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We introduce the exponentially preferential recursive tree and study some properties related to the degree profile of nodes in the tree. The definition of the tree involves a radix a > 0. In a tree of size n (nodes), the nodes are labeled with the numbers 1, 2, . . . , n. The node labeled i attracts the future entrant n + 1 with probability proportional to a i .

We dedicate an early section for algorithms to generate and visualize the trees in different regimes. We study the asymptotic distribution of the outdegree of node i, as n → ∞, and find three regimes according to whether 0 < a < 1 (subcritical regime), a = 1 (critical regime), or a > 1 (supercritical regime). Within any regime, there are also phases depending on a delicate interplay between i and n, ramifying the asymptotic distribution within the regime into "early," "intermediate" and "late" phases. In certain phases of certain regimes, we find asymptotic Gaussian laws. In certain phases of some other regimes, asymptotic small oscillations in the asymototic laws are detected by the Poisson approximation techniques.

Scope

The recursive tree is a classic hierarchical structure. Several models of randomness are used in a variety of applications. Dozens of research papers have been devoted to the uniform model alone, many of them are surveyed in [START_REF] Smythe | A survey of recursive trees[END_REF]. Today, the uniform recursive tree is a standard entry in books on random structures [START_REF] Drmota | Random Trees: An Interplay Between Combinatorics and Probability[END_REF][START_REF] Frieze | Introduction to Random Graphs, 2nd Ed[END_REF][START_REF] Hofri | Algorithmics of Nonuniformity: Tools and Paradigms[END_REF]. The uniform recursive tree is used as a model in many applications. Some of the classic applications are in pyramid schemes [START_REF] Gastwirth | Two probability models of pyramid or chain letter schemes demonstrating that their promotional claims are unreliable[END_REF] and Philology [START_REF] Najock | On the number of terminal vertices in certain random trees with an application to stemma construction in philology[END_REF].

Driven by other applications, interest was developed into nonuniform models, wherein the attachment of new nodes is done preferentially according to some criterion. The earliest of these preferential models is a probability scheme in which nodes of higher outdegrees are favored [START_REF] Szymański | On a nonuniform random recursive tree[END_REF]. Other preferential ideas are based on node fitness [START_REF] Dereich | Robust analysis of preferential attachment models with fitness[END_REF], old age of nodes [START_REF] Hofri | Algorithmics of Nonuniformity: Tools and Paradigms[END_REF], node Youthfulness [START_REF] Lyon | Trees grown under young-age preferential attachment[END_REF], and power-weights on the nodes [START_REF] Lyon | Insertion depth in power-weight trees[END_REF].

In the present investigation, we propose a new preferential model parameterized by a real positive radix which we call a. In this exponential model, the affinity of a node is the radix raised to node time stamp. A precise definition is given in Subsection 2.3.

For instance, if the radix is less than 1, nodes that appear first (older in the tree) have an attraction power that is larger than newer nodes. One sees such a phenomenon in the growth of networks, where older nodes have a bigger chance of growth than younger ones. For instance, in a graph representing the growth of technology companies, nodes representing giants like Microsoft © and Apple © have a higher chance of attracting new subscribers than a node representing a small start-up company.

We assume that the reader is familiar with the jargon of trees, such as "node," "vertex," "edge,""root," "ancestors," "descendants," "children," "parents," "recruiting," "affinity," etc.

The building algorithm

A recursive tree is grown by an attachment algorithm that operates in the following way. Initially (at time n = 0), there is a node labeled 1. At each subsequent epoch n ≥ 1 of discrete time, a node labeled n + 1 joins the tree by choosing one of the existing nodes as a parent and attaching itself to it via a new edge. The parent selection is determined according to some probability model on the set {1, . . . , n}. Note that the labels on any root-to-leaf path are in an increasing sequence. For this reason, some authors call these structures "increasing trees" [START_REF] Bergeron | Varieties of increasing trees[END_REF].

These trees have been studied under several probability models, notably including the natural uniform model and preferential models based on favoring certain nodes according to some criterion. The first preferential criterion in the literature is to select a node with probability proportional to 1 plus its outdegree [START_REF] Mahmoud | On the structure of plane-oriented recursive trees and their branches[END_REF][START_REF] Szymański | On a nonuniform random recursive tree[END_REF]. This model gained popularity, as it offers scalability properties and power laws that are met in certain trees in nature [START_REF] Barabási | Emergence of scaling in random networks[END_REF]. For over a decade, the terminology "preferential attachment" stood solely for preference by node outdgrees.

More recently, authors broke away from this narrower definition of "preference" to tree models with other types of preference [START_REF] Hofri | Algorithmics of Nonuniformity: Tools and Paradigms[END_REF][START_REF] Lyon | Trees grown under young-age preferential attachment[END_REF][START_REF] Lyon | Insertion depth in power-weight trees[END_REF].

Exponentially preferential trees

In this investigation, we consider a new exponentially preferential attachment algorithm, wherein node i at time n -1 recruits with probability proportional to a i , for some positive constant a. Specifically, if we define A n,i as the event that node i recruits (the node labeled n + 1) when the tree has n nodes in it (that is, when the tree is of age n -1), we would have

P(A n,i ) = a i n j=1 a j =          1 n , if a = 1; (a -1) a i-1 a n -1 , otherwise. (1) 
In the sequel, we observe a trichotomy of the real line into three regimes for a, and in each regime we have a different behavior. We call the regime 0 < a < 1 subcritical, the regime a = 1 critical, and the regime a > 1 supercritical.

We call a tree grown according to this distribution for the choice of parent an exponentially preferential tree with radix a. Since this is the only kind we study in this manuscript, we refer to it simply as the "tree" most of the time. When a = 1, we have the special case of uniform recruiting, which is extensively studied [START_REF] Bergeron | Varieties of increasing trees[END_REF][START_REF] Drmota | Random Trees: An Interplay Between Combinatorics and Probability[END_REF][START_REF] Frieze | Introduction to Random Graphs, 2nd Ed[END_REF][START_REF] Hofri | Algorithmics of Nonuniformity: Tools and Paradigms[END_REF][START_REF] Smythe | A survey of recursive trees[END_REF]. Figure 1 displays the six exponentially preferential trees of size 4 with radix a = 1 / 2 . The numbers above the trees are their probabilities. Note the high probability assigned to the bushiest tree at the far right. In the uniform model, this tree only has probability 1 / 6 . Figure 1: The exponentially preferential attachment recursive trees of size 4 with radix a = 1 / 2 and their probabilities.

Generation and visualization

Before we present any theoretical results, it may help the reader grasp the gist of the varied behavior of the random exponentially preferential trees in the three regimes.

To produce images, we first need a generating algorithm to provide the data. We present one such algorithm that sequentially cranks out the edges that join the tree. The edges appear in the form (ζ + 1, r), where r is the recruiter, when the tree size is ζ. For instance the pair (78, 50) stands for an edge joining the vertex labeled 78 to a tree of size 77, in which node 50 is the recruiter. Once the tree description is obtained in the form of a list of edges, we can visualize the tree by a drawing obtained with the aid of a tree-graphing package.

The algorithm assumes it can access the function

F (s, i) ← i r=1 (a -1) a r-1 a s -1 .
which accumulates the probabilities P(A s,1 ) + • • • + P(A s,i ) for the purpose of generating the recruiting index. The building algorithm assumes the existence of the primitive function random, which generates a random number uniformly distributed over the interval (0, 1).

The core of the algorithm repeats the calculation of an index when the tree is of size "size," for size = 1, . . . , n -1. At each size between 1 and n -1, a random variable U distributed uniformly between 0 and 1 is generated. If the value of U falls between F (size, r -1) and F (size, r), we take the recruiter to be r. This recruiter is receiving the node size + 1, and we store the pair (edge) (size + 1, r) in the array R of recruiters. At the end of the execution of the algorithm, the array R holds a complete description of a tree of size n.

Here is a possible version in pseudo code:

for size from 1 to n -1 do U ← random r ← 1 while U > F (size, r) and r < size do r ← r + 1 R[size] ← (size + 1, r)
By this algorithm, we obtained three trees of size n = 100 each, under the settings a = 1 / 2 , a = 1, a = 2, respectively. The data (edges) were then fed into the tree-drawing package "Pyvis", which produced the three images in Figure 2. The root of each tree is shown as a red star. The figure shows a random tree in the subcritical regime with radix a = 1 / 2 (top left), a random uniform (standard) recursive tree , with radix a = 1 (top right), and a random tree in the supercritical regime with radix a = 2 (bottom).

In Figure 2, we chose a drawing style to fill the space, rather than one going down vertically (as in the more traditional vertical drawing as in Figure 1). The vertical drawing would use the space sparsely.

The reader will notice right away that in the subcritical tree (the one at the top left in Figure 2), the nodes cluster near the root, making it a shrubby structure. In the uniform tree (the one at the top right in the same figure) the nodes are all over the place, whereas in the supercritical tree (the one at the bottom in Figure 2), many nodes drag the tree toward higher altitudes, making it a tall and scrawny tree with short branches sprouting out of a main thin trunk.

Notation

The indicator of event E is I E . The following presentation involves H (r) p = p k=1 1/k r , the pth harmonic number of order r. 5 The harmonic numbers of the first two orders have well-known asymptotic equivalents (as n → ∞): 6

H n = ln n + γ + O 1 n ; (2) 
H (2) n = π 2 6 + O 1 n . ( 3 
)
5 The superscript r is often dropped, when it is 1. 6 The number γ ≈ 0.5772 is Euler-Mascheroni constant. For i ≥ 1, and a > 1, in the sequel, we use the numbers

c (1) i (a) = ∞ k=i 1 a k -1 , c (2) 
i (a) = ∞ k=i 1 (a k -1) 2 .
We denote the normally distributed random variable with mean µ and variance σ 2 > 0 by N (µ, σ 2 ), and denote the Poisson random variable with parameter λ > 0 by Poi (λ). The notation L(X) stands for the law (probability distribution) of a random variable X.

The total variation distance (d T V ) between the laws of the nonnegative integer-valued random variables X and Y is defined as

d T V L(X), L(Y ) = 1 2 ∞ j=0 P(X = j) -P(Y = j) .
As some authors do, we simplify the notation of the total variation distance to d T V (X, Y ), but it should be understood that it is the distance between the laws of these variables.

The following theorem by Barbour and Holst [START_REF] Barbour | On the rate of Poisson convergence[END_REF] is beneficial in obtaining Poisson approximations for node degrees.

Theorem 3.1. Let X 1 , . . . , X n be independent Bernoulli random variables, such that P(X k = 1) = p k , for i = 1, . . . , n, and let S n = n k=1 X k be the sum of these variables. Define.

λ n,1 = n k=1 E[X k ] = n k=1 p k , and λ n,2 = n k=1 p 2 k .
We have

d T V S n , Poi (λ n,1 ) ≤ (1 -e -λ n,1 ) λ n,2 λ n,1 .
The theorem is one of several versions fitting in the machinery of Poisson approximation (and the more general framework of Chen-Stein methods) [START_REF] Barbour | Poisson Approximation[END_REF].

Node degrees

Let ∆ n,i be the outdegree of node i in a tree of size n. It is related to the degree of node i. Except for the root, any node degree is 1 plus its outdegree. As the root is the only node that does not have a parent, its degree is the same as its outdegree.

Remark 4.1. The sum of the outdegrees is n -1.

The outdegree of node i increases, when it recruits, and we have the representation

∆ n,i = n-1 k=i I A k,i . (4) 

Mean

Take expectations of (4). We then get, for n ≥ 2, a mean value for the ith degree in the form

E[∆ n,i ] = n-1 k=i P(I A k,i = 1) =                n-1 k=i 1 k , if a = 1; n-1 k=i (a -1) a i-1 a k -1 , otherwise. (5) 
Proposition 4.1. Let ∆ n,i be the outegreed of node i in an exponentially preferential tree of size n and radix a > 0. As n → ∞, we have

E[∆ n,i ] = (1 -a) a i-1 (n -i) + O(a i ), if a < 1; ln n -ln i + O 1 i , if a = 1.
Otherwise, a is greater than 1, and the case is ramified according to the relationship between i and n. As n → ∞, we have the phases:

E[∆ n,i ] = (a -1) a i-1 c (1) i (a) + O 1 a n-i , i f ixed; 1 -1 a n-i + O 1 a i , n ≥ i → ∞.
Proof. We need to cover three different regimes:

The subcritical regime (0 < a < 1): Start with the lower display in (5) in the form

E[∆ n,i ] = (1 -a) a i-1 n-1 k=i 1 1 -a k .
A Taylor series expansion of the summand yields:

E[∆ n,i ] = (1 -a) a i-1 n-1 k=i 1 + O(a k ) = (1 -a) a i-1 n -i + O n-1 k=i a k = (1 -a) a i-1 (n -i) + O(a i ).
The critical regime (a = 1): Here we use the upper display in [START_REF] Billingsley | Probability and Measure, Anniversary Ed[END_REF], yielding

E[∆ n,i ] = n-1 k=i 1 k = H n-1 -H i-1 .
Using the asymptotic equivalent in (2), as both n and i approach ∞, we get

E[∆ n,i ] = ln n -ln i + O 1 i ,
a known result [START_REF] Mahmoud | Local and global degree profiles of randomly grown self-similar hooking networks under uniform and preferential attachment[END_REF].

The supercritical regime a > 1: Again, we start with the lower display in [START_REF] Billingsley | Probability and Measure, Anniversary Ed[END_REF]. We have two phases in the lives of the various nodes:

(i) The index i is a constant. In this phase, we have

E[∆ n,i ] = (a -1) a i-1 n-1 k=i 1 a k -1 = (a -1) a i-1 c (1) i (a) + O 1 a n-i .
(ii) The index i is increasing with n. We can approximate the series in the lower display in [START_REF] Billingsley | Probability and Measure, Anniversary Ed[END_REF] with a geometric series. To this end, we quantify the absolute error E n,i from the bound

E n,i := n-1 k=i 1 a k -1 - n-1 k=i 1 a k = n-1 k=i 1 a k -1 - n-1 k=i 1 a k = n-1 k=i 1 a k (a k -1)
.

From a Taylor series expansion of the summand, we get

E n,i := n-1 k=i 1 a 2k 1 + O 1 a k = 1 a 2i 1 -1/a 2(n-i) 1 -1/a 2 + O n-1 k=i 1 a 3k = 1 a 2(i-1) 1 -1/a 2(n-i) a 2 -1 + O 1 a 3(i-1) (1 -1/a 3(n-i ) a 3 -1 = O 1 a 2i .
In this phase, we have

E[∆ n,i ] = (a -1) a i-1 n-1 k=i 1 a k + E n,i = (a -1) a i-1 n-1 k=i 1 a k + O 1 a 2i = (a -1) a i-1 1 -(1/a) n-i a i (1 -1/a) + O 1 a i = 1 - 1 a n-i + O 1 a i .

Variance

In (4), the indicators I A n,i , for n ≥ 1, are independent. It follows that

Var[∆ n,i ] = Var n-1 k=i I A k,i = n-1 k=i Var[I A k,i ].
That is, we have

Var[∆ n,i ] = (a -1) a i-1 n-1 k=i 1 a k -1 -(a -1) 2 a 2i-2 n-1 k=i 1 a k -1 2 . ( 6 
)
This combinatorial form is reducible in the uniform case (a = 1), where we get

Var[∆ n,i ] = n-1 k=i 1 k 1 - 1 k = H n-1 -H i-1 -H (2) n-1 -H (2) i-1 . (7) 
Again we have an asymptotic trichotomy.

Proposition 4.2. Let ∆ n,i be the outegreed of node i in an exponential preferential tree of size n and radix a > 0. We then have

Var[∆ n,i ] = (1 -a) a i-1 1 -(1 -a) a i-1 (n -i) + O(a i ), if a < 1; ln n -ln i + O( 1 i ), if a = 1.
Otherwise, a is greater than 1, and the case is ramified according to the relationship between i and n. As n → ∞, we have the phases:

Var[∆ n,i ] =      (a -1) a i-1 c (1) i (a) -(a -1) 2 a 2i-2 c (2) i (a) + O 1 a n-i , i f ixed; 2 a+1 -1 a n-i + a-1 (a+1)a 2n-2i + O 1 a i , n ≥ i → ∞.
Proof. We need to cover three different regimes:

The subcritical regime (0 < a < 1): We first write the exact variance in [START_REF] Dereich | Robust analysis of preferential attachment models with fitness[END_REF] in the form

Var[∆ n,i ] = (1 -a) a i-1 n-1 k=i 1 1 -a k -(1 -a) 2 a 2i-2 n-1 k=i 1 1 -a k 2 .
As we did in the proof of the mean, a Taylor series expansion for each series yields

Var[∆ n,i ] = (1 -a) a i-1 (n -i) + O(a i ) -(1 -a) 2 a 2i-2 (n -i) + O(a 2i ) = (1 -a) a i-1 1 -(1 -a) a i-1 (n -i) + O(a i ).
The critical regime (a = 1): Asymptotically, as both n and i ≤ n approach ∞, from ( 7) and the asymptotics in ( 2)-( 3), we get

Var[∆ n,i ] = ln n + γ + O 1 n -ln i + γ + O 1 i - π 2 6 + O 1 n - π 2 6 + O 1 i = ln n -ln i + O 1 i ,
a known result [START_REF] Mahmoud | Local and global degree profiles of randomly grown self-similar hooking networks under uniform and preferential attachment[END_REF].

The supercritical regime (a > 1): In (6), we have phases:

(i) The index i is a constant. In this case, we have

Var[∆ n,i ] = (a -1) a i-1 c (1) i (a) + O 1 a n-i -(a -1) 2 a 2i-2 c (2) i (a) + O 1 a 2n-2i = (a -1) a i-1 c (1) i (a) -(a -1) 2 a 2i-2 c (2) i (a) + O 1 a n-i .
(ii) The index i is increasing with n. We resort again to the approximation of the two sums by geometric series. In this phase, we have

Var[∆ n,i ] = (a -1) a i-1 n-1 k=i 1 a k + O 1 a 2i -(a -1) 2 a 2i-2 n-1 k=i 1 a 2k + O 1 a 4i = (a -1) a i-1 1 -(1/a) n-i a i (1 -1/a) -(a -1) 2 a 2i-2 1 -(1/a 2 ) n-i a 2i (1 -1/a 2 ) + O 1 a i = 1 - 1 a n-i - a -1 a + 1 1 - 1 a 2n-2i + O 1 a i = 2 a + 1 - 1 a n-i + a -1 (a + 1)a 2n-2i + O 1 a i .
Corrolary 4.1. In the subcritical regime (0 < a < 1), when (n -i)a i → ∞, we have

∆ n,i (n -i) a i P -→ 1 -a a ,
and in the critical regime (a = 1), when n/i → ∞, we have

∆ n,i ln(n/i) P -→ 1,

Distributions

In view of the trichotomy we observed in the mean and variance, it should be anticipated that the asymptotic distribution of the outdegree would have three regimes, too, according as where a is on the real line.

Theorem 4.1. Let ∆ n,i be the outegreed of node i in an exponentially preferential tree of size n and radix a > 0. We then have: (i) Let g(n) be a positive integer-valued function increasing to infinity, such that g(n) = o(ln n). In the subcritical regime (0 < a < 1), we have phases:

(a) In the early phase (1 ≤ i ≤ ⌊log 1 a n⌋ -g(n)), 7 as n → ∞, we have8 

∆ n,i -1-a a a i n √ a i n L -→ N 0, 1 -a a .
(b) In the intermediate phase (i = ⌊log 1 a n⌋ + c, and c ∈ Z), we have

d T V ∆ n,i , Poi 1 -a a a c-{log 1 a n} → 0.
(c) Let h(n) be a positive integer-valued function increasing to infinity, that grows faster than a constant, but remains at most n -⌊log 1 a n⌋. In the late phase

(i = ⌊log 1 a n⌋ + h(n)), we have ∆ n,i a.s.
-→ 0.

(ii) In the critical regime (a = 1), we have phases:

(a) In the early phase n/i → ∞, we have (iii) In the supercritical regime (a > 1), we have phases:

∆ n,i -ln(n/i) ln(n/i) L -→ N (0,
(a) In the early phase (i fixed), as n → ∞, we have

∆ n,i a.s.
-→ ∆ * i , and, for k ≥ 1, the limiting random variable has the distribution

P(∆ * i = k) = (a -1) k a (i-1)k lim n→∞ n-1 ℓ=i 1 a ℓ -1 i≤j 1 <j 2 <•••<j k ≤n-1 × i≤m≤n-1 m̸ ∈{j 1 ,...,j k } (a m -1) -(a -1)a i-1 .
(b) Let b(n) be a function growing to infinity, in such a way that n -b(n) also grows to infinity. In the intermediate phase (

1 ≤ i = n -b(n)), we have 9 P(∆ n,n-b(n) = k) = (a -1) k a (n-b(n)-1)k n-1 ℓ=i 1 a ℓ -1 n-b(n)≤j 1 <j 2 <•••<j k ≤n-1 × i≤m≤n-1 m̸ ∈{j 1 ,...,j k } (a m -1) -(a -1)a n-b(n)-1 . (c) In the late phase (1 ≤ i = n -c, with c ∈ N), we have ∆ n,n-c a.s.
-→ ∆ ⋆ c , and ∆ ⋆ c has the distribution

P(∆ ⋆ c = k) = (a -1) k a c(c+1)/2 1≤r 1 <r 2 <•••<r k ≤c 1≤s≤c s̸ ∈{r 1 ,...,r k } (a s -a + 1).
Proof. We need to cover three different regimes:

(i) The subcritical regime: Within the regime 0 < a < 1, we recognize phases:

The early phase (1

≤ i = log 1 a n -g(n)): Let s 2 n,i = Var[∆ n,i ] = n-1 k=i Var[I A k,i ].
From the calculation of the variance in this regime (cf. Proposition 4.2), we have s 2 n,i ∼ (1 -a) a i-1 (n -i), as a i (n -i) → ∞. The case is amenable to normality via Lindeberg's central limit theorem, if n -i → ∞, in which case we have a sum of a large number of independent indicators (Bernoulli random variables).

For i to be in this phase, we must have log

1 a (a i (n -i)) → ∞, as n → ∞. That is to say, -i + log 1 a n 1 - i n = -i + log 1 a n + log 1 a 1 - i n = log 1 a n -i + O(i/n) must increase to ∞. If ⌊log 1 a n⌋ -i → ∞, such an asymptotic relation holds, when i increases up to ⌊log 1 a n⌋ -g(n), for any positive integer function g(n) that is o(ln n).
Fix ε > 0, and define Lindeberg's quantity

L n,i (ε) = 1 s 2 n,i n-1 k=i I A k,i -E[I A k,i ] >εs n,i I 2 A k,i dP,
where P is the underlying probability measure. The indicators are Bernoulli random variables bounded by 1. Hence, we have

I A k,i -E[I A k,i ] ≤ I A k,i + E[I A k,i ] ≤ 2,
whereas εs n,i grows to infinity, no matter how small ε is, or what the value of i is within the specified phase. In other words, the sets in the integration are all empty for large enough n (greater than some n 0 = n 0 (ε, i)). We can now read the Lindeberg quantity as

L n,i (ε) = 1 s 2 n,i n k=i ϕ I 2 A k, i dP = 0.
We have verified that, within the phase i = ⌊log 1 a n⌋ -g(n), the quantity L n,i (ε) → 0, for all ε > 0. Thus, we have the Gaussian law

∆ n,i -(1 -a) a i-1 (n -i) + O(a i ) (1 -a) a i-1 1 -(1 -a) a i-1 (n -i) + O(a i ) L -→ N (0, 1).
Toward simpler appearance, we use Slutsky's theorem [START_REF] Karr | Probability[END_REF], pp. 146-147. to remove some factors:

∆ n,i -1-a a a i n √ a i n L -→ N 0, 1 -a a .
The intermediate phase (i = log 1 a n + c): ), and c ∈ Z. In this phase, we have

Let i = log 1 a n + c = log 1 a n -r n + c, where r n = {log 1 a n} ∈ [0, 1
a i (n -i) = a log 1 a n-rn+c (n -log 1 a n + r n -c) ∼ a c-rn n × n = a c-rn .
In the notation of Theorem 3.1, we have

λ n,1 = n k=i P(I A k,i = 1) = n k=i (1 -a)a i-1 1 -a k ∼ (1 -a)a i-1 (n -i) ∼ 1 -a a a c-rn , and 
λ n,2 = n-1 k=i P 2 (I A k,i = 1) = n-i k=i (1 -a) 2 a 2i-2 (1 -a k ) 2 ∼ (1 -a) 2 a 2i-2 n -i + O(a i ) ∼ 1 -a a 2 a 2(log 1 a n-rn+c) × n ∼ 1 -a a 2 a 2c-2rn n 2 × n → 0.
By that theorem, we conclude

d T V ∆ n,i , Poi 1 -a a a c-rn → 0.
The late phase (i = ⌊log

1 a n⌋ + h(n) ≤ n, with h(n) → ∞): In this late phase, Var[∆ n,i ] ∼ (1 -a)a i-1 (n -i) → 0.
As is well known, convergence of the variance of a sequence of random variables to 0 implies that the sequence converges to a constant, almost surly. 10 The limiting constant must be the constant obtained from the

L 1 converges ∆ n,i L 1 -→ 0.
(ii) The critical regime: In this uniform attachment case, the distribution as stated is known. We refer the reader to the proof in [START_REF] Mahmoud | Local and global degree profiles of randomly grown self-similar hooking networks under uniform and preferential attachment[END_REF].

(iii) The supercritical regime:

In this regime we, work from the exact distribution to produce local limit theorems in the different phases. For ∆ n,i to be equal to k, node i must recruit k times and fail to recruit n -i -k times. We can partition the event ∆ n,i = k into disjoint sets according to the the size of the tree at the times of recruiting. Suppose the k successes in recruiting occur when the tree sizes are i ≤ j 1 < j 2 < . . . j k ≤ n -1. The probability of this event is

ℓ∈{j 1 ,...,j k } P(I A ℓ,i = 1) i≤m≤n-1 m̸ ∈{j 1 ,...,j k } P(I A m,i = 0) .
Using the probabilities in the lower display in (1), we obtain

P(∆ n,i = k) = i≤j 1 <j 2 <•••j k ≤n-1 ℓ∈{j 1 ,...,j k } P(I A ℓ,i = 1) × i≤m≤n-1 m̸ ∈{j 1 ,...,j k } P(I A m,i = 0) = i≤j 1 <j 2 <•••<j k ≤n-1 ℓ∈{j 1 ,...,j k } (a -1)a i-1 a ℓ -1 × i≤m≤n-1 m̸ ∈{j 1 ,...,j k } 1 - (a -1)a i-1 a m -1 (8) = (a -1) k a (i-1)k n-1 ℓ=i 1 a ℓ -1 i≤j 1 <j 2 <•••<j k ≤n-1 × i≤m≤n-1 m̸ ∈{j 1 ,...,j k } (a m -1) -(a -1)a i-1 . (9) 
According to Kolmogorov's criterion (Theorem 22.3 in [START_REF] Billingsley | Probability and Measure, Anniversary Ed[END_REF]), for independent zero-mean random variables X 1 , X 2 , X 3 , . . ., when ∞ k=1 Var[X k ] < ∞, the sum n k=1 X k converges almost surely to a limit.

In the supercritical regime, when n -i → ∞, we have

n k=i Var I A k,i -E[I A k,i ] ≤ ∞ k=1 (a -1) a i-1 a k -1 1 - (a -1) a i-1 a k -1 < ∞.
In view of Kolmogorov's criterion, when

n -i = g(n) → ∞, ∆ n,i -E[∆ n,i ] = n k=i I A k,i - n k=i E[I A k,i ]
converges to a limit.

Having shown that in the supercritical phase we have

n k=i E[I A k,i ] = E[∆ n,i
] is convergent (cf. Proposition 4.1), we see right away that, if n -i → ∞, we would have ∆ n,i = n k=i I A k,i converging to a limit.

The early phase (i fixed): Certainly, in this phase n -i → ∞, as n → ∞. By Kolmogorov's criterion, ∆ n,i converges to a limit, which we call ∆ ⋆ i . We can determine the distribution of ∆ ⋆ i := lim n→∞ ∆ n,i by the following argument. Since ∆ n,i converges almost surly, it also converges in distribution. The limit of the latter probabilities exists (and must be the distribution of the almost-sure limit, too). Indeed, ∆ n,i converges almost surely to a limit ∆ * i with a distribution determined as the limit of the probabilities in [START_REF] Gastwirth | Two probability models of pyramid or chain letter schemes demonstrating that their promotional claims are unreliable[END_REF].

The intermediate phase (i grows faster than a constant, but slower than n -c, for any c ∈ N). In this phase, i is n -d(n), for an integer-valued function d(n) → ∞, in such a way that n -d(n) also tends to infinity. In this case, for any fixed k, (8) takes the form:11 

P(∆ n,n-d(n) = k) = n-d(n)≤j 1 <j 2 <•••<j k ≤n-1 ℓ∈{j 1 ,...,j k } (a -1)a n-d(n)-1 a ℓ -1 × n-d(n)≤m≤n-1 m̸ ∈{j 1 ,...,j k } 1 - (a -1)a n-d(n)-1 a m -1 = (a -1) k a k(n-d(n)-1) n-1 r=n-d(n) (a r -1) n-d(n)≤j 1 <j 2 <•••<j k ≤n-1 × n-d(n)≤m≤n-1 m̸ ∈{j 1 ,...,j k } a m -1 -(a -1)a n-d(n)-1 .
The late phase (1 ≤ i = n -c, and c ∈ N): Starting with the probabilities in the form [START_REF] Frieze | Introduction to Random Graphs, 2nd Ed[END_REF], we write an asymptotic equivalent.

Note that while the indices in the sum are large numbers there, is only a finite number of them (c of them to be exact). It is therefore legitimate to take the asymptotic terms individually: 

P(∆ n,n-c = k) ∼ n-c≤j 1 <j 2 <•••<j k ≤n-1 ℓ∈{j 1 ,...,j k } a -1 a ℓ-(n-c)+1 × n-c≤m≤n-1 m̸ ∈{j 1 ,...,j k } 1 - a -1 a m-(n-c)+1 ∼ (a -1) k n-1 r=n-c a r-(n-c)+1 × n-c≤j 1 <j 2 <•••<j k <n-1 n-c≤m≤n-1 m̸ ∈{j 1 ,...,j k } (a m-(n-c)+1 -a + 1) → (a - 

Illustrative examples

In any of the three regimes of a, there is an intriguing interplay between n and i. We only discuss interpretations and examples from the subcritical and supercritical regimes, since the critical phase is well studied, and illustrative examples of it can be found elsewhere. We refer a reader interested in a discussion of the critical regime to [START_REF] Mahmoud | Local and global degree profiles of randomly grown self-similar hooking networks under uniform and preferential attachment[END_REF].

The subcritical regime

When a < 1, the term a i-1 in E[∆ n,i ] decreases exponentially fast in i. Take a = 1 / 2 , for instance. With this radix, for i in the subcritical phase, we have the convergence

∆ n,i -n 2 i n 2 i L -→ N (0, 1).
A Gaussian law holds so long as i is well below ⌊log 1 a n⌋ (differing by an increasing function from that critical level). When i approachs the critical phase, Poisson approximations kick in to replace the normal distribution. When i is tied to ⌊log 1 a n⌋ by a constant, it is related to log 1 a n via corrections obtained by removing the floors. These corrections are oscillating functions in n and are uniformly dense on the real line [START_REF] Kuipers | Uniform Distribution of Sequences[END_REF]. So, there is not really convergence to a Poisson limit, but rather approximations to a family of Poisson distributions, with parameters lying in the range [ 1 2 c , 2 2 c ). Table 1 shows the behavior in the subcritical regime for a = 1 / 2 and some selected phases. Note the fourth and fifth entries (from the top) which lie in the intermediate phase, where there is no limit per se, but rather good approximations by various Poisson distributions. For instance, in the phase i = ⌈log For the last two entries in Table 1, the variance is diminishing at a fast rate, and the sum of the variances converges. By Kolmogorov's theorem, we have an almost-sure convergence in both cases.

Table 1: The asymptotic mean, variance and distribution of the outdegree of an exponentially preferential tree with radix 1 / 2 in some selected phases. 

i mean variance distribution 1 n 2 n 4 ∆ n,1 -1 2 n √ n L -→ N 0, 1 4 
⌈log 2 n⌉ -5 32 × 2 {log 2 n} 32 × 2 {log 2 n} d T V ∆ n,⌈log 2 n⌉-5 , Poi 32 × 2 {log 2 n} → 0 ⌈log 2 n⌉ + 5 2 {log 2 n} 32 2 {log 2 n} 32 d T V ∆ n,⌈log 2 n⌉+5 , Poi 2 {log 2 n} 32 → 0 ⌈ √ n + π⌉ n 2 ⌈ √ n+π⌉ n 2 ⌈ √ n+π⌉ ∆ n,⌈ √ n+π⌉ a.s. -→ 0 n -5 32 2 n 32 2 n ∆ n,n-5 a.s.
-→ 0

The supercritical regime

As an instance, take a = 2. Over an extended period of time, the average root outdegree converges to E[∆ n,1 ] → c 2 shows the asymptotic outdegree for the first 12 entries in the tree, approximated to three decimal places.

A late entry in the tree, such as i = n -⌊n 1/4 ⌋, has an average outdegree A much later entrant, such as a node with with the index n -4 has an average outdegree

E[∆ n,i ] = 1 + O 1 2 n 1/4
E[∆ n,i ] = 1 - 1 2 4 + O 1 2 n = 15 16
+ O 1 2 n . We discern a "thinning" occurring in the tree. At a node with a high index i, the subtree of descendants is tapered almost into a path.

At a = 2, cancellations occur in the formula in the expression in Theorem 4.1 (iiia), greatly simplifying the calculation for the root outdegee (also its degree, the case i = 1) and giving transparency into the limiting distribution:

P(∆ n,1 = k) → P(∆ * i = k) = lim n→∞ n-1 ℓ=1 1 2 ℓ -1 1≤j 1 <j 2 <•••j k ≤n-1 m̸ ∈{j 1 ,...,j k } (2 m -2) .
Note that if j 1 ̸ = 1, the product retains m = 1 as one of its indices and 2 m -2 = 0 for this value of m, annihilating the entire part of the expression with j 1 = 1 in the sum, simplifying it further to

P(∆ * 1 = k) = lim n→∞ n-1 ℓ=1 1 2 ℓ -1 1<j 2 <•••<j k ≤n-1 m̸ ∈{1,j 2 ,...,j k } 2(2 m-1 -1) = lim n→∞ n-1 ℓ=1 1 2 ℓ -1 1<j 2 <•••<j k ≤n-1 2 n-k-1 n-1 m=2 (2 m-1 -1) (2 j 2 -1 -1) • • • (2 j k -1 -1) = lim n→∞ 2 n-k-1 2 n-1 -1 1<j 2 <•••<j k ≤n-1 1 (2 j 2 -1 -1) • • • (2 j k -1 -1) = 1 2 k 1<j 2 <•••<j k ≤∞ 1 (2 j 2 -1 -1) • • • (2 j k -1 -1)
.

The first few values in the sequence P(∆ * 1 = k) are:12 P(∆ * 1 = 1) = 1 2 ;

P(∆ * 1 = 2) = 1 4 ∞ ℓ=2 1 2 ℓ -1
≈ 0.1516737881 . . .

P(∆ * 1 = 3) = 1 8 ∞ ℓ=2 ∞ m=ℓ+1 1 (2 ℓ -1)(2 m -1)
≈ 0.01442126698 . . . .

The first three values alone contain about 0.6661 of the mass of the limiting distribution. The root comes early and stays the longest in the tree. So, it has repeated chances for recruiting. However, the probabilities are very quickly diminished by the appearance of nodes of higher indices, with higher chances of recruiting. While the limit distribution of the root outdegree (which is also the degree) is supported on N, there is a high probability of remaining small (confined to the values 1,2,3).

The probability formula in the intermediate phase of the supercritical regime is unwieldy (Theorem 4.1 (iiib)), yet it can be used to tell us something about the asymptotic structure of the tree. With a = 2 and i = n -⌊ln n⌋, we can compute the probability of the intermediate node i in the following way. Here, b(n) is ⌊ln n⌋. For k = 0, the set {j 1 , . . . , j 0 } is empty, and the only product that stands is the one on the full set {n -h(n), . . . , n -1}. We have At n = 1000, this probability is about 0.2933.

The very late nodes have the lion's share. Consider a = 2, and the tree when the size is some large n. The outdegree of node n is 0, as it has not recruited yet (which is consistent with zero mean and zero variance as given by the exact and asymptotic formulas). Being of the second to highest index in the tree, node n -1, has a chance of recruiting node n and has a chance of missing. The probability of node n -1 recruiting node n is 2 n-1 (2 -1)/(2 n -1) → 1 / 2 . Thus, the outdegree of the penultimate node is asymptotically distributed like a Bernoulli( 1 / 2 ) random variable.

Node n -2 has two chances at recruiting by time n, and has an asymptotic distribution on {0, 1, 2} with mean 1 / 4 , and so on. According to Theorem 4.1 (iiic), we have 

P(∆ ⋆ n,n-2 = k) → P(∆ ⋆ 2 = k) →

Figure 2 :

 2 Figure 2: Randomly generated trees of size 100: subcritical (top left) with radix 1 / 2 , uniform (top right) with radix a = 1, supercritical (bottom) with radix 2.

  1). (b) In the intermediate phase i ∼ cn (and c ∈ (0, 1)), we have ∆ In the late phase i ∼ n, we have ∆ n,i P -→ 0.

1 ) k aa 2 . . . a c 1≤r 1

 121 <r 2 <•••<r k ≤c 1≤s≤c s̸ ∈{r 1 ,...,r k } (a s -a + 1).

  2 n⌉ -5, Poi (18.4136) is a good approximation for the distribution of ∆ 20000,10 at n = 20000, Poi (18.4182) is a good approximation for the distribution of ∆ 20001,10 at n = 20001, and Poi (18.4228) is a good approximation for the distribution of ∆ 20002,10 at n = 20002.

⌊ln ln n⌋ - 3 8n 2

 32 ⌊ln ln n⌋ 8n 2 ⌊ln ln n⌋ ∆ n,⌊ln ln n⌋-3 -8n 2 ⌊ln ln n⌋ 8n 2 ⌊ln ln n⌋ L -→ N (0, 1)

2 m

 2 -1 -2 n-⌊ln n⌋-1 .

1 2 3 1≤r 1

 31 <r 2 <•••<r k ≤2 1≤s≤2 s̸ ∈{r 1 ,...,r k } (2 s -1),for k = 0, 1, 2. For k = 0, the set r 1 , r 2 , . . . , r 0 is empty, and we compute P(∆ ⋆ 2 = 0) →

Table 2 :

 2 The limiting value of the outdegree of the first few entries in an exponentially preferential tree with radix 2.

	i lim n→∞ E[∆ n,i ]
	1	1.607
	2	1.213
	3	1.093
	4	1.044
	5	1.021
	6	1.010
	7	1.005
	8	1.002
	9	1.001
	10	1.000
	11	1.000
	12	1.000

The reader should be alerted to that the words "early," "intermediate," and "late" mean different things in the different regimes.

One should take note that i is a node index, and is always an integer.

The ultimate formula is unwieldy, but can be used to discover the probability for small k, such as, for example that an intermediate node is a leaf (k = 0).

This is a fact commonly used in statistics in the context of strong consistency of estimators (see[START_REF] Wackerly | Mathematical Statistics with Applications, 7th Edition[END_REF], for example).

The ultimate formula is unwieldy, but can be used to discover the probability for small k, such as, for example that an intermediate node is a leaf (k = 0).

For k = 1, the sum is for a product that does not exist, to be interpreted as 1.

Further, we have

We can find P(∆ ⋆ 2 = 2) from 1 -P(∆ ⋆ 2 = 0) -P(∆ ⋆ 2 = 1) = 1 / 8 . In summary, we have

0, with probability 3 / 8 ; 1, with probability 4 / 8 ; 2, with probability 1 / 8 .

Remark 4.2. We discussed phases, where the growth of i is systematically increasing toward n. However, there is no limit to how bizarre the sequence i = i(n) can be. For example, i(n) might be a sequence alternating between two (or more values), such as the sequence i(n) = 5 + (-1) n , in which case the degree of node i does not converge to a limit. Or, i(n) might alternate between low and high values, such as

Even worse, i(n) may not have any structure at all. We reckon that such sequences are not interesting and do not appear in practice.