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Two level natural selection with a quasi-stationarity approach

In a view for a simple model where natural selection at the individual level is confronted to selection effects at the group level, we consider some individual-based models of some large population subdivided into a large number of groups. We then obtain the convergence to the law of a stochastic process with some Feynman-Kac penalization. To analyze the limiting behavior of this law, we exploit a recent approach, designed for the convergence to quasi-stationary distributions. We are able to deal with the fixation of the stochastic process and relate the convergence to equilibrium to the one where fixation implies extinction. We notably establish different regimes of convergence. Besides the case of an exponential rate (the rate being uniform over the initial condition), critical regimes with convergence in 1/t are also to notice. We finally address the relevance of such limiting behaviors to predict the long-time behavior of the individual-based model and describe more specifically the cases of weak selection. Consequences in term of evolutive dynamics are also derived, where such competition is assumed to occur repeatedly at each de novo mutation.

Introduction

We consider a model of two alleles competing in groups of individuals without inter-group migration. This model is derived as a new limit of large population (both within and between groups) from the more realistic individual-based model presented in [START_REF] Luo | A unifying framework reveals key properties of multilevel selection[END_REF], so as to shed light on the dynamics of the latter. Different scenarii can be observed depending on the effect of alleles on the replication within each group of individuals carrying it and on the replication of groups as a whole (where the groups duplicate identically). The focus is especially on two conflicting behaviors : either the allele favoring replication at group level is less favorable to the individuals carrying it for the competition within groups (case of an altruistic trait); or selective effects at group level favors polymorphism while those at individual level favors a specific allele.

We study a specific limiting behavior when the populations sizes are large (both for the number of groups and of individuals within each group). Contrary to [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF], we allow for stochastic neutral fluctuations of type frequencies within the groups and show that it leads in fact to non-trivial effects of selection. Notably, the strength of selection between groups depends very much upon sufficiently high levels of stochasticity for the dynamics within groups.

This mainly explains the discrepancy between our results and the ones of [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF], where only the selective effects are kept to the limit. Considering the specifications of their model, we look at the competition between an altruistic allele and an egoistic allele. Type D individuals (the egoistic "Defectors") perform always better inside their group while type C individuals (the altruistic "Cooperators") enhance the global survival of their group. In our case, the equilibrium with a domination of altruistic groups is shown to possibly have a much larger basin of attraction : contrary to the purely selective case (described in [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF]), it may reasonably be the endpoint of the dynamics even though the altruistic allele constitutes initially a majority in none of the groups. By reasonably, we mean that the convergence is likely to be seen in the individual-based models, as we discuss in Section 3. The crucial issue for the relevance of this approximation is the following : the emergence of pure groups of a mutant type is unlikely if the invasion of one group by individuals of this mutant type is too exceptional an event to be reasonably expected in the population of m groups, cf Section 3.1.

Of course, it also highly depends on the range of parameters involved. Namely, when the level of within group stochasticity is small, we shall retrieve a sharp transition similar to the one obtained in [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF]. The basin of attraction of altruistic domination is in practice limited to initial conditions where a non-negligible proportion of groups have a large majority of C individuals. The rest of the initial conditions belongs to the basin of attraction of defection, where D individuals have fixed in every group.

In Section 3, we will provide a much more detailed presentation of the implication of our results to describe the dynamics of the individual-based model. This discussion is a significant part of this work and clarifies the implications of our rigorous mathematical analysis of the asymptotic model. In this section 3, we will also discuss implications of our study in terms of evolutionary dynamics with well-separated mutations : the central question is then to quantify the probability of invasion when one type (the mutant) starts with only one individual in an otherwise homogeneous population (of residents).

But first of all, we will introduce in much more details both the individual-based models (IBM) under consideration and several asymptotic descriptions in the limit of large population sizes. These descriptions takes the form of measure-valued processes that approximate the empirical distribution in the groups of the proportion of one type. This will be done in Section 1 for the description of the individual-based model and in Section 1.1 for the definitions of these processes and their relation to the IBM. In Section 1.2, we focus on a different characterization of the process that will be the main subject of study for the propositions presented in Section 2. It is expressed in terms of the law of a stochastic process with a specific conditioning. The propositions which follow provide an exhaustive description of the long-time behavior of this asymptotic solution, with a variety of potential behaviors. Some subsequent results for parameters going either to 0 or infinity are also given, so as to introduce the already-mentioned discussion of Section 3.

The proofs of the convergence result to our asymptotic solution and of the propositions of Section 2 are deferred respectively to Section 5 and Section 4. For clarity, the latter are kept in the order of appearance of the Theorems, while the more classical techniques at use in Section 5 deserve less attention.

C individuals replicate at rate γI ≥ 0 and type D individuals at rate γI (1 + s), s with s ≥ 0. When an individual gives birth, another individual in the same group is selected uniformly at random to die. To reflect the antagonism at the higher level of selection, groups replicate at a rate which depends on the proportion of type C individuals they contain. As a simple case, we take this rate to be of the form γG × [1 + r(k/n)], where k/n is the fraction of individuals in the group that are of type C and r(x), x ∈ [0, 1] is a non-negative bounded function measuring selective advantage at group level. Similarly as at individual level, the number of groups is maintained at the value m by selecting a group uniformly at random to die whenever a group replicates. The offspring of groups are assumed to be identical to their parent. We refer to [START_REF] Luo | A unifying framework reveals key properties of multilevel selection[END_REF] for a general presentation of the biological motivations for such models.

Let X i t be the number of type C individuals in group i at time t. Then

µ m;n t := 1 m i≤m δ X i t /n
is the empirical measure at time t -of the proportion of type C by group-for a given number of groups m and individuals per group n. δ x (y) = 1 if x = y and zero otherwise. The X i t are divided by n so that µ m;n t is a probability measure on E n := [0; 1/n; ...; 1]. For fixed T > 0, µ m;n t ∈ D([0; T ]; M 1 (E n )), the set of càdlàg processes on [0; T ] taking values in M 1 (E n ), where M 1 (S) is the set of probability measures on a set S. The particle process being as described above, the generator of the Markov process µ m;n t takes the form :

(L m;n ψ)(v) = i,j (γ I R i,j I + γG R i,j G )(v) × ψ v + 1/m (δ j/n -δ i/n ) -ψ[v]
where ψ ∈ C b (M 1 ([0; 1])) is a bounded continuous functions, and v ∈ M 1 (E n ) ⊂ M 1 ([0; 1]). The transition rates (γ I R i,j I + γG R i,j G ) are given by

R i,j I (v) :=      m v(i/n) i (1 -i/n) (1 + s) if j = i -1; i < n, m v(i/n) i (1 -i/n) if j = i + 1; i > 0 0 otherwise (1.1) and R i,j G (v) := m v(i/n) v(j/n) (1 + r[j/n]).
(1.2) R i,j I represents individual-level events while R i,j G represents group-level events.

Different limiting behaviors

In [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF], Luo and Mattingly consider extensively the limit as n, m → ∞ of the measure valued process (µ m;n t ) with fixed parameters γI , γG , s and r. The limiting measure π t satisfies :

∂ t π t f = -γ I s π t x(1 -x)f + γG [ π t r f -π t f π t r ].
(1.3) They also proved that, with the scaling : γI = n γ I , γG = m γ G , γI s = s, γG r = r, as n, m → ∞, the process (µ m;n t ) converges weakly to ν t , where ν t satisfies the following martingale problem :

for any f ∈ C 2 b , with L WF f (x) := x (1 -x) γ I ∂ 2 xx f (x) -s ∂ x f (x) ,
(1.4)

N f t = ν t f -ν 0 f - t 0 ν u L WF f du + γ G t 0 ν u (ρ -ν u ρ
) × f du is a martingale with conditional quadratic variation :

< N f > t = (γ G ) 2 t 0 ν u f 2 -ν u f 2 du.
There is actually an intermediate limit between these two, which will be the main focus of the current paper. In this limit, the fluctuations inside groups still play a role while the fluctuations between groups are neglected (rather in order to simplify the following analysis than for biological relevance) :

Theorem 1.1. Suppose that as n, m → ∞, we have the convergence of the rates γI /n → γ I , γI s → s, while lim sup γG < ∞ and {γ G r(x)} x∈[0,1] ≡ {r(x)} x∈[0,1] is the same bounded measurable function for any n, m. Suppose that µ m;n 0 is defined by assigning independently the proportion of type C in each group according to the measure μm;n 0 , where μm;n 0 → µ 0 as m, n → ∞. Then, µ m;n t converges weakly in D([0; T ]; M 1 ([0; 1])) to µ t , where µ t is the unique solution to satisfy for any f ∈ C 2 b the following equation :

∂ t µ t f = µ t L WF f + µ t r f -µ t f × µ t r , µ 0 = µ 0 . (1.5)
Since γ I is the only diffusion term left in this limit, we shall drop the subscript I from now on. The uniqueness of the solution is proved in the next Section 2.1 as part of Proposition 1.2.1, after we identify a more convenient way to describe it. The tightness of the above sequences and the fact that any limiting measure is indeed a solution of (1.5) is deferred to Section 5.

Definition of the solution of (1.5) as a conditional law

Consider X t the [0, 1]-valued solution of the following SDE, with initial condition X 0 ∼ µ 0 :

dX t := -s X t (1 -X t ) dt + 2γ X t (1 -X t ) dB t .
(1.6)

The existence and uniqueness of such a process can be found e.g. in in chapter 5.3.1 of [START_REF] Dawson | Introductory Lectures on Stochastic Population Systems[END_REF]. We will describe the solution of equation (1.5) at time t as the marginal distribution of X t with a Feynman-Kac penalization. To relate the process to our results on convergence towards quasistationary distributions, we will also represent this penalization as a conditioning upon survival of the stochastic process.

Since subtracting a constant to r does not change the value of µ t r f -µ t f µ t r , and recalling that r is bounded, we can easily rewrite (1.5) in terms of ρ(x) = r ∞ -r(x), which is non-negative and bounded :

∂ t µ t f = µ t L WF f -µ t (ρ -µ t ρ ) f , µ 0 = µ 0 (1.7)
We then consider the following Feynman-Kac penalization :

Z t := exp[- t 0 ρ(X s ) ds] (1.8)
Proposition 1.2.1. Define for each t ≥ 0 the probability measure µ t by :

µ t f := E [f (X t ) Z t ] / E [Z t ] , ∀ f ∈ C([0, 1]), .
(1.9) (µ t ) t≥0 is the unique solution of equation (1.5) (and equation (1.7)).

This penalization can then be interpreted as the probability that the process has survived while confronted to a death rate of ρ, conditionally on (X t ) t≥0 . More precisely, with T ∂ an exponential r.v. with rate 1 that is independent from X, we define the extinction time as :

τ ∂ := inf {t ≥ 0 ; -ln(Z t ) ≥ T ∂ } , (1.10)
Clearly, 0 and 1 are absorbing for the dynamics of X. We will also treat these fixation events as another kind of extinction. The hitting times of 0 and 1 are denoted τ 0 and τ 1 , and we consider any combination :

τ 0,∂ := τ ∂ ∧ τ 0 , τ 1,∂ := τ ∂ ∧ τ 1 , τ 0,1 := τ 0 ∧ τ 1 , τ 0,1,∂ := τ ∂ ∧ τ 0 ∧ τ 1 .
(1.11)

The extinction rates of δ 0 , i.e. ρ 0 = ρ(0), and δ 1 , i.e. ρ 1 = ρ(1) will play a crucial role in the long-time behavior of µ t .

Proposition 1.2.2. With the above notations, we then define for any t ≥ 0 the probability measure µ t by :

µ t = x 0 t δ 0 + x 1 t δ 1 + x ξ t ξ t (1.12)
where

x 0 t := E [Z τ0 exp[-ρ 0 (t -τ 0 )] ; τ 0 < t] E [Z t ] , x 1 t := E [Z τ1 exp[-ρ 1 (t -τ 1 )] ; τ 1 < t] E [Z t ] , x ξ t := E [Z t ; t < τ 0,1 ] E [Z t ] , ξ t f := E [f (X t ) Z t ; t < τ 0,1 ] E [Z t ; t < τ 0,1 ] = E [f (X t ) | t < τ 0,1,∂ ] , ∀ f ∈ C([0, 1]), .
(µ t ) t≥0 is the unique solution of equation (1.5), which is equivalently given by : µ t (dx) := P µ0 (X t ∈ dx t < τ ∂ ).

Remarks 1.2.1. The solution of (1.5) will thus generally be denoted µ 0 A t in the following statements. Expressing the dynamics in terms of an extinction rate is done mainly to simplify notations with conditional laws. We just adjusted the reference growth rate, here r ∞ , to ensure that the associated semi-group is sub-conservative.

Remarks 1.2.2. In practice, it means that one weights specifically any potential trajectory for the proportion of type C individuals inside a group. In order to obtain the dynamics that is typical while looking in the past of a uniformly sampled group, the weight of such trajectories is related to the mean number of lineages that are expected to follow this dynamics. For instance, spending time where the reproduction rate is high gives more opportunities for at least one group to follow the trajectory until the end. In this view, note that the solution to equation (1.6) is well-known to describe the evolving proportion of an allele under selection in a population without any group (hence no selective effects between groups), cf for instance [START_REF] Ewens | Mathematical Population Genetics[END_REF].

Proof of Proposition 1.2.1: By the Ito formula, for any f ∈ C 2 b :

E [f (X t ) Z t ] = µ 0 f + t 0 E [L WF f (X s ) Z s ] ds - t 0 E [f (X s ) ρ(X s ) Z s ] ds, E [Z t ] = 1 - t 0 E [ρ(X s ) Z s ] ds, Thus : ∂ t µ t f = E [L WF f (X t ) Z t ] E [Z t ] - E [f (X t ) ρ(X t ) Z t ] E [Z t ] + E [f (X t ) Z t ] E [Z t ] × E [ρ(X t ) Z t ] E [Z t ] = µ t L WF f + µ t r f -µ t f × µ t r . (µ t ) is indeed solution to equation (1.5).
Now, we turn to uniqueness. Let μ be a solution to equation (1.5), P t the semi-group associated to X t , the Wright-Fisher diffusion defined by (1.6), f 0 ∈ C 2 b ([0, 1]), and for 0 ≤ s ≤ t : nt := exp t 0 μs r ds ,

f t s (x) = ns × P t-s f 0 (x), so that : ∂ s f t s (x) := μs r f t s (x) -L WF f t s (x), μt nt f 0 = μt f t t := μ0 P t f 0 + t 0 μs L WF f t s + μs r f t s -μs f t s × μs r + μs μs r × f t s -μs L WF f t s ds,
so that νt (dx) := nt μt (dx) solves νt f 0 = ν0 P t f 0 + t 0 νs r × P t-s f 0 ds.

(1.13)

Recalling that we already have a solution µ t defined through equation (1.9), we define similarly :

n t := exp t 0 µ s r ds , ν t (dx) := n t µ t (dx).
(1.14)

As previously, ν is also solution to (1.13), and we deduce :

| ν t -νt f 0 | ≤ t 0 | ν s -νs r × P t-s f 0 | ds ≤ 2 f 0 ∞ × r ∞ t 0 ν s -νs T V ds,
with the convention :

ν T V = sup f0∈C 2 b ([0,1]) | ν f 0 | 2 f 0 ∞ Since this is true for any f 0 ∈ C 2 b ([0, 1]) : ν t -νt T V = | ν t -νt f 0 | 2 f 0 ∞ ≤ r ∞ t 0 ν s -νs T V ds.
By Gronwall's Lemma (with the total variation uniformly bounded), this proves that ν t = νt for any t > 0. Since µ t (resp. μt ) is deduced from ν t (resp. νt ) by renormalization, μt = µ t for any t > 0.

Proof of Proposition 1.2.2: First of all, we note that {t

< τ ∂ } = { t 0 ρ(X s )ds < T ∂ }. By the independence between X and T ∂ , P(t < τ ∂ X) = Z t . Thus : E [f (X t ) ; t < τ ∂ ] = E [f (X t ) Z t ] and in particular P(t < τ ∂ ) = E(Z t ).
This proves that for any t ≥ 0 P µ0 (X t ∈ dx t < τ ∂ ) defines a solution to equation (1.9). By Proposition 1.2.1, it coincides with the solution with equation (1.5).

Since 0 and 1 are absorbing for the process X, we have on the event {τ 0 < t} (resp. {τ 1 < t}) the fact that Z t := Z τ0 exp[-ρ 0 (t -τ 0 )] and X t = 0 (resp. Z t := Z τ0 exp[-ρ 1 (t -τ 1 )] and X t = 1). From this, Proposition 1.2.2 is elementary.

Motivation for looking at (µ t ).

Our purpose in the following analysis of the long-time behavior of µ t is to highlight common features with the individual-based models µ m,n t , for m and n reasonably large. Note that contrary to µ t , µ m,n t is a random process, whose state space is the discrete grid :

M m,n ([0, 1]) := {µ ∈ M 1 ([0, 1]) µ(∪ 0≤k≤n {k/n}) = 1 ; ∀ 0 ≤ k ≤ n, m×µ({k/n}) ∈ [[0, m]]}.
(1.15) So we generally expect a greater diversity of possible scenarii for the individual-based models. The mathematical description of its limiting behavior is however not very informative unless one gets precise quantitative estimates, as we shall see in the next lemma.

Lemma 1.3.1. For any m, n ≥ 1, δ 0 and δ 1 are the only absorbing points of µ m,n t . Denoting τ m,n 0,1 this absorption time, there exists a unique associated QSD A m,n ∈ M 1 (M m,n ([0, 1])) and a unique capacity of survival H m,n ∈ L ∞ (M m,n ([0, 1])) with extinction rate ρ A . Moreover, there exists C, χ such that the following convergence results hold :

∀ µ 0 , µ 1 ∈ M m,n ([0, 1]) \ {δ 0 , δ 1 }, 0 ≤ P µ0 (∃ s ≥ 0, µ m,n s = δ 0 ) -P µ0 (µ m,n t = δ 0 ) ≤ C exp(-ρ A t), 0 ≤ P µ0 (∃ s ≥ 0, µ m,n s = δ 1 ) -P µ0 (µ m,n t = δ 1 ) ≤ C exp(-ρ A t), | exp(ρ A t)P µ0 (µ m,n t = µ 1 ) -H m,n (µ 0 )×A m,n ({µ 1 })| ≤ C exp(-χ t).
The proof of this lemma is deferred to the Appendix. In this proof, the parameters C, ρ A and χ strongly depend on m and n. So there is no clear dependency on the parameters r and s in this lemma, unless one gets by other means precise estimates of C, ρ A and χ as well as P µ0 (∃ s ≥ 0, µ m,n s = δ 0 ) and P µ0 (∃ s ≥ 0, µ m,n s = δ 1 ). The study of A m,n and H m,n is also much more complicated than the one of α and h of Proposition 2.0.1 because of the state space of the former, namely M m,n ([0, 1]), is much more complicated than the one of the latter, namely [0, 1].

The description of µ t as the conditional distribution µ 0 A t provides us with very efficient tools for asymptotic results, as we shall see in Section 4. First, this sheds light on specific conditions separating different modes of convergence. The limit is also identified uniquely for any set of parameters and initial condition. We finally obtain exponential convergence in total variation, whose rate can be somewhat identified and interpreted.

This is why we study (µ t ) in order to describe the dynamics of (µ m,n t

), as a complement to the study provided in [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF] of the solution (π t ) of equation (1.3). A discussion is presented in Section 3 to see how much information we can actually infer from the long term behavior of (µ t ) regarding the one of (µ m,n t ) and describe the main limitations that we face. The solution (ν t ) of the martingale problem given by equation (1.14) is likely to behave more closely to (µ m,n t

). Yet, we expect a poorly informative limiting behavior similar to the one of Lemma 1.3.1 with a proof that seems too technical for now. Furthermore, regarding the limitations that we plan to describe in Section 3, we shall have similar issues in the connection of (µ m,n t ) to ν t . To gain some more perspective on our analysis on the long time behavior of the solution µ t of equation (1.5), we have used a numerical approximation. What we present in Section 3 relies on the intuitions provided by these simulations. The subject would require a much more complete study to be more quantitative, but these simulations already provide illustrations that our convergence results can be informative. The simulations are also helpful to highlight some of the above-mentioned limitations in relating the limiting behavior of (µ m,n t ) and of (µ t ).

QSDs and exponential convergence

We know from Proposition 1.2.2 that the quasi-stationary distributions for X with extinction at time τ ∂ correspond exactly to the initial conditions for which the solution of equation (1.7) is constant in time. Such a QSD will be called stable if it is the quasi-limiting distribution for any initial condition that is close enough in total variation distance.

Since 0 and 1 are absorbing states for X, δ 0 and δ 1 necessarily belong to these QSDs, with extinction rate respectively ρ 0 and ρ 1 .

We define the semi-groups associated to our different extinctions :

µP t (dx) := P µ (X t ∈ dx ; t < τ ∂ ) , µA t (dx) := P µ (X t ∈ dx t < τ ∂ ) µP 01 t (dx) := P µ (X t ∈ dx ; t < τ 0,1,∂ ) , µA 01 t (dx) := P µ (X t ∈ dx t < τ 0,1,∂ ) µP 1 t (dx) := P µ (X t ∈ dx ; t < τ 1,∂ ) , µA 1 t (dx) := P µ (X t ∈ dx t < τ 1,∂ )
Proposition 2.0.1. There exists a unique QSD α ∈ M 1 [(0, 1)] and a unique capacity of survival h associated to the extinction τ 0,1,∂ . With the associated extinction rate ρ α , it means first that :

∀ t > 0, αP 01 t (dx) = exp[-ρ α t] α(dx) , P 01 t h = exp[-ρ α t] h
Moreover, for any µ ∈ M 1 [(0, 1)] and x ∈ (0, 1) :

α(dx) = lim t→∞ µA 01 (dx) , h(x) = lim t→∞ h t (x)
where h t (x) := exp[ρ α t] P x (t < τ 0,1,∂ ).

(2.1)

The convergence are uniformly exponential, in the sense that there exists χ, C > 0 such that :

∀ µ ∈ M 1 [(0, 1)], µA 01 t -α T V ∨ h t -h ∞ ≤ C exp[-χ t]. (2.2) in particular h ∞ := sup {x∈(0,1), t>0} exp[ρ α t] P x (t < τ 0,1,∂ ) < ∞ (2.3)
Moreover, for any n ≥ 2, h is lower-bounded by a positive constant on [1/n, 1 -1/n].

We show in the following Subsections that the long-time behavior of the process with only the local extinction rate depends mainly on ρ α , ρ 0 and ρ 1 . In the convergences that follow, we will often have uniform bounds for probability measures belonging for some n ≥ 1 and ξ ∈ (0, 1) to :

M n, ξ := µ ∈ M 1 ([0, 1]) µ[1/n, 1] ≥ ξ , ∪ n,ξ M n, ξ = M 1 ([0, 1]) \ {δ 0 }. (2.4) or in M 0,1 n, ξ := µ ∈ M 1 ([0, 1]) µ[1/n, 1 -1/n] ≥ ξ , (n ≥ 3, ξ > 0) (2.5) ∪ n,ξ M 0,1 n, ξ = M 1 ([0, 1]) \ {x δ 0 + (1 -x) δ 1 x ∈ [0, 1]}.
But first, the following Lemma provides some elementary properties of the extinction rate in terms of the function ρ.

Lemma 2.0.2. Assume that µ ∞ is a QSD of the Markov process X for the extinction time τ ∂ defined by (1.10). Then, its extinction rate is given by µ ∞ ρ .

The QSD α given in Proposition 2.0.1 satisfies :

α ρ = ρ α P α (τ 0,1,∂ = τ ∂ ) < ρ α .
Proof of Lemma 2.0.2 Let λ be the extinction rate of the QSD µ ∞ . We thus know that for any t > 0 :

λ = -1 t log P µ∞ (t < τ ∂ ) = -1 t log E µ∞ (Z t ) = -1 t log E µ∞ (exp[- t 0 ρ(X s )ds])
We can simply look at the limit of this expression as t tends to 0 to deduce Lemma 2.0.2. With the Fubini Theorem, the expression can also be identified with fixed t, because :

E µ∞ (exp[- t 0 ρ(X s )ds]) = 1 - t 0 ds E µ∞ (ρ(X s ) exp[- s 0 ρ(X u )du]) = 1 - t 0 ds µ ∞ P t ρ = 1 -µ ∞ ρ × 1 -exp -λt λ .
Concerning α, we can exploit Theorem 2.6 in [START_REF] Collet | Quasi-Stationary Distributions, Probab. and Its Appl[END_REF], that proves that the exit state is independent from the exit time when the initial condition is a QSD, with an exponential law for the exit time. This implies notably that for any t ≥ 0 :

E α (exp[ρ α τ 0,1,∂ ] ; τ 0,1,∂ = τ ∂ ≤ t) = ρ t α P α (τ 0,1,∂ = τ ∂ ). (2.6)
Then, we can prove :

α ρ = lim t→0 1 t P α (T ∂ < t 0 ρ(X s )ds) = lim t→0 1 t P α (τ ∂ ≤ t < τ 0,1 ) = lim t→0 1 t E α (exp[ρ α τ 0,1,∂ ] ; τ 0,1,∂ = τ ∂ ≤ t).
By (2.6), this proves α ρ = ρ α P α (τ 0,1,∂ = τ ∂ ) < ρ α .

2.1 ρ 1 < ρ 0 < ρ α : Group selection favoring one allele with a quick fixation Proposition 2.1.1. Assume that ρ 1 < ρ 0 < ρ α . δ 1 is then the only stable QSD, with convergence rate ρ 0 -ρ 1 , i.e. :

∀ n ≥ 1, ∀ ξ > 0, ∃ C n,ξ > 0, ∀ µ ∈ M n, ξ , µA t -δ 1 T V ≤ C n,ξ exp[-(ρ 0 -ρ 1 ) t].
In order to obtain this convergence, we considered the dynamics of µA t restricted on [0, 1), which happens to be given by µA 1 t because the process is fixed at 1 until its extinction, once 1 is reached. Looking at the dynamics of µA 1 t , we deduce an additional level of convergence for the disappearance of polymorphic groups : Proposition 2.1.2. Assume that ρ 0 < ρ α . Then, there exists C > 0 such that :

∀ µ ∈ M 1 ([0, 1]) \ {δ 1 }, µA 1 t -δ 0 T V ≤ C exp[-(ρ α -ρ 0 ) t].
With the notations of Proposition 1.2.2, the two previous propositions imply that :

x 0 t ≤ 1 -x 1 t ≤ C n,ξ exp -(ρ0-ρ1) t ; x ξ t ≤ C x 0 t exp -(ρα-ρ0) t ≤ C × C n,ξ exp -(ρα-ρ1) t .
Remarks 2.1.1. In this limiting model, whatever the selection effects inside the groups, the selective effects at group level favoring any of the pure groups always dominate in the long run. The convergence to the pure C groups population happens in total variation, with at the end an exponential rate of convergence. This rate is given by the competition between pure groups.

Remarks 2.1.2. We shall precise in Section 3 and more specifically in Section 3.1 the limits of this description, in particular when one wishes to relate it in terms of the individual-based model. Even if pure C groups happen to dominate in the long run, expecting an exponential convergence rate might be misleading : the initial proportion of pure C groups may be so small that pure D groups would be dominant for a very long time. Some illustrations obtained by simulations of such a case are given in Figures 1-4 around Subsection 3.1. The main quantities of interest are then the time needed for the competition between groups to compensate the initial domination by pure D groups, assuming that it happens, and the probability that this transition actually occurs for the IBM.

2.2 ρ 1 < ρ α < ρ 0 : Group selection favoring one allele with a slow fixation Proposition 2.2.1. Assume that ρ 1 < ρ α < ρ 0 . Then, δ 1 is again the only stable QSD, with convergence rate ρ α -ρ 1 , i.e. :

∀ n ≥ 1, ∀ ξ > 0, ∃ C n,ξ > 0, ∀ µ ∈ M n, ξ , µA t -δ 1 T V ≤ C n,ξ exp[-(ρ α -ρ 1 ) t].
Again, we have an additional level of convergence, and the quasi-equilibrium is precisely described in terms of the polymorphic quasi-stationary distribution : Proposition 2.2.2. Assume that ρ α < ρ 0 . Then :

∃ χ 1 > 0, ∀ n ≥ 1, ∀ ξ > 0, ∃ C n,ξ > 0, ∀ µ ∈ M n, ξ \ {δ 1 }, µA 1 t -α 1 T V ≤ C n,ξ exp[-χ 1 t],
(2.7)

where the QSD α 1 has extinction rate ρ α and is given as α 1 = y 0 δ 0 + y α α with the relations :

y 0 y α = ρ α × P α (τ 0 = τ 0,1,∂ ) (ρ 0 -ρ α )
,

y 0 + y α = 1 (2.8)
and thus

y α := (ρ 0 -ρ α ) ρ 0 -ρ α × P α (τ 1,∂ = τ 0,1,∂ ) , y 0 := ρ α × P α (τ 0 = τ 0,1,∂ ) ρ 0 -ρ α × P α (τ 1,∂ = τ 0,1,∂ ) .
Moreover, we know the associated capacity of survival h 1 := h/y α (h 1 (0) = 0) and :

∀ n, ξ, ∃ C n,ξ > 0, ∀ µ ∈ M n, ξ , | exp[ρ α t] P µ (t < τ 1,∂ ) -µ h 1 | ≤ C n,ξ exp[-χ 1 t]
(2.9)

and h1 ∞ := sup {x∈[0,1), t>0} exp[ρ α t] P x (t < τ 1,∂ ) < ∞. (2.10)
With the notations of Proposition 1.2.2, the two previous propositions notably imply that :

x 0 t + x ξ t = 1 -x 1 t ≤ C n,ξ exp -(ρ0-ρ1) t ; x ξ t x 0 t → y α y 0 .
Remarks 2.2.1. Some illustrations obtained by simulations of this situation are given in Figures 12-13 around Subsection 3.2. The maintenance of pure D groups in the population is here mainly due to the fixation of polymorphic groups, so that their proportion relative to polymorphic groups tends to stabilize, while both vanish. It does not affect the asymptotic profile of these polymorphic groups in this limit. Only the proportion of these groups is adjusted : extinction of pure D groups exactly compensates their generation by fixation of polymorphic ones.

Remarks 2.2.2. If we were to include a small effect of neutral replacements of groups, or consider the individual-based models, this size reduction would imply a higher rate of these fluctuations for the polymorphic profile, as compared to having fixation implying extinction of the groups.

Remarks 2.2.3. It may happen that the polymorphic QSD actually emerges after a long domination of the other pure groups D. First results of simulations indicate that this quasi-equilibrium may not even be noticeable when looking at the population as a whole since it can emerge at almost the same time as the pure groups, cf Section 3.1. Some illustrations obtained by simulations of such a situation are also given in Figures 5,6, 12, 13 in Section 3.

2.3 ρ 1 < ρ 0 = ρ α : Group selection favoring one allele with a critical fixation rate

Proposition 2.3.1. Assume that ρ 1 < ρ 0 = ρ α . Then, δ 1 is again the only stable QSD, with convergence rate ρ 0 -ρ 1 , i.e. :

∀ n ≥ 1, ∀ ξ > 0, ∃ C n,ξ > 0, ∀ µ ∈ M n, ξ , µA t -δ 1 T V ≤ C n,ξ × (1 + t) exp[-(ρ 0 -ρ 1 ) t].
For the next level of convergence, 0 is still dominant, yet the proportion of polymorphic states is vanishing in comparison only at rate 1/t : Proposition 2.3.2. Assume that ρ 0 = ρ α . Then, δ 0 is the only QSD with extinction τ 1,∂ . Moreover :

∃ t ∨ , C > 0, ∀ t ≥ t ∨ , ∀ µ ∈ M 1 ([0, 1]), µA 1 t -δ 0 T V ≤ C/(1 + t), ∀ n, ξ, ∃ t n,ξ , C n,ξ > 0, ∀ t ≥ t n,ξ , ∀ µ ∈ M 0,1 n, ξ , µA 1 t -δ 0 T V ≥ C n,ξ /t.
With the notations of Proposition 1.2.2, the two previous propositions notably imply that provided x ξ 0 > 0 :

x 0 t ≤ 1 -x 1 t ≤ C n,ξ (1 + t) exp -(ρ0-ρ1) t ; x ξ t x 0 t = O t→∞ (1/t).
Remarks 2.3.1. In this critical case, pure D groups happen to dominate the transient dynamics, but only because of an asymptotically linear increase of their proportion. This increase is actually due to the fixation of polymorphic groups : these groups, still asymptotically distributed as α, act as a generator of pure D groups that stay conserved. Asymptotically, the selective pressure is indeed uniform between pure D groups and the polymorphic groups as a whole.

Remarks 2.3.2. The same issue of relevance as in Remark 2.1.2 may be noted : the polymorphic QSD might only be reached once pure C groups have already appeared non-negligible.

2.4 ρ 0 = ρ 1 < ρ α : selective effects at group level favoring fixation

Again, the convergence rate of the distribution is given by the competition between the pure groups and the polymorpic QSD. There is in this case a strong dependency on the initial condition regarding the final equilibrium.

Proposition 2.4.1. Assume that ρ 0 = ρ 1 < ρ α . Then, any convex combination of δ 0 and δ 1 is a QSD, with extinction rate ρ 1 . The convergence still happens with convergence rate ρ α -ρ 1 , i.e. :

∃ C > 0, ∀ µ ∈ M 1 ([0, 1]), ∃ x ∈ [0, 1], µA t -(x δ 0 + (1 -x) δ 1 ) T V ≤ C exp[-(ρ α -ρ 1 ) t].
Moreover, the proportion x for the limiting QSD is :

x(µ) := E µ [exp(ρ 1 τ 0,1,∂ ) ; τ 0,1,∂ = τ 0 ] /E µ [exp(ρ 1 τ 0,1,∂ ) ; τ 0,1,∂ = τ 0,1 ] .
(2.11)

With the notations of Proposition 1.2.2, this implies that for x depending on the initial condition :

|x 0 t -x| ≤ C exp -(ρα-ρ1) t ; |x 1 t -1 + x| ≤ C exp -(ρα-ρ1) t ; |x ξ t | ≤ C exp -(ρα-ρ1) t
The next level of convergence (with extinction τ 0,1,∂ ) is the already known convergence to α at exponential rate.

Remarks 2.4.1. Here, the selective effects at group level are allowed to dictate the dynamics of polymorphic groups. For a polymorphic (intermediate) initial condition, it may well happen (depending on r and γ) that x(µ) is close to 0.

2.5 ρ α < ρ 0 ∧ ρ 1 : selective effects at group level strongly favoring polymorphism Proposition 2.5.1. Assume that ρ α < ρ 0 ∧ ρ 1 := ρ. Then, there is only one stable QSD α 0,1 , with convergence rate ρ -ρ α , i.e. :

∀ n ≥ 1, ∀ ξ > 0, ∃ C n,ξ > 0, ∀ µ ∈ M 0,1 n, ξ , µA t -α 0,1 T V ≤ C n,ξ exp[-(ρ α -ρ) t],
where α 0,1 has extinction rate ρ α and is given as α 0,1 = y 0 δ 0 + y 1 δ 1 + y α α with :

y 0 y α = ρ α × P α (τ 0 = τ 0,1,∂ ) (ρ 0 -ρ α ) , y 1 y α = ρ α × P α (τ 1 = τ 0,1,∂ ) (ρ 1 -ρ α ) , (2.12)
and of course y 0 + y 1 + y α = 1. Regarding the capacity of survival h 0,1 :

∀ n, ξ, ∃ C n,ξ > 0, ∀ µ ∈ M n, ξ , | exp[ρ α t] P µ (t < τ 1,∂ ) -µ h 0,1 | ≤ C n,ξ exp[-χ 1 t] (2.13) and h0,1 ∞ := sup {x∈[0,1], t>0} exp[ρ α t] P x (t < τ ∂ ) < ∞. (2.14)
where for x ∈ (0, 1), h 0,1 (x) = h(x)/y α while h 0,1 (0) = h 0,1 (1) = 0.

If ρ 1 < ρ 0 , for any initial condition µ = x δ 0 + (1 -x) δ 1 with x ∈ (0, 1), µA t converges at rate ρ 0 -ρ 1 to δ 1 as t → ∞.

If ρ 1 = ρ 0 , then any such distribution is a QSD with the extinction rate ρ 0 .

Remarks 2.5.1. Like in Proposition 2.2.2, the QSD α 0,1 is actually obtained by the stabilization of the profile of polymorphic groups (towards α), then by the compensation between the fixation of pure groups by α and their extinction. Since h 0,1 is null at 0 and 1 (it vanishes also at their vicinity), we see that the contribution of fixed groups to the survival of the population becomes negligible. These pure groups are in fact driven by the polymorphic groups, as one could see from their lineages : it would not take long to come back to polymorphic ancestors.

Remarks 2.5.2. Considering an individual selection depending on the frequency in the group, we could easily extend our model to describe the case of a balancing selection. In such an extension, as soon as fixation is not too exceptional, selective effects at group level are however needed to maintain polymorphism without transmission between groups.

2.6 ρ 1 = ρ α < ρ 0 : critical vanishing of the polymorphic QSD Proposition 2.6.1. Assume that ρ 1 = ρ α < ρ 0 . Then, δ 1 is again the only stable QSD, yet the convergence is not exponential, and more precisely :

∃ C > 0, ∀ µ ∈ M 1 ([0, 1]), µA t -δ 1 T V ≤ C/(1 + t), ∀ n ≥ 2, ∀ ξ > 0, ∃ c n,ξ > 0, ∀ µ ∈ M 0,1 n, ξ , µA t -δ 1 T V ≥ c n,ξ /(1 + t).
For the next level of convergence, we refer to Proposition 2.2.2.

Remarks 2.6.1. This case corresponds to a very specific compensation of the parameters, where selective effects at group level exactly compensate for the fixation events. The rate of convergence is slow, because it is driven by the polymorphic groups becoming negligible as compared to the fixed lineages that they generate.

ρ

0 = ρ 1 = ρ α :
This case is the most counter-intuitive, since any polymorphic component in the initial distribution imposes a predictable final equilibrium without polymorphism.

Proposition 2.7.1. Assume that ρ 0 = ρ 1 = ρ α . Then, any convex combination of δ 0 and δ 1 is a QSD, with extinction rate ρ 1 . They are the only ones, and among them, only one is stable :

∀ n, ξ, ∃ C n,ξ > 0, ∀ µ ∈ M 0,1 n, ξ , µA t -(x δ 0 + (1 -x) δ 1 ) T V ≤ C n,ξ /(1 + t).
where the proportion x for the limiting QSD is :

x := P α (τ 0 = τ 0,1,∂ )/P α (τ 0,1 = τ 0,1,∂ ).
Remarks 2.7.1. The distribution inside the interval vanishes so slowly that its flux to 0 and 1 governs the final equilibrium (with a much quicker stabilization of µA 0,1 t to α).

Limits of the parameters

Proposition 2.8.1. Given any s > 0 and any bounded function r, lim γ→∞ ρ α (γ) = +∞.

Proposition 2.8.2. Given any γ > 0, s ≥ 0, and a continuous (and negative) function r 0 with its maximum only in the interior of (0, 1), there exists a critical value R ∨ > 0 such that for any R > R ∨ and considering the system with r = R r 0 , it holds ρ α < ρ 0 ∧ ρ 1 .

Polymorphism is maintained by any sufficiently large selective effects at group level favoring it.

Proposition 2.8.3. Conversely, given any γ > 0, s ≥ 0, and a bounded function r 0 , there exists a critical value R ∧ > 0 such that for any R < R ∧ and considering the system with r = R r 0 , it holds

ρ 0 ∧ ρ 1 < ρ α .
When the selective effects at group level is too small, polymorphism cannot maintain itself.

Remarks 2.8.1. One could expect ρ α (γ) to be first a decreasing function of γ and then increasing. Yet, it seems not to hold true for any general r. Think for instance of two types of equilibria that compete inside (0, 1), i.e. r with two localized modes, with a specific optimal value γ 1 < γ 2 for each.

In the range γ = γ 1 to γ = γ 2 , the QSD shifts from the first mode, where the extinction is becoming much larger as γ increases, to the second mode, where such increase is much less significant. It can happen if there is a very strong mode of r close to a border, that is responsible for the first equilibrium. We may thus observe ρ α (γ) > ρ α (γ 1 ) ∨ ρ α (γ 2 ) for γ ∈ (γ 1 , γ 2 ), which contradicts the predicted profile of ρ α .

We conjecture that lim γ→0 ρ α (γ) = ∞ also holds for any s > 0 and any bounded function r. To ensure this, one should study the behavior of µ t around the boundary x = 1 for very small γ. Yet, when the process X stays close to 1, there is a non-trivial competition between the amplification through the Feynman-Kac penalization and the fixation rate at 1, This analysis is beyond the reach of this work. Even if our conjecture were false, the survival of the QSD would mainly rely on a vicinity of 1, since : Proposition 2.8.4. For any s, > 0 and measurable bounded r, for any t ≥ 1 sufficiently large :

P 1-(t < τ t < τ ∂ ) → 1 as γ → 0, where τ := inf{t ≥ 0 : X t ≤ }.
Note that in the deterministic limit (γ = 0), there is no more extinction but a convergence to 0 at exponential rate. Thus, P 1-(t < τ 0,1 ) → 1 as γ → 0 is to be expected.

The previous conjecture would imply the following result : "Given any bounded function r, there is a critical value s ∨ such that for any s ≥ s ∨ and γ ∈ R + ,

ρ 0 ∧ ρ 1 < ρ α ."
Such result would imply that polymorphism cannot subsist when the selection at the individual level is too large.

3 Discussion on the results on µ t with regards to the individualbased model

The following discussion aims at answering to the next questions :

• Do the asymptotic results of convergence to QSDs and their stability properties provide an accurate idea of the basins of attraction ?

• Is the convergence at exponential rate obtained in the previous convergences representative of the observed dynamics ?

• Are the intra-group fluctuations effectively able to make the inter group selective effects overcome the intra-group selective effects ?

In the following discussion, we will restrict ourselves to regime of parameters for which (µ m,n t ) may behave similarly as µ t . Referring Theorem 1.1, we mean that n is thought to be large but m to be much larger. So we look at the regime where the inter-group fluctuations happen in a much larger time-scale than the intra-group fluctuations. Referring to the parameters in the limit ν t (satisfying the martingale condition (1.4)), it corresponds to γ G γ I . Subsection 3.1 is focused on the two first questions in the case where the scarcity of intra-group fluctuations might raise some issues. We deal with the last one in Subsections 3.2, supported by intriguing numerical results presented in Subsection 3.2.1. These conclusions are confronted to more classical results of weak selection in Subsection 3.2.2. Given that these conclusions are quite different, we elaborate in Subsection 3.2.3 on the specificity of this model as an instance of the contested notion of "group selection".

An evolutionary perspective is also considered in Subsection 3.3, in a situation where mutations are rare. We thus imagine a sequence of periods in which a single type dominate (the resident) with brutal transitions when this type gets replaced by a mutant subpopulation. Depending on the mutation effect, the pair resident/mutant type could be seen either as C / D or as the opposite. Of course, such a replacement is generally rare among the numerous mutations that are continuously generated, but we look on a long time-scale where numerous of these events have happened. We then try to answer the following question : Which types of mutations effectively drive the evolutive dynamics of the system ?

Our conjecture is based on the expected stability properties of the process with a finite yet large population size around the stable quasi-stationary distributions of the limiting process. This is compared to the weak-selection regime that is easier to study, yet yielding very different conclusions.

Based on these expected stability properties, we also conjecture in Subsection 3.3.3 that in a regime where a polymorphic QSD is stable for the dynamics of µA t , it is also a very stable attractor for the dynamics in finite yet large population size. Finally, we conclude in Subsection 3.4 by the main conclusions of Section 3.

Close to the purely selective case.

We first begin the comparison by connecting to the results of [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF]. We thus focus on the vicinity of their limits, namely when γ is quite small as compared to r and s. The first prediction that we can get from [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF] is that µ t goes to δ 0 provided that µ 0 ([1γ , 1]) = 0 for a small value of γ that we could let tend to 0 as γ → 0.

First conjecture and limitations.

Looking at Proposition 2.8.4 and our conjecture that lim γ→0 ρ α (γ) = ∞ also holds for any s > 0 and any bounded function r, we would be in the case ρ 1 < ρ 0 < ρ α . From our following Propositions 2.1.1 and 2.1.2, one would a priori predict an eventual convergence to δ 1 , with the vast majority of the other groups being fixed as pure D groups. We can however expect that the proportion of groups that get fixed as pure C groups might be very tiny for times that are not so large. This would possibly be too tiny for the approximation of (µ m,n t ) by (µ t ) to be really valid in this vicinity of 1 for a large range of values of n and m. Notably, if m is not so large, we can not observe in (µ m,n t ) a proportion less than or close to 1/m since 1/m is the contribution of every single group and the risk of extinction is very large for small sub-populations of groups.

Close to the purely selective case with ρ 1 < ρ 0 < ρ α : The curves presented resp. in blue and red correspond resp. to {log(x 0 t ) -log(x 0 t + x ξ t )} t≥0 and {log(x ξ t ) -log(x 0 t + x ξ t )} t≥0 .

Figure 3: "Transitory QSD" of polymorphic groups Figure 4: "Final QSD" of polymorphic groups

These results of simulations were obtained with the following parameter values : √ 2γ = 0, 005, s = 0, 1 and r(x) = 0, 005×x.

Simulations with various initial conditions.

Some illustrations obtained by simulations for this case are given in Figure 12345678. For this purpose, we tried to derive the dynamics starting from Dirac initial conditions with various positions. Our simulations seem indeed to generally indicate that for small values of γ, and as t goes on, the distribution µ t seems first to be attracted by the vicinity of 0, where type D individuals prevail. µ t (0) is then very close to 1 after a time that depends on the initial condition, see Figure 1. While looking at the delay in this fixation time (say at a proportion 1 -, with a tiny ) between different Dirac initial conditions, we see that it is close to the time needed for the deterministic flow to bring the condition furthest to 0 to the closest one. We also considered the law of µ 0 A 0,1 t , i.e. the one of µ t conditioned on polymorphic groups. It usually stabilizes for long in some kind of attractive state, quite concentrated around 0, cf figure 3 and7, before the actual QSD emerges. The mass of this final QSD is usually rather around 1 for not so large γ as in 8, but could present more density around 0 as in Figure 4. However, for small values of γ, this profile usually occur after the emergence and domination of pure C groups, and possibly long after ! Close to the purely selective case with ρ 1 < ρ α < ρ 0 : The curves presented resp. in blue, orange and green correspond resp. to {log(x 0 t )} t≥0 , {log(x 1 t )} t≥0 and {log(x ξ t )} t≥0 .

Figure 6: Dynamics of the log-proportions restricted to [0, 1)

The curves presented resp. in blue and red correspond resp. to {log(x 0 t )-log(x 0 t +x ξ t )} t≥0 and {log(x ξ t ) -log(x 0 t + x ξ t )} t≥0 .

Figure 7: "Transitory QSD" of polymorphic groups Figure 8: "Final QSD" of polymorphic groups

These results of simulations were obtained with the following parameter values : √ 2γ = 0, 005, s = 0, 03 and r(x) = 0, 1×x.

3.1.3

The convergence result of µA 0,1 t to its QSD might be of little significance.

As stated in Proposition 2.0.1, there is strictly speaking only one QSD for the extinction time τ 0,1,∂ .

In the context of the previous paragraph, this exact QSD seems not to play a significant role unless there is initially a non-negligible proportion of polymorphic groups with a vast majority of C types.

Asymptotically in the diffusion model, the domination by pure C groups seems not to be following the convergence to the QSD but rather to happen concurrently. With the notations of Proposition 1.2.2, we mean that at any time t where the QSD is representative of µA 1 t , x 1 t is already close to one. The rate of convergence to 1 of x 1 t might thus approach ρ α -ρ 1 only at a very late stage. This stage is even possibly meaningless for finite population sizes since at some point, there would simply no more polymorphic group.

An often observed alternative QSD.

We investigate in this paragraph the above mentioned concentration effect of µ 0 A 0,1 t to an initial profile close to 0, yet different from the final QSD. By this, we mean that the profiles presented in Figures 3 and7 can be observed with little variations for various initial conditions, provided the latter has very little mass around 1. As we can see by comparing those profiles to the final QSD profiles in Figures resp. 4 and 8, they are very different. The transition from the first ones to the latter attractors happen quite abruptly after an apparent convergence. In Figures 1,2, 5, 6, we observe a distinct slope for the two regimes of attractions in the log-proportions resp. {log(x ξ t )} t≥0 and {log(x ξ t ) -log(x 0 t + x ξ t )} t≥0 . The transitions between the two slopes appear quite brutal as is the transition between the two attractors.

These elements make us interpret the profiles given in Figures 3 and7 as some sort of alternative QSD, displaying a transitory phase of convergence at exponential rate and characterized by a specific rate of fixation towards 0. We presume that this distribution is close to the QSD for the extinction event given by the first exit of some interval (0, 1 -), where the smaller is γ and the smaller could be chosen. The relevance of this interpretation relies on the scarcity of transitions towards more cooperative groups that we examine in the next paragraph.

Note that is associated to a large towards pure D groups. The fixation rate of this "observed QSD" provides an estimation of the rate of decay of polymorphic groups in µ n,m t given that it gets absorbed as a population of pure D groups. Since this fixation rate is a priori large, the contribution of the deterministic flow towards 0 is however generally more informative. This effect of convergence should not be of crucial relevance in practice unless one is interested in the asymptotic rate of decay when C type individuals are already negligible in their groups. The fact that this profile emerges has an analogous implication as the convergence result to δ 0 in Theorem 3 of [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF] : both indicate that the fixed state with only pure D groups is essentially very stable against perturbation. Notably, introducing groups with a few C type individuals would generate hardly anything with high probability. This will be investigated in Subsection 3.3.3 in an evolutionary context.

3.1.5 Scarcity of the transitions towards more cooperation, including towards the real QSD.

The real QSD appears in fact at very low density at the beginning. Since it survives at a better rate than the observed distribution, it simply ends up dominating the whole. The dynamics is presumably similar to the observed one leading to the emergence of pure C groups as log(x 1 t ) tends almost linearly to 0 in Figures 1 and5. Transitions from the first effective attractor to the real QSD can however be shown to be very rare. This explains why the attraction by the "transitory QSD" is so visible early on.

To see how rare these transitions are, we use some small value(s) η that will serve as a threshold of exceptionality. For such η, we define an analogous version μη t of the discretized solution of µ t , with the main difference that we set iteratively to 0 the local elements of mass below η. The transition may then be delayed or even unobserved, possibly even at very low values of truncation (10 -20 for instance). The previously mentioned observed QSD then arises, concentrated near the pure D group type.

This method is questionable, notably because it depends on the time-and space-discretization. Yet, with a space-grid of around 100 intervals and stabilization in less than 10,000 steps, these exceptional transitions are exactly what we could alter, by truncating parts of them, so as to exhibit their crucial role. We also expect that the delay between the untruncated dynamics and the truncated ones is due to the fact that the front towards groups enriched in C types is pulled by these exceptional transitions. The bulk of more polymorphic groups is not so much involved in pushing the proportion of types towards more cooperation. A more advanced numerical scheme would certainly be helpful to quantify the exceptionality of the trajectories leading the front. In this view, this distinction between pulled versus pushed wave could be observed by introducing neutral markers whose density would be followed as in [RG + 12].

As a conclusion, a non-forgettable dependency on the initial conditions.

When γ is small and there is no group for which C types constitute a large majority, then, from an ecological point of view, D individuals have fixed in almost every group. And even conditionally upon Illustration of a u-turn : In these figures, the curves represent the distribution µA 0,1 t on (0, 1) for different values of t. By convention, the most recent curve is more strongly apparent, so as to create the impression of movement. the fact that this fixation has not occurred (or with mutations generating new type C individuals), there is a very stable equilibrium with groups dominated by D individuals.

3.2

The contribution of the intra-group fluctuations for intermediate γ.

A surprising numerical observation

There is another interesting behavior for not so small values of γ, a linear growth rate r (increasing) and a Dirac mass in the middle of the interval as initial condition. At the beginning of its dynamics, µ t is close to a Gaussian distribution with an expanding variance and a drift. Except that the variance is larger, it seems first to behave as in the case of small γ and for initial conditions rather close to 0, not much difference can be observed. Yet, although the drift is always first directed towards 0, we may see a u-turn after a while, with a drift now seemingly directed towards 1. It creates the impression that the drift at the individual level is changing, while it is in fact the selective effects at group level that starts to play a significant role. The more diverse the distribution is, the more these effects differentiate between these different realizations and the larger is this additional drift.

In such a case, the role of the real QSD can be much more significant as can be seen in Figures 1213. The convergence to 1 is much more robust against the truncations (that we implement as mentioned in the previous paragraph). We thus expect the estimation of the typical dynamics of µ m,n by the one of µ t to be relatively accurate in this context. In a future work, we plan to validate by simulations notably this assertion and to be more specific regarding the associated range of parameters (including the initial condition). This would demonstrate the crucial importance of having sufficiently large intra-group fluctuations for selective effects at group level to be significant.

3.2.2

Weak selective effects : r and s small as compared to γ.

For simplicity, consider the case where r is linear : r(x) := r 1 x, for r 1 > 0. We then may think of the selective effect as type C individuals distributing a reproduction benefit of r 1 /n to all the n individuals in their group. The specificity is however that the whole group is to be duplicated at once at the reproduction event at group level. Since we forbid any transmission between groups, one could Significant intra-group fluctuations with ρ 1 < ρ α < ρ 0 : expect a relatedness of 1 between any two individuals of the same group, and 0 between individuals of different groups. Under weak selection, this may lead to the prediction that the mutation is positively selected provided that r 1 > s (in agreement with eq. 1 in [START_REF] Traulsen | Evolution of cooperation by multilevel selection[END_REF], with a much larger number of groups than the size of each group, since only inter-group fluctuations are kept). Since in our model, we assumed that the random fluctuations in group reproduction are negligible, we cannot really approach the case of weak selection. Such weak mutation assumption corresponds nonetheless also to γ → ∞. So what happens in practice in our model in this limit ? Note first that this implies a separation in the time scales of fixation inside one group and among groups. Such time-scale separation is classically assumed in the context of weak selection, recall e.g. [O'F08]. In the time scale of interactions between groups, we can assume with almost no restriction that all the groups have fixed, so that only remains the competition between pure groups. Indeed, all the individual in the group are then strongly related (with a very close common ancestor). But the crucial parameter of interest for predicting the outcome is the initial proportion of pure C groups that can be established early on. If this is non-negligible, pure C groups will very probably prevail whatever the respective values of r and s are.

The contested notion of "group selection".

For such a model where the selective effects are clearly associated with two hierarchical levels without transmission between groups, the notion of selective effects at group level does not appear so ambiguous. It is closely related to the more common expression of "group selection", except that the interpretation of the latter has been quite diverse depending on the authors. Notably, we have to mention the recurrent discussions on the confusions brought about by this notion (see [START_REF] West | Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection[END_REF], [START_REF] West | Social semantics: how useful has group selection been?[END_REF], [START_REF] West | Sixteen common misconceptions about the evolution of cooperation in humans[END_REF], [LK + 07]).

Notably, it has been argued that one shall rather relate to the kin selection formalism, which means that one shall weight the selective advantage that Cooperators give to other individuals by the relatedness they share with the recipient. On the other hand, our formalism focus on the group level by specifying the dynamics of a randomly chosen group. We are convinced that a formalism in terms of relatedness could produce an equivalent description but we have not found it particularly helpful. We would happily welcome any suggestion in this regard, as we find it very intricate in our model. Notably, the notion of relatedness is here much more difficult to describe, even in the simplification of weak selection. This is strongly linked to the fact that individuals cannot transfer from one group to another while the internal selective advantage is relative to the mean selective advantage inside the group. In addition, fixation events inside groups are a specificity of this model. The difficulty is also to be expected given that we do not assume, contrary to the usual considerations on the direction of selection, that the selective effects are on different time-scales (see e.g. [O'F08]) nor weak (see e.g. [START_REF] Mullon | The robustness of the weak selection approximation for the evolution of altruism against strong selection[END_REF], [START_REF] Traulsen | Evolution of cooperation by multilevel selection[END_REF]). Already without such population structure, different selection intensities may lead to qualitatively different relations of dominance, see for instance [START_REF] Mullon | The robustness of the weak selection approximation for the evolution of altruism against strong selection[END_REF], [WG + 13], [START_REF] Wang | Extrapolating Weak Selection in Evolutionary Games[END_REF].

Evolutionary context.

Context and motivations

We are also interested in looking at an evolutionary scenario where mutations that are well-separated in time have each some probability to invade a population with a given type. The invasion then corresponds to a replacement of the resident type as the successful mutant type. In this context, one has first to choose if C or D plays the role of the resident type. Let us first say it is D type. We thus consider the case where only one individual is of type C and compare the probability that an homogeneous population of type C emerges to the neutral case where that probability would be 1/(m × n). We also consider the reverse case where a single mutant of type D invade a resident population of type C. Then, we can compare both to infer both the direction favored by natural selection, the time-scale of this evolution and whether the main contributions shall come from mutations of small or large effects.

In the following, we need to keep a quantification of the fluctuations at group level, with the parameter γ G > 0 (cf the model given by equation (1.3)). Recall that γ is to some extend its equivalent at individual level. Since our limiting model correspond to vanishing γ G , we shall restrict our analysis to the cases where γ G << γ (corresponding to much larger number of groups than of individuals inside groups, i.e. m n). Note that these values are expected to stay fixed for a given population, even while undergoing several events of fixation. We shall first consider the case were we can justify a separation of time-scales, that makes the study much easier. We then investigate in Subsection 3.3.3 to which extend these results generalize when selective effects and intra-group fluctuations occur concurrently.

Separated time-scales

Note that in this neutral case, the invasion probability is respectively of order 1/n and 1/m for the fixation within the group and of one group among the population of groups. The invasion probability of one individual into the whole population is merely the product of these two events. It is generally due to the fact that at some large time, every individual in the population will be issued from a unique common ancestor at generation 0, which under neutrality is clearly taken uniformly at random. Such decomposition by product is simpler to analyze and well justified in a context where both events happen on separate time-scales. This is why we first focus on this case. We shall then pursue the analysis for more intricate cases where the selective effects at group level act on the same time-scale as the internal dynamics of a group.

Estimation of the probability of invasions at individual level.

Because there is this separation of time-scales, one can exploit classical results for estimating the probability of invasion at both individual and group levels. At least for the selection within group, we may exploit the explicit formula for probability of invasion starting from a proportion x ∈ (0, 1) in the solution (X t ) of the limiting equation (1.6). The formula, first obtained by Malécot and often presented in the context of Kimura's diffusive approximation, takes the form :

P x (τ 1 < τ 0 ) = exp[sx/γ] -1 exp[s/γ] -1 . (3.1)
This can be obtained by identifying it as the only solution of L W F u = 0 with boundary conditions u(x) = 0 and u(1) = 1. This expression is then equivalent as x tends to 0 to (s/γ)×(e s/γ -1) -1 ×x.

Although a precise justification would require a careful analysis of the process when the C subpopulation is still negligible, we can expect that selective effects do not play a consequent role in this first step. We may thus expect a fixation probability starting from only one type C individuals to be well-approximated by

π I D →C = s/γ n (e s/γ -1) ≈ (1/n)×(1 - s 2γ ) with s/γ 1. (3.2)
Note that except in this last step of approximation, we only exploited the approximation by X for n large and the separation of time-scale without restriction on s or γ. By changing s into -s, we would obtain the probability of invasion of C type residents by D type mutants.

Estimations of the probability of invasions under a weak selection assumption. The same reasoning can then be applied for the subsequent fixation of the pure C group in a resident population of pure D groups, leading to an overall invasion probability well-approximated by :

π D →C = π I D →C × π G D →C = s/γ n (e s/γ -1) × (ρ 0 -ρ 1 )/γ G m (e (ρ0-ρ1)/γ G -1) (3.3) = 1 n×m × s/γ e s/γ -1 × r 1 /γ G 1 -e -r1/γ G ≈ 1 n×m × (1 + (1/2)×(r 1 /γ G -s/γ)), π C →D = 1 n×m × s/γ 1 -e -s/γ × r 1 /γ G e r1/γ G -1 ≈ 1 n×m × (1 -(1/2)×(r 1 /γ G -s/γ)),
where the last approximations assume (r 1 /γ G ) ∨ (s/γ) 1. Assuming that mutations in both directions happen with the same law and intensity, well-separated and with small selective effects, we would then expect an evolutionary drift in the direction of cooperation provided r 1 /γ G > s/γ.

A specific criterion for the direction of selection.

We see that the above-mentioned prediction is not the one we find here, with an additional implication of the levels of fluctuations γ and γ G . Remark that the inverse of these quantities is usually referred to as the effective population size. This can be derived from Theorem 1.1 by recalling that γ ≈ γ/n with γ the actual reproduction rate of the individuals. Assuming γ of order 1 then implies that γ scales as the inverse of the group size. A similar interpretation scales γ G as the inverse of m. Besides, we recall that we justified this separation of time-scales by assuming γ γ G . So our condition r 1 /γ G > s/γ is in this context very different from the naive one r 1 > s, obtained by comparing the benefits in terms of reproduction rate (see the above paragraph on weak selective effects). We see here that even small selective effects at group level can effectively outcompete much larger selective effects at individual level, provided the number of groups is sufficiently large as compared to the number of individuals inside groups.

Separation of time-scales with strong selection

The product expression in (3.3) can be exploited as long as the separation of time-scales occur. Because each level is then treated separately, the fate of the system almost exclusively depend on the ratio r 1 /γ G and s/γ, that we now allow to be non negligible.

Naturally, a type has a very small probability of being invaded by a mutant subpopulation provided the type is clearly advantageous at group level (r/γ G sufficiently large) while only weakly deleterious at individual level (s/γ sufficiently small). Indeed, we find in such a case :

π G C →D ≈ (1/m) × (r 1 /γ G )×e -r1/γ G
(1/m).

(3.4) while π I C →D is not so far from 1/n. Similarly, such an advantage at group level is also more likely to fix, although the effect is less strong as r 1 /γ G gets large. We find indeed :

π G D →C ≈ (1/m) × (r 1 /γ G ),
(3.5) while π I D →C is again not so far from 1/n.

Note that in such regime of separation of time-scales, the individual and group levels play symmetric roles, so that one can easily reverse the argument for strong selective effects at individual level against weak effects at group level.

By symmetry and assuming that the mutations is as likely to give an advantage s at individual level with a penalty r at group level as to give s as a penalty and r as an advantage, we find again that the direction of selection is given by the higher ratio between r/γ G and s/γ. Under the condition of a constant ratio (r × γ/s × γ I ), the speed of selection appears to vanish as the selective effects get larger and larger. Moreover, assuming for instance r/γ G > s/γ, the fixation probability of a mutation deleterious at group level gets more and more negligible as compared to a mutation deleterious at individual level : as for a ratchet, selection hardly let any change of its direction happen. From the previous calculations, we indeed see that the probability of seeing no fixation at some level gets much smaller than the probability of fixation increases at the other.

This robustness to invasions shall extend even without the separation of timescales.

The situation is much more complicated to analyze in this case where γ is not so large, so that both selective effects are competing simultaneously. Nonetheless, in the limiting process we described, as soon as there is a non-negligible proportion of pure C groups in the population, D individuals simply cannot completely replace C type individuals. The complete invasion by D type individuals is impossible, even in the case where 0 < r 1 s (nor r 1 (s/γ)). With a large yet finite number m of groups, we expect that it would be possible to interpret such invasion as a large deviation result of the process ν (see section 1). Referring to classical literature on the subject of large deviations, notably Section 5 of [START_REF] Dembo | Large Deviation Techniques and Applications[END_REF], the associated probability is thus likely to be exponentially small with increasing m. At least, this rate of decay is what we have obtained in (3.4), recalling m = O(1/γ G ). So we conjecture that this strong resistance to invasion by Defectors is very general as long as γ G is sufficiently small, that is m sufficiently large. The selective effects at individual level shall certainly make the invasion more frequent than it would be without it, yet generally not sufficiently to compensate for this exponential reduction.

The invasion by C type mutants is not as strongly selected against when γ is not so large.

When γ is sufficiently large to keep non-negligible the probability of invasion of its group by a mutant C type individual, we shall retrieve the ratchet effect : neglecting the effects of weak mutations, invasions by Cooperative individuals should drive the dynamics of selection towards more cooperation, while invasions by Defectors scarcely occur. We would have the same effect if mutations towards more cooperation were strong and simply more advantageous in an homogeneous population (without group structure). Globally, the dynamics is driven also by these weak mutations and the contribution of both weak and strong selection a priori depends on the specific situation of study.

Robustness to invasion by C-type mutants when γ is small. On the contrary, we also have a similar resistance when γ is sufficiently small, as noted in our Section 3.1. Even if r 1 s > 0, the invasion of some group with mainly type D individuals by some type C individuals relies on so exceptional events that it seems biologically almost impossible. We expect that it would be possible to interpret such invasion as a large deviation result of the process X, cf (1.6). In practice, we thus predict that the probability of such invasion shall decrease exponentially with γ = O(1/n).

The case where r 1 is of order s/γ is possibly more intricate and would require further consideration. It might lead to a specific optimization problem as described in [START_REF] Champagnat | A probabilistic approach to Dirac concentration in non-local models of adaptation with several resources[END_REF], where the cost of deviating X has to be balanced with the amplification through r. The shape of the function r would then play a much more significant role.

A general robustness to invasion when γ is small.

Considering both directions of invasion, it seems that strong selective effects are strongly selected against in very large populations, whatever the level of selection they favor, as long as they are detrimental for one level of selection. Indeed, both invasion probabilities scale as exponentially small in the population sizes (of the detrimental level of selection), which is much more stringent than the order O(1/(n × m)) of nearly neutral mutations. We expect it to extend with possibly more levels of "selection". Thus, beside the effect of mutations favoring its carriers at both levels (but not necessarily equivalently), the trade-off between selective effects at different levels shall be driven mostly by weak selective effects.

Note that these conclusions seem quite robust to more general forms of functions r, provided ρ 1 < ρ 0 < ρ α with a QSD α very concentrated around 1 (for robustness against invasions by D types) and provided there is an apparent QSD near 0 (for robustness against invasions by C types). Based on our first simulation results, this effect of concentration seems to be robust as long as r is increasing with increasing cooperation. This suggests also that it is not so crucial that 1 is an absorbing state. Thus, the above conclusions shall be maintained even with some transmission between groups, as long as their rate is sufficiently small.

A similar robustness for polymorphic QSD.

Similarly, the fixation of a polymorphic population with profile α such that ρ α < ρ 0 ∧ ρ 1 is likely to be an exceptional event as compared to the time-scale at which the transitory profile evolves. We mean that the profile of µ m,n shall remain very close to α, with a very quick regulation of the random perturbations when m is large. Our confidence originates again from the comparison with Large Deviations results. Even the events of fixation, that are possibly much less negligible for finite m, are not expected to be significant. The pure groups have a lower progeny and do not contribute much to the dynamics on the long term. By construction, this case corresponds to r being a function with at least a strict maximum inside (0, 1). Selective effects must favor polymorphism directly and not only conflict with selective effects at individual level. Otherwise, ρ α < ρ 1 is excluded by Lemma 2.0.2. We could also imagine more general selective effects at individual level with a frequency-dependency. This would possibly also entail a stable polymorphic QSD.

Note that we also assume here that γ is not negligible. Again, referring to [START_REF] Champagnat | A probabilistic approach to Dirac concentration in non-local models of adaptation with several resources[END_REF], it is possible that the description gets much more tricky in the case where γ is small but s also so that the function r scales as s/γ.

Difficulties in relating to kin selection.

Considering more general r, notably with a maximal value in the interior (0, 1), the approach of kin selection becomes even less clear. It seems required to deal with another definition of relatedness, like the one given in [START_REF] Grafen | Optimisation of inclusive fitness[END_REF], with much more complexity.

Main conclusion of Subsection 3

(i) In any case where δ 1 is stable, for an initial condition with enough highly cooperative groups so that the diffusion in them generates a non-negligible proportion of pure C groups, these groups do eventually invade the population with a high probability. The range of parameters that induce this effect strongly depends on the initial condition if cooperation is initially well-established.

(ii) If intra-group fluctuations of population size are small, a very large proportion of the groups become visibly increasingly dominated by D individuals, even though the pure D groups are the worst at reproducing. Introducing in the model rare mutations from individuals D to individuals C probably wouldn't make much of a difference.

(iii) The case ρ 1 < ρ α < ρ 0 characterizes the fact that a subpopulation of polymorphic groups is able to maintain itself better than pure D groups. This means that domination by D individuals would still be prevented, even if we disrupt the model by introducing rare events of migration between groups or mutations from C individuals to D individuals. This should hold true as long as the polymorphic QSD α is rapidly approached.

(iv) Likewise, in the case of ρ α < ρ 1 < ρ 0 , the polymorphic state is a priori very stable and µ t tends to him provided that the proportion of polymorphic groups was not violently reduced from the very beginning.

(v) However, it is unclear that the area of attraction of this quasi-stationary distribution is far beyond the vicinity of the purely cooperative state. Convergence towards it and its influence has potentially no significant effect if the proportion of the groups with a majority of C individuals is too small. A transient attractor is then likely to appear for µ t restricted to (0, 1), widely supported on a neighborhood of the purely D state. It can be interpreted in practice as an alternative quasistationary distribution, with an extinction rate generally higher than ρ 0 . This happens when the transition from a group dominated by D individuals to one with mostly C type individuals is too costly as a deviation from the process X. The difference in extinction rates is then not able to quickly offset the very small probability of such a transition. Transitions in the vicinity of the less stable "pseudo"-QSD to the "real" QSD (more stable and around 1) take a non-negligible time so that the attraction to the pseudo-QSD is clearly visible.

(vi) In an evolutionary perspective, for very strong selection effects as compared to genetic fluctuations, the status quo situation is more likely to prevail: the probability of fixing a mutation which puts a burden on its holder at some selection level is only slightly compensated by the advantage that this mutation could bring at another level.

(vii) Still from an evolutionary point of view, cooperation is favored by any increase of the genetic fluctuations at intra-group level. It namely corresponds to a greater kinship between individuals in the same group. Assume that the genetic fluctuations bewteen groups are kept small, corresponding to large values of m, while the genetic fluctuations at intra-group level are non-negligible. Then, mutations that put the group of those who carry them at a disadvantage have a much lower probability of fixation as compared to the mutations that put those who carry them at a disadvantage inside their group: the relation of comparison between the strength of these effects in the weak selection context seems to lose its relevance here when the effects combine.

4 Proof of the results of Section 2 4.1 Proof of Proposition 2.0.1 : characterization of α on (0, 1)

We rely on the method used in [START_REF] Velleret | Unique Quasi-Stationary Distribution, with a stabilizing extinction[END_REF] and more precisely on the proof of the second illustration presented in Subsection 4.2 of [START_REF] Velleret | Unique Quasi-Stationary Distribution, with a stabilizing extinction[END_REF] to ensure that :

∃ χ > 0, ∀ n ≥ 1, ξ > 0, ∃ C n,ξ > 0, ∀ µ ∈ M 0,1 n, ξ , µA 01 t -α T V ≤ C n,ξ exp[-χ t]. (4.1)
The diffusion is indeed regular on any D n := [1/n, 1 -1/n] (for n ≥ 3) so that applying the Harnack inequality, we prove similarly as in [START_REF] Velleret | Unique Quasi-Stationary Distribution, with a stabilizing extinction[END_REF] that for any choice of 0 < t M < t c , there exists c M > 0 such that for any x ∈ D n :

P x X t M ∈ dx ; t M < τ n+1 ∂ ≥ c M P 1/2 X tc ∈ dx t c < τ 3 ∂ := c M ζ(dx), (4.2) with τ n ∂ := inf t > 0 X t / ∈ D n .
We refer to the step 4 of the proof given in Sect. 4 of [START_REF] Champagnat | Lyapunov criteria for uniform convergence of conditional distributions of absorbed Markov processes[END_REF] to ensure that for any n ≥ 3 and t > 0, there exists c n > 0 such that :

∀ x, y ∈ D n , P x (X t ∈ dx ; t < τ 0,1,∂ ) ≤ c n P y (X t ∈ dx ; t < τ 0,1,∂ ) . (4.3)
Next, we prove that the process X cannot maintain itself close to the boundary : Lemma 4.1.1. For any ρ > 0, there exists E = D n E such that :

sup x∈(0,1) E x exp[ρV E ] < ∞ where V E := τ 0,1,∂ ∧ inf {t > 0 ; X t ∈ E} .
(4.4) Applying Theorem 2.1 in [START_REF] Velleret | Unique Quasi-Stationary Distribution, with a stabilizing extinction[END_REF] with (4.2), (4.3) and (4.4), noting also that condition (A0) on {D n } is clearly satisfied, concludes the proof of (4.1). The results on the capacity of survival comes from Theorem 2.2.

To end the proof of Proposition 2.0.1, it is sufficient to ensure the following lemma Lemma 4.1.2. There exists n B ≥ 3, ξ B , t B > 0 such that :

∀ µ ∈ M 1 [(0, 1)], µA 01 t B ∈ M n B ,ξ B .
This can be done exactly as in step 1, Section 5.1 of [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF], by handling precisely with the vicinities of 0 and of 1.

Proof of Lemma 4.1.1 The core of the proof is the well-known fact that for any t > 0, P x (t < τ 0,1 ) → 0 as x → 0 , P x (t < τ 0,1 ) → 0 as x → 1 (4.5) (see notably Theorem 3.4 and 3.7 in [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF] for a much more precise estimate of the extinction on the boundaries).

Let ρ > 0. We fix then arbitrarily t = 1 and deduce from (4.5) that for n E sufficiently large :

∀ x ∈ (0, 1), P x (t < V E ) ≤ e -ρt /2.
By induction on k ≥ 1 with the Markov property, we deduce that for any k :

∀ x ∈ (0, 1), P x (k t < V E ) ≤ e -kρt /2 k .
We know conclude the proof of Lemma 4.1.1 by noting :

E x (exp[ρV E ]) ≤ {k≥0} e ρt [k+1] P x (V E ∈ [k t, (k + 1) t)) ≤ e ρt {k≥0} 2 -k = 2e ρt < ∞.
4.2 Proof of Proposition 2.1.1 : convergence to δ 1 for ρ 1 < ρ 0 < ρ α

For µ ∈ M n, ξ , we have the following lower-bound of the mass absorbed at 1 before time 1 :

µP 1 {1} = P µ (τ 1 ≤ 1 ≤ τ 0,∂ ) ≥ ξ P 1/n (τ 1 ≤ 1) exp[-r ∞ ]
By the Markov property, this implies with C n,ξ := ξ P 1/n (τ 1 ≤ 1) exp[-( r ∞ -ρ 1 )] :

µP t {1} = µP 1 {1} exp[-ρ 1 (t -1)] ≥ C n,ξ exp[-ρ 1 t]. (4.6)
Since τ 0 ≤ τ 0,1,∂ and the extinction rate is ρ 0 once X has reached 0, then exploiting (2.3) :

P µ (τ 0 ≤ t < τ ∂ ) ≤ E µ [exp[-ρ 0 (t -τ 0,1,∂ )] ; τ 0,1,∂ ≤ t] ≤ exp[-ρ 0 t] 1 + ρ 0 t 0 ds exp[ρ 0 s]P µ (s < τ 0,1,∂ ) ≤ exp[-ρ 0 t] 1 + h ∞ × ρ 0 ρ α -ρ 0 . (4.7)
With again (2.3), and (4.6) and the fact that both µA t and δ 1 are probability measure :

µA t -δ 1 T V = sup D |µA t (D) -δ 1 (D)| = µA t [0, 1) = µP t [0, 1)/(µP t [0, 1) + µP t {1}) ≤ P µ (τ 0 ≤ t < τ ∂ ) + P µ (t < τ 0,1,∂ ) µP t {1} ≤ C n,ξ exp[-(ρ 0 -ρ 1 ) t]
where

C n,ξ := 1 + h ∞ × ρ α /(ρ α -ρ 0 ) /C n,ξ
4.3 Proof of Proposition 2.1.2 : conditional convergence to δ 0 for ρ 0 < ρ α Let t ≥ 1 and assume first that µ([0, x]) ≥ ξ for x ∈ (0, 1) and ξ > 0. From (2.3),

P µ (t < τ 0,1,∂ ) ≤ h ∞ exp[-ρ α t]
With the rough lower-bound µ P 1 1 {0} ≥ exp[-r ∞ ] P µ (τ 0 ≤ 1) :

P µ (τ 0 ≤ t < τ 1,∂ ) ≥ exp[-r ∞ ] P µ (τ 0 ≤ 1) × exp[-ρ 0 (t -1)] with C := h ∞ exp[ r ∞ -ρ 0 ] ξ P x (τ 0 ≤ 1) > 0, µA 1 t -δ 0 T V = µA 1 t (0, 1) = P µ (t < τ 0,1,∂ ) P µ (t < τ 0,1,∂ ) + P µ (τ 0 ≤ t < τ 1,∂ ) ≤ C exp[-(ρ α -ρ 0 ) t].
(4.8)

The case where µ has support on {0, 1} is trivial, since then µA 1 t = δ 0 . Finally, for the general case of µ ∈ M 1 ([0, 1]) \ {δ 1 }, where µ(0, 1) > 0, remark that, for any s > 0, there exists m s ∈ (0, 1) such that :

µA 1 s = m s µA 01 s + (1 -m s ) δ 0
where for any x > 0 ,

µA 01 s ([0, x]) -→ s→∞ α([0, x]) > 0.
by Proposition 2.0.1, with the rate of convergence uniform over µ. Thus, we deduce some t ∨ > 0 such that, with x = 1/2 :

∀ µ ∈ M 1 ([0, 1]) \ {δ 1 }, µ A 1 t∨ ([0, x]) ≥ µA 01 t∨ ([0, x]) ≥ α([0, x]
)/2 := ξ. Thus, for any t ≥ t ∨ , by the Markov property, then (4.8) with the initial condition µA 01 t∨ :

µA 1 t -δ 0 T V = µA 1 t∨ A 1 t-t∨ -δ 0 T V ≤ C exp[(ρ α -ρ 0 ) t ∨ ] exp[-(ρ α -ρ 0 ) t].
The proof that h 1 is uniquely defined, the convergences in (2.7) and (2.9) and the upper-bound in (2.10) are exactly the same as in [START_REF] Velleret | Unique Quasi-Stationary Distribution, with a stabilizing extinction[END_REF]. It remains to identify h 1 . Clearly :

h 1 (0) := lim t→∞ exp[ρ α t] P 0 (t < τ 1,∂ ) = lim t→∞ exp[-(ρ 0 -ρ α ) t] = 0.
(4.12)

We define h 1 t similarly as h t (cf (2.1)) : for x ∈ [0, 1)

h 1 t (x) := exp[ρ α t] P x (t < τ 1,∂ ). (4.13)
Decomposing according to the state of X at time 1, and recalling that since X stays at 0 once it is hit, we have :

h 1 2 t (x) = h t (x) δ x A 01 t h 1 t + h 1 t (x) δ x A 1 t {0} h 1 t (0) (4.14)
From (4.12) and (2.10), the second term in the right-hand side is clearly negligible. Because of (2.2), we are interested in the asymptotic as t → ∞ of α h 1 t . Since α is the QSD associated to the extinction rate ρ α with extinction at time τ 0,1,∂ , we already know that P α (t < τ 0,1,∂ ) = exp[-ρ α t]. We will deal with the component that has fixed at 0 before time t thanks to (4.11). Concluding with (2.8), we mean that :

α h 1 t = exp[ρ α t] P α (t < τ 0,1,∂ ) + exp[ρ α t] P α (τ 0 ≤ t < τ 1,∂ ) = 1 + (1 -exp[-(ρ 0 -ρ α ) t]) ρ α P α (τ 0 = τ 0,1,∂ ) ρ 0 -ρ α -→ t→∞ 1 + (1 -y α )/y α = 1/y α .
(4.15)

From (4.14), (4.15), (2.2), and (2.10), we conclude : From (2.9), with the notation (4.13) :

h 1 2 t (x) -→ t→∞ h(x)/y α = h 1 (x).
P ζ (t < τ 1,∂ ) = ζ h 1 t exp[-ρ α t] where ζ h 1 t -→ t→∞ ζ h /y α .
We know from Proposition 2.0.1 that h is lower-bounded by a positive constant on any D n for n ≥ 2. It implies in particular ζ h > 0. From (2.2), let thus t P > 0 be such that :

∀ t ≥ t P , ζ h 1 t ≥ ζ h /2 > 0.
(4.16) (4.12) is clearly true and implies with (2.3) that (4.9) holds for x = 0. For x ∈ (0, 1) and any t > 0 : Let n • ≥ 3 such that :

P x (τ 0 ≤ t < τ 1,∂ ) = E x [exp[-ρ 0 (t -τ 0 )] ; τ 0 = τ 0,1,∂ ≤ t] ≤ E x [exp[-ρ 0 (t -τ 0,1,∂ )] ; τ 0,1,∂ ≤ t] = exp[-ρ 0 t] 1 + ρ 0 t 0 exp[ρ 0 s] × P x (s ≤ τ 0,1,∂ ≤ t) ds ≤ exp[-ρ 0 t] 1 + ρ 0 h ∞ t 0 exp[(ρ 0 -ρ α ) s]ds ≤ exp[-ρ 0 t] + ρ 0 h ∞ ρ 0 -ρ α exp[-ρ α t]. ( 4 
α(1/n • , 1 -1/n • ) ≥ 1/2 (4.18)
From (2.2), we can find t S > 0 such that for any µ with µ(0, 1) > 0 :

∀ t ≥ t S , P µ (t < τ 0,1,∂ ) ≥ µ h /2 × exp[-ρ α t], µA 01 t -α T V ≤ 1/4 thus µA 01 t (1/n • , 1 -1/n • ) ≥ 1/4. (4.19)
Since 0 is absorbing and by (4.19) :

∀ t ≥ 0, µA 1 t (dx) = µA 1 t (0, 1) × µA 01 t (dx) + 1 -µA 1 t (0, 1) δ 0 (dx), ∀ t ≥ t S , µA 1 t (1/n • , 1 -1/n • ) ≥ µA 1 t (0, 1)/4 where : (4.20) µA 1 t (0, 1) = P µ (t < τ 0,1,∂ ) P µ (t < τ 0,1,∂ ) + P µ (τ 0 ≤ t < τ 1,∂ ) = 1 + P µ (τ 0 ≤ t < τ 1,∂ ) P µ (t < τ 0,1,∂ ) -1 . (4.21)
Assume first that µ[1/n, 1 -1/n] ≥ ξ for some n ≥ 3 and ξ > 0. Since h is positive on (0, 1), this implies, with (2.2), (4.17), (4.20) and (4.21), a lower-bound ξ • that only depends on n and ξ such that : 

∀ t ≥ t S , µA 1 t (1/n • , 1 -1/n • ) ≥ ξ • .
∀ t ≥ t S + t B , µA 1 t (1/n • , 1 -1/n • ) = [µA 1 t B ]A 1 t-t B (1/n • , 1 -1/n • ) ≥ ξ • .
4.5 Proof of Proposition 2.3.1 : the case ρ 1 < ρ 0 = ρ α

The calculations leading to (4.17) gives for the case ρ 0 = ρ α : Thanks to Proposition 2.0.1, there is for any n ≥ 2 a positive lower-bound of h in D n , µ h is uniformly lower-bounded for µ ∈ M 0,1 n, ξ (for any n ≥ 3, ξ > 0). By (2.2), for t sufficiently large and any µ ∈ M 01 n, ξ :

∀ µ ∈ M 1 ([0, 1]), P µ (τ 0 ≤ t < τ 1,∂ ) ≤ exp[-ρ 0 t] 1 + ρ 0 h ∞ t . ( 4 
P µ (t < τ 0,1,∂ ) ≥ c n,ξ exp[-ρ 0 t].
Combining this with (4.21) and (4.23) concludes the proof that for t sufficiently large :

µA 1 t -δ 0 T V ≥ C n,ξ /t.
Remark : Adapting the proof of step 1, Section 5.1 of [START_REF] Champagnat | Uniform convergence of conditional distributions for absorbed one-dimensional diffusions[END_REF], one can prove that there exists t B , c B , n B > 0 such that for any

x ∈ [1/2, 1), δ x A 1 t B ∈ [1/4, 1 -1/n B ).
Exploiting the above proof of Proposition 2.3.2, this implies that the convergence is uniform for any µ such that µ[1/n, 1) ≥ ξ.

For the reverse inequality, assume first that µ ∈ M 01 n, ξ . From the Markov property

P µ (τ 0 ≤ t < τ 1,∂ ) = E µ [exp[-ρ 0 (t -τ 0 )] ; τ 0 = τ 0,1,∂ ≤ t] = E µ exp[-ρ 0 t] 1 + ρ 0 τ 0,1,∂ 0 exp[ρ 0 s] ds ; τ 0 = τ 0,1,∂ ≤ t ≥ ρ 0 exp[-ρ 0 t] t 0 exp[ρ 0 s] P µ (τ 0 = τ 0,1,∂ ∈ [s, t]) ds, ≥ c n,ξ exp[-ρ 0 t] t 0 P µA 01 s (τ 0 = τ 0,1,∂ ≤ t -s) ds, (4.24) 
where we exploited once more Proposition 2.0.1 in the last inequality, to obtain a uniform lowerbound c n,ξ on µ h s . Since P α (τ 0 = τ 0,1,∂ ) > 0 and by monotone convergence, there exists t ∨ > 0 such that :

∀ t ≥ t ∨ , P α (τ 0 = τ 0,1,∂ ≤ t) ≥ P α (τ 0 = τ 0,1,∂ ≤ t ∨ ) := m 0 > 0. (4.25)
Now, according to (2.2), we choose t S > 0 such that :

∀ µ ∈ M 1 [(0, 1)], ∀ s ≥ t S , µA 01 s -α T V ≤ m 0 /2 which implies ∀ s ≥ t S , ∀ t -s ≥ t ∨ , P µA 01 s (τ 0 = τ 0,1,∂ ≤ t -s) ≥ m 0 /2. (4.26)
Thus, (4.26) and (4.24) imply that for any t ≥ t S + t ∨ :

P µ (τ 0 ≤ t < τ 1,∂ ) ≥ c n,ξ exp(-ρ 0 t) × (t -t S -t ∨ ).
With (2.3) and (4.21), this concludes the proof that :

µ[1/n, 1 -1/n] ≥ ξ ⇒ ∀ t ≥ t S + t ∨ , µA 1 t -δ 0 T V ≤ C n,ξ /t. (4.27)
Now, we prove that such upper-bound is in fact uniform with respect to M 1 [(0, 1)] thanks to Lemma 4.1.2. Indeed

µA 1 t B (dx) = µA 1 t B (0, 1) × µA 01 t B (dx) + 1 -µA 1 t B (0, 1) δ 0 (dx), where ∃ ξ B > 0, ∃ n B ≥ 2, ∀ µ ∈ M 1 [(0, 1)], µA 01 t B (1/n B , 1 -1/n B ) ≥ ξ B Thus by (4.27) : ∀ t ≥ t S + t ∨ , [µA 01 t B ]A 1 t -δ 0 T V ≤ c n B ,ξ B /t. (4.28)
We also note that there exists y t ∈ (0, 1) such that :

µA 1 t B +t (dx) = y t [µA 01 t B ]A 1 t + (1 -y t )δ 0 .
In fact, our comparison of the survival from 0 and from µ gives us a uniform upper-bound C > 0 such that :

y t = µA 1 t (0, 1) × µA 01 t B P . (t < τ 1,∂ ) µA 1 t B P . (t < τ 1,∂ ) ≤ C µA 1 t (0, 1)
Hence, we have more precision on the convergence :

µA 1 t+t B -δ 0 T V ≤ µA 1 t B (0, 1) × C/t.
And at least, (4.28) concludes the proof of Proposition 2.3.2 (where t S + t ∨ replaces t ∨ ).

4.7 Proof of Proposition 2.4.1 : the case ρ 0 = ρ 1 < ρ α Since ρ 0 = ρ 1 , it is straightforward that any convex combination of δ 0 and δ 1 is a QSD, with extinction rate ρ 1 . It is then not difficult to adapt the proof of Proposition 2.1.2, and since P µ (τ 0,1 ≤ 1) is lowerbounded uniformly over any µ ∈ M 1 ([0, 1]), we obtain

∀ µ ∈ M 1 ([0, 1]), µA t (0, 1) ≤ C exp[-(ρ α -ρ 0 ) t]. µA t {0} = E µ [exp[-ρ 1 (t -τ 0,1,∂ )] ; τ 0,1,∂ = τ 0 ≤ t] P µ (t < τ 0,1,∂ ) + E µ [exp(-ρ 1 (t -τ 0,1,∂ )) ; τ 0,1,∂ = τ 0,1 ≤ t] = E µ [exp[ρ 1 τ 0,1,∂ ] ; τ 0,1,∂ = τ 0 ≤ t] E µ [exp[ρ 1 τ 0,1,∂ ] ; τ 0,1,∂ = τ 0,1 ≤ t] × 1 + exp[ρ 1 t] P µ (t < τ 0,1,∂ ) E µ [exp(ρ 1 τ 0,1,∂ ) ; τ 0,1,∂ = τ 0,1 ≤ t] -1
. (4.29)

The limit as t → ∞ is well-defined and the convergence occurs at exponential rate since :

0 ≤ E µ [exp[ρ 1 τ 0,1,∂ ] ; τ 0,1,∂ = τ 1 ] -E µ [exp[ρ 1 τ 0,1,∂ ] ; τ 0,1,∂ = τ 1 ≤ t] ≤ E µ [exp[ρ 1 τ 0,1,∂ ] ; t < τ 0,1,∂ ] ≤ h ∞ exp[-ρ α t] 1 + ρ 1 R+ exp[ρ 1 s] P µA 01 t (s < τ 0,1,∂ ) ds ≤ h ∞ 1 + ρ 1 h ∞ ρ α -ρ 1 exp[-ρ α t] := C exp[-ρ α t].
The same holds of course for the case {τ 0,1,∂ = τ 0,1 } and E µ [exp(ρ 1 τ 0,1,∂ ) ; τ 0,1,∂ = τ 0,1 ≤ t] con- verges with exponential rate. Therefore with (4.29) -and the well-defined notation (2.11)-we can define some C > 0 such that ∀µ ∈ M 1 ([0, 1]) :

|µA t {1} -(1 -x(µ))| ∨ |µA t {0} -x(µ)| ∨ |µA t (0, 1)| ≤ C exp[-(ρ α -ρ 0 ) t],
which concludes the proof of Proposition 2.4.1.

4.8 Proof of Proposition 2.5.1 : the case ρ α < ρ 0 ∧ ρ 1

This proof is very similar to the one of Proposition 2.2.2, so we won't go into much detail. Lemmas 4.4.3 and 4.4.2 are of course replaced by : Lemma 4.8.1. Assume that ρ α < ρ := ρ 0 ∧ ρ 1 . Then, there exists n • ≥ 3, ξ • > 0 such that :

∀ n ∈ N, ∀ ξ > 0, ∃ t • > 0, ∀ µ ∈ M 01 n, ξ , ∀ t ≥ t • , µA t (1/n • , 1 -1/n • ) ≥ ξ • . Lemma 4.8.2. Assume that ρ α < ρ := ρ 0 ∧ ρ 1 and ζ ∈ M 1 [(0, 1)].
Then, there exists t P , c P > 0 such that :

∀ x ∈ [0, 1], ∀ t ≥ t P , P x (t < τ ∂ ) ≤ c P P ζ (t < τ ∂ ).
We leave the proofs to the reader, and just mention that we can take as an upper-bound for P x (τ 1 ≤ t < τ ∂ ) the same formula as for P x (τ 0 ≤ t < τ ∂ ) = P x (τ 0 ≤ t < τ 1,∂ ), with ρ 1 instead of ρ 0 (cf (4.17)).

For the rest of the proof, we remark that, for α y := y α α + y 0 δ 0 + y 1 δ 1 with y α + y 0 + y 1 = 1, (4.10) has to be replaced by :

α y P t (dx) = y α exp[-ρ α t] α(dx) + [y 0 exp[-ρ 0 t] + y α P α (τ 0 ≤ t < τ 1,∂ )] δ 0 (dx) + [y 1 exp[-ρ 1 t] + y α P α (τ 1 ≤ t < τ 1,∂ )] δ 1 (dx).
(4.30)

Again : α y P t (dx) = exp[-ρ α t] α y (dx) iff the conditions in (2.12) are satisfied.

4.9 Proof of Proposition 2.6.1 : the case ρ α = ρ 1 < ρ 0

Let us first prove that we only need to control µA 0 t -δ 1 T V like it is done in Proposition 2.3.2. From Proposition 2.2.2, we know that for some α 1 := y α α + y 0 δ 0 , with y α , y 0 ∈ (0, 1), there exists C 1 , χ 1 > 0 such that :

µA 1 t -α 1 T V ≤ C 1 exp[-χ 1 t]. (4.31)
Consequently, for t sufficiently large :

y 0 2 y α ≤ µA t {0} µA t (0, 1) ≤ 2 y 0 y α . (4.32)
On the other hand, with the notation µA 0 t (dx) := P µ X t ∈ dx t < τ 0,∂ :

µA t -δ 1 T V = 1 + µA t {1} µA t (0, 1) + µA t {0} -1 , µA 0 t -δ 1 T V = 1 + µA t {1} µA t (0, 1) -1
.

Consequently, (4.32) implies that µA t -δ 1 T V has the same rate of convergence as µA 0 t -δ 1 T V (as long as it indeed converges to 0). Now, from the proof of Proposition 2.3.2, we deduce quite immediately : (4.34)

∃ t ∨ , C > 0, ∀ t ≥ t ∨ , ∀ µ ∈ M 1 ([0, 1]), µA 0 t -δ 1 T V ≤ C/t, ∀ n ≥ 3, ∀ ξ > 0, ∃ t n,ξ , c n,ξ > 0, ∀ t ≥ t n,ξ , ∀ µ ∈ M 0,1 n, ξ , µA 0 t -δ 1 T V ≥ c n,ξ /t.
Let then k ≥ 1 and µ ∈ M 1 ([0, 1]) with µ(0, 1) > 0, so that µ h > 0. Then :

µ E k 0 = k-1 j=0 µ h j µA 01 j E 1 0 ,
where by (2.2), (with the upper-bound e ρ of E 1 0 ), there exists C > 0 such that :

| µ h j -h | ≤ C exp[-j χ] , | µA 01 j -α E 1 0 | ≤ C exp[-j χ].
Consequently :

| µ E k 0 -k µ h α E 1 0 | ≤ 2 C/(1 + exp[-χ]) < ∞. (4.35) Likewise | µ E k 0 + E k 1 -k µ h α E 1 0 + E 1 1 | ≤ 4 C/(1 + exp[-χ]) < ∞.
From (4.29) and (2.3), we deduce that there exists C > 0 such that :

µA k {0} - α E 1 0 α E 1 0 + E 1 1 ≤ C k µ h (4.36)
The symmetrical result for µA k {1} holds of course true, and since the sum of the limits equals 1, we deduce also

|µA k (0, 1)| ≤ C k µ h . (4.37)
Again, from Theorem 2.6 in [START_REF] Collet | Quasi-Stationary Distributions, Probab. and Its Appl[END_REF], the exit state is independent from the exit time when the initial condition is a QSD, with an exponential law for the exit time. Thus : α E 1 0 = P α (τ 0 = τ 0,1,∂ ) 1 0 exp[ρ s] ρ exp[-ρ s] ds = P α (τ 0 = τ 0,1,∂ ) .

To end the proof, just remark that µ h is lower-bounded for any µ ∈ M 01 n, ξ .

4.11 Proof of Proposition 2.8.1 : ρ α (γ) → ∞ as γ → ∞

We assume first that r ≡ 0 and choose arbitrary some t, for instance t := 1.

Consider T δ := inf{u ≥ 0 ; X u (1 -X u ) ≤ δ}, which can possibly be 0. Given any > 0, we want to prove that choosing δ sufficiently small ensures, uniformly for γ ≥ 1 : P x (T δ ≤ t 0 , 2 t 0 < τ 0,1 ) ≤ .

We can notice that :

X(t 0 ) = x 0 -s . T (t 0 ) + γ B[T (t 0 )] with T (t 0 ) := On the other hand, by Itô's formula :

E x X t -x - t0∧T δ 0 s X u (1 -X u ) du 2 = E x t0∧T δ 0 γ X u (1 -X u ) dB u 2 = E x t0∧T δ 0 γ 2 X u (1 -X u ) du
thus P x (t 0 < T δ ) × t 0 γ 2 δ ≤ (2 + s t 0 /2) 2 , independent from x.

For γ sufficiently large, it implies that P x (t 0 < T δ ) is indeed lower than .

Thus P x (t 0 < τ 0,1 ) ≤ P x (T δ ≤ t 0 , 2 t 0 < τ 0,1 ) + P x (t 0 < T δ ) ≤ 2 .

In the general case of bounded r, we deduce for the QSD α that, for γ large enough :

P α (2 t 0 < τ 0,1 ) = exp[-2 ρ α t 0 ] ≤ 2 exp[2 r ∞ t 0 ] .
It indeed proves that ρ α → ∞ as γ → ∞.

which contradicts the classical property that X takes its value on [0, 1]. By the definition of T (t), we see that there exists c = c( ) > 0 such that :

1/s > T (τ /2 ∧ τ 1-/2 ) ≥ c τ /2 ∧ τ 1-/2 . (4.39)

We also deduce that for any u ≤ T (∞), since u < 1/s :

X(T -1 (u)) ≤ 1 -+ /2 ≤ 1 -/2.
This implies that τ 1-/2 = ∞ on the event {sup u≤1/s | B u | ≤ M } and by (4.39) that τ /2 ≤ t := 1/(cs). This directly implies :

∀ γ ≤ /(2 M ), P 1-(t < τ ) ≤ P(sup u≤1/s |B u | ≥ M ).
Letting M tend to ∞ concludes the proof of Proposition 2.8.4.

5 Proof of Theorem 1.1

Like in [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF], the proof follows a standard procedure [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF], [START_REF] Joffe | Weak convergence of sequences of semimartingales with applications to multitype branching processes[END_REF], [START_REF] Champagnat | Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models[END_REF] in which we prove : (i) the tightness of the sequence of stochastic processes -which implies a subsequential limit, and (ii) the uniqueness of this limit. For the tightness of {µ m,n t } m,n on D([0, T ], P([0, 1])), it is sufficient, by Theorem 14.26 in Kallenberg [START_REF] Kallenberg | Foundations of Modern Probability[END_REF] to show that { µ m,n t f } is tight on D([0, T ], R) for any test function f from a countably dense subset of continuous, positive functions on [0, 1]. x f (x) -D - x f (x)). We recall that in our limit, n, m → ∞, γI /n → γ I , γI s → s, {γ G r(x)} is fixed and γG bounded. It is easy to adapt the proof of [START_REF] Luo | Scaling limits of a model for selection at two scales[END_REF] in order to state : 

Semimartingale property of multilevel selection process

Proof of the convergence to our limit

We prove here that the drift term is tight while the martingale converges to zero. For the finite variation term A m,n t (f ), assuming w.l.o.g. γI /n ≤ 2 γ I , γI s ≤ 2 s :

|a m,n t (f )| ≤ 2γ I f ∞ + 2 s f ∞ + 2 r ∞ f ∞ := G f therefore : sup t∈[0,T ] |A m,n t (f )| ≤ G f T
where G f is a constant that depends on f . Moreover, for any prescribed , we can always choose δ ∨ to be sufficiently small so that, for any 0 ≤ t ≤ t+δ with δ ≤ δ ∨ , for any n, m : |A m,n t+δ -A m,n t | ≤ δG f ≤ . By Proposition 3.26, Chapter 3 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], this proves immediately that the sequence (A m,n t ) t≤T is tight, and any limit is continuous. For the martingale part, assuming w.l.o.g. s ≤ 1 :

M m,n t (f ) t ≤ T m 6 γ I f ∞ + (γ G + r ∞ ) f 2 ∞ := J f /m -→ m→∞ 0,
where J f is a constant only depending on T > 0 and f ∈ C 2 ([0, 1]). From Burkholder-Davis-Gundy's inequality, since the jumps of M m,n t (f ) are bounded by f ∞ /m :

E sup t≤T (M m,n t (f )) 2 ≤ C J f /m + f 2 ∞ /m 2 -→ n,m→∞ 0.
This proves that M m,n t (f ) converges to 0 in such a way that ( µ m,n t f -µ m,n 0 f ) t≤T is tight and any associated limit is continuous.

By construction and the Law of Large Numbers, µ m,n 0 f converges to µ 0 f . Thus, the sequence (µ m,n t ) t≤T for n, m ≥ 1 is tight in D([0; T ]; M 1 ([0; 1])). So, we consider a subsequence (µ (k) t ) t≤T = (µ m k ,n k t ) t≤T such that m k , n k → ∞ as k → ∞ and such that (µ (k) t ) converges to (µ t ) t≤T in D([0; T ]; M 1 ([0; 1])). Necessarily, µ 0 coincide with the law of the initial condition provided in the assumptions of Theorem 1.1. For any f ∈ C 2 ([0, 1]) and t ≤ T , it is not difficult to see that as k → ∞ :

µ (k) t f → µ t f , µ (k) 0 f → µ 0 f , a (k) t (f ) → µ t L WF f + µ t r × f -µ t f × µ t r , M (k)
t (f ) → 0. Thus (µ t ) is a solution to equation (1.5). From the uniqueness property that we proved in Proposition 1.2.1, and the tightness of the sequence, we conclude that (µ m,n t ) t≤T converges globally to this solution. This concludes the proof of Theorem 1.1 and more globally the proofs presented in this paper.
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 1 Figure 1: Dynamics of the log-proportionsWith the notations of Proposition 1.2.2, the curves presented resp. in blue, orange and green correspond resp. to {log(x 0 t )} t≥0 , {log(x 1 t )} t≥0 and {log(x ξ t )} t≥0 .
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 2 Figure 2: Dynamics of the log-proportions restricted to [0, 1)
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 5 Figure 5: Dynamics of log-proportions
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 9 Figure 9: First part of the uturn with dilatation Figure 10: Complete u-turn We used a different color for each of the two parts.
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 11 Figure 11: Second part of the u-turn
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 12 Figure 12: Dynamics of the proportions Figure 13: Dynamics of the log-proportions

4.4. 3

 3 Proof of Lemma 4.4.2

  1.2 completes the proof. Indeed, consider µ ∈ M n, ξ (w.l.o.g. µ{1} = 0 since it vanishes immediately).Either µ(1/n, x ∨ ) ≥ ξ/2 and we deduce the result from (4.22), or µ[x ∨ , 1) ≥ ξ/2 and we deduce from Lemma 4.1.2 and (4.22) :

4. 10

 10 Proof of Proposition 2.7.1 : the most critical case ρ α = ρ 0 = ρ 1 Any convex combination of δ 0 and δ 1 is clearly a QSD with extinction rate ρ := ρ 0 = ρ 1 = ρ α .For t ≥ 0 and x ∈ [0, 1], let :h t (x) := exp[ρ t] P x (t < τ 0,1,∂ ) , E t 0 (x) := E x [exp[ρ τ 0,1,∂ ] ; τ 0,1,∂ = τ 0 ≤ t] (4.33) E t 1 (x) := E x [exp[ρ τ 0,1,∂ ] ; τ 0,1,∂ = τ 1 ≤ t] ,

X

  u (1 -X u ) du, (4.38) and B has the law of a Brownian Motion. Indeed, defineB v := B(T -1 (v) ∧ τ 0,1 ) + 1 {τ0,1<T -1 (v)} ( B(T -1 (v)) -B(τ 0,1 )),with B another Brownian Motion independent of B. Since for any v > 0, T -1 (v) := inf{t ≥ 0 : t 0 X u (1 -X u ) du > v} is a stopping times, B is indeed a continuous martingale with respect to the filtration F T -1 (v) . Finally, the change of variable w = T (u) ensures that E[( B v -B v ) 2 ] = v -v for any v > v .

  It will be useful for what follows to treat µ m,n t f as a semimartingale. We exploit the following discrete derivatives of f , with span 1/n :D + x f (x) := n (f (x + 1/n) -f (x)) , D - x f (x) := n (f (x) -f (x -1/n)), D xx f (x) := n 2 × (f (x + 1/n) + f (x -1/n) -2f (x)) = n×(D +

///

  Lemma 5.1.1. For f ∈ C 2 ([0, 1]) and µ m,n t with generator L m,n defined in (1),µ m,n t f -µ m,n 0 f = A m,n t (f ) + M m,n t (f ) where A m,n t (f ) is a process of finite variation, A m,n × i / n 1 -i / n γI / n D xx f i / n -γI s D - x f i / n n r j / n f j / nis a càdlàg martingale with (conditional) quadratic variation :M m,n (f ) t = 1 m n 1 -i / n D + x f i / n 2 + (1 + s) D - x f i / n 2 +γ G i,j µ m,n s i / n µ m,n s j / n 1 + r( j / n ) f i / n -f j / n 2    ds
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4.4 Proof of Proposition 2.2.1 and 2.2.2 : the case ρ 1 < ρ α < ρ 0 For this Proposition, we need to adapt the proof given in Subsection 5.3 of [START_REF] Velleret | Unique Quasi-Stationary Distribution, with a stabilizing extinction[END_REF]. The main step is to prove that the mass on the interval (0, 1) does not vanish : Lemma 4.4.1. Assume that ρ α < ρ 0 . Then, there exists n • ≥ 2, ξ • > 0 such that :

We also need to ensure the persistence of the component issued from the coupling, which is done with the following lemma.

Lemma 4.4.2. Assume that ρ α < ρ 0 and ζ ∈ M 1 [(0, 1)]. Then, there exists t P , c P > 0 such that :

(4.9)

The measure ζ comes from a mixing estimate that we recall -cf (4.2) :

Lemma 4.4.3. Let n ≥ 2 and ξ > 0. Then, there exists Combining these tree lemmas and applying exactly the same reasoning as in Subsection 5.3 of [START_REF] Velleret | Unique Quasi-Stationary Distribution, with a stabilizing extinction[END_REF] proves that there exists a unique QSD α 1 associated to τ 1,∂ , with the convergence stated in Proposition 2.2.2. Moreover, as stated in Proposition 2.2.2, we can identify α 1 and h 1 . Let α y 1 := y α + (1 -y) δ 0 . For any t ≥ 0 :

It follows from Theorem 2.6 in [START_REF] Collet | Quasi-Stationary Distributions, Probab. and Its Appl[END_REF] that the exit state is independent from the exit time when the initial condition is a QSD, with an exponential law for the exit time. Thus :

With our choice (2.8), i.e. 1-yα yα =

ρα Pα(τ0=τ 0,1,∂ ) ρ0-ρα

, we see that we obtain indeed :

4.12 Proof of Proposition 2.8.2 : ρ α < ρ 0 ∧ ρ 1 for r sufficiently strong Define r 2 , r 3 such that max r(x) < r 3 < r 2 < r(1) ∧ r(0) and the open sets A := r -1 ([0, r 3 )) ⊂ B := r -1 ([0, r 2 )) ⊂ (0, 1) (recall that r is assumed to be continuous). We choose arbitrary t 0 . A classical result on diffusion ensures that there exists ρ > 0 such that :

Then, it implies by the Markov property :

From the Harnack inequality, we know that α (R) has a lower-bounded density on any open set of (0, 1) so that α (R) (A) > 0 and

This proves ρ (R)

for R sufficiently large.

4.13 Proof of Proposition 2.8.3 :

α be the death rate of the QSD for the Wright-Fisher diffusion conditioned not to touch the boundary with r = 0. Since ρ

α to deduce Proposition 2.8.3. By Proposition 2.0.1, for any x ∈ (0, 1) and t ≥ 0 :

and in particular, with the QSD α(R) as initial condition, we deduce ρ

4.14 Proof of Proposition 2.8.4 : concentration towards 0 as γ → 0

Since r is bounded, the probability of the event {t < τ } with r is at most exp( r ∞ t) times the probability with r ≡ 0. If we prove that the latter converges to 0 (as a limit of this parameter γ), it will be the same for the former. We can thus assume without loss of generality that r ≡ 0. We recall (see (4.38)) that for any t ≥ 0 and initial condition 1 -:

and B has the law of a Brownian Motion. Fix some M > 0 ans assume that γ ≤ /(2 M ) and that we are conditionally on the event {sup u≤1/s | B u | ≤ M }. Then, T (∞) < 1/s, since T -1 (1/s) would be well-defined otherwise and would satisfy : X(T -1 (1/s)) ≤ 1 --1 + /2 ≤ -/2 < 0,