
HAL Id: hal-04283672
https://hal.science/hal-04283672v1

Submitted on 14 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

HHT: An Approach for Representing
Temporally-Evolving Historical Territories

William Charles, Nathalie Aussenac-Gilles, Nathalie Jane Hernandez

To cite this version:
William Charles, Nathalie Aussenac-Gilles, Nathalie Jane Hernandez. HHT: An Approach
for Representing Temporally-Evolving Historical Territories. 20th International Conference on The
Semantic Web (ESWC 2023), Catia Pesquita; Jamie McCusker; Ernesto Jimenez-Ruiz; Sven Hertling;
Mauro Dragoni; Anastasia Dimou; Raphael Troncy, May 2023, Hersonissos (Crete), Greece. pp.419-
435, �10.1007/978-3-031-33455-9_25�. �hal-04283672�

https://hal.science/hal-04283672v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

HHT: An Approach for Representing
Temporally-Evolving Historical Territories

W. Charles1, N. Aussenac-Gilles1, and N. Hernandez1

IRIT - Université de Toulouse name.surname@irit.fr

Abstract. The notion of territory plays a major role in human and
social sciences. Representation of this spatio-temporal object and com-
putation of the changes occurring have been tackled in various ways.
However, in an historical context, most approaches are irrelevant as they
rely on geometric data, which is not available. In order to represent
historical territories,we conceived the HHT ontology (Hierarchical His-
torical Territory) to represent hierarchical historical territorial divisions,
without having to know their geometry. This approach relies on a notion
of building blocks to replace polygonal geometry. This representation is
further used to provide an algorithm to detect and characterize territo-
rial changes in a knowledge graph. Said algorithm creates a knowledge
graph of changes at multiple levels encompassing basic changes occurring
in a single territory, and composite changes, which are the abstraction of
several smaller changes into a large change. The approach was followed
to produce 3 knowledge graphs available online. Each of these graphs
allowed to set up an analysis of the evolution of the territories during
the historical period they cover.

Keywords: Territory Ontology · Evolution Representation · Change
Detection Algorithm · Digital Humanities

Resource Type: Ontology Resource Type: Software and datasets
License: Creative Common 4.0 License: Creative Common 4.0
DOI: 10.5281/zenodo.7451702 DOI: 10.5281/zenodo.7451408
URL:https://w3id.org/HHT URL:https://github.com/Brainchain09/HHT-SHACL

1 Introduction

In the context of digital humanities, representing territories as they once were is
a keen issue. Among many issues arising when attempting to represent historical
territories is their geometrical representation [13]. While it is common to use a
vector geometry representation when tackling space-spanning entities, the avail-
able historical data generally has no geometric representation, which makes such
approaches difficult to implement, whether it be for representation or reasoning
about changes. In addition, in an historical approach, it is to be noted that
representing the geometry of territories could be considered as a representation
bias. It is known for example that, back in the 18th century, the typical repre-
sentation of a territory was a list of places [6]. Another dimension of historical

2 W. Charles, N. Aussenac-Gilles, and N. Hernandez

territories is their layered structure within multiple hierarchies. While current
territorial hierarchies rely on a single territorial division, labeled as a nomencla-
ture (example: INSEE in France), contexts such as the modern period in France
call for several hierarchy layers depending on the power dimension considered
(religious, administrative, etc.). As of now, to the best of our knowledge, no
ontology nor change detection algorithm takes these two features into account.
Thus, this paper proposes an algorithm to detect territorial changes relying on a
data representation using an ontology we created, HHT (Historical Hierarchical
Territories). Section 2 tackles the state of the art regarding historical territory
representation. Section 3 addresses HHT, the ontology we propose for this pur-
pose. Section 4 describes the algorithm used to detect and qualify changes in a
knowledge graph relying on HHT. Finally, section 5 presents the evaluation of
said algorithm for multiple datasets displaying various particularities.

2 Representing historical territories and changes

2.1 Inherent difficulties in representing historical territories

Representing historical territories is complex due to various factors. First, it is
necessary to represent the hierarchical relations between the various territories.
Several approaches exist to represent multi-level territorial divisions, whether
they be context specific approaches (RAMON1 for NUTS) or generic approaches
(TSN [3]), they all describe hierarchies covering a whole territory according to
a single nomenclature. It is, for example, impossible to simultaneously represent
both an administrative territorial division and a religious one in TSN. Represent-
ing the geometry is also an issue for historical territories, as it is often found to
be either missing or imprecise [13]. However, most approaches [3, 15] rely on full
geometry description, such as TSN which uses a GeoSPARQL representation.

2.2 Territories as temporal entities

When representing historical territories, temporal evolution is to be taken into
account, thus inducing these territories to be considered as perdurant entities
[3] as defined in the DOLCE ontology [8]. This ontology introduces the notions
of perdurants, which are objects whose temporal properties evolve, as opposed
to endurants which retain the same properties through their whole existence.
Several approaches have been developed over the years to represent such enti-
ties. In [10], a general conceptual framework is proposed for temporal entities
that distinguishes between SNAP (endurants) and SPAN (perdurants) ontolo-
gies. The 4D-Fluents approach [17] is also a common solution when representing
perdurants [2]. It relies on representing perdurants as a series of time slices. More
precisely, while an instance p represents the entity itself, it is attached to sev-
eral time slices which represents its state at various points in time. Some recent
work go further by generalizing this approach to describe any kind of statement
1 http://ec.europa.eu/eurostat/ramon/ontologies/geographic.rdf

Representing Temporally-Evolving Historical Territories 3

context [9]. However, as pointed out in [1], the main drawback is the prolifera-
tion of entities represented due to the multiple time-slices, which both increases
the size of the dataset and makes reasoning more complex. In TSN, as in other
approaches [12], time-slicing is handled by creating a new version of the whole
hierarchy for every change, regardless of whether every territory actually evolves
or not. Regarding TSN, this approach is legitimate as they represent territory
nomenclatures defined by a central organism which seldom issues a new version.
In an historical context, however, territories and their hierarchies tend to evolve
without a centralized management. The aforementioned approach would result
in an overfragmentation of the time-slices in most cases. Other approaches, such
as Temporal RDF [11] rely on time stamping properties. This can be achieved
using several techniques, such as reification, named graphs, n-ary relations or
RDF* [14]. However, representing and reasoning on temporally variable prop-
erties is still a challenge, as representing several temporal aspects of a single
identity implies both a more complex representation and reasoning. In our ap-
proach we adapt the structure of TSN to an historical context by locating the
versionning at the territory scale instead of the whole hierarchy.

2.3 Review of change representation and reasoning

Change ontological representation In approaches such as fluents[17], change
representation is implicit. However approaches exist which rely on explicitly rep-
resenting changes. The notion of Change Bridge is proposed in [13] to link two
territory time slices (input and output) thus representing an evolution from
one time slice to the other. A lightweight spatiotemporal vocabulary is defined,
which describes changes in five classes (Changepartof, Establishment, Merge,
Namechange, Split). Change representation can be furthered by defining changes
on various scales. [7] introduces three levels of change representation: changes in-
volving only one entity (such as an expansion), functional relations between two
units (such as replacements), and composite changes (such as split or merge).
TSN-Change [4] proposes a similar change representation. However, it only re-
tains the single-entity and change categories, the last category being implicitly
represented due to their hybrid approach relying on both fluents and change
bridges. This ontology adds more categories in regard of identity, with the dis-
tinction between Continuation (identities are not impacted) and Derivation
(identities are impacted) changes [16]. This ontology also provides a vocabu-
lary to describe the relations between changes, and build a change graph. It
notably defines a notion of lowerChange and upperChange which allows to de-
fine multiple levels of change. While the taxonomy of the latter is wide-ranged,
the semantics of the relations between changes are not precise enough (for exam-
ple, lowerChange is both used to link changes between various territories and
between a territory and a nomenclature), and will be replaced with mereology
relations in our approach.

Change detection algorithms TSN provides an algorithm to automatically
represent changes [4]. This algorithm is used to match entities in two consecutive

4 W. Charles, N. Aussenac-Gilles, and N. Hernandez

versions of a nomenclature. It includes both a statistical identity preservation
matching of entities, and an explicit qualification of changes. However, this al-
gorithm is not intended to reason on an existing knowledge graph but rather
to create a complete knowledge graph from raw data. Furthermore, part of the
analysis carried out when computing the differences between two versions is a
geometric comparison relying on geospatial vector files. This issue is partly tack-
led in the original change bridge approach[13]. This approach comes with an
algorithm which relies on explicitly representing local changes (i.e. changes at
the city scale, for example) in order to infer greater scale changes. However, this
approach relies on knowing the extent of the surface of local entities (50 km2 for
example), which is still not always available in an historical context.

3 The HHT Ontology for historical territories

3.1 Territory representation and link with TSN

To sum up, historical territories require an ontology that would allow represen-
tation of multiple overlaying hierarchies and their evolution, without knowledge
of the territories’ geometry. In order to take into account all these particularities
of historical territory representation, the HHT ontology was proposed, basing on
the TSN ontology [3], while focusing on units instead of nomenclatures. Figure
1a presents the main concepts and main properties of the territory representation
proposed by HHT. All figures are available in the ontology documentation. It
mostly revolves around the classes hht:Unit which represents a territorial unit,
its subtype hht:HistoricalTerritory which adds the notion of control by an
actor (not discussed in this paper), hht:Level which categorizes a hierarchical
level, and hht:HierarchicalCriterion which corresponds to the criterion re-
lated to a level (example: Religious). This class is one of the main differences
with TSN and enables the coexistence of multiple hierarchy layers on a single
geographic space. However, we retain the level and unit versioning architecture.
Instances of hht:Unit and hht:Level are bearers of the identity of the real world
entities they represent. In order to represent their successive states, they are pro-
vided respectively with hht:UnitVersion and hht:LevelVersion through the
adequate hht:hasVersion subproperty. Each unit version is a member of a level
version which materializes its level in the hierarchy. Unit versions on a given
level can be linked to Sub/Upper units that are members of the Sub/Upper
level. Each of these hht:Version has property hht:validityPeriod providing
the time stamp of the described state relying on OWL-Time’s interval concept.
Considering that UnitVersions have their own validity period is one other main
difference with TSN. In order to further reduce the fragmentation into slices, the
impact of lower/upper territories on a hht:UnitVersion was tackled. It was first
decided to redefine the time slices of a hht:Unit whenever one of its hierarchi-
cally linked territories was modified [5]. However, this naive approach was found
to induce an over-fragmentation of the time slices. It was thus decided that the
timeline of a hht:Unit would only be fragmented (by increasing the number of

Representing Temporally-Evolving Historical Territories 5

(a) Schema of the HHT Ontology

(b) Simplified instance example,
without validity period and using
hht:contains

Fig. 1: HHT Ontology: classes and instanciation

its versions) whenever a change in lower territories induces a change of the ter-
ritory’s geometry (see section 3.2). Hierarchical relations (hht:hasSubUnit and
hht:hasUpperUnit) are thus valid only during the intersection of the validity
intervals of the hht:UnitVersion it links. Note the existence of a super property
for hht:hasSubUnit, hht:contains which describes geometry inclusion and is
transitive. This property is notably used to access the building blocks of a ver-
sion, as described in section 3.2. Figure 1b presents a multi-level description of
territories using HHT. It omits validity periods, which are considered to be the
same for all versions. Figure 2 presents an example of representation using HHT,
both with the current and the previous time fragmenting. In the current approach
(left part of the figure), the renaming of ex:La-Chapelle-Blanche leads to this
entity having two versions. However, as renaming does not affect the geometry
of ex:Ploëmel, this hht:Unit retains only one hht:UnitVersion to which both
versions of the lower territory are related through the hht:hasUpperUnit prop-
erty (the validity of said property is implicitly the intersection of the validity
intervals of both versions). In the former approach (right part of the figure),
however, ex:Ploëmel gets two versions, resulting in a heavier knowledge graph
(that would get heavier as we get higher in the hierarchy).

3.2 Discrete Geometry and building blocks

As mentioned in section 2.1, geometry is an issue when representing historical
territories. In order to address this, geometry representation is achieved by using
a notion of building block, which are assumed to exist across the whole study pe-
riod. A subclass of hht:LevelVersion, hht:ElementaryLevelVersion qualifies
a hierarchical level version whose members (instances related to the level ver-
sion with the hht:isMemberOf property) are territory versions that are building

6 W. Charles, N. Aussenac-Gilles, and N. Hernandez

Fig. 2: Examples of current and previous version fragmentation

blocks of the geometry. In this approach, a territory geometry is discrete, and
is can be defined for every hht:UnitVersion. Considering such an entity v, we
define geometry as the set of hht:Unit that have a version contained by v that
is identified as a member of a hht:ElementaryLevelVersion. These units are
(by definition of the elementary level) hierarchically inferior to said territory.
To guarantee a time-consistent geometry, we consider a set of hht:Unit, and
not of hht:UnitVersion. Building blocks can go through non-geometrical evo-
lutions (such as name changes), and thus have multiple versions even though
their geometry is considered as fixed. Formally, given u a hht:UnitVersion, we
can define its geometry as the set of versions of the lowest (elementary) level
territorial units that compose it:

geometry(u) = {b|∃bLevel, bV ersion, hht : contains(u, bV ersion)∧
hht : isMemberOf(bV ersion, bLevel) ∧ hht : elementaryLevelV ersion(bLevel)∧

hht : hasUnitV ersion(b, bV ersion)} (1)

In figure 1b, we have geometry(ex : OccitanieV 1) = {ex : Muret, ex :
Toulouse, ex : Foix, ex : Pamiers}. This definition uses hht:contains, which
is transitive. However it does not imply that the geometry of a unit is the sum
of that of its direct sub units. This apparent flaw is legitimated in an historical
context due to impreciseness in historical sources (an elementary level unit stated
to be inside a higher level unit without describing the intermediate hierarchy).
Note that despite describing the geometry of evolving territories, this definition
is devoid of any temporal component as it is defined for hht:UnitVersion, which
are already temporally stamped.

3.3 HHT-Change: Representing and qualifying change

So far, we presented how HHT allows to represent hierarchical territories through
time. The HHT ontology also allows to explicitly represent changes that occur
between versions, and to describe their nature. Change representation in HHT is
strongly based on the TSN ontology in regard of change taxonomy [3]. However,

Representing Temporally-Evolving Historical Territories 7

(a) Map representation of the compos-
ite change (b) Subgraph for A and D

Fig. 3: An arbitrary composite change

the change description structure is quite different. While TSN-Change relies on
a multi-level change genealogy, we distinguish between feature changes, which
describe a change regarding a single change, and composite changes which are
linked together using a mereology approach.

In this article, we focus on hht:FeatureChange and hht:CompositeChange,
which are the two relevant classes when dealing with temporal evolution. Figure
3 displays an arbitrary composite change, and figure 3b presents a simplified
subgraph for territories A and D which will be used to illustrate those examples.

hht:FeatureChange represents a change involving two hht:UnitVersion of
the same hht:Unit. The nature of the change can be further qualified using
subclasses. These classes include attribute changes (hht:NameChange), geometry
changes (hht:GeometryChange), which can further be qualified with subclasses,
and life cycle related changes (hht:Appearance, hht:Disappearance). Note
that a feature change should be qualified using several subclasses whenever sev-
eral properties are affected by it (hht:GeometryChange and hht:NameChange).
A hht:FeatureChange is linked to the two versions of the hht:Unit it involves
through the relations hht:before and hht:after, as seen in figure 3b. While
hht:Appearance (respectively hht:Disappearance) instances will only have a
hht:after (respectively hht:before) property, all other hht:FeatureChange
should have exactly one value for each property, as it is intended to link two
consecutive versions of the same hht:Unit.

Further in this article, given a feature change c, we refer to the hht:Unit-
Version instance b verifying hht : before(c, b) as cbefore and, similarly, to the
hht:UnitVersion instance a verifying hht : after(c, a) as cafter.

As opposed to a hht:FeatureChange, a hht:CompositeChange is meant to
represent a change that involves unit versions related to several hht:Unit. More
accurately, the goal of the hht:CompositeChange class is to assemble several

8 W. Charles, N. Aussenac-Gilles, and N. Hernandez

feature changes in order to make sense of those changes on a broader level. As of
now, the only kind of hht:CompositeChange that can be described using HHT
are geometry alterations (hht:GeometryRestructuring).
A hht:GeometryRestructuring change can further be defined as the smallest
non-empty set of hht:FeatureChange describing a unit of hht:Level l covering
a geometric area and occurring simultaneously, meaning that a given composite
change g (g rdf:type hht:GeometryRestructuring) should verify the follow-
ing equations, denoting the set of the changes that are part of this composite
change as gset = {c|htt : FeatureChange(c) ∧ hht : isComposedOf(c, g)} :⋃

c∈gset

geometry(cbefore) =
⋃

c∈gset

geometry(cafter) (2)

∀cs ⊂ gset
⋃

c∈gset\cs

geometry(cbefore) ̸=
⋃

c∈gset\cs

geometry(cafter) (3)

∀c ∈ gset∃lversion, level|
(hht : isMemberOf(cbefore, lversion) ∧ hht : hasLevelV ersion(lversion, level))

∨ (hht : isMemberOf(cafter, lversion) ∧ hht : hasLevelV ersion(lversion, level))
(4)

∃date|∀c ∈ gset

(∃interval|hht : validityPeriod(cbefore, interval) ∧ time : hasEnd(interval, date))∨
(∃interval|hht : validityPeriod(cafter, interval)∧time : hasBeginning(interval, date))

(5)

(2) guarantees that the geometry covered by the before and after territories is
equal, while (3) guarantees that the composite change found is not the fusion
of several composite changes. (4) guarantees that all changes that are part of g
affect territories at the same level. Finally (5) specifies that all feature changes
composing g should occur at the same date. Note that this last constraint pre-
vents two changes linking versions of the same hht:Unit to be part of the same
hht:GeometryRestructuring, as there should not be two simultaneous feature
changes on a single territory.

HHT further defines subclasses to qualify the type of hht:GeometryRestruc-
turation an area undergoes. They are separated into three categories depending
on the type of geometry alteration (split, merge, redistribution) and further sepa-
rated depending on their preserving the territories identity (continuation change)
or not (derivation change). Figure 4 presents examples of these categories.

4 Change detection algorithm

Building on HHT-Change, we now aim to automatically detect and qualify the
changes occurring between the various time slices described in a knowledge graph
using HHT to describe territories. A rule based algorithm was implemented in
order to achieve this goal. It is important to take into account some particularities
of the knowledge graphs on which said algorithm should be applied:

Representing Temporally-Evolving Historical Territories 9

Fig. 4: The various types of hht:GeometryRestructuring

– Said knowledge graph should describe the territorial hierarchy only for a
specified time period. The Third French Republic dataset used for evalution
in section 5.1, for example, describes the French administrative hierarchy
from 1870 to 1940. Such time boundaries are essential to properly detect
appearances and disappearances. The instances of hht:UnitVersion de-
scribed in the knowledge graph will have their validity interval truncated
to fit in the focus of the knowledge graph, and no knowledge will be repre-
sented regarding the status of any territory before and after said time focus.
Thus, the algorithm would be erroneous if it detected an appearance for
each hht:UnitVersion being valid starting from 1870 and having no pre-
vious version in the knowledge graph, as this would be due to the graph
focus.

– Instances of hht:Unit which are member of an elementary level should exist
in the knowledge graph across its whole time focus.

The algorithm was designed to be implemented using SHACLRules which rely on
SHACL and SPARQL to allow the user to write rules. Resulting implementation
is available in the provided GitHub resource.

4.1 Algorithm description

Algorithm 1 Change detection and qualification algorithmic steps
Add the "next version" property linking each version to its chronological successor
Add the feature changes
Qualify feature changes
Create composite changes depending on the feature changes
Qualify composite changes

Algorithm 1 presents the global steps involved in fully creating and qualifying
the changes. This section will further detail how each step is achieved.

Finding the next version The use of SHACLRules allows to carry out SPARQL
queries to create new triples in a specified order. Thus, each of the steps of algo-

10 W. Charles, N. Aussenac-Gilles, and N. Hernandez

rithm 1 will be implemented using one or several SPARQL queries included in
SHACL Shapes specifying to which graph nodes these queries should be applied.

Adding feature changes This step from algorithm 1 is actually divided into
four steps. The first two steps rely on the finding of the next version that has
been carried out in the previous step. Considering two versions v1 and v2 such
as hht : hasNextV ersion(v1, v2), the steps proceed as follows:

– Adding basic hht:FeatureChange: wherever the validity interval of v1 meets
v2’s (using Allen’s algebra) we add a hht:FeatureChange c verifying before(c, v1)
and after(c, v2). This case describes changes on two consecutive versions.

– Adding hht:Reappearance: wherever the validity interval of v1 does not
meet v2’s, we add a hht:Disappearance d verifying before(c, v1) and a
hht:Reappearance verifying after(c, v2). This case describes the disappear-
ance of a hht:Unit followed by its reappearance.

The next two steps will allow the algorithm to add appearances and remaining
disappearances. Considering a version v1 such as there is no v2 where hht :
hasNextV ersion(v1, v2), the following steps consequently are:

– Adding hht:Disappearance: if v1’s end of validity interval is not the upper
bound of the time focus of the knowledge graph, we add a hht:Disappearance
d verifying before(c, v1).

– Adding hht:Appearance: if v1’s start of validity interval is not the lower
bound of the time focus of the knowledge graph, we add a hht:Appearance
d verifying before(c, v1).

It is to be noted that the time focus of the knowledge graph is as of now to be
specified inside SHACLRules specification. Further work should include using
graph annotation mechanisms to enable a more generic use of our algorithm.

Qualifying feature changes The previous step created a set of hht:Feature-
Change that we want to further qualify. Provided a c change, the algorithm will
run several comparisons between cbefore and cafter. For simple attributes such
as name, the difference is quite easy to compute. Geometry comparisons how-
ever, considering our definition, require more fine grained analysis. Intuitively,
a geometry change means that geometry(cbefore) ̸= geometry(cafter). Further-
more, HHT-Change goes further by defining subclasses to hht:geometryChange,
which form a partition of the possible cases:

– A hht:Contraction describes the case where:

geometry(cbefore) ̸⊆ geometry(cafter)∧geometry(cafter) ⊆ geometry(cbefore)
(6)

In more common terms, a contraction describes the case of a loss of a geom-
etry portion. As SPARQL is not designed to carry out set comparisons, it is

Representing Temporally-Evolving Historical Territories 11

calculated using cardinality comparisons regarding card(geometry(cbefore)),
card(geometry(cafter)) and card(geometry(cbefore) ∩ geometry(cafter)).
Equation (6) is rephrased as:

(7)card(geometry(cbefore))>card(geometry(cafter))∧card(geometry(cafter))

= card(geometry(cbefore) ∩ geometry(cafter)) .

This condition can be implemented in SPARQL using several SPARQL
COUNT inside the query.

– A hht:Expansion describes the case where:

geometry(cbefore) ⊆ geometry(cafter)∧geometry(cafter) ̸⊆ geometry(cbefore)
(8)

. In more common terms, an expansion describes the case of a gain of a geom-
etry portion. SPARQL however, is not designed to carry out set comparisons.
In a similar fashion, (8) is rephrased as:

(9)card(geometry(cbefore))<card(geometry(cafter))∧card(geometry(cbefore))

= card(geometry(cbefore) ∩ geometry(cafter)) .

– A hht:Deformation describes the case where:

geometry(cbefore) ̸⊆ geometry(cafter)∧geometry(cafter) ̸⊆ geometry(cbefore)
(10)

. This case typically describes the simultaneous loss of some geometry por-
tions and gain of others. Similarly, (10) is rephrased as follows:

card(geometry(cbefore)) > card(geometry(cbefore) ∩ geometry(cafter))

∧ card(geometry(cafter))

> card(geometry(cbefore) ∩ geometry(cafter)) .

(11)

Adding meaningful geometry Restructurings from feature changes We
now aim to add composite changes that will collect several related hht:Featu-
reChange. As mentioned in section 3.3, as of now, composite changes are only ge-
ometry related. This section will tackle how we manage to create hht:Composite-
Change which, provided the initial knowledge graph describes all building blocks
across the whole graph’s time focus, will respect equations (2), (3), (4) and (5).
First of all, it is mandatory to identify which hht:FeatureChange subclasses can
be involved in a hht:GeometryRestructuring. In addition to hht:GeometryChange,
all hht:Appearance, hht:Disppearance and hht:Reappearance induce a remap-
ping of an area, and should thus be aggregated in order to form a coherent
hht:GeometryRestructuring. More importantly, if all the hht:UnitVersion
are described properly in regard of the building blocks they contain, any single in-
stance of those subtypes of change should be involved in a hht:GeometryRestructuring.
Assuming the knowledge graph description of building blocks is time-exhaustive,

12 W. Charles, N. Aussenac-Gilles, and N. Hernandez

any building block b disappearing from the geometry of a territory t1 should ap-
pear in another territory t2. Thus, in order to aggregate hht:FeatureChange,
the algorithm relies on finding other changes happening at the same time and
featuring the adding/removing of the building blocks that are removed/added
during a given hht:FeatureChange. In the example in figure 3, d loses part of
its geometry to a and c. Starting from the hht:FeatureChange d goes through,
we will thus find the changes involving a and c. Same goes for the gains. In order
to properly aggregate changes, and considering the possibilities of SHACLRules,
we propose algorithm 2 to achieve those steps.

Algorithm 2 Create a composite change
Create a composite change for all geometry altering change which are not attached
to one already
Carry out the same operation for those who are attached
For all hht:FeatureChange involved in hht:CompositeChange, declare those to be
the same entity

To understand the need for those steps, consider a, b, c and d, as presented
in figure 3. Consider now an execution of the rule-based algorithm. During the
first step, the algorithm will create a new hht:CompositeChange cha attached
to the changes of d and a, as a absorbs part of d. Then comes b. A new composite
change chb is created, which is attached to the changes of c and b. c and d are
skipped during this step, as they have already been attached to a composite
change. In a second step, then, we aggregate the change of c to cha and d to chb,
due to the change of c. We now have reached a situation where we describe cha

et chb, which both represent parts of the same hht:GeometryRestructuring
(note that as of now, (1) is not verified by none of those changes). The third
step is thus there to unify those partial composite changes by linking them with
owl:sameAs properties.

Qualifying composite changes With the composite changes being created,
the next step consists in qualifying them according to the categories displayed
in figure 4. This is achieved in two steps:

– Geometric nature of the composite change (Split, Merge, Redistribution):
Similarly to what was done for feature changes, qualification boils down to
cardinality considerations. However, the involved cardinalities are not those
of geometries, but of territories before and after the change. Consider a
hht:GeometricRestructuring g.
We define gb = {t|∃c, tv|hht : isComposedOf(c, g) ∧ hht : before(c, tv) ∧
hht : hasUnitV ersion(t, tv)} and ga = {t|∃c, tv|hht : isComposedOf(c, g)∧
hht : after(c, tv)∧ hht : hasUnitV ersion(t, tv)}. We then give those formal
definitions for Merge (12), Split (13), and Redistribution (14):

card(gb) > 1 ∧ card(ga) = 1 (12)

Representing Temporally-Evolving Historical Territories 13

card(gb) = 1 ∧ card(ga) > 1 (13)

card(gb) > 1 ∧ card(ga) > 1 (14)
– Identity Preservation: A hht:DerivationChange (15) is a change which pre-

serves no identity. A hht:ContinuationChange (16) is a change that pre-
serves the most identities considering the change type. Similarly, we provide
formal definitions that can be easily translated to SHACLRules. Note that
these equations induce that derivation and continuation change are disjoint
but not complementary. Redistribution can typically induce ambiguous cases
where the identity of one territory is impacted while the others are not.

card(gb ∩ ga) = 0 (15)

(card(ga) > card(gb) ∧ card(gb ∩ ga) = card(gb))

∨ card(gb) > card(ga) ∧ card(gb ∩ ga) = card(ga)) (16)

Those two steps being achieved, OWL inference will manage the qualification
in the six final categories.

4.2 Extension for flawed data detection

As mentioned, the algorithm properly qualifying changes rely on a time-exhaustive
description of the geometric building blocks. Thus an extension was implemented
to compensate for this. This extension, named HHT-SHACL FDD (for flawed
data detection), adds a step after the detection of geometric changes during
which geometric changes are scrutinized to determine whether the geometric
change is due to an actual building block relocation (in which place said block
can be traced to another territory) or to a building block unexpected appear-
ance/disappearance. This extension can be used to avoid erroneous change qual-
ification, and to detect lacking territory knowledge in the graph. Typically, some
of the building blocks are bound to evolve across the time focus of the knowledge
graph. Sometimes, however this evolution means that they appear/disappear at
some time, mainly because they merge/split with another building block. These
disappearances/appearances can also be due to data that exists but is missing
from the knowledge graph. This will cause invalid detection of geometry changes.
The algorithm will report such changes as Incomplete.

5 Evaluation

Our algorithm was evaluated on several datasets which all had particularities.
Tests were carried out using the TopBraid API, which allows to evaluate SHA-
CLRules. This section will tackle these evaluations, and their results. All datasets
complemented with data description as well as the algorithm results are avail-
able online in the git resource. A script is also provided to convert CSV tables
to HHT knowledge graphs. Finally, the git resource provides several SPARQL
queries, and a query comparison with TSN.

14 W. Charles, N. Aussenac-Gilles, and N. Hernandez

5.1 French Third Republic

This dataset is the simplest the algorithm was tested on. It focuses on the French
territory from 1870 to 1939. Only one hierarchy is represented, which has three
levels (Commune, Arrondissement and Département). Data was represented us-
ing HHT, after being converted from CSV tables. Finally, all the building blocks
(Communes, here) are described across the whole timespan of the knowledge
graph, making this dataset fully-compliant with our approach. It is interesting
to note that out of 211 hht:CompositeChange, only 181 are geometrically qual-
ified. This difference is due to cases where a territory disappears to be replaced
by another one occupying the exact same geometry, which were not considered
in our approach. Such cases occur in this particular dataset mostly due to the
reintegration of some part of the French territory following the first World War.
The analysed changes were compared with results from an economists’ study
regarding territory evolution on this same period. The feature changes detected
matched those found manually. Interestingly enough, it was shown that, by list-
ing changes by year, it was possible to identify easily identify periods of great
changes. In this dataset, for example, 241 feature changes occur in 1926, which
coincides with the greatest territorial reform of the Third Republic. Humanities
researches are also provided with a deeper analysis due to the aggregation of fea-
ture changes in composite changes. This dataset was also used to evaluate HHT-
SHACL FDD. In order to have accurate results, it was mandatory to check that
original data had been properly converted. The HHT-SHACL FDD approach
was instrumental in that regard. Typically, the initial conversion script did not
consider the possibility of some units disappearing to reappear afterwards. Those
inconsistencies were pointed out by HHT-SHACL FDD, which allowed to reach
a fully consistent knowledge graph.

5.2 NUTS

To evaluate our algorithm on a larger knowledge graph, it was used to detect
changes in the NUTS (Nomenclature of territorial units for statistics)2 nomen-
clature from 2010 to 2016. More precisely, this dataset describes the NUTS and
LAU (Local Administrative Units)3 nomenclatures for 14 of the 28 countries of
the European Union, and was generated from an existing RDF dataset describ-
ing the NUTS hierarchy, and tables published on Eurostat describing the LAU
levels. Some countries were removed due typically to arbitrary and non docu-
mented changes in territory IDs in the found data. The countries still described
vary from the original dataset due to the removal of some LAU2 units which
did not respect the hypothesis of description across the whole timespan. A high
amount of name changes are found, mostly due to spelling variants. In addition,
this particular dataset highlighted the high computing time involved whenever a
territory with a large geometry (i.e. with a large number of building blocks) takes
part in a geometry change (due to the computing of geometry intersection).
2 https://ec.europa.eu/eurostat/web/nuts/background
3 https://ec.europa.eu/eurostat/web/nuts/local-administrative-units

Representing Temporally-Evolving Historical Territories 15

5.3 France: Region reform

The goal of this evaluation was to test the behaviour of the algorithm when
confronted to unproperly formalized data. This dataset was created by com-
bining datasets provided by INSEE. Timeslicing was handled by creating one
timeslice for each territory described in the original datasets, meaning that most
territories are described as having two versions regardless of any difference be-
tween those two versions. As a consequence, in this dataset, Fragmentation
is carried out poorly, with some hht:Unit having two temporally-consecutive
hht:UnitVersion which describe the same properties. In addition, some build-
ing blocks aren’t described across the whole timespan. Those inconsistencies with
the algorithm’s hypothesis lead to flaws in the results. Changes are detected be-
tween two versions that are describing the exact same properties, as they should
be described as the same version. Geometry changes are detected where they
should not, due to building block disappearances. 82 geometry changes are de-
tected, but HHT-SHACL FDD denotes those 82 changes as Incomplete. Despite
those erroneous change detections, it is to be noted that the composite changes
are still properly aggregated. All the regions’s fusions are detected, and qualified
as merges.

6 Conclusion

Currently, the HHT approach allows to represent historical territories, by taking
into account multiple overlaying hierarchies, providing a geometry definition that
does not rely on knowledge of any vector geometry or surface figure. The evolu-
tion of territories can also be represented using an approach based on fluents[17].
This representation was chosen due to its being easily grasped by historians.
However, it is important to highlight the high amount of time slices it induces,
and the endeavor it requires in order to minimize overslicing. Further work will
address the possible use of approaches relying on time stamping properties in-
stead of creating new objects, notably in regard of a possible weight reduction
of the final knowledge graph. Another representation dimension that is to be
addressed by further work will be the linking of knowledge to the sources it has
been extracted from inside the graph. The HHT approach also comes with an
algorithm allowing to detect changes occurring for any territory, and aggregating
those to reveal composite changes describing a global geometry remapping. Said
algorithm is currently limited by the need to describe all the building blocks
across the whole time focus of the graph. Though the FDD approach points
out inconsistencies in the detected changes, this issue is to be further tackled.
Various solutions are currently considered. The first would consist in a naive ap-
proach where disappearing/appearing building blocks would simply be ignored.
A second possible approach would rely on applying part of the change bridge[13]
algorithm by explicitly representing changes occurring at a local level. Finally,
a third approach would consist in considering hybrid geometries, with some ter-
ritories having a defined vector geometry.

16 W. Charles, N. Aussenac-Gilles, and N. Hernandez

References

1. Batsakis, S., Petrakis, E.G.: Sowl: a framework for handling spatio-temporal in-
formation in owl 2.0. In: International Workshop on Rules and Rule Markup Lan-
guages for the Semantic Web. pp. 242–249. Springer (2011)

2. Batsakis, S., Petrakis, E.G., Tachmazidis, I., Antoniou, G.: Temporal representa-
tion and reasoning in owl 2. Semantic Web 8(6), 981–1000 (2017)

3. Bernard, C.: Immersing evolving geographic divisions in the semantic Web. Ph.D.
thesis, Université Grenoble Alpes (2019)

4. Bernard, C., Villanova-Oliver, M., Gensel, J., Dao, H.: Modeling changes in terri-
torial partitions over time: Ontologies tsn and tsn-change. In: Proceedings of the
33rd Annual ACM Symposium on Applied Computing Pages (SAC ’18). p. 866–875
(04 2018). https://doi.org/10.1145/3167132.3167227

5. Bourel, L., Hernandez, N.J., Aussenac-Gilles, N., Charles, W.: HHT : une ontologie
modulaire pour représenter l’évolution des territoires en Histoire. In: Saïs, F. (ed.)
33ème Journées Francophones d’Ingénierie des Connaissances (IC 2022). pp. 131–
136. IC 2022 : Journées Francophones D’Ingénierie des Connaissances, Collège SIC
(Science de l’Ingénierie des Connaissances) de l’AFIA, AFIA, Saint-Etienne, France
(Jun 2022), https://hal.archives-ouvertes.fr/hal-03760559

6. Carbonnet, A.: Léonard dauphant, géographies. ce qu’ils savaient de la France
(1100-1600). ceyzérieu, champ vallon, 2018, 318 p. Médiévales. Langues, Textes,
Histoire 75(75), 261–263 (2018)

7. Claramunt, C., Thériault, M.: Managing time in gis: An event-oriented approach.
pp. 23–42 (01 1995). https://doi.org/10.1007/978-1-4471-3033-8_2

8. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening
ontologies with dolce. In: International conference on knowledge engineering and
knowledge management. pp. 166–181. Springer (2002)

9. Giménez-García, J.M.: Formalizing, Capturing, and Managing the Context of
Statements in the Semantic Web. Ph.D. thesis, Université Lyon (2022)

10. Grenon, P., Smith, B.: Snap and span: Towards dynamic spatial ontology. Spatial
Cognition & Computation 4, 104 – 69 (2004)

11. Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal rdf. In: European Semantic
Web Conference. pp. 93–107. Springer (2005)

12. Hyvönen, E., Tuominen, J., Kauppinen, T., Väätäinen, J.: Representing and
utilizing changing historical places as an ontology time series. In: Ashish, N.,
Sheth, A.P. (eds.) Geospatial Semantics and the Semantic Web: Foundations,
Algorithms, and Applications, pp. 1–25. Springer US, Boston, MA (2011).
https://doi.org/10.1007/978-1-4419-9446-2_1, https://doi.org/10.1007/978-1-
4419-9446-2_1

13. Kauppinen, T., Hyvönen, E.: Modeling and reasoning about changes in ontology
time series. In: Ontologies, pp. 319–338. Springer (2007)

14. Lasolle, N.: Temporalité et représentation des connaissances pour un corpus
en histoire : application à la correspondance d’Henri Poincaré (May 2022),
https://hal.univ-lorraine.fr/hal-03681513, working paper or preprint

15. Lin, C., Su, H., Knoblock, C.A., Chiang, Y.Y., Duan, W., Leyk, S., , Uhl, J.H.:
Building linked data from historical maps. SemSci@ ISWC pp. 59–67 (2018)

16. Plumejeaud, C., Mathian, H., Gensel, J., Grasland, C.: Spatio-temporal
analysis of territorial changes from a multi-scale perspective. International
Journal of Geographical Information Science 25(10), 1597–1612 (2011).
https://doi.org/10.1080/13658816.2010.534658, https://hal.inria.fr/hal-00953145

Representing Temporally-Evolving Historical Territories 17

17. Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in owl. In: FOIS.
vol. 150, pp. 226–236 (2006)

