256 

excluding these data. Their removal had no impact on the detected relationships 257 

(Supplementary Table S1). Since individual studies may also exert undue leverage we 258 

performed additional sensitivity analyses on the BEE effect (post 1987) where the data for each 259 

study was systematically removed and the regression recalculated. In males removal of no 260 

individual study resulted in the loss of significance (Supplementary Table S2). In females 261 

however, the absence of significance was due to inclusion of data from a single study 262 

(Supplementary Table S3). We have no reason to exclude these data, but their undue influence 263 

may explain the anomalous lack of decline in female BEE when TEE is declining and AEE is rising 264 

(Table 1 and fig 2). 265 
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Hence, in both males and females there was a decline in the adjusted TEE by 7.7 and 266 

5.6% respectively and in males in the adjusted BEE over time by 14.7% over 30 years (females 267 

declined by 2% which was not significant). In both sexes the confidence limits for the decline in 268 

adjusted TEE overlapped with the confidence limits for the decline in adjusted BEE, suggesting 269 

the decline in adjusted BEE could be sufficient to explain the reduction in adjusted TEE. In both 270 

sexes there was in contrast a significant increase over time in adjusted AEE. The comparable 271 

declines in adjusted TEE and BEE resulted in a significant increase in PAL (=TEE/BEE) in males 272 

(Males supplementary Fig S5a: r2 = 0.0215, p < .0003) but in females the change in PAL over 273 

time was not significant (females supplementary Fig S5b: r2 = 0.0037, p = 0.085).  274 

 To replicate and check our observation of decreasing BEE over time we systematically 275 

reviewed data from the literature on mean BMR over the last 100 years, restricted to studies in 276 

the USA and Europe, to match the restricted regions included in the time course from the IAEA 277 

database (Figs 1,2 and Table 1). For the distinction between BEE and BMR see the methods. The 278 

main effect on Loge BMR was Loge BM (Fig 3a), with additional effects of sex and age (total r2 = 279 

0.88). Including the date of measurement, sex, age and loge body mass as predictors in a 280 

weighted regression analysis there was a significant negative effect of date of measurement (R2 281 

= 0.024, p = 0.022) on the adjusted loge BMR (Fig 3b).  On average, BMR adjusted for BM, age 282 

and sex has declined by about 0.34 MJ/d over the last 100 years. This decline is consistent with, 283 

but at a lower rate, than the data from the IAEA database reported above (Table 1).  284 

Basal metabolism may be influenced by many factors one of which is diet. Human 285 

dietary changes during the epidemic have included many things such as changes in the amounts 286 

of fiber and fat, and the types of fat consumed. Because evaluating the impacts of long-term 287 
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diets on human metabolism is difficult, we explored the potential impact of dietary fatty acids 288 

on metabolic rate using the mouse as a model. Working with mice has the advantage that diets 289 

can be rigorously controlled and maintained constant over protracted periods. We exposed 290 

adult male C57BL/6 mice to 12 diets (for details see supplementary Tables S2 and S3) that 291 

varied in their fatty acid composition for 4 weeks (equivalent to 3.5 years in a human). Mouse 292 

BMR (kJ/d) was strongly related to body weight (regression r2 = 0.512, p = 3x10-11: Fig 4A). We 293 

included the total intake of different fatty acids (SAT: saturated fatty acids, MUFA: mono-294 

unsaturated fatty acids and PUFA: poly-unsaturated fatty acids) with body weight into a general 295 

linear model. Only intake of saturated fatty acids was significant (SAT: F = 11.05, p = 0.002 (Fig 296 

4B); MUFA: F = 1.38, p = 0.245; PUFA: F = 0.17, p = 0.686) with higher levels of SAT linked to 297 

higher energy expenditure (Fig 4B).  298 

Overall the data we present do not support the idea that lowered physical activity in 299 

general, leading to lowered energy expenditure, has contributed to the obesity epidemic during 300 

the last 30 years. Unadjusted AEE was higher in individuals with greater BMI (supplementary Fig 301 

S4). This is because, as shown previously, despite on average moving less, individuals with 302 

greater BMI have higher costs of movement9. Rather than adjusted AEE declining, it has 303 

significantly increased overtime in both sexes. Yet TEE (adjusted for age and body composition) 304 

has declined significantly in both males and females over the past 3 decades. Because adjusted 305 

AEE has increased at the same time that TEE has declined there has been a corresponding 306 

reduction in adjusted BEE (which only reached significance in males). The observation that 307 

adjusted AEE (and PAL in males) has significantly increased over time is counter intuitive given 308 

the patterns established in worktime physical activity and the suggested progressive increase in 309 
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sedentary behavior4,6-8. One possibility is that lowered work time physical activity may have 310 

been more than offset by increased engagement in leisure time physical activity. For example, 311 

sales of home gym equipment in the USA increased from 2.4 to 3.7 Bn US$ between 1994 and 312 

201719.  Time spent in leisure time PA in the USA also increased between 1965 and 1995,20 313 

suggesting leisure time PA has replaced the decline in worktime PA levels20. Leisure time PA has 314 

also changed in other westernized populaions21. Although time spent on computers has 315 

increased, much of the increase in this time has largely come at the expense of time spent 316 

watching TV. Since these activities have roughly equivalent energy costs22 this change would 317 

not be apparent as a decline in overall adjusted AEE.  318 

The reduction in adjusted BEE is less easily understood but is consistent with the recent 319 

observation that body temperatures have also declined over time23, over the same interval as 320 

the reduction of BMR in the wider data set we analysed (Fig 3b). The magnitude of secular 321 

change in BMR is consistent with studies measuring BMR and body temperature in several 322 

contexts, including calorie restriction, ovulation, and fever which show a 10-25% increase in 323 

BMR per 1oC increase in core temperature24,25. It was recently suggested that changes in both 324 

activity and basal metabolism may have contributed to the decline in body temperature (Tb)26, 325 

but our data suggest this is probably dominated by a BMR effect. The reduction in Tb has been 326 

speculated to be a consequence of a reduction in baseline immune function because we have 327 

greatly reduced our exposure to many pathogens. However, the links between immune 328 

function and metabolism are not straightforward. For example, artificial selection on metabolic 329 

rate leads to suppressed innate but not adaptive immune function27, and studies of birds point 330 

to no consistent relation between immune function and metabolism either within or between 331 
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subjects28. Experimental removal of parasites in Cape ground squirrels (Xerus inauris) led to 332 

elevated rather than reduced resting metabolic rate29. Nevertheless, some studies in forager-333 

horticulturalist societies in South America have noted elevated BMR is linked to increased levels 334 

of circulating IgG30 and cytokines31, supporting the view that a long term decline in BEE may be 335 

mediated by reduced immune function. Whether this has any relevance to changes in the 336 

USA/Europe in the past 30 years is unclear. It is also possible that the long-term reduction in 337 

BMR represents methodological artefacts. In the early years, measurements of BMR were often 338 

made using mouthpieces to collect respiratory gases, and recently such devices have been 339 

shown to elevate BMR by around 6%32. A second possibility is that early measurements paid 340 

less attention to controlling ambient temperature to ensure individuals were at thermoneutral 341 

temperatures33.  342 

During the past century there have been enormous changes in the diets of US and 343 

European populations (USDA and FAO food supply data)34. These changes have included 344 

alterations in the intake of carbohydrates, fiber and fats, with % protein intake remaining 345 

relatively constant34. While intake of carbohydrates peaked in the late 1990s the intake of fat 346 

has increased almost linearly since the early part of the 1900s. Moreover, the fat composition 347 

has changed dramatically with large increases in soybean oil and seed oils from the 1930s 348 

onwards (dominated by the polyunsaturated 18:2 linoleic acid and other PUFAs) and reductions 349 

in animal fats (butter and lard) (dominated by saturated fatty acids palmitic (16:0) and stearic 350 

acid (18:0) and the mono-unsaturated oleic acid (18:1))34. The change has been dramatic, as 351 

animal fats comprised >90% of the fatty acid intake in 1910 but are currently less than 15%. 352 

Because linoleic acid is desaturated to form arachidonic acid (ARA) and ARA is linked to 353 
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endocannabinoids it has been speculated that expanding linoleic acid in the diet may be linked 354 

to various metabolic issues. Effects on basal metabolic rate however are disputed, and if 355 

anything, PUFAs lead to elevated not reduced metabolism35,36, although many studies suggest 356 

no effect37,38. This variation in outcome may reflect difficulties in controlling human diet over 357 

protracted periods necessary to generate robust changes in metabolism. In mice, where we can 358 

rigorously control the diet for prolonged periods (equivalent to many years of human life), we 359 

have shown here no effect of PUFAs on metabolic rate, but a clear impact of saturated fat, with 360 

greater intake of saturated fat leading to higher metabolic rate (adjusted for body mass). This 361 

finding is consistent with earlier reports of relationships between membrane lipids and 362 

elevated metabolic rate in mice, particularly a positive effect of palmitic and stearic acids39,40.  363 

This suggests that alterations in the intake of saturated relative to unsaturated fat over the last 364 

100 years may have contributed to the decline in BEE reported here, although clearly we should 365 

be cautious about extrapolations from males of a single inbred mouse strain and further studies 366 

in humans are required. Moreover, other aspects of the diet that impact metabolic rate may 367 

also have changed over time, for example intake of fiber which has declined in recent years41 368 

and has been shown in a randomized controlled trial to affect resting metabolic rate42.  369 

Strengths and limitations 370 

A strength of this study is the large sample of individuals over a restricted geographical 371 

area (US and Europe) measured using a complex methodology. This has allowed us to detect a 372 

small but nevertheless biologically meaningful signal. However, it is important to be aware that 373 

the studies were not designed with the current analysis in mind. Hence while we have adjusted 374 

for differences in age and body composition there may be other factors that differed over time 375 
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that we did not adjust for and that could explain the trends we found. Further, the participants 376 

recruited at different time points may not have been representative of the underlying 377 

populations, even though the overall distribution seems representative (Fig S1).  The data are 378 

cross-sectional which limits the inferences that can be made regarding causality in the 379 

associations. Finally, while we have speculated on some potential factors that might have 380 

contributed to the reduction in BEE (i.e. immune function and diet), these factors were not 381 

quantified in most of the participants who had their TEE measured. The mouse work we 382 

performed showing potential links of diet to metabolism was only conducted in males of one 383 

strain and a single age and may not be more broadly applicable. These potential mechanisms 384 

therefore remain speculations until more direct data can be collected.  385 

Conclusion 386 

Overall our data show that there has been a significant reduction in adjusted TEE over 387 

the last three decades, which can be traced to a decline in BEE rather than any reduction in AEE 388 

linked to declining physical activity levels. Indeed, our data show that AEE has significantly 389 

increased over time. Reductions in BEE extend much further back in time (TEE data do not 390 

extend further back than 1981 as that was the first year the DLW technique was applied to 391 

humans), and mouse data indicated that one of many possible explanations is decreases in the 392 

intake of saturated relative to unsaturated fatty acids. If the decline in BEE over time has not 393 

been compensated for by a parallel reduction in net energy intake then the energy surplus 394 

resulting would be deposited as fat. This study therefore identifies a novel potential contributor 395 

to the obesity epidemic, that has not been previously recognized: a decline in adjusted BEE 396 
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linked to reduction in overall adjusted TEE. Further understanding the determinants of BEE and 397 

the cause of this decline over time, and if it can be reversed, are important future goals.   398 
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 573 

Figure legends 574 

Figure 1: Trends over time in a) adjusted total energy expenditure, b) adjusted basal energy 575 
expenditure, and c) adjusted activity energy expenditure for males. Adjustments were made for 576 
body composition (fat and fat-free mass or body mass, and age) – see methods for details. All 577 
expenditures are in MJ/d and time is expressed in months since January 1982. Significant years 578 
are also indicated.  Each data point is a different measurement of expenditure. The red lines are 579 
the fitted least squares regression fits. For regression details refer to text and Table 1.  580 

Figure 2: Trends over time in a) adjusted total energy expenditure, b) adjusted basal energy 581 
expenditure, and c) adjusted activity energy expenditure for females. Adjustments were made 582 
for body composition (fat and lean mass and age) – see methods for details. Significant years 583 
are also indicated.  All expenditures are in MJ/d and time is expressed in months since January 584 
1982. Each data point is a different individual measurement of expenditure. The red lines are 585 
the fitted least squares regression fits. For regression details refer to text and Table 1.  586 

Figure 3: A: effect of loge body mass on the loge basal metabolic rate (BMR) in a systematic 587 
review of 165 studies dating back to the early 1900s (first study 1919). Data for males in blue 588 
and for females in red. Studies with mixed male and female data not illustrated. B: Bubble plot 589 
showing the Residual loge Basal metabolism derived from a weighted regression of loge BMR 590 
against sex, age and loge (body mass) plotted against date of measurement in the same 165 591 
studies. Bubbles represent the sample size of the studies. The red line is the fitted weighted 592 
regression.  593 

Figure 4: A: the relationship between body weight and metabolic rate in the mice fed different 594 
diets with variable fatty acid compositions. B: the effect of saturated fatty acid intake on 595 
residual metabolic rate – corrected for body weight.  596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 
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 605 
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Table one: Patterns of change in components of energy expenditure in males and females since 606 
the early 1990s. Data are shown unadjusted and adjusted for body composition and age. The 607 
gradient of the fitted relationships with time are translated to the overall change in expenditure 608 
(MJ) over 30 years with the 95% confidence intervals (95%CI) for this change. TEE = total energy 609 
expenditure, BEE = basal energy expenditure, AEE = activity energy expenditure (=0.9TEE-BEE). 610 
Significance of the relationships is also shown. p > .01 was considered not significant (ns).  611 

Males 612 

Unadjusted data 613 

Variable   Mean change over 30 y 95% CI   Significance 614 
    (MJ/d)    (± MJ/d) 615 

TEE    +0.55    0.73   ns 616 

BEE    -1.19    0.536   p < .00002 617 

AEE    +0.50    0.695   ns 618 

Adjusted data 619 

TEE    -0.93    0.46   p < .0001 620 

BEE    -0.96    0.15   p < 10-9 621 

AEE    +1.01    0.53   p < .0003 622 

 623 

Females 624 

Unadjusted data 625 

Variable   Mean change over 30 y 95% CI   Significance 626 
    (MJ/d) 627 

TEE    -0.16    0.360   ns 628 

BEE    -0.32    0.352   ns 629 

AEE    +0.18    0.452   ns 630 

Adjusted data 631 

TEE    -0.51    0.26   p < .00002 632 

BEE    -0.12    0.215   ns 633 

AEE    +0.42    0.367   p = 0.026 634 
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Figure 2 659 
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Figure 3 683 
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Figure 4 705 
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Supplementary materials for  727 

Speakman et al Total daily energy expenditure has declined over the last 4 decades due to 728 
declining basal expenditure not reduced activity expenditure. 729 

Contents 1. Materials and Methods 730 

  2, Supplementary figures 731 

  3. Supplementary tables 732 

  4. group authorship details. 733 

1. Materials and methods 734 

This study involves in part a retrospective analysis of data submitted to the IAEA DLW database 735 

(www.dlwdatabase.org). The data stretch back to the late 1980s, however, the clinical trials 736 

registry was only launched by the NIH in February 2000, hence, there was no possibility to pre-737 

register the work before data collection started. Nevertheless, the analysis performed here was 738 

pre-registered on the IAEA DLW database website in 2020 (https://doubly-labelled-water-739 

database.iaea.org/dataAnalysisPlanned).  740 

DLW database study 741 

Data were extracted from the IAEA Doubly Labeled Water (DLW) Database15, version 3.1.2, 742 

compiled in April, 2020, and then later while the manuscript was in review this was expanded 743 

to include additional data extracted from version 3.7.1. In total this latter version of the 744 

database comprises 8,313 measurements of TEE using the DLW method. We selected from the 745 

database measurements of adults aged >18 y, living in either Europe or the USA, that also had a 746 

record of age. We excluded individuals who were professional athletes, individuals engaged in 747 

unusual levels of activity (e.g. climbing mountains or participating in a long distance running 748 

https://doubly-labelled-water-database.iaea.org/dataAnalysisPlanned
https://doubly-labelled-water-database.iaea.org/dataAnalysisPlanned
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race), pregnant and lactating females and individuals with specific disease states. In total this 749 

resulted in 4799 measurements across both sexes. Submissions to the database did not reveal 750 

whether the sex was self-reported or assigned. Although an option was available to designate 751 

individuals as trans-sexual, none of the submitted data were identified as such. Gender was not 752 

available from the submitted data. Estimates of TEE were recalculated using a common 753 

equation16 which has been shown to perform best in validation studies. The final data set 754 

included 1672 measurements of males and 3127 measurements of females.  755 

 756 

For 632 of the males and 800 of the females we also had measurements of basal metabolic rate 757 

(BMR) measured by indirect calorimetry. BMR measurements were derived either from hood 758 

calorimetry or from minimal metabolic rate determined overnight during chamber calorimetry 759 

(strictly sleeping metabolic rates or SMR). We converted these BMR or SMR to estimates of 760 

basal energy expenditure (BEE). BMR and SMR are measured for relatively short periods lasting 761 

30 minutes to an hour. BEE is a theoretical value for the energy expenditure that would pertain 762 

if this BMR/SMR measurement was sustained for 24h. For those individuals with measurements 763 

of both BEE and TEE we estimated activity energy expenditure (AEE = (0.9*TEE)-BEE), and the 764 

physical activity level (PAL = TEE/BEE). The value 0.9 in the equation for AEE assumes the 765 

thermic effect of food (TEF) is 10% of the total energy expenditure. In practice this varies 766 

between individuals and is dependent on the diet. Variation is introduced therefore by 767 

imprecision in this value. However, since the TEF is largely dependent on protein in the diet, 768 

and protein intakes have remained stable over the last 40 or so years there is unlikely to be any 769 

systematic imprecision in the value that could affect the detected trends.  It is important to 770 
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note that TEE and BEE are both measured directly, while AEE is only inferred from the 771 

difference between the two. The accuracy and precision of TEE relative to chamber indirect 772 

calorimetry for the equation utilized here was estimated at 0.4% (accuracy) and 7.7% 773 

(precision)16. The accuracy and precision of estimates of basal metabolic rates of metabolism 774 

inferred by indirect calorimetry has been evaluated using alcohol burns and is estimated at 775 

around 1-2%. Error in the estimate of AEE by subtraction is considerably higher than the direct 776 

estimates of TEE and BEE43.  777 

 778 

The DLW method is based on the differential elimination of isotopes of oxygen and hydrogen 779 

introduced into the body water13. The details of the practical implementation of the method 780 

and its theoretical basis have been previously published. We recently derived a new equation 781 

for the calculation of CO2 production using the technique16 and recalculated the entries in the 782 

database using this common equation. These were then converted into energy expenditure 783 

using the Weir equation44 with food quotients derived from the original studies.  784 

 785 

Additional characteristics of the subjects (body mass (BM), age, and sex) were measured using 786 

standard protocols. We estimated the fat-free mass (FFM) of individuals using the estimated 787 

total body water and an assumed hydration constant for lean tissue of 0.73 (ref 45) and then 788 

calculated fat mass by difference (FM = BM-FFM).  The date of the measurement was expressed 789 

in months relative to January 1982 which was the first year that the DLW method was applied 790 

to human subjects.  791 

 792 
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In the first set of analyses we used the unadjusted measures of TEE, BEE and AEE as dependent 793 

variables in general linear models with time since January 1982 as the predictor. Tests were 794 

two-sided and p < .05 was taken as significant. All analyses were performed using Minitab v19.  795 

It is well established that TEE, BEE and AEE depend on body composition, as well as subject age. 796 

Patterns of variation in unadjusted values with time might then reflect biased population 797 

sampling with respect to these traits. For example, if more older subjects were sampled later in 798 

the time course this might give a spurious indication that TEE was declining since all EE 799 

parameters decline after ~60y46. We adjusted (logarithmically) TEE, BEE and AEE using loge FFM, 800 

loge FM and age as the predictor variables using general linear modelling. Analyses were run 801 

separately for each sex therefore no adjustment for sex was necessary. In both sexes, for loge 802 

BEE, the predictors age, loge FFM and loge FM were all significant but for loge TEE and loge AEE, 803 

only age and Loge FFM were significant. In the latter cases we deleted the non-significant 804 

predictor and re-ran the analyses. Following the above procedure we then calculated the 805 

residuals to the fitted models and added them back to the mean logged TEE, BEE and AEE 806 

across all measurements. These values were then converted back to measures of ‘adjusted 807 

TEE’, ‘adjusted BEE’ and ‘adjusted AEE’ by taking the exponent of the derived values. We then 808 

checked that the residuals were normally distributed and the adjusted variables were not 809 

significantly related to any of the predictor variables to ensure that the adjustment was 810 

adequate. Tests applied were two-sided and p < .05 was taken as significant. We then sought 811 

relationships between the adjusted variables and date of measurement using linear regression. 812 

The adjusted variables cover a narrower time span from 1990 to 2017.  813 

 814 
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Sensitivity analyses 815 

We performed several checks on the data to make sure the trends were not being driven by 816 

individual studies. First there were some small studies in males prior to 1987 that may have 817 

exerted undue leverage in the analysis. We therefore excluded these data and reran all the 818 

regressions (Table S1). There were no significant changes in any of the parameters. Since the 819 

downward trend in BEE was the most important new finding we directed particular attention to 820 

this trend.  821 

To evaluate if the male BEE data would be better fit by a more complex model than the linear 822 

model we used, we included higher order terms of the date into a regression analysis. In this 823 

analysis the r2 explained by date, date2 and date3 was increased relative to just including date 824 

alone. However, the variance inflation factors (VIF) for these more complex models were 825 

enormous. When date and date2 were included the VIF for each variable was 28.9, and when all 826 

3 were included the VIF values were 438 for date, 2084 for date2 and 663 for date3. The usual 827 

VIF cut-off for deciding whether to include an extra term into a model is 5. In this case it was 828 

clear that higher order terms were not justified relative to a simple linear model.  829 

We performed a general linear model analysis with date as a covariate and study as a factor in 830 

the model. In males when we used such a model there was indeed a large study effect (F = 831 

12.97, p < 10-15) but the effect of date remained highly significant (F= 22.87, P < 10-8) and 832 

strongly negative (coefficient = -1.85 MJ/d over 30 years), exceeding that in the original 833 

analysis.  In females there was also a strong study effect (F = 9.54, P < 10-12) but the effect of 834 

date remained non-significant (F = 12.9, P = 0.256).  835 
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Using the post 1987 data we then systematically removed the data for each study and reran the 836 

analyses to see if any particular study exerted undue effects on the regression. The analyses are 837 

summarized in Table S2. This analysis showed that no individual study was responsible for the 838 

negative relationship. In all cases the relationship between BMR and time remained negative 839 

and highly significant. A single study (number 23 in 1991) involved relatively high BMR values 840 

and so omitting it reduced the coefficient and the significance. But the p value for the 841 

regression when omitting these data was still highly significant P < 10-5, and the coefficient still 842 

strongly negative and biologically important.  843 

We then turned our attention to the female data for BEE against date to see if the absence of a 844 

relationship there might be because of inclusion of any particular study. We used the same 845 

leave one out procedure as used for the males. The results are shown in Table S3. In this case 846 

the pattern was very different in that the relationship was always not significant (P > 0.1), 847 

except when a single study (study 65) was removed from the analysis, and in that case the 848 

relationship became significant (P = 0.001) and the negative gradient (extrapolated to over 30 849 

years) increased to -0.39 MJ/day. Omitting a second study (n = 69) has a smaller effect that also 850 

resulted in the relationship becoming marginally significant (p = 0.037).  If both studies 65 and 851 

69 were omitted (not shown in table) the p value for the relationship fell to P < 10-5 and the 852 

gradient was -0.59 MJ/d.  Study 65 was a study of overweight individuals by Camps et al (2013). 853 

We have no objective reason to reject these data but it is interesting that the anomalous 854 

absence of a negative relationship of BMR to time in the females is dependent only on inclusion 855 

of this one study. It is worth noting that excluding this study from the male data strengthened 856 

the relationship for males (Table S2). 857 
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Systematic review of BMR trends 858 

This systematic review was registered at PROSPERO, 2021 (CRD42021270242) and executed per 859 

PRISMA guidelines (see supplementary Fig S6). The details of search strategy, data extraction and 860 

analysis were as follows. 861 

Search Strategy  862 

 A literature search was carried out on PubMed using the following keywords: “Basal 863 

metabolic rate”, “BMR”, “basal energy expenditure”, “BEE”, “resting metabolic rate”, “RMR”, 864 

“resting energy expenditure”, “REE”, “Indirect calorimetry”, “open circuit indirect calorimetry”, 865 

“ventilated hood indirect calorimetry”, “healthy”, “apparently healthy”. Papers published in 866 

English from 1900 to 2021 were considered. Cross-references from these papers were also 867 

evaluated.  868 

Eligibility and study selection  869 

 Papers reporting the measurement of BMR (or BEE) or resting metabolic rate (RMR) on 870 

healthy male and female adults, aged 18-65 years, across different body mass index (BMI) were 871 

included. Additionally, only studies on either the American or European population were 872 

considered. Data were abstracted from cross-sectional studies as well as randomized controlled 873 

trials (RCTs). For RCTs, the data collected for control group, which met our inclusion criteria, were 874 

included. Studies on infants, children, adolescents, elderly, moderate or heavy activity workers, 875 

soldiers and athletes were excluded. The study selection was carried out in two levels: first, 876 

articles were included based on their title and abstract; second, the included articles were again 877 

filtered based on a reading of their full text. Finally, 163 studies were included into the analysis, 878 

as listed in the references below.  879 

Data Extraction  880 

 From the selected articles, data on age, sex, geography, population/ethnicity, sample size, 881 

weight, height, body mass index, physical activity level, fat mass, fat free mass, method of 882 

measuring BMR or RMR, measured value for BMR or RMR, and the instrument error or intra-883 



34 
 
 

individual variability were extracted where available. When raw data were available in some 884 

papers, the individual data was included in the analysis. When BMR or RMR was reported as kcal 885 

or KJ per day, it was converted to MJ per day. When the BMR or RMR data was provided as per 886 

kg body weight or fat free mass (FFM) or per square meters surface area, then it was converted 887 

to MJ per day by multiplying the respective body weight, FFM or surface area. Finally, assuming 888 

that RMR is 10% higher than BMR, any reported RMR data were converted to BMR as 0.9 x RMR. 889 

Where mean for age and weight was not provided in the paper [11,21,23,75,80,93,146,154], but 890 

range or dispersion indicators of age and weight (minimum/maximum or 95% CI or IQR) were 891 

provided, the middle values of these were transformed to obtain the mean values. In some 892 

papers, rather than body weight, FFM and fat mass (FM) values were reported; here, these were 893 

added to obtain the body weight [47,84,93,151,159]. When SD or SE of weight was provided, 894 

these were converted to 95% CI. If FFM and body weight were reported, the FM was calculated 895 

as a difference between body weight and FFM.  896 

The data were extracted, sorted, coded and entered into an Excel workbook; statistical analyses 897 

were carried out on R version 4.1.0 (R Core Team, 2021, Vienna, Austria). A weighted regression 898 

analysis of loge BMR (MJ) on time was performed where loge (body weight), age and sex were 899 

considered as covariates along with regression weights assigned to studies based on their study 900 

size (n).  901 
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 1303 
 1304 

Mouse indirect calorimetry measurements 1305 

All mouse studies followed the guidelines issued by Yale University’s Institutional Animal Care 1306 

and Use Committee (IACUC). Male C57BL/6J mice (Jackson Laboratories, stock # 000664) arrived 1307 

at the facility at 5 weeks of age and were kept on a 12h/12h light/dark cycle and had free access 1308 

to water and chow diet (Envigo Teklad, 2018S). At 6 weeks of age, mice were switched to one of 1309 

the different high-fat diets (Research Diets Inc., Table S4). The high-fat diets (HFD) contained 20% 1310 
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protein, 35% carbohydrates and 45% fat by energy with the fat being derived from different 1311 

sources (listed in Table S5). After 4 weeks of HFD feeding, mice were housed in a TSE 1312 

PhenoMaster system for 4 days. Data from the final 72 hours were used for calculations. Oxygen 1313 

(O2) consumption (mL/h), carbon dioxide (CO2) production (mL/h) and food intake (g) were 1314 

recorded every 30 minutes. Energy expenditure (kJ/h) was calculated using the Weir Equation44. 1315 

Respiratory exchange ratio (RER) was calculated as vCO2/vO2. 1316 

 1317 

Preparation of samples for GCMS 1318 

For mouse diets, approximately 40-50 mg of pulverized diet was weighed and dissolved in 0.5 mL 1319 

of pure water, acidified with 10 μL of 1 M HCl, and 1 mL of 100% methanol was added. Diet 1320 

samples were mechanically homogenized to a uniform slurry. Total lipid extraction was 1321 

performed on all samples as previously described47. 1.5 mL of isooctane/ethyl acetate 3:1 v/v 1322 

was added, vortexed vigorously, the organic phase was collected, and this step was repeated. 1323 

The two volumes of organic phase were combined and taken to dryness by evaporation under 1324 

nitrogen gas at 40°C. Samples were resuspended in 300 μL of isooctane/ethyl acetate 3:1 v/v. 1325 

The diet samples were subsequently diluted 1:200 into isooctane/ethyl acetate 3:1 v/v. 1326 

 1327 

Fatty acid quantification by GCMS 1328 

Individual stable isotope fatty acid (FA) stock solutions were made in isooctane/ethyl acetate 3:1 1329 

v/v, a mixture containing 1.0 μg/μL of every FA was made in isooctane/ethyl acetate 3:1 v/v that 1330 

was further diluted to 50 ng/μL, and stable isotope reference FA regression curves were 1331 

prepared47.48. For total FA composition, 500 ng of the blended internal reference standard was 1332 
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added to 50 μL of total lipid extract, and samples were taken to dryness under N2 gas. Dried 1333 

samples were immediately resuspended in 500 μL of 100% ethanol, saponified with 500 μL of 1 1334 

M NaOH at 90 °C for 45 min in Teflon capped tubes, and then acidified by addition of 525 μL of 1 1335 

M HCl. Saponified FA were re-extracted using 1 mL of isooctane (twice), dried under N2 gas, and 1336 

were derivatized as above. The pentafluorobenzyl FA esters were resuspended in 200 μL of 1337 

isooctane and diluted 1:10 into isooctane into GC/MS autosampler vials for injection. Analyte 1338 

data were acquired in NICI full scan, the FA-analyte peak area ratio to that of its corresponding 1339 

stable isotope reference FA was calculated for each analyte, and ratios were converted to 1340 

absolute amounts relative to regression curves for each chain length and saturation47,48. Total 1341 

SFA, MUFA and PUFA was the quantitative sum of the nmoles of the class of fatty acid measured. 1342 

Quantitative FA data were normalized to the total mass of diet input to the lipid extraction (i.e. 1343 

mg FA / g diet). Dietary FA amounts are listed in Table S4. Dietary FA intake (in mg) was calculated 1344 

by multiplying dietary FA amounts (mg/g) by the amount of diet consumed (g). 1345 

 1346 

 1347 

 1348 

 1349 

 1350 

 1351 

 1352 

 1353 

 1354 
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2. Supplementary figures 1355 

 1356 

Figure S1: Distribution of BMI in the sample data for a) females and b) males. Trends in body 1357 
weight over the interval from 1982 to 2017 for c) males and d) females. There was a significant 1358 
increase in weight over time in both sexes. For males (gradient = 0.015 kg/month F = 7.04, p = 1359 
0.009) reflecting an average weight increase of 5.4 kg over 30 years, and for females (gradient = 1360 
0.023 kg/month F 20.84, p = 0.000005) reflecting an average increase of 8.3 kg over 30 years 1361 

Figure S2: Trends over time in a) unadjusted total energy expenditure, b) unadjusted basal 1362 
energy expenditure, and c) unadjusted activity energy expenditure for males. All expenditures 1363 
are in MJ/d and time is expressed in months since January 1982. Significant years are also 1364 
indicated. Each data point is a different measurement of expenditure. The red lines are the 1365 
fitted least squares regression fits. For regression details refer to text and Table 1.  1366 

Figure S3: Trends over time in a) unadjusted total energy expenditure, b) unadjusted basal 1367 
energy expenditure, and c) unadjusted activity energy expenditure for females. All expenditures 1368 
are in MJ/d and time is expressed in months since January 1982. Significant years are also 1369 
indicated. Each data point is a different measurement of expenditure. The red lines are the 1370 
fitted least squares regression fits. For regression details refer to text and Table 1.  1371 

 1372 

Figure S4: Relationships between energy expenditure parameters and Body mass index (BMI). 1373 
In females the relationships were: for TEE vs BMI (F = 559.3, p < 10-16), TEE vs BM (F =  1163, p < 1374 
10-16), BEE vs BMI (F = 242.6 , p < 10-16) BEE vs BM (F = 341.1, p < 10-16), AEE vs BMI (F = 45.13, 1375 
p < 10-10)  and AEE vs BM (F = 91.08, p < 10-16). For males the relationships were: for TEE vs BMI 1376 
(F = 114.6, p < 10-16), TEE vs BM (F =  302.3, p < 10-16), BEE vs BMI (F = 79.4, p < 10-16) BEE vs BM 1377 
(F = 341.1, p < 10-16), AEE vs BMI (F = 16.28, p = 6 x 10-5)  and AEE vs BM (F = 53.19, p < 10-14).   1378 

 1379 

Figure S5: Trends over time in Physical Activity Level (PAL = TEE/BEE). PAL is dimensionless and 1380 
time is expressed in months since January 1982. Significant years are also indicated. Upper plot 1381 
is for males and lower is for females.  The red lines are the fitted least squares regression fits. 1382 
For regression details refer to text. 1383 

Figure S6:  Systematic review strategy. Flow diagram for selection of studies according to 1384 
PRISMA guidelines. 1385 

 1386 

 1387 
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Figure S1 1389 
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Figure S2 1409 
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Figure S3 1432 
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Figure S4 1458 

   Females      Males 1459 

  A:TEE      B:TEE 1460 

 1461 

 1462 

 1463 

 1464 

 1465 

 1466 

C: BEE      D:BEE 1467 

 1468 

 1469 

 1470 

 1471 

 1472 

 1473 

  E: AEE      F:AEE 1474 

 1475 

 1476 

 1477 

 1478 

 1479 

 1480 

 1481 

 1482 

 1483 

 1484 

 1485 



52 
 
 

Figure S5 1486 
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Figure S6 1509 
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 1540 

3. Supplementary tables 1541 

Table S1. Patterns in change of metabolic rate of males over the last 35 to 40 years including 1542 
or excluding data prior to 1987. Values show the change in MJ/day over 30 years and the 1543 
associated p value. ns = not significant. None of the patterns or interpretations are changed 1544 
by the omission of the early data.  1545 

  1546 

     Including    Excluding 1547 

Unadjusted  TEE  +0.55  p > .05, ns  +0.60  p > .05, ns 1548 

  BEE  -1.19  p < 0.00002  -1.16  p <0.00002 1549 

  AEE  +0.50  p > .05, ns  +0.54  p > .05, ns 1550 

Adjusted TEE  -0.93  p < 0.0001  -0.94  p < 0.0002 1551 

  BEE  -0.96  p < 10-9  -0.91  p < 10-8 1552 

  AEE  +1.01  p < 0.0003  +1.02  p > 0.0003 1553 

 1554 

 1555 

 1556 

 1557 

 1558 

 1559 

 1560 

 1561 

 1562 

 1563 

 1564 

 1565 

 1566 
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Table S2: Impact of removing individual studies on the relationship between male BEE and date. 1567 
Individual studies are identified by the code for the study is that in the database. N is the number of 1568 
samples omitted. Dates covered are the months since jan-82 that were involved in the particular data 1569 
set. Coefficient is the fitted linear regression coefficient converted to the change in MJ/d over 30 years. 1570 
R2x100 is the explained variation (%) by time since 1987. And F and p are the regression statistics for the 1571 
time effect. 1572 

Study omitted  n     dates covered  coefficient r2x100  F p 1573 
None   0    -0.912  5.47 35.3 < 10-8 1574 
 1575 
10   12 191   -0.918  5.57 35.2 < 10-8 1576 
13   4 61   -0.952  5.81 37.3 < 10-8 1577 
17   4 97   -0.886  4.90 32.7 < 10-8 1578 
20   10 85   -0.964  5.82 37.0 < 10-8 1579 
22   8 92   -0.942  5.63 35.9 < 10-8 1580 
23   21 109   -0.653  3.02 18.4 < 10-5 1581 
24   10 96-99   -0.966  5.88 37.4 < 10-8 1582 
31   38 121   -0.794  3.96 23.6 < 10-6 1583 
32   26 145   -0.912  5.47 35.3 < 10-8 1584 
35   12 157   -0.960  6.07 38.6 < 10-8 1585 
36   10 138-171  -0.886  5.19 32.9 < 10-8 1586 
37   10 157   -0.892  5.29 33.5 < 10-8 1587 
40   19 183-185  -0.937  5.82 36.5 < 10-8 1588 
41   4 184   -0.901  5.38 34.5 < 10-8 1589 
43   30 193-197  -0.908  5.39 34.6 < 10-8 1590 
46   7 185-190  -0.875  5.36 34.1 < 10-8 1591 
49   30 205-214  -0.888  5.54 33.6 < 10-8 1592 
51   9 199-200  -0.905  5.42 34.4 < 10-8 1593 
55   10 235-236  -0.902  5.40 34.3 < 10-8 1594 
57   10 259-269  -0.906  5.40 34.3 < 10-8 1595 
59   12 241   -0.892  5.34 33.7 < 10-8 1596 
60   24 290   -0.972  6.03 37.6 < 10-8 1597 
62   18 191-314  -0.982  6.12 38.6 < 10-8 1598 
65   22 339-358  -1.140  7.79 49.7 < 10-12 1599 
69   18 373-380  -1.135  7.32 47.9 < 10-12 1600 
72   14 322-327  -0.998  6.28 39.9 < 10-10 1601 
74   190 199-305  -0.577  3.05 13.4 < 10-4 1602 
79   11 302-321  -0.925  5.52 34.9 < 10-8 1603 
129   25 266-269  -0.813  4.63 28.4 < 10-7 1604 
 1605 
 1606 
 1607 
 1608 
 1609 
 1610 
 1611 
 1612 
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 1613 
Table S3: Impact of removing individual studies on the relationship between female BEE and date. 1614 
Individual studies are identified by the code for the study is that in the database. N is the number of 1615 
samples omitted. Dates covered are the months since jan-82 that were involved in the particular data 1616 
set. Coefficient is the fitted linear regression coefficient converted to the change in MJ/d over 30 years. 1617 
r2x100 is the explained variation (%) by time since 1987. F and p are the regression statistics for the time 1618 
effect. ns is P > 0.1. when P < 0.1 the exact p is quoted.  1619 

Study omitted  n     dates covered  coefficient r2x100   p 1620 
None   0    -0.119  0.11  ns 1621 
 1622 
10   16 191   -0.099  0.10  ns 1623 
13   2 61   -0.134  0.15  ns  1624 
14   3 92   -0.133  0.18  ns 1625 
15   3 85   -0.092  0.09  ns 1626 
20   11 85   -0.117  0.14  ns 1627 
22   5 92   -0.105  0.11  ns 1628 
30   20 133   -0.053  0.03  ns 1629 
31   21 121   -0.009  0.01  ns 1630 
33   11 149-158  -0.141  0.21  ns 1631 
34   17 145   -0.065  0.04  ns  1632 
37   11 157   -0.107  0.12  ns 1633 
42   7 174   -0.103  0.16  ns 1634 
46   12 185-191  -0.082  0.11  ns 1635 
49   28 205-217  -0.091  0.07  ns 1636 
51   4 200-201  -0.115  0.14  ns 1637 
55   15 235-236  -0.120  0.15  ns 1638 
57   24 254-268  -0.140  0.21  ns 1639 
59   6 241   -0.117  0.15  ns 1640 
62   12 310-314  -0.166  0.29  ns 1641 
65   33 339-358  -0.393  1.53  0.001 1642 
69   18 373-381  -0.248  0.59  0.032 1643 
73    6 199-233  -0.108  0.17  ns 1644 
74   184 199-233  -0.170  0.40  ns 1645 
75   34 314-341  -0.050  0.03  ns 1646 
79   45 305-321  -0.083  0.07  ns 1647 
85   2 50-52   -0.065  0.04  ns 1648 
86   9 97   -0.148  0.22  ns 1649 
93   23 93-124   -0.151  0.26  ns 1650 
118   147 234-251  -0.047  0.03  ns 1651 
129   25 266-269  -0.095  0.10  ns 1652 
135   22 312   -0.135  0.18  ns 1653 
 1654 
 1655 
 1656 
 1657 



57 
 
 

 1658 

Table S4 Mouse diet details. 1659 

Ingredients of 45% kcal high-fat diets. All diets were modeled after Research Diets D12451. 1660 
 1661 

 Mouse high-fat diets 
 grams kcal (%) 
Protein 24 20 
Carbohydrate 41 35 
Fat 24 45 
Total  100 
Caloric density (kcal/g) 4.7  

Macronutrient Ingredient grams kcal 

Protein 
Casein, 80 Mesh 200 800 
L-Cystine 3 12 

Carbohydrate 
Corn Starch 72.8 291 
Maltodextrin 10 100 400 
Sucrose 172.8 691 

Filler Cellulose BW200 50 0 

Vitamins and 
Minerals 

Mineral Mix S10026 10 0 
DiCalcium Phosphate 13 0 
Calcium Carbonate 5.5 0 
Potassium Citrate, 1 H2O 16.5 0 
Vitamin Mix V10001 10 40 
Choline Bitartrate 2 0 

Fat 
Soybean oil 25 225 
Dietary Fat Source 177.5 1598 

 1662 

 1663 

 1664 

 1665 

 1666 

 1667 

 1668 

 1669 

 1670 

 1671 
 1672 
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Table S5 Mouse diet details. Dietary fat composition of 45% kcal high-fat diets. Amounts are 1673 
listed as percentages of weight and kilocalories. Note that each diet contains 5.5 kcal% soybean 1674 
oil (providing essential fatty acids). 1675 

 1676 

 1677 

Diet Catalog # Amount Butter Cocoa 
butter 

Coconut 
oil Fish oil High oleic 

Safflower oil 
High oleic 

Sunflower oil Lard Olive oil Palm 
oil 

Peanut 
oil 

Safflower 
oil 

Soybean 
oil 

Butter D06022405 
gram 20.7 0 0 0 0 0 0 0 0 0 0 2.9 
kcal 39.4 0 0 0 0 0 0 0 0 0 0 5.5 

Cocoa butter D11112703 
gram 0 20.7 0 0 0 0 0 0 0 0 0 2.9 
kcal 0 39.4 0 0 0 0 0 0 0 0 0 5.5 

Coconut oil D05122301 
 

gram 0 0 20.7 0 0 0 0 0 0 0 0 2.9 
kcal 0 0 39.4 0 0 0 0 0 0 0 0 5.5 

Fish oil D03022403 
gram 0 0 0 20.7 0 0 0 0 0 0 0 2.9 
kcal 0 0 0 39.4 0 0 0 0 0 0 0 5.5 

High oleic 
Safflower oil D05122103 

gram 0 0 0 0 20.7 0 0 0 0 0 0 2.9 
kcal 0 0 0 0 39.4 0 0 0 0 0 0 5.5 

High oleic 
Sunflower oil D07062503 

gram 0 0 0 0 0 20.7 0 0 0 0 0 2.9 
kcal 0 0 0 0 0 39.4 0 0 0 0 0 5.5 

Lard D12451 
gram 0 0 0 0 0 0 20.7 0 0 0 0 2.9 
kcal 0 0 0 0 0 0 39.4 0 0 0 0 5.5 

Olive oil D06022403 
gram 0 0 0 0 0 0 0 20.7 0 0 0 2.9 
kcal 0 0 0 0 0 0 0 39.4 0 0 0 5.5 

Palm oil D07081501 
gram 0 0 0 0 0 0 0 0 20.7 0 0 2.9 
kcal 0 0 0 0 0 0 0 0 39.4 0 0 5.5 

Peanut oil D16010705 
gram 0 0 0 0 0 0 0 0 0 20.7 0 2.9 
kcal 0 0 0 0 0 0 0 0 0 39.4 0 5.5 

Safflower oil D02062102 
gram 0 0 0 0 0 0 0 0 0 0 20.7 2.9 
kcal 0 0 0 0 0 0 0 0 0 0 39.4 5.5 

Soybean oil D05042003 
gram 0 0 0 0 0 0 0 0 0 0 0 23.6 
kcal 0 0 0 0 0 0 0 0 0 0 0 44.9 

 1678 

 1679 

 1680 

 1681 

 1682 

 1683 

 1684 

 1685 

 1686 

 1687 

 1688 

 1689 
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 1690 

4. Group authorship details 1691 

This group authorship contains the names researchers who submitted data to the database or did not 1692 
assent inclusion to the main authorship because they felt their contribution was not sufficient to merit 1693 
authorship, or their specific data was not used in the present analysis (eg pediatric data). It also includes 1694 
some people whose data were contributed into the IAEA DLW database by the analysis laboratory but 1695 
they later could not be traced, or they did not respond to emails to assent inclusion among the 1696 
authorship. 1697 

 1698 
Dr Helidoro Aleman-Mateo 1699 
Centro de Investigación en Alimentación y Desarrollo, A.C. 1700 
 1701 
Dr Lene F. Andersen 1702 
University of Oslo, Norway 1703 
 1704 
Dr Isaad Baddou 1705 
Unité Mixte de Recherche en Nutrition et Alimentation, CNESTEN-  Université Ibn Tofail URAC39 1706 
 1707 
Dr Linda Bandini,  1708 
University of Massachusetts Chan Medical School 1709 
 1710 
Dr Ellen E Blaak 1711 
Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, 1712 
Maastricht, Netherlands. 1713 
 1714 
Dr Carlinjn V.C. Bouten,  1715 
Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven 1716 
Unversity of Technology, Eindhoven, The Netherlands 1717 
 1718 
Dr Stefan Branth 1719 
University of Uppsala, Uppsala, Sweden 1720 
 1721 
Dr Niels C. De Bruin 1722 
Erasmus University, Rotterdam, The Netherlands 1723 
 1724 
Dr Graeme L. Close 1725 
Liverpool John Moores University 1726 
 1727 
Dr Lisa H. Colbert  1728 
Kinesiology, University of Wisconsin, Madison, WI, 1729 
 1730 
Dr Dan Cummings 1731 
 1732 
Dr Prasangi Debare 1733 
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Department of Physiotherapy, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence 1734 
University, Sri Lanka 1735 
 1736 
Dr William Dietz 1737 
George Washington University, Washington DC, USA 1738 
 1739 
Dr Alice E. Dutman 1740 
TNO Quality of Life, Zeist, The Netherlands 1741 
 1742 
Dr Simon D Eaton 1743 
UCL, Great Ormond Street Institute of Child Health, London, UK 1744 
 1745 
Dr Cara Ebbeling 1746 
Boston Children's Hospital, Boston, Massachusetts, USA. 1747 
 1748 
Dr Asmaa El Hamdouchi 1749 
Unité Mixte de Recherche en Nutrition et Alimentation, CNESTEN-  Université Ibn Tofail URAC39 1750 
 1751 
Dr Sölve Elmståhl 1752 
Lund University, Lund, Sweden    1753 
 1754 
Dr Mikael Fogelholm 1755 
Dept of Food and Nutrition, Helsinki, Finland 1756 
 1757 
Dr Tamara Harris  1758 
Aging, NIH, Bethesda, MD,  1759 
 1760 
Dr Marije B. Hoos 1761 
Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, 1762 
Maastricht, Netherlands. 1763 
 1764 
Dr Rik Heijligenberg 1765 
Academic Medical Center of Amsterdam University, Amsterdam, The Netherlands 1766 
 1767 
Dr Hans U. Jorgensen 1768 
Bispebjerg Hospital, Copenhagen, Denmark 1769 
 1770 
Dr Noorjean Joonas 1771 
Central health Laboratory, Ministry of Health and Wellness, Mauritius 1772 
 1773 
Dr Kitty P. Kempen 1774 
Maastricht University, Maastricht, The Netherlands  1775 
 1776 
Dr Misaka Kimura  1777 
Institute for Active Health, Kyoto University of Advanced Science, Kyoto, Japan 1778 
 1779 
Dr Wantanee Kriengsinyous 1780 
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Institute of Nutrition, Mahidol University, Thailand 1781 
 1782 
Dr Rebecca Kuryiyan 1783 
Division of Nutrition, St. John's Research Institute, Bangalore, India 1784 
 1785 
Dr Estelle V. Lambert  1786 
Health through Physical Activity, Lifestyle and Sport Research Centre, Division of Exercise Science and 1787 
Sports Medicine (ESSM), FIMS International Collaborating Centre of Sports Medicine, Department of 1788 
Human Biology, Faculty of Health Sciences, University of Cape Town  1789 
 1790 
Dr Pulani Lanerolle 1791 
Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Sri 1792 
Lanka 1793 
 1794 
Dr Chystel L. Larsson 1795 
University of Gothenburg, Gothenburg, Sweden 1796 
 1797 
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 1801 
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