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Abstract: Understanding spatial and temporal variability in soil organic carbon (SOC) content
helps simultaneously assess soil fertility and several parameters that are strongly associated with
it, such as structural stability, nutrient cycling, biological activity, and soil aeration. Therefore,
it appears necessary to monitor SOC regularly and investigate rapid, non-destructive, and cost-
effective approaches for doing so, such as proximal and remote sensing. To increase the accuracy
of predictions of SOC content, this study evaluated combining remote sensing time series with
laboratory spectral measurements using machine and deep-learning algorithms. Partial least
squares (PLS) regression, random forest (RF), and deep neural network (DNN) models were
developed using Sentinel-2 (S2) time series of 58 sampling points of bare soil and according to
three approaches. In the first approach, only S2 bands were used to calibrate and compare the
performance of the models. In the second, S2 indices, Sentinel-1 (S1) indices, and S1 soil moisture
were added separately during model calibration to evaluate their effects individually and then
together. In the third, we added the laboratory indices incrementally and tested their influence on
model accuracy. Using only S2 bands, the DNN model outperformed the PLS and RF models (ratio
of performance to the interquartile distance RPIQ = 0.79, 1.36 and 1.67, respectively). Additional
information improved performances only for model calibration, with S1 soil moisture yielding the
most stable improvement among three iterations. Including equivalent indices of the S2 indices
calculated using soil spectra obtained under laboratory conditions improved prediction of SOC,
and the use of only two indices achieved good validation performances for the RF and DNN models
(mean RPIQ = 2.01 and 1.77, respectively).

Keywords: soil organic carbon; deep learning; Sentinel-2; spectral indices; Sentinel-1; soil moisture;
radar indices; visible-near-infrared spectra

1. Introduction

Soil organic carbon (SOC) content is a key parameter that helps assess soil quality.
Comprehension of its spatial and temporal dynamics facilitates simultaneously a better
assessment of soil fertility and several parameters that are closely associated with it,
such as structural stability, nutrient cycling, biological activity, and soil aeration [1–3].
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Its regular monitoring has prompted the research community to investigate the reliabil-
ity of rapid, non-destructive, and cost-effective assessment methods as alternatives to
conventional methods.

Soil spectral information is particularly relevant for estimating soil physical–chemical
properties, especially organic matter and organic carbon content [4–9]. Different types of
proximal, aerial, or satellite sensors have been used, each with different spectral and spatial
resolutions [4,7,10,11]. Despite considerable advances in multispectral and hyperspectral
remote sensing imagery, their signal-to-noise ratio depends on a variety of parameters
not encountered with laboratory spectroscopy [12]. Laboratory soil spectra are acquired
under controlled conditions to avoid interfering factors, while remote sensing spectra are
influenced by the non-transparent atmosphere and the subpixel composition [13,14], as
well as by soil surface roughness, which causes bidirectional effects [7,14,15], and soil
moisture [14,16–19]. Given its high spectral resolution, visible and near-infrared (Vis-NIR)
spectroscopy is the most accurate method for estimating SOC content, but it provides only
point estimates in space [20–26]. Remotely sensed imagery from optical satellites allows
for area-based estimates but with lower prediction accuracy [8,27–35]. The performance
of the developed models varies according to the spatial scale of the studied area for both
laboratory and remotely sensed spectra.

To increase the accuracy of models developed using remote sensing data, in particular
multispectral satellite and/or airborne imagery, three main approaches have been devel-
oped: (1) Inclusion of spectral indices to consider effects of interference factors [30,33,36–38],
especially for several dates in a time series [30,38]; (2) Combination of remotely sensed data
with laboratory or field spectra to fuse spectral and spatial soil information [18,35,39–42];
(3) Combination of spectral information from optical images with non-spectral covariates,
such as digital elevation models, soil and land use maps, or meteorological and environ-
mental data [43–47]. Other studies have used both synthetic aperture radar (SAR) data and
derive predictors (e.g., radar indices, soil moisture) as covariates [48–51] or as a way to
select relevant Sentinel-2 dates by estimating the state of the soil surface [38,50].

The increasing availability of spectral data (proximal and remotely sensed), compu-
tational power, and interest in data science has favored a transition from linear methods
to machine-learning algorithms in soil science [52,53] and, more recently, to deep-learning
techniques [54]. Machine-learning algorithms, such as support vector machine (SVM)
regression, random forest (RF), and cubist regression (CR), have shown their ability to
analyze non-linear relationships between spectral information and SOC content when
compared to multiple linear regression and partial least squares (PLS) regression [55–58].
Furthermore, studies of neural networks have found them to perform significantly bet-
ter than other techniques. For example, Haghi et al. [58] and Ng et al. [59] found that
convolutional neural networks (CNN) outperform CR, SVM, and PLS regression models
when using laboratory reflectance spectra. Similarly, artificial neural networks and deep
neural networks (DNN) predicted SOC content well using laboratory spectra [60,61]
but, to our knowledge, have rarely been tested using reflectance spectra from satellite
images. Moreover, previous studies used either a single-date image (e.g., [27,29,30,58]) or
a temporal mosaic that produced a single aggregated reflectance spectrum over a time
series (e.g., [25,28,35]), but did not use multiple dates to represent changes in the soil
surface in the models.

The present study aimed to increase the accuracy of SOC content predictions using
two complementary mechanisms: (i) Enriching the information considered by combining
remote sensing time series and laboratory spectral measurements; (ii) Improving model
accuracy using machine-learning algorithms. To this end, we used Sentinel-2 remote
sensing data of bare soil and combined them with Sentinel-1 SAR-derived data and indices
derived from Vis-NIR laboratory spectra to predict SOC content in an agricultural study
area. We also compared the performance of PLS regression, RF, and DNN models in
predicting SOC content.
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2. Materials and Methods
2.1. Study Area and Soil Sampling

The study area is an agricultural land covering ca. 1.5 km2 in the northwestern
section (48◦0′40′ ′N, 2◦50′40′ ′W) of the Naizin watershed (western France). The fields
studied were located on both sides of a small tributary of the Coët-Dan stream with a
moderate slope (<5%). Fields in the northern part have the steepest slopes, with slopes
of between 3% and 5%, while those in the southern part are less than 2%. The climate is
temperate, with mean annual rainfall of ca. 909 mm. Agriculture is mainly intensive,
with cereals, maize, and grassland as the main land uses in crop rotations. The soils are
developed on a silty substrate derived from weathered schists and Quaternary aeolian
deposits. The dominant soil types are Luvic Cambisols and Haplic Albeluvisols of silty
texture [62–64].

We sampled 83 points within 22 fields in October 2020. These sampling points
were selected using a 100 m triangular grid, except in small fields, in which points
were selected randomly (Figure 1). Within 5 m of each point, 5 subsamples of soil were
collected randomly from the top 5 cm and then pooled. The samples were air-dried,
sieved to 2 mm, and divided in half by sample quartering: one half was sent to the
national INRAE soil analysis laboratory (LAS Arras, France) for soil analysis, while
the other was used to measure reflectance spectra under laboratory conditions. The
SOC content was measured via dry combustion according to certified method NF ISO
10694 [65].
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Figure 1. Maps of the study area in Naizin watershed and its sampling points.

2.2. Laboratory Reflectance Measurements

Soil spectra were measured under laboratory conditions. The 2 mm sieved soil
samples were oven-dried at 40 ◦C for 24 h. Their spectra were then measured using a full
range spectroradiometer (ASD FieldSpec® 3, Malvern Panalytical Ltd., London, UK).
For each sample, the instrument was calibrated using the white reference standard
(Spectralon®, North Sutton, NH, USA) before scanning the soil four times at different
positions with the contact probe. Since the spectrometer is equipped with three dif-
ferent detectors [66], the spectra were splice-corrected using ViewSpecPro software to
eliminate signal jumps that can occur when changing detector ranges [67]. The mean
of the four reflectance spectra in the 400–2450 nm range was used to maximize the
signal-to-noise ratio.
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2.3. Sentinel-1 and Sentinel-2 Data Pre-Processing

A time series of 80 Sentinel-2 Level-2A images corresponding to our study area
(110 × 110 km tile: T30SNE) and acquired from September 2020 to August 2021 were
downloaded from the Theia website “https://www.theia-land.fr/ (accessed on
15 October 2021)”. These data are atmospherically corrected using the MAJA processing
chain [68] and correspond to ortho-rectified surface reflectance. They cover 10 bands
ranging from visible to near-infrared wavelengths and are provided with a mask for
clouds and their shadows [69].

After applying the cloud mask, we selected the 26 images with low cloud cover (≤5%)
for our study area. We then resampled bands with 20 m spatial resolution to 10 m using the
nearest-neighbor assignment method. Following analysis of NDVI profiles, the reflectance
of bare soil was extracted using an NDVI threshold [29,70,71]. Pixels with an NDVI <0.25
were considered as bare soils. Only 58 of the 83 sampling points were bare soils on at least
one date during the 2020–2021 agricultural season.

The dual-satellite constellation of Sentinel-1A and Sentinel-1B was launched in April
2014 and April 2016, respectively. It provides C-band (frequency = 5.4 GHz) SAR images
with a revisit time of 6 days in dual-polarization VV (vertical-vertical) and VH (vertical-
horizontal) modes. In this study, we used Level-1 ground-range-detected products acquired
from September 2020 to August 2021. Sentinel-1 images were downloaded using the Google
Earth Engine application, which provides radar signal images processed for thermal noise
removal, radiometric calibration, terrain correction, and speckle filtering.

2.4. Sentinel-1 Soil Moisture and Indices Retrieval

From the downloaded Sentinel-1 time series we extracted the radar signal correspond-
ing to bare soils and calculated three radar indices (S1-indices) from its two polarizations
(Table 1). For each sampling point, the radar signal was averaged over its corresponding
polygon of Thiessen, in the linear scale, then converted to the logarithmic scale and used for
S1-indices calculation. If the Sentinel-1 image was acquired on the same date as a Sentinel-2
image, we automatically used it. If not, we calculated the mean radar signal of the two
closest dates before and after the Sentinel-2 visit, with an interval not exceeding two days.
If only one date was available in the two-day interval, either before or after the Sentinel-2
visit, we used it. In addition, we used estimates of volumetric soil moisture (%) derived
from the Sentinel-1 time series (S1-soil moisture) using the approach of El Hajj et al. [72]
and validated for our study area by Zayani et al. [73].

Table 1. Equations of the Sentinel-1 indices used.

Abbreviation Index Equation Reference

R1 Radar cross ratio VH
VV [74]

R2 Radar ratio 2 VH + VV
VV [74]

D Radar difference VH − VV [75]
VV: vertical–vertical polarization, VH: vertical–horizontal polarization.

2.5. Retrieval and Analysis of Spectral Indices

In addition to the spectral bands, spectral indices have been developed and used to
analyze remote sensing images. These indices are calculated using common equations
and enhance some spectral features by minimizing effects of illumination and reducing
noise [76,77]. In this study, we used the bare-soil reflectance extracted from the Sentinel-2
images to calculate 40 spectral indices (Appendix A). Based on their application in previous
studies, these indices can be grouped into four categories: vegetation, soil, geology, and
water. To identify the indices that improved detection of soil variability in space and time,
we performed multiple factor analysis (MFA) of the time series of indices for the 58 points
of bare soil. This multivariate method, MFA [78] is based on principal component analysis
(PCA) and used to summarize data described by several sets of variables organized into

https://www.theia-land.fr/
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groups. Variables of the same group are normalized with a weight equal to the inverse of
the first eigenvalue of the PCA, and each variable of the group has its own weight. In our
study, each time series of indices was considered as a group. We selected twelve indices
that contributed differently to the first two dimensions of the MFA in order to use them to
calibrate the models (S2-indices) (Table 2). We then calculated the same 12 indices using the
soil spectra measured in the laboratory and the central wavelengths of the Sentinel-2 bands
(Lab-indices). To decrease the number of indices potentially included in the prediction
models, we selected optimal indices that had the highest Pearson correlation coefficients
with SOC content.

Table 2. Equations of the Sentinel-2 spectral indices selected based on multiple factor analysis and
equations of the corresponding laboratory spectral indices. Subscripts in the latter equations indicate
the central wavelengths of the Sentinel-2 bands.

Ab. Index Equation for Sentinel-2 Indices Equation for Laboratory Spectral Indices Ref.

Vegetation indices

AFRI21 Aerosol free vegetation
index 2.1

B8A − 0.5 × B12
B8A + 0.5 × B12

R865 − 0.5 × R2202
R865 + 0.5 × R2202

[79]

ARVI2 Atmospherically resistant
vegetation index2 − 0.18 + 1.17 ×

(
B8 − B4
B8 + B4

)
− 0.18 + 1.17 ×

(
R832 − R665
R832 + R665

)
[80]

GVMI Global vegetation
moisture index

(B8 + 0.1) − (B12 + 0.02)
(B8 + 0.1) + (B12 + 0.02)

(R832 + 0.1) − (R2202 + 0.02)
(R832 + 0.1) + (R2202 + 0.02)

[81]

Maccioni Maccioni vegetation index B7 − B5
B7 − B4

R783 − R704
R783 + R704

[82]

NBR Normalized burn ratio B8 − B12
B8 + B12

R832 − R2202
R832 + R2202

[83]

NBR2 Normalized burned
Ratio 2

B11 − B12
B11 + B12

R1614 − R2202
R1614 + R2202

[84,85]

NDVI Normalized difference
vegetation index

B8 − B4
B8 + B4

R832 − R665
R832 + R665

[70]

SIWSI Shortwave infrared water
stress index

B8A − B11
B8A + B11

R865 − R1614
R865 + R1614

[86]

TSAVI Soil-adjusted
vegetation index

1.22 × (B8 − 1.22 × B4 − 0.03)
1.22 × B8 + B4 − 1.22 × 0.03 + 0.08 × (1 + 1.222)

1.22 × (R832 − 1.22 × R665 − 0.03)
1.22 × R832 + BR665 − 1.22 × 0.03 + 0.08 × (1 + 1.222)

[87]

Soil indices

BI Brightness index
√

B22 + B32 + B42

3

√
R2

492 + R2
560 + R2

665
3

[88,89]

BSI Bare soil index (B12 − B4) − (B8 − B2)
(B12 − B4) + (B8 − B2)

(R2202 − R665) − (R832 − R492)
(R2202 − R665) + (R832 − R492)

[90]

Water indices

NDMI Normalized difference
moisture index

B8 − B11
B8 + B11

R832 − R1614
R832 + R1614

[91]

Ab.: Abbreviation, Ref.: Reference.

2.6. Prediction Models and Accuracy Assessment

Models were calibrated using three approaches (Figure 2). In the first, only S2 bands (a)
were used for model calibration to compare the performance of PLS regression, RF, and the
DNN. Based on the results of approach 1, only the two algorithms with the best prediction
performance in cross-validation were retained for use in the following two approaches. In
the second approach, S2-indices (a + b), S1-indices (a + c), and S1-soil moisture (a + d) were
used separately during calibration to assess their individual effects and then used together
(a + e). In the third approach, the Lab-indices were added incrementally in the order of
decreasing correlation with SOC content (NBR2, NDVI, ARVI2, Maccioni, and TSAVI) to
assess their effects on model accuracy. To group all available Sentinel-2 data with bare soil,
we constructed a table with 512 rows, which corresponded to “point × date” individuals
for the 58 sampling points that had bare soil (range: 1–18 dates). We then randomly split
the data into calibration (70%) and validation (30%) datasets. To test the robustness of our
approaches, we performed three iterations of each.
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2.6.1. Partial Least Squares Regression

PLS regression is the most common linear regression used to predict soil properties.
Developed by Wold [92], it maximizes the variance of spectral variables by reducing the
original dimension of the spectra into latent variables. It extracts useful components
that are strongly correlated with the dependent variables and overcomes problems of
multicollinearity between spectral variables [93]. PLS regression performs better than
other linear regression methods because of the stability of its latent variables. However,
it is sensitive to outliers in the dataset [94] and forces predictions towards the center
of the calibration dataset. Thus, for samples with high leverage, prediction uncertainty
increases [95]. Non-linear iterative PLS (NIPALS) and statistically inspired modified PLS
are the two most common optimization algorithms of PLS regression. In this study, we used
the NIPALS algorithm implemented in the scikit-learn 1.0.2 package (Python 3.7.4), which
aims to linearize models that have non-linear parameters [92,96]. The optimal number of
components was selected using both the coefficient of determination (R2) and the RMSE of
a 5-fold cross-validation (RMSECV) and relying on the grid search method (Table A2 in
Appendix B). This method allows models parameters to be adjusted by searching a grid of
all possible combinations and evaluating them using cross-validation (Figure 3) [97,98].
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(2019) [99]).

2.6.2. Random Forest

The RF is an ensemble of randomized classification and regression trees that generates
multiple decision trees from a randomly selected subset of training samples and uses
averaging to increase prediction performance and control overfitting [100]. Many individual
trees are trained from bootstrapped subsets of the data, which results in individual learning
algorithms being run (Figure 4a). The final prediction equals the mean of these suboptimal
trees. The number of trees (n_estimators), the maximum depth of the trees (max_depth),
and the number of samples used in each node are user-defined parameters that influence
the prediction performance and model efficiency. For example, if the n_estimators value
is too large, it will affect the model computation; if it is too small, the model error will
not stabilize [101,102]. A higher number of samples used in each node helps to prevent
overfitting by avoiding more specific trees [102]. Like other machine-learning algorithms,
RF is increasingly used to predict soil properties. It has been shown to increase prediction
performance due to its excellent non-linear learning ability and flexibility. In this study,
optimal hyperparameters (max_features and max_depth corresponding to the number
of features to consider when looking for the best split and the maximum depth of the
tree, respectively) were adjusted based on the RMSECV using the “RandomizedSearchCV”
and “RandomForestRegressor” functions implemented in the scikit-learn 1.0.2 package
(Python 3.7.4) (Tables A2 and A5 in Appendix B). Randomized search is an alternative
method to the grid search method and it performs a random search for hyperparameters
within a predefined grid. A fixed number of iterations is performed, and at each iteration
the algorithm selects a combination of hyperparameters, tunes the model, and evaluates its
performance using RMSECV [97]. The number of trees was fixed at 500 and the number of
iterations at 100 for all RF models.



Remote Sens. 2023, 15, 4264 8 of 27
Remote Sens. 2023, 14, x FOR PEER REVIEW 8 of 27 
 

 

  
(a) (b) 

Figure 4. Schematic diagram: (a) The Random Forest model structure (adapted from Song et al. 
(2022) [101]); (b) The DNN model architecture (adapted from Liu et al. (2017) [103]). 

2.6.3. Deep Neural Networks 
Neural networks consist of layers of artificial neurons (also called “perceptrons” or 

“nodes”) that include an input layer, one or more hidden layers, and an output layer. Each 
node is connected to another and has an associated weight and threshold. It, thus, com-
bines inputs with a set of coefficients that either amplify or dampen that input. An activa-
tion function then determines whether and to what extent that signal should progress 
further through the network to influence the result. Depending on the nature of the prob-
lem studied, neural network architectures can be classified by the number and type of 
layers used, and the number of nodes, or simply as supervised vs. unsupervised learning 
networks [103,104]. Among the architectures used to predict soil properties [59,105,106], 
we used a DNN, which has at least two fully connected hidden layers between the input 
and output layers and provides linear and non-linear relationships between the response 
variable and a set of predictor variables (Figure 4b) [103]. It was better suited to our case 
study than a CNN, which is more adapted to data with spatial structure and most com-
monly used in remote sensing [107]. Thus, the abundant cloud cover over our study area 
led to a loss of spatial and temporal information. The rectified linear unit (ReLU) activa-
tion function was used to establish relationships between input and output neurons in 
each hidden layer. The optimal number of hidden layers and neurons in each layer was 
selected based on the RSME using the “tuner.search” framework implemented in the 
keras_tuner 1.1.3 package (Python 3.8.16) (Tables A2 and A5 in Appendix B), which is a 
scalable hyperparameter optimization framework. It is based on Bayesian optimization, 
Hyperband, and random search algorithms [108]. The random search strategy was used 
in our case. It consists of a random selection of hyperparameter combinations according 
to a defined number of iterations, during which the model is trained for a certain number 
of epochs. As a result, the algorithm returns the best hyperparameters, corresponding to 
the combination that gave the best performance [97,108]. In our case, the maximum num-
ber of iterations was set to 50 (max_trials = 50), the learning rate to 0.01, and the number 
of epochs to 50. 

2.6.4. Model Accuracy 
The prediction performance of models was evaluated using R2, RMSE, the ratio of 

performance to deviation (RPD), and the ratio of performance to the interquartile distance 
(RPIQ) developed by Bellon-Maurel et al. [86]. Higher R2 and lower RMSE indicate a 
higher model prediction accuracy. As suggested by Chang et al. [109], predictions of soil 
property models were considered poor for RPD < 1.4, moderate for 1.4 < RPD < 2, and 

Figure 4. Schematic diagram: (a) The Random Forest model structure (adapted from Song et al.
(2022) [101]); (b) The DNN model architecture (adapted from Liu et al. (2017) [103]).

2.6.3. Deep Neural Networks

Neural networks consist of layers of artificial neurons (also called “perceptrons” or
“nodes”) that include an input layer, one or more hidden layers, and an output layer.
Each node is connected to another and has an associated weight and threshold. It, thus,
combines inputs with a set of coefficients that either amplify or dampen that input. An ac-
tivation function then determines whether and to what extent that signal should progress
further through the network to influence the result. Depending on the nature of the prob-
lem studied, neural network architectures can be classified by the number and type of
layers used, and the number of nodes, or simply as supervised vs. unsupervised learning
networks [103,104]. Among the architectures used to predict soil properties [59,105,106],
we used a DNN, which has at least two fully connected hidden layers between the input
and output layers and provides linear and non-linear relationships between the response
variable and a set of predictor variables (Figure 4b) [103]. It was better suited to our
case study than a CNN, which is more adapted to data with spatial structure and most
commonly used in remote sensing [107]. Thus, the abundant cloud cover over our study
area led to a loss of spatial and temporal information. The rectified linear unit (ReLU)
activation function was used to establish relationships between input and output neurons
in each hidden layer. The optimal number of hidden layers and neurons in each layer
was selected based on the RSME using the “tuner.search” framework implemented in the
keras_tuner 1.1.3 package (Python 3.8.16) (Tables A2 and A5 in Appendix B), which is a
scalable hyperparameter optimization framework. It is based on Bayesian optimization,
Hyperband, and random search algorithms [108]. The random search strategy was used
in our case. It consists of a random selection of hyperparameter combinations according
to a defined number of iterations, during which the model is trained for a certain number
of epochs. As a result, the algorithm returns the best hyperparameters, corresponding
to the combination that gave the best performance [97,108]. In our case, the maximum
number of iterations was set to 50 (max_trials = 50), the learning rate to 0.01, and the
number of epochs to 50.

2.6.4. Model Accuracy

The prediction performance of models was evaluated using R2, RMSE, the ratio of
performance to deviation (RPD), and the ratio of performance to the interquartile distance
(RPIQ) developed by Bellon-Maurel et al. [86]. Higher R2 and lower RMSE indicate a
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higher model prediction accuracy. As suggested by Chang et al. [109], predictions of soil
property models were considered poor for RPD < 1.4, moderate for 1.4 < RPD < 2, and
accurate for RPD > 2. Similarly, Nawar and Mouazen [110] considered model predictions
very poor for RPIQ < 1.4, fair for 1.4 < RPIQ < 1.7, good for 1.7 < RPIQ < 2, very good for
2 < RPIQ < 2.5, and excellent for RPIQ > 2.5. The formulas for the performance parameters
are as follows:

R2 =
∑n

i=1 (ŷi − y)2

∑n
i=1 (yi − y)2 ,

RMSE =

√
∑n

i=1 (ŷi − yi)
2

n
,

RPD =
STD

RMSE
,

RPIQ =
Q3 − Q1

RMSE

where yi indicates the measured value of SOC content of the iith sample, ŷi the predicted
value of SOC content of the iith sample, y the average value of measured SOC content, n
the number of samples, (i = 1, 2, 3, . . ., n), and Q3 − Q1 indicates the interquartile distance.
Q3 is the value below which we find 75% of the samples and Q1 is the value below which
we find 25% of the samples.

3. Results
3.1. Data Description and Analysis
3.1.1. Descriptive Statistics of Measured SOC Content

The measured SOC contents of the 58 sampling points that were in bare soil, ranged
from 15.2–49.4 g·kg−1, with a mean of 22.3 g·kg−1 (Table 3). They lay within the range of
SOC content usually observed in the Naizin watershed and were consistent with those
measured in a previous study [111]. The descriptive statistics of the calibration and
validation datasets generated for the three iterations using the S2 time series are presented
in Table 4.

Table 3. Descriptive statistics of soil organic carbon (g·kg−1) content measured at the 58 sampling
points that were in bare soil in the study area in 2020.

n Mean St. Dev. Median Min Max Skewness

58 22.3 3.6 21.9 15.2 49.4 3.7
n: Number of soil samples, St. dev.: Standard deviation.

Table 4. Descriptive statistics of soil organic carbon content of the calibration and validation datasets
generated for the three iterations.

It. Dataset n Mean St. Dev. Median Min Max Skewness

1
Cal 358 22.2 3.5 21.9 15.2 49.4 3.4
Val 154 22.3 3.9 21.9 17.1 49.4 4.2

2
Cal 359 22.3 3.5 22.0 15.2 49.4 3.6
Val 153 22.2 4.0 21.8 17.1 49.4 3.8

3
Cal 358 22.5 4.0 22.0 15.2 49.4 3.8
Val 154 21.9 2.5 21.8 15.2 30.1 0.4

It.: Iteration, Cal: Calibration, Val: Validation, n: Number of individuals, St. Dev.: Standard deviation.
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3.1.2. Sentinel-2 and Laboratory Spectral and Sentinel-1 Soil Moisture Information Analysis

The mean reflectance of soil samples was lower for Sentinel-2 spectra than for
laboratory spectra (Figure 5a). Some mean S2-indices were lower than mean Lab-indices,
while others were higher or nearly the same (Figure 5b). As expected, the former also
varied more, since surface conditions, especially soil moisture, varied among sampling
points and dates. Some S2-indices (e.g., NBR, BSI) were more sensitive (i.e., variable)
than the others. The same was true for Lab-indices, although this variability seemed to
be non-significant.
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The S2-indices explained more than 51% of total inertia on the first two dimensions
of the MFA (Figure 6). Most S2-indices contributed to approximately the same degree
(>0.75) to dimension 1 but contributed to varying degrees (0.10–0.75) to dimension 2.
Indices BSI and GVMI contributed the least to dimension 1 and among the most to
dimension 2.

Most correlations between the Lab-indices and SOC content were significant at
p < 0.01 and had absolute values greater than 0.40 (Table 5). Weaker correlations be-
tween the Lab-indices and SOC content (r = 0.20–0.30) were significant only at p < 0.05.
Indices with r > 0.70 with SOC content were calculated using wavelengths of 665–832 nm,
except for NBR2, which used wavelengths of 1614–2202 nm.
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Figure 6. The first factorial plane of the multiple factor analysis (MFA), showing the correlation of
the Sentinel-2 indices with the MFA dimensions with a zoom on the condensed part. See Table 2 for
definitions of the spectral indices.

Table 5. Pearson correlation coefficients (r) between soil organic carbon (SOC) content and laboratory
spectral indices, and their statistical significance. See Table 2 for definitions of the spectral indices.

Index r

NBR2 0.85 ***
NDVI 0.81 ***
ARVI2 0.81 ***

Maccioni 0.80 ***
TSAVI 0.79 ***

BI −0.46 ***
GVMI 0.41 ***
NBR 0.26 *
BSI 0.22 *

NDMI −0.16 ns

AFRI21 −0.20 ns

SIWSI −0.05 ns

Significance: ns, non-significant; *, p < 0.05; ***, p < 0.001.

S1-soil moisture varied more than the S1-indices (Figure 7). The mean S1-soil moisture
varied from 9.8% to36.5%, with standard deviations of 0.8–6.8% that were lowest on the
dates with the highest soil moisture (≥30%).
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3.2. Model Performance and Comparison
3.2.1. Sentinel-2 Bands Prediction Performance

The results of the validation of the SOC content models using only the Sentinel-2
bands varied among the algorithms (Figure 8, Table A3 in Appendix B) but were rela-
tively stable among the three iterations, with RMSEP equal to 3.57 (±0.79), 3.51 (±0.45),
2.33 (±0.1), for PLS, RF, and DNN, respectively. However, according to R2, the third iter-
ation always produce results of poor quality. Based on the RPD, only models calibrated
using DNN performed moderately well in predicting SOC content (1.47 (±0.26)). But,
based on the RPIQ, SOC predictions were very poor for the three algorithms (0.93 (±0.18),
0.90 (±0.11), and 1.31 (±0.08)).
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Figure 8. Scatterplots of measured vs. predicted soil organic carbon (SOC) content for the validation
dataset using Sentinel-2 bands and the partial least squares (PLS), random forest (RF), or deep neural
network (DNN) algorithms for the three iterations ((1), (2), and (3)). R2: coefficient of determination,
RMSEP: root mean square error of prediction, RPD: ratio of performance to deviation, RPIQ: ratio of
performance to the interquartile distance.

3.2.2. Prediction Performance of Sentinel-2 Bands Combined with Sentinel-2 and Sentinel-1
Indices and Sentinel-1 Soil Moisture

Including the S1- and S2-indices and S1-soil moisture along with the Sentinel-2 bands
in the models influenced calibration performance more than validation and the DNN algo-
rithm performance more than the RF algorithm (Figure 9, Table A4 (Appendix B)). Using
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the DNN, the combination of S2-indices, S1-indices, and S2-indices + S1-indices + S1-soil
moisture with Sentinel-2 bands increased the calibration performance the most (mean
RPIQ = 2.59 (±1.30), 2.53 (±1.50), and 2.89 (±2.16), respectively), but this result was not
stable among the three iterations. Model calibration performance was most stable when
S1-soil moisture was included for DNN and RF (mean RPIQ = 2.17 (±0.2) and 1.48 (±0.08),
respectively), but doing so had no strong effect on model validation performance. Thus,
for all calibrated models, the RPIQ for model validation was always lower than the RPIQ
threshold 1.7 considered for accurate predictions. Based on the mean RPD values, only the
DNN model calibrated using S2 bands + S1-soil moisture showed a moderate validation
performance of SOC prediction (mean RPD = 1.42 (±0.31)), but no improvement was
observed compared to using only S2 bands (mean RPD = 1.47 (±0.32)). Mean RMSEP
values ranged from 3.34 (±0.46) to 3.59 (±0.55) for RF and from 2.33 (±0.12) to 2.95 (±0.34)
for DNN.
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Figure 9. Mean performance of the three iterations during model calibration and validation using
the random forest (RF) and deep neural network (DNN) algorithms when using Sentinel-2 indices,
Sentinel-1 indices, and Sentinel-1 soil moisture: (a) Ratio of performance to the interquartile (RPIQ);
(b) Root mean square error (RMSE); (c) Ratio of performance to deviation (RPD). Error bars indicate
1 standard deviation. Horizontal red lines indicate performance thresholds (see Section 2.6.4).

3.2.3. Prediction Performance of Sentinel-2 Bands Combined with Laboratory Spectral
Indices

Combining laboratory spectral indices with the Sentinel-2 bands to calibrate mod-
els to predict SOC content influenced model performance strongly (Figure 10, Table A6
(Appendix B)). For both the RF and DNN algorithms, the validation criteria with mean
RPIQ > 1.7 were obtained when including at least the two indices most correlated with SOC
content (i.e., NBR2 and NDVI). However, doing so generated high variability in validation
performance for the RF models (i.e., standard deviations of RPIQ of 1.13–2.10), while the
validation performance of the DNN models remained relatively stable (mean RPIQ of
1.84 (±0.21) to 3.07 (±0.72)).
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Figure 10. Mean performance of the three iterations of model validation using the random forest (RF)
and deep neural network (DNN) algorithms when adding laboratory spectral indices incrementally
in the order of decreasing correlation with soil organic carbon content: (a) The coefficient of determi-
nation R2; (b) The root mean square error of validation (RMSEP); (c) The ratio of performance to the
interquartile distance (RPIQ). Error bars indicate 1 standard deviation. Horizontal red lines indicate
performance thresholds (see Section 2.6.4). See Table 2 for definitions of the spectral indices.

4. Discussion
4.1. Factors That Influenced Sentinel-2 Soil Surface Reflectance Spectra

The lower reflectance obtained by Sentinel-2 was observed in most previous stud-
ies [33,61] and is related to the acquisition conditions: in particular, atmospheric water,
soil moisture, and soil roughness. These parameters strongly influence the energy that
is reflected and emitted, which reduces reflectance over the entire spectrum [15,17,112]
compared to the laboratory spectra acquired after samples were air-dried, sieved to 2 mm,
and oven-dried for 24 h. The variability in this information resulted from the diversity of
soils and differences in acquisition conditions among dates, since Sentinel-2 reflectance
depends on soil complexity, soil surface conditions, and acquisition conditions. To retrieve
the relevant information in the images, all Sentinel-2 spectra that corresponded to bare soil
for each sample were grouped in a single table, which can provide an alternative to the
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mosaicking approaches developed in previous studies [28,38,113]. Vaudour et al. [38] found
that temporal mosaicking approaches increased the predicted area but did not predict SOC
content better than single-date models. This is because soil conditions, such as soil moisture,
soil roughness, and vegetation significantly influence prediction performance by disturbing
soil reflectance [31]. Considering Sentinel-2 images acquired on different dates allows one
to assess the ability of models to represent different soil conditions and, thus, increase the
number and composition of training sample datasets.

4.2. Performance of Calibrated Models Using Only Sentinel-2 Bands: DNN vs. PLS and RF

When using only Sentinel-2 bands, calibrated DNN models outperformed PLS and
RF models for all three iterations. These results are consistent with previous studies
that found that DNN models are more suitable for predicting SOC due to their ability to
capture complex relationships through multiple hidden layers and neurons [61,105,107]. In
addition, DNN models can model complex data. For example, Odebiri et al. [105] found
that a DNN model improved the prediction of SOC at the national scale, even when using
a dataset with high spatial uncertainty (i.e., multiple scales of variation, different sampling
sources, and different acquisition dates). Moreover, DNN models in the present study were
less sensitive to high-leverage samples (Figure 8) than PLS and RF models were. The low
performance of the PLS regression was expected since PLS models are sensitive to highly
leveraged samples, which are generally considered as outliers [114]. Although RF models
showed RMSEcv of 1.73–1.85 g·kg−1 and fair RPIQ values (RPIQ = 1.41–1.53), validation
performance was very poor (RMSEP = 3.51 g·kg−1 (±0.45) and RPIQ = 0.90 (±0.11)).
Thus, several studies have found that RF predicted better than other machine-learning
techniques, but others have found that the performance of RF classifiers was sensitive to
training samples and data dimensions [115]. Compared to the study of Biney et al. [35],
our DNN models (R2 = 0.18–0.65 and RPIQ = 1.21–1.46) outperformed their PLS, SVM, CR,
and ensemble models developed at the field scale (R2 = 0.11–0.27 and RPIQ = 1.22–1.31).
Our models yielded RMSEP of 2.33 g·kg−1 (±0.1), which is better than those obtained by
Dvorakova et al. (2023) [116], RMSE = 3.5 g·kg−1 (±0.3), for SOC content ranging from
7.2 to 14.2 g·kg−1 and Vaudour et al. (2021) [38], and RMSE = 3.02–5.86 g·kg−1 for SOC
content ranging from 7.04 to 31.9 g·kg−1, in cross validation.

4.3. Effects of Additional Information on Model Calibration and Validation

Including additional information, in particular S2-indices, S1-indices, and S1-soil
moisture, was intended to increase the models’ predictive performance by providing
new variables that distinguish the varying soil conditions better on different acquisition
dates. This additional information had more influence during calibration than validation
and on the DNN models than on the RF models (e.g., when including S2-indices, mean
RPIQ improved from 2.02 (±0.15) to 2.59 (±1.30) when calibrating the DNN model and
from 1.50 (±0.13) to 1.57 (±0.07) when calibrating the RF model) (Figure 9). It likely
had more influence during calibration than validation because the validation dataset
contained spectral information acquired on dates when soil surface conditions of the sam-
pling points in the training dataset were unknown. In fact, some of the sampling points
were bare soil on only a few dates (e.g., 1–3), while others were bare soil on 5–18 dates,
which gave the machine-learning algorithms, especially DNN, more opportunities to learn.
This may also explain the instability in performance of calibrated DNN models “a + b”,
“a + c”, and “a + e” among the iterations (mean RPIQ = 2.59 (±1.30), 2.53 (±1.49), and
2.89 (±2.16), respectively). Thus, the number of dates retained for each sampling point dur-
ing model calibration strongly influenced model performance. The additional information
may have had stronger effects on the DNN models due to their ability to learn and extract
more representative features through their hidden layers and neurons [105,107]. Thus, the
validation performance of DNN models that included additional information, varied from
2.41 to 2.95 g·kg−1 for RMSEP and from 1.29 to 1.42 for RPD; however, the performance of
RF models was almost stable (RMSEP = 3.34–3.59 g·kg−1 and RPD = 0.95–1.02).
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4.4. Utility of Including Sentinel-2 Spectral Indices

The higher variability, in some S2-indices than others (Figure 5), supports the idea
that these indices can distinguish soil surface conditions. For example, the NDVI and
Maccioni indices, both developed to detect green vegetation [70,82], showed different
variation ranges. Since we selected only bare soils, we expected the Maccioni index to
vary less than the NDVI, but this was not the case. This supports the assumption that the
spectral regions of vegetation indices are sensitive to SOC content [33,117]. Similarly, for
NBR and NBR2, which were developed to detect burn severity, NBR varied more than
NBR2. Dvorakova et al. [118] and Demattê et al. [119] found that NBR2 was correlated
with the presence of crop residues, so they used it with NDVI to select bare soil to predict
SOC [18,30,38]. In the present study, performance increased significantly when including
S2-indices during calibration but not validation of DNN models. This may have been
due to potential variation in correlation between Sentinel-2 bands and their derived S2-
indices or the SOC content among dates depending on soil surface conditions. For example,
Gholizadeh et al. [33] observed that the correlation between Sentinel-2 spectral information
and SOC content or soil texture varied among study areas.

4.5. Utility of Including Sentinel-1-Derived Data

Since radar signals are sensitive to soil surface conditions, especially soil moisture,
soil surface roughness, and vegetation [73,120,121], we included indices derived from the
VV and VH polarizations of Sentinel-1 radar signals. Although these indices appeared
to be sensitive to vegetation dynamics [74,75], they increased the prediction performance
of DNN models during calibration but with high variability among the three iterations,
which is consistent with results of Nguyen et al. [51] and Wang et al. [27]. The latter
found that including radar-derived data with multispectral data in SOC prediction models
increased prediction performance. We also included Sentinel-1-derived soil moisture
because we found in a previous study [73] that soil moisture had more influence than
soil surface roughness in the Naizin watershed on the Sentinel-1 radar signal because of
relatively high soil moisture. Consequently, we assumed that including Sentinel-1-derived
soil moisture could increase prediction performance by considering the variability in soil
moisture among dates and sampling points, especially since our study area is located on
both sides of a stream. This approach resulted in the most stable improvement during
model calibration and the closest validation performance to that of models calibrated using
only S2 bands, which showed the lowest RMSEP (RMSEP = 2.41 (±0.08) and 2.33 (±0.12),
respectively), supporting the idea that soil moisture strongly influences the performance of
SOC prediction models. Urbina-Salazar et al. [50] found that using Sentinel-2 dates with
low soil moisture increased performance of SOC prediction models, but that including soil
moisture did not, which was the case for the RF model in our study. Thus, the algorithm
used influenced the performance of models calibrated with Sentinel-2 data.

By using all of the complementary information simultaneously, the DNN algorithm
was able to extract the most appropriate information for predicting SOC content; thus,
this approach provides models with more features, which increases their learning capac-
ity. Wang et al. [27] tested different combinations of Landsat TM- and PALSAR-derived data
and found that using six TM bands, six TM-derived indices, and four PALSAR polarizations
yielded the best model. In addition, Nguyen et al. [51] found that combining Sentinel-1 C-band
dual-polarimetric SAR data and Sentinel-2 optical datasets increased prediction performance.

4.6. Effects of Including Laboratory Spectral Indices

Due to the complex nature of soils, their Vis-NIR spectra aggregate multiple soil chro-
mophore spectral signals [122]. Influenced by many other confounding factors, Sentinel-2
soil reflectance predicted SOC less well than spectra acquired under laboratory condi-
tions [28,33,61]. Thus, as suggested by Ben-Dor et al. [10] and confirmed by Vaudour et al. [32],
the predictability of a given soil property using remotely sensed data does not depend
solely on the property itself or its spectral behavior as a chromophore. When compar-
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ing the performance of Sentinel-2A-derived models for two contrasting agroecosystems,
Vaudour et al. [32] found that loading values of the Sentinel-2 bands for a given soil
property varied among study areas. Consequently, we included laboratory-acquired soil
spectral information, assuming that doing so would provide models with more spectral
information about soil properties themselves. In addition, Peng et al. [39] improved maps
of predicted SOC content by including geospatial estimates of laboratory soil spectra at
1930 nm. Since spectral indices highlight certain spectral features better, we calculated
equivalents of the S2-indices using the soil spectra obtained under laboratory conditions.
Similarly, Liu et al. [61] found that these bare soil indices were more accurate in predicting
SOC densities than those derived from Sentinel-2 imagery; however, their study relied
on a single-date Sentinel-2 image acquired in early winter without describing soil surface
conditions. Our results showed strong and significant correlations of these indices with
the measured SOC content (Table 5). Furthermore, including these indices sequentially in
our models improved the prediction of SOC content. With only two indices, we achieved
good performance for both RF and DNN models (mean R2 = 0.70 (±0.15) and 0.91 (±0.04)
and mean RPIQ = 2.01 (±1.13), and 1.77 (±0.23), respectively). However, the results were
less stable for RF than for DNN, even when including five indices. This is consistent with
the idea that RF classifiers can be used to classify multisource remote sensing data, mainly
due to their computational speed [115], but the fact that they optimize models using only
the input datasets identified as important made them unstable in our study. These results
suggest that considering the same spectral information acquired in the laboratory for all
dates instead of the Sentinel-2 spectral information, which varies as a function of surface
conditions, minimizes the effects of surface conditions and highlights the spectral behavior
of the soil property itself.

5. Conclusions

This study assessed a new approach for using a time series of Sentinel-2 data combined
with Sentinel-1-derived data and Vis-NIR laboratory spectra to predict the SOC content of
agricultural soils and tested predictive models of three different algorithms. To retrieve the
relevant information contained in the images, all Sentinel-2 spectra that corresponded to
bare soil for each soil sample were grouped into a table, which can provide an alternative
to mosaicking approaches. Our results showed the following:

The DNN models outperformed the PLS and RF models and the inclusion of additional
information (i.e., S2-indices, S1-indices, and S1-soil moisture) influenced the prediction
performance of the DNN models more than that of the RF models.

Although the inclusion of additional information improved prediction performance
during model calibration, it did not influence model validation. Furthermore, S1-soil mois-
ture gave the most stable improvement in calibration and the closest validation performance
to that of models calibrated using only S2 bands, which had the lowest RMSEP.

As the Lab-indices showed strong and significant correlations with measured SOC
content, their incremental addition to the models improved the prediction of SOC content,
and the addition of only two indices yielded good performances.

Future research could evaluate the approach developed for study areas that have more
available Sentinel-2 data and different soil and climate conditions to assess its potential to
be generic. Accordingly, the principal objective of this study was to improve the accuracy
of SOC content prediction using Sentinel-2 data, with the ultimate goal of producing highly
detailed SOC maps. The availability of these maps will be of great help in the crucial issue
of monitoring agricultural soils in relation to agricultural practices.
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Appendix A

Table A1. Equations for Sentinel-2 spectral indices.

Abbreviation Index Equation Reference

Vegetation indices

AFRI16 Aerosol free vegetation
index 2.1

B8A − 0.66 × B11
B8A + 0.66 × B11 [79]

AFRI21 Aerosol free vegetation
index 2.1

B8A − 0.5 × B12
B8A + 0.5 × B12 [79]

ARI Anthocyanin reflectance
index

1
B3 −

1
B5 [123]

ARVI2 Atmospherically Resistant
vegetation index2 −0.18 + 1.17 ×

(
B8 − B4
B8 + B4

)
[80]

BRI Browning reflectance index
1

B3 −
1

B5
B6

[124]

BWDRVI Blue-wide dynamic range
vegetation index

0.1 × B7 − B2
0.1 × B7 + B2 [125]

CCCI Canopy chlorophyll
content index

(B8 − B5)/(B8 + B5)
(B8 − B4)/(B8 + B4)

[126]

EVI Enhanced vegetation index 2.5 × (B8 − B4)
(B8 + 6 × B4 − 7.5 × B2) + 1

[127]

EVI2 Enhanced vegetation
index2

2.4 × (B8 − B4)
(B8 + B4 + 1)

[128]

GARI Green atmospherically
resistant vegetation index

B8 − (B3 − (B2 − B4))
B8 + (B3 + (B2 − B4))

[129]

GLI Green leaf index 2 × B3 − B5 − B2
2 × B3 + B5 + B2 [130]

GNDVI Green normalized
difference vegetation index

B8 − B3
B8 + B3 [129]

GVMI Global vegetation moisture
index

(B8 + 0.1) − (B12 + 0.02)
(B8 + 0.1) + (B12 + 0.02)

[81]

Maccioni Maccioni vegetation index B7 − B5
B7 − B4 [82]

NBR Normalized burn ratio B8 − B12
B8 + B12 [83]

NBR2 Normalized burned Ratio 2 B11 − B12
B11 + B12 [84,85]

NDVI Normalized difference
vegetation index

B8 − B4
B8 + B4 [70]

NSSI NPV-soil separation index B8A − B7
B8A
B7

[131]

OSAVI Optimized soil-adjusted
vegetation index

B8 − B4
B8 + B4 + 0.16 [132]

PANDVI Pan normalized difference
vegetation index

B8 − (B3 + B4 + B2)
B8 + (B3 + B4 + B2)

[133]
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Table A1. Cont.

Abbreviation Index Equation Reference

SIWSI Shortwave infrared water
stress index

B8A − B11
B8A + B11 [86]

TSAVI Soil-adjusted vegetation
index

1.22 × (B8 − 1.22 ∗ B4 − 0.03)
1.22 × B8 + B4 − 1.22 × 0.03 + 0.08 × (1 + 1.222)

[87]

Soil indices
BI Brightness index

√
B22 + B32 + B42

3
[89,134]

BSI Bare soil index (B12 − B4) − (B8 − B2)
(B12 − B4) + (B8 − B2)

[90]

FI Form index 2 × B4 − B3 − B2
B3 − B2 [135]

Hue Hue index arctan
((

2 × B5 − B3 − B2
30.5

)
× (B3 − B5)

)
[135]

RedI Redness index B42

B33 [89]

SI Saturation index B4 − B2
B4 [135]

S2WI Soil moisture index B8 − B11 − B12
B8 + B11 + B12 [32]

STI Soil tillage index B11
B12 [136]

Geology indices
Fe2 Ferrous iron index B12

B8 −
B3
B4 [137]

Fe3 Ferric iron index B3
B4 [137]

FO Ferric oxides index B11
B8 [137]

FS Ferrous silicates index B12
B11 [137]

Gossan Gossan index B11
B4 [137]

Water indices

AWEI
Automated water

extraction index not
dominant shadow

4 × (B3 − B11) −
(0.25 × B8 + 2.75 × B12)

[121]

AWEI2
Automated water

extraction index dominant
shadow

B2 + 2.5 × B3 − 1.5 ×
(B8 + B1) − 0.25 × B12 [138]

MNDWI Modified normalized
difference water index

B3 − B11
B3 + B11 [139]

NDMI Normalized difference
moisture index

B8 − B11
B8 + B11 [91]

NDWI Normalized difference
water index

B3 − B8
B3 + B8 [140]

Appendix B

Table A2. Adjusted parameters for models when using only Sentinel-2 bands and when including
Sentinel-2 indices, Sentinel-1 indices, and/or Sentinel-1 soil moisture.

Input PLS RF DNN
It. Factors Scale Max_Features Max_Depth Num_Layers

a
(1) 6 True 0.60 70 12
(2) 5 False auto 10 8
(3) 6 True 0.60 70 7

a + b
(1) - - 0.75 20 10
(2) - - 0.60 30 5
(3) - - 0.85 70 12

a + c
(1) - - 0.95 50 12
(2) - - 0.85 10 11
(3) - - 0.85 10 12

a + d
(1) - - 0.6 None 5
(2) - - 0.85 10 9
(3) - - 0.60 None 9

a + e
(1) - - 0.60 70 13
(2) - - 0.60 30 13
(3) - - 0.60 None 13
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Table A3. Detailed performance of models calibrated using only Sentinel-2 bands with the partial
least squares (PLS) regression, random forest (RF), or deep neural network (DNN) algorithms (Alg.)
for the three iterations (It.) ((1), (2), and (3)).

Calibration Validation
Alg. It. R2 RMSECV RPD RPIQ r2 RMSEP RPD RPIQ

PLS
(1) 0.15 3.27 1.08 0.79 0.13 3.58 1.07 0.93
(2) 0.15 3.21 1.08 0.83 0.06 3.88 1.03 0.77
(3) 0.17 3.67 1.1 0.77 −0.10 2.61 0.95 1.15

RF
(1) 0.73 1.82 1.94 1.41 0.09 3.65 1.05 0.91
(2) 0.75 1.73 2.00 1.54 0.02 3.96 1.01 0.76
(3) 0.79 1.85 2.17 1.53 −0.34 2.88 0.86 1.04

DNN
(1) 0.81 1.55 2.29 1.67 0.65 2.28 1.69 1.46
(2) 0.85 1.36 2.55 1.96 0.62 2.47 1.62 1.21
(3) 0.86 1.53 2.63 1.86 0.18 2.25 1.11 1.33

Table A4. Detailed performance for the three iterations (It.) ((1), (2), and (3)) of the calibrated random
forest (RF) and deep neural network (DNN) models and their validation when including Sentinel-2
indices, Sentinel-1 indices, and/or Sentinel-1 soil moisture.

RF DNN
Calibration Validation Calibration Validation

Input It. R2 RMS
ECV RPD RPIQ r2 RMS

EP RPD RPIQ R2 RMSE RPD RPIQ r2 RMS
EP RPD RPIQ

a
(1) 0.73 1.82 1.94 1.41 0.09 3.65 1.05 0.91 0.81 1.55 2.29 1.67 0.65 2.28 1.69 1.46
(2) 0.75 1.73 2.00 1.54 0.02 3.96 1.01 0.76 0.85 1.36 2.55 1.96 0.62 2.47 1.62 1.21
(3) 0.79 1.85 2.17 1.53 −0.34 2.88 0.86 1.04 0.86 1.53 2.63 1.86 0.18 2.25 1.11 1.33

a +
b

(1) 0.76 1.74 2.03 1.48 0.18 3.47 1.11 0.96 0.86 1.33 2.66 1.94 0.56 2.55 1.51 1.31
(2) 0.72 1.83 1.90 1.46 0.13 3.73 1.07 0.8 0.81 1.53 2.27 1.74 0.43 3.01 1.33 0.99
(3) 0.8 1.78 2.26 1.60 −0.30 2.83 0.88 1.06 0.97 0.70 5.87 4.08 0.02 2.46 1.02 1.22

a +
c

(1) 0.43 2.67 1.33 0.97 0.04 3.76 1.02 0.89 0.82 1.51 2.35 1.71 0.44 2.87 1.34 1.16
(2) 0.74 1.78 1.96 1.50 −0.02 4.04 0.99 0.74 0.78 1.64 2.11 1.62 0.46 2.93 1.37 1.02
(3) 0.77 1.93 2.08 1.47 −0.44 2.98 0.83 1.00 0.97 0.67 6.02 4.25 −0.11 2.61 0.95 1.14

a +
d

(1) 0.72 1.87 1.90 1.38 0.09 3.66 1.05 0.91 0.86 1.33 2.67 1.94 0.59 2.47 1.56 1.35
(2) 0.73 1.80 1.93 1.49 0.03 3.92 1.02 0.76 0.89 1.15 3.01 2.32 0.63 2.44 1.64 1.23
(3) 0.78 1.89 2.13 1.51 −0.30 2.84 0.87 1.05 0.9 1.26 3.2 2.26 0.13 2.32 1.07 1.29

a +
e

(1) 0.75 1.78 1.99 1.45 0.16 3.51 1.09 0.95 0.81 1.56 2.28 1.66 0.31 3.2 1.21 1.04
(2) 0.77 1.66 2.10 1.61 0.09 3.81 1.05 0.78 0.98 0.50 7.01 5.38 0.4 3.08 1.30 0.97
(3) 0.79 1.84 2.18 1.54 −0.37 2.91 0.85 1.03 0.81 1.75 2.3 1.63 −0.06 2.56 0.97 1.17

a: Bands, a + b: Bands + Sentinel-2 indices, a + c: Bands + Sentinel-1 indices, a + d: Bands + Soil moisture, a + e:
Bands + Sentinel-2 indices + Sentinel-1 indices + Sentinel-1 soil moisture.

Table A5. Adjusted parameters for models when adding laboratory spectral indices incrementally in
the order of decreasing correlation with soil organic carbon content.

Input RF DNN
It. Max_Features Max_Depth Num_Layers

a
(1) 0.60 70 12
(2) auto 10 8
(3) 0.60 70 7

a + 1
(1) auto 70 11
(2) Auto 10 10
(3) auto 20 10
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Table A5. Cont.

Input RF DNN
It. Max_Features Max_Depth Num_Layers

a + 2
(1) 0.85 10 7
(2) auto 30 6
(3) auto 30 12

a + 3
(1) 0.58 50 12
(2) auto 30 11
(3) auto 70 3

a + 4
(1) auto 10 11
(2) 0.95 None 12
(3) 0.95 None 12

a + 5
(1) auto 20 13
(2) auto 30 9
(3) 0.95 30 5

Table A6. Detailed performance for the three iterations (It.) ((1), (2), and (3)) of the calibrated random
forest (RF) and deep neural network (DNN) models and their validation when adding laboratory
spectral indices incrementally in the order of decreasing correlation with soil organic carbon content.

RF DNN
Calibration Validation Calibration Validation

Input It. R2 RMS
ECV RPD RPIQ r2 RMS

EP RPD RPIQ R2 RMSE RPD RPIQ r2 RMS
EP RPD RPIQ

a
(1) 0.73 1.82 1.94 1.41 0.09 3.65 1.05 0.91 0.73 1.55 2.29 1.67 0.65 2.28 1.69 1.46
(2) 0.75 1.73 2.00 1.54 0.02 3.96 1.01 0.76 0.75 1.36 2.55 1.96 0.62 2.47 1.62 1.21
(3) 0.79 1.85 2.17 1.53 −0.34 2.88 0.86 1.04 0.79 1.53 2.63 1.86 0.18 2.25 1.11 1.33

a + 1
(1) 0.81 1.53 2.32 1.69 0.43 2.89 1.33 1.15 0.96 0.69 5.18 3.76 0.65 2.27 1.7 1.47
(2) 0.82 1.45 2.39 1.84 0.53 2.74 1.46 1.09 0.96 0.67 5.17 3.97 0.59 2.56 1.56 1.17
(3) 0.86 1.50 2.68 1.90 0.44 1.87 1.33 1.60 0.94 0.95 4.23 2.99 0.04 2.43 1.02 1.23

a + 2
(1) 0.83 1.47 2.42 1.76 0.57 2.52 1.52 1.32 0.96 0.69 5.14 3.75 0.82 1.64 2.35 2.03
(2) 0.79 1.58 2.20 1.69 0.67 2.30 1.74 1.30 0.88 1.20 2.91 2.23 0.77 1.92 2.09 1.56
(3) 0.86 1.46 2.74 1.94 0.87 0.88 2.82 3.40 0.90 1.25 3.22 2.27 0.52 1.72 1.45 1.74

a + 3
(1) 0.79 1.61 2.21 1.61 0.58 2.50 1.54 1.33 0.87 1.27 2.79 2.02 0.8 1.73 2.22 1.92
(2) 0.82 1.45 2.40 1.84 0.70 2.20 1.81 1.36 0.97 0.62 5.60 4.30 0.78 1.86 2.16 1.61
(3) 0.87 1.44 2.79 1.97 0.87 0.89 2.79 3.36 0.92 1.16 3.46 2.44 0.63 1.50 1.66 1.99

a + 4
(1) 0.84 1.41 2.52 1.83 0.61 2.39 1.61 1.39 0.95 0.78 4.54 3.30 0.92 1.10 3.51 3.04
(2) 0.83 1.41 2.46 1.89 0.72 2.11 1.89 1.42 0.99 0.40 8.75 6.72 0.93 1.02 3.92 2.92
(3) 0.88 1.36 2.96 2.06 0.94 0.59 4.21 5.07 0.96 0.81 4.98 3.52 0.76 1.21 2.05 2.46

a + 5
(1) 0.84 1.40 2.53 1.84 0.60 2.42 1.59 1.38 0.99 0.21 16.74 12.17 0.95 0.85 4.51 3.90
(2) 0.83 1.43 2.42 1.86 0.73 2.08 1.92 1.44 0.99 0.34 10.21 7.84 0.92 1.10 3.65 2.72
(3) 0.89 1.32 3.04 2.15 0.94 0.61 4.07 4.90 0.99 0.46 8.65 6.11 0.78 1.15 2.16 2.59

a: Bands, a + 1: Bands + NBR2, a + 2: Bands + NBR2 + NDVI, a + 3: Bands + NBR2 + NDVI + ARVI2; a + 4: Bands
+ NBR2 + NDVI + ARVI2 + Maccioni, a + 5: Bands + NBR2 + NDVI + ARVI2 + Maccioni + TSAVI.
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