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A DEM (Discrete Element Method) model is used to simulate the compaction and sintering of ceramic oxides. The process kinematics are decomposed into loading (double action compaction), unloading, and ejection of the pellet. Interactions between particles and between particles and the die are considered elastoplastic by implementing a model able to tackle large densities. A simplified approach is used in the sintering stage, which focuses on the final part geometry rather than kinetics.

The results are in good agreement with experimental data and FEM simulations from the literature regarding density gradient, elastic spring-back, and final geometry. The simulations show that the friction coefficient between the agglomerates and the die is the primary factor for the density gradient in the pellet. This density gradient induces non-homogeneous sintering, which results in a final geometry with a so-called diabolo effect. It is the first time that DEM reproduces this effect with the advantage of taking explicitly into account the particulate nature of the powder.

Introduction

The finite element method (FEM) has received considerable attention for simulating powder compaction and sintering [START_REF]Proceedings of 2004 Powder Metallurgy World Congress, on CD-ROM[END_REF]. FEM is a numerical tool that allows solving the partial differential equations of the mechanics of a continuous media. Applied to powder forming processes, such as compaction and sintering, FEM uses elastoplastic or elastoviscoplastic models [START_REF] Bathe | Finite Element Method[END_REF] as constitutive equations. These simulations can consider the geometry and boundary conditions, such as pressing conditions and friction between the powder and dies. However, the models implemented in the FEM are derived from the mechanics of continuous media. They do not consider the particulate character of powders directly (i.e., the microstructure of powders and their composition is not considered explicitly). They cannot easily describe fracture phenomena of green compacts because they do not describe rearrangement, fracture of particles, or debonding [START_REF] Bathe | Finite Element Method[END_REF][START_REF] Foo | An experimental and numerical study of the compaction of alumina agglomerates[END_REF]. The complex particulate nature of the powder is generally taken into account by calibrating phenomenological models to experimental data. Therefore, each new powder needs to be characterized, which requires complex instrumented matrix tests performed at different compaction pressures and stress states.

The discrete element method (DEM) is an alternative simulation method that can be used to take into account powders' granular microstructure directly. Initially introduced by Cundall & Strack [START_REF] Burman | A discrete numerical model for granular assemblies[END_REF] for geomaterials, the DEM consists in simulating a granular medium by taking into account each particle, generally represented by a sphere (Figure 1 -a). Contact laws with a normal and a tangential component define the interaction between particles that indent each other (Figure 1 -b). The particle's motion is calculated to satisfy force and moment equilibrium. This method has been used mainly to simulate metallic [START_REF] Shima | A Study of Constitutive Behaviour of Powder Assembly by Particulate Modeling[END_REF][START_REF] Heyliger | Cold plastic compaction of powders by a network model[END_REF][START_REF] Martin | Study of particle rearrangement during powder compaction by the Discrete Element Method[END_REF] , ceramic [START_REF] Pizette | Compaction of aggregated ceramic powders: From contact laws to fracture and yield surfaces[END_REF] and composite powders [START_REF] Skrinjar | Cold compaction of composite powders with size ratio[END_REF][START_REF] Martin | Study of the cold compaction of composite powders by the discrete element method[END_REF]. With DEM, it is possible to simulate the rearrangement and the plastic deformations during cold isostatic and closed die compaction of powders [START_REF] Heyliger | Cold plastic compaction of powders by a network model[END_REF][START_REF] Fleck | On the cold compaction of powders[END_REF], as well as the fracture of agglomerates [START_REF] Moreno-Atanasio | Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy[END_REF].

DEM has also been used to model sintering, taking into account diffusion as well as coalescence [START_REF] Paredes-Goyes | Grain growth in sintering: A discrete element model on large packings[END_REF]. Thus, the DEM is a powerful method to simulate the entire process from compaction to sintering.

Although up to hundreds of thousands of particles can be simulated, the dimensions are too small to represent an industrial part. This explains why most DEM studies focus on a small volume of material and why finite element approaches have been adopted in the last twenty years to model real parts. Some methods propose a micromacro coupling from microscopic DEM simulations to derive macroscopic constitutive relations [START_REF] Vermeer | Continuous and Discontinuous Modelling of Cohesive-Frictional Materials[END_REF].

The computation time can be significantly reduced by using GPU parallelization [START_REF] Radeke | Large-scale powder mixer simulations using massively parallel GPUarchitectures[END_REF]. The computation time can also be reduced by simulating fewer particles that are larger than the size of the real particles. In that context, the present study reports on a method for DEM to simulate a macroscopic compact by considering particle agglomerates instead of crystallites or unit particles. Interactions between the particles are considered elastoplastic. We use this method to simulate the compaction and sintering of uranium oxide powder at a macroscopic scale. A double-action dry pressing has been implemented for the compaction stage, and its process kinematics are decomposed into loading, unloading, and ejection of the pellet. After the compaction, the pellet is sintered at a temperature of 1700°C.

The present study couples with the DEM the simulations of compaction, ejection and sintering to deliver the final shape of an industrial part. This methodology has been employed previously with FEM [xx]. To our best knowledge, this is the first time it is attempted with DEM. The advantage of DEM is that it brings a wealth of information that FEM cannot provide and that it uses constitutive contact laws that explicitly take the granular nature of the powder into account.

Model description

A typical ceramic microstructure is composed of crystallites, aggregates, and agglomerates. The size of these entities depends on the ceramic powder, but typically, crystallite size is in the range of hundreds of nanometers. Porous aggregates made of strongly bonded crystallites are micronic, while agglomerates made of weakly bonded aggregates have a broader range, varying from a few to hundreds of microns (Figure 2). P. Pizette et al. [START_REF] Pizette | Green strength of binder-free ceramics[END_REF] have studied crystallite and aggregate length scales with DEM.

An entire system can be simulated by using the agglomerate length scale without requiring billions of unit particles (as required by the simulation at the crystallites or aggregates scale). In that case, one agglomerate is considered as one single porous particle for DEM. This approach may represent particle deformation and rearrangement well, but it cannot represent agglomerates fracture explicitly. Figure 2 summarizes this approach, which is implemented in dp3D, an in-house code mainly used for material science applications.

In DEM, a contact force law is required for computing the total force applied on each particle. It gives the normal force N as a function of the mutual indentation δ between the two particles (Figure 1b, Figure 3). Forces are shown positive when repulsive. During the loading of a contact, no elastic domain is considered, owing to the weak nature of agglomerates. The plastic loading, is adapted from the high-density model proposed in [START_REF] Harthong | Modeling of high-density compaction of granular materials by the Discrete Element Method[END_REF]. Consider a material characteristic of the agglomerate which uniaxial stress response writes:

𝜎𝜎 = 𝜎𝜎 * 𝜀𝜀 𝑚𝑚 (1) 
where 𝜎𝜎 * is a plastic parameter, 𝜀𝜀 the axial strain and m a hardening parameter. The normal repulsive force (𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ) for two particles, i and j, at time 𝑡𝑡 + 𝑑𝑑𝑡𝑡 is:

𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑡𝑡 + 𝑑𝑑𝑡𝑡) = 𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑡𝑡) + 2𝑆𝑆 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑 (2)
where 𝑆𝑆 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the contact stiffness, which is a sum of two terms, 𝑆𝑆 1 and 𝑆𝑆 2 :

𝑆𝑆 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 2𝜎𝜎 * 𝑅𝑅 * (𝑆𝑆 1 + 𝑆𝑆 2 ) (3) 
where 𝑅𝑅 * is the equivalent radius for particles i and j:

𝑅𝑅 * = � 1 𝑅𝑅 i + 1 𝑅𝑅 j � -1 (4) 
The hardening parameter � 1 𝑚𝑚 �, and the plastic parameter 𝜎𝜎 * , are material parameters that have to be fitted with the experimental density-stress curve: the hardening parameter changes the curvature of the loading curve in Figure 3, and the stress parameter changes its amplitude. When considering a contact between two different materials with plastic parameters 𝜎𝜎 𝑖𝑖 and 𝜎𝜎 𝑖𝑖 , 𝜎𝜎 * writes:

𝜎𝜎 * = 2 1 𝑚𝑚 �𝜎𝜎 𝑖𝑖 -𝑚𝑚 + 𝜎𝜎 𝑖𝑖 -𝑚𝑚 � - 1 𝑚𝑚 (5) 
The stiffness term 𝑆𝑆 1 in Eq. ( 3) is preserved from [START_REF] Harthong | Modeling of high-density compaction of granular materials by the Discrete Element Method[END_REF], and depends on the indentation 𝑑𝑑 at the contact. The term 𝑆𝑆 2 depends on the local relative density, and is adapted to consider porous agglomerates:

𝑆𝑆 2 = 𝛼𝛼 2 (𝑚𝑚) �𝑚𝑚𝑝𝑝𝑚𝑚�0,𝜌𝜌 𝑖𝑖,𝑗𝑗 -𝜌𝜌 0𝑖𝑖,𝑗𝑗 �� 2 (1-𝜌𝜌 𝑖𝑖,𝑗𝑗 ) 𝛽𝛽 2 (6) 
where 𝛼𝛼 2 (𝑚𝑚) is a function of the hardening parameter m [START_REF] Harthong | Modeling of high-density compaction of granular materials by the Discrete Element Method[END_REF], 𝛽𝛽 2 is a parameter that depends on the porosity of the agglomerates, 𝜌𝜌 𝑖𝑖,𝑖𝑖 is the local density around the particles, and 𝜌𝜌 0𝑖𝑖,𝑖𝑖 is the initial local density (before plastic indentation). Note that when 𝜌𝜌 𝑖𝑖,𝑖𝑖 tends to unity, 𝑆𝑆 2 tends to infinity to model incompressibility. The local density 𝜌𝜌 𝑖𝑖,𝑖𝑖 is computed using Voronoi tessellations with the Voro++ package [START_REF] Rycroft | VORO++: A three-dimensional Voronoi cell library in C++[END_REF]. Eq. ( 6) allows some hardening of the particulate material to be taken into account due to the local densification. This is in contrast with standard DEM schemes that only consider the mutual indentation between particles.

Elastic unloading is written by considering an elastic stiffness 𝑆𝑆 𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑝𝑝 :

𝑁𝑁 𝑢𝑢𝑢𝑢𝑝𝑝 = 𝑁𝑁 1 -𝑆𝑆 𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑝𝑝 𝑑𝑑 𝑢𝑢𝑢𝑢𝑝𝑝 (7) 
where 𝑁𝑁 1 is the force at the maximum plastic indentation 𝑑𝑑 1 and 𝑑𝑑 𝑢𝑢𝑢𝑢𝑝𝑝 is the amount of indentation retrieved elastically (𝑑𝑑 𝑢𝑢𝑢𝑢𝑝𝑝 = 𝑑𝑑 1 -𝑑𝑑, Figure 3). The elastic stiffness is modelled by considering that a bond has been formed between the two particles during plastic loading and using the model of Jefferson et al. [START_REF] Pizette | Green strength of binder-free ceramics[END_REF][START_REF] Jefferson | The elastic response of a cohesive aggregate -A discrete element model with coupled particle interaction[END_REF] :

𝑆𝑆 𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑝𝑝 = 𝐸𝐸 1-𝜈𝜈 2 𝑓𝑓 𝑁𝑁 � 𝑝𝑝 𝑏𝑏 𝑅𝑅 * , 𝜈𝜈� 𝑎𝑎 𝑏𝑏 ( 8 
)
where 𝐸𝐸 is the Young's Modulus, 𝜈𝜈 the Poisson's ratio, and 𝑎𝑎 𝑏𝑏 the radius of the bond formed during the plastic loading (𝑎𝑎 𝑏𝑏 2 = 2𝑅𝑅 * 𝑑𝑑 1 ).

The elastic unloading thus depends on the elastic parameters of the agglomerates and on the size 𝑎𝑎 𝑏𝑏 of the bond. In other words, the elastic stiffness of an unloading contact depends on its plastic history. The function 𝑓𝑓 𝑁𝑁 has been derived by Jefferson et al. [START_REF] Jefferson | The elastic response of a cohesive aggregate -A discrete element model with coupled particle interaction[END_REF] and typically increases from 1 to 1.3 as the relative size 𝑝𝑝 𝑏𝑏 𝑅𝑅 * increases. The plastic loading stiffness is capped by the unloading stiffness �𝑆𝑆 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = min�𝑆𝑆 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑆𝑆 𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑝𝑝 �� to ensure that the plastic response is never stiffer than the elastic one.

The bond formed during plastic loading may sustain tensile forces as sketched in Figure 3. The force necessary to break this bond, 𝑁𝑁 𝑚𝑚𝑝𝑝𝑚𝑚 , depends on how much the agglomerates indented each other:

𝑁𝑁 𝑚𝑚𝑝𝑝𝑚𝑚 = 𝜎𝜎 𝑁𝑁 𝜋𝜋𝑎𝑎 𝑏𝑏 2 (9) 
where 𝜎𝜎 𝑁𝑁 is the tensile strength, to be fitted with experimental data. For the time being, no shear strength is introduced in this model. Bonds only fracture in tension. When the tensile force 𝑁𝑁 reaches 𝑁𝑁 𝑚𝑚𝑝𝑝𝑚𝑚 the bond breaks and no force is transmitted anymore. If the contact resumes, it will only transmit repulsive force when 𝑑𝑑 𝑢𝑢𝑢𝑢𝑝𝑝 = 𝑑𝑑 1 -𝑑𝑑 < 𝑑𝑑 𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 , with 𝑑𝑑 𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 given by:

𝑑𝑑 𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 = 𝑁𝑁 1 𝑆𝑆 𝑖𝑖𝑗𝑗 𝑢𝑢𝑢𝑢𝑢𝑢 (10) 
Once 𝑑𝑑 𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 is reached during reloading, the contact reloads elastically following the 𝑁𝑁 𝑢𝑢𝑢𝑢𝑝𝑝 branch in Figure 3, until the indentation increases above 𝑑𝑑 1 and the contact re-plastifies.

The tangential force model is composed by a sticking mode and a sliding mode.

The sticking mode uses the Hertz-Mindlin model while during the sliding mode, the tangential force is limited by Coulomb friction. Two friction coefficients are used: the friction between agglomerates (𝜇𝜇 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝. ) and the friction between the agglomerates and the die (𝜇𝜇 die ). The DEM literature has already studied the effects of these friction coefficient on the powder response [xx,yy]. In particular, their role on the fluidity (the ratio between the radial and axial stresses) and on the density gradient in the compact have been reported.

The Bouvard Pan model [START_REF] Bouvard | Deformation of interparticle necks by diffusioncontrolled creep[END_REF][START_REF] Pan | A model for the sintering of spherical particles of different sizes by solid state diffusion[END_REF] is used for the sintering stage. This model takes into account grain boundary and surface diffusion but does not consider grain growth.

The details of the DEM model implementation of the sintering model can be found in [START_REF] Martin | The effect of a substrate on the sintering of constrained films[END_REF]. In short, the model introduces a normal force 𝑁𝑁 𝑝𝑝 :

𝑁𝑁 𝑝𝑝 = 𝜋𝜋𝑝𝑝 𝑠𝑠 4 8Δ 𝑏𝑏 𝑑𝑑𝑑𝑑 𝑑𝑑𝑝𝑝 - 9 4 𝜋𝜋𝑅𝑅 * 𝛾𝛾 𝑝𝑝 (11) 
where 𝑎𝑎 𝑝𝑝 is the contact radius, Δ 𝑏𝑏 is a diffusion parameter (grain boundary limited) and 𝛾𝛾 𝑝𝑝 is the surface energy. The first term on the RHS of eqn [START_REF] Martin | Study of the cold compaction of composite powders by the discrete element method[END_REF] is the viscous response of the contact while the second term is always tensile and accounts for the sintering shrinkage.

Here, because we model sintering at the scale of agglomerates that are much larger than the actual grains, the kinetics of sintering are not correct (we use alumina material parameters that can be found in [START_REF] Paredes-Goyes | Grain growth in sintering: A discrete element model on large packings[END_REF]). However, the relative densification kinetics (regions of large relative density shrink slower than regions of small relative density) should be correctly rendered. Thus, the final geometry of the sintered compact should be appropriately modelled.

Process kinematics

A uranium oxide powder was chosen to simulate the compaction and sintering process.

The geometric relative density in the simulation (as if indented spherical discrete elements were dense) is multiplied by a factor 0.45 to obtain the relative density of the compact, thus considering the porosity of agglomerates. The 0.45 value is close to the value (0.41) of density measured by mercury porosimetry by Ablitzer [xx]. It has also the advantage of leading to an initial geometrical density (0.4) with a realistic coordination number ().

The ceramic powder with an initial relative density of 0.18 and 40 000 particles representing agglomerates is introduced into a cylinder die of approximately 10 mm in diameter and 40 mm in height. Figure 4 summarizes the process kinematics. The powder is pressed by two flat punches (double-action dry pressing, same force on the upper and lower punch) up to an axial stress of 600 MPa [START_REF]Proceedings of 2004 Powder Metallurgy World Congress, on CD-ROM[END_REF]. The upper punch is then unloaded until the axial stress reaches 50 MPa (2). This accompanying stress is maintained during ejection, during which the cylinder slides out of the die (3). Finally, the upper punch is completely unloaded (4).

Results and discussion

Compaction

A very stiff material is considered for the die (typically tungsten carbide) with a very large value for σ 𝑑𝑑𝑖𝑖𝑑𝑑 to ensure that contact forces between agglomerates and the die are dictated by the soft agglomerates (Eq. ( 5)). The Young's modulus of the die is set to 550 GPa, which is typical of tungsten carbide. Table 1 shows the material properties used for the compaction of uranium oxide. Each material parameter can be fitted using a given stage of the compaction process. The 𝑚𝑚 and σ 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝. parameters (eqn ( 1)) are fitted using the compaction curve as they essentially control the axial stress response. The 𝛽𝛽 2 parameter (eqn ( 6)) controls the asymptotic increase of the stress when the powder approaches full density. It is also fitted using the axial stress response. 𝐸𝐸 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝. and σ 𝑁𝑁 (eqns ( 8) and ( 9)) are fitted using the experimentally measured axial spring-back of the compact after ejection. The friction coefficients are fitted using the ratio between the radial and axial stresses during compaction (experimentally measured) and using the density gradient in the compact (obtained from FEM simulations [START_REF] Alvain | modélisation et simulation numérique de la mise en forme de pièces par compression et frittage de poudres dures[END_REF]), as detailed below.

After compaction, σ 𝑁𝑁 evolves and a very large value is adopted to better fit with experimental data.

The axial and radial stress evolution are shown in Figure 5 for the loading stage.

The experimental data originates from [START_REF] Pizette | Compaction of aggregated ceramic powders: From contact laws to fracture and yield surfaces[END_REF]. A good fit is obtained with the values of m, 𝛽𝛽 2 and σ 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝. of table 1. Because we have access to both the axial and radial responses of the powder, we are able to fit the friction coefficient in the powder (μ_(aggl.)). Although less good, the fit for the radial stress is reasonable. The powder fluidity (the ratio between radial and axial stresses) is of approximately 0.5, which is typical of ceramic powders.

The friction coefficient in the powder (𝜇𝜇 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝. ) is the main parameter that controls fluidity.

Figure 6 shows that a larger friction coefficient is associated with a smaller fluidity. This may indirectly model the performance of an internal lubricant or of the roughness of agglomerate surface.

DEM simulations give access to the density gradient after the loading stage. For double action pressing, no experimental data is available. Thus, the density gradient of the pellet cross-section is compared with FEM simulations [START_REF] Alvain | modélisation et simulation numérique de la mise en forme de pièces par compression et frittage de poudres dures[END_REF] in Figure 7. Although DEM simulations give a 3D information, we present a 2D map to compare with axisymmetric FEM simulations. DEM simulation shows a good qualitative agreement with FEM simulation. For both methods, a larger density is predicted in the corners of the cylindrical pellet and a smaller density at the radial extremity at mid-height. This gradient is mainly dictated by the friction between the powder and the cylinder die. Figure 8 indicates that increasing 𝜇𝜇 die leads to a more pronounced density gradient. The value of 𝜇𝜇 die is a measure of the performance of the die lubrication. We have observed that after loading, the density gradient continues to evolve slightly during unloading and ejection.

Elastic energy has been stored in the pellet during compaction. The DEM elastic unloading model (Figure 3, Eqs. (7-8)) allows the axial and radial spring-back to be simulated. The amount of spring-back is essentially affected by process kinematics (axial compaction stress) and material parameters (𝐸𝐸 𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝. and σ 𝑁𝑁 in table 1). We have observed that after pellet ejection, axial and radial elastic spring-backs are 4% and 1%, respectively.

These results are in good agreement with experimental data. The DEM simulation shows also that the pellet diameter varies slightly with the pellet height and that this variation is directly linked with the density gradient of the pellet. Experimental data could not detect or confirm this slight variation of 25 microns. Note that this diameter variation is in qualitative agreement with FEM.

Sintering

The green compact obtained from DEM is sintered up to a relative density close to unity. The final sintered geometry strongly depends on the density gradient. The sintering is slower in the regions where the local density is high and is faster in the regions where the local density is low, as the driving force for sintering scales with the remaining porosity. It generates an inhomogeneous final geometry in the pellet, the so-called diabolo effect: it densifies more in the middle of the pellet than in the top and bottom. This diabolo effect's amplitude is 40 µm for the DEM simulation and 35 µm for the experimental data.

Even though alumina thermal properties were used for the sintering process, the DEM simulation presents satisfactory results regarding the final pellet geometry. After sintering, DEM simulation indicates that a slight density gradient is still present in the pellet. This result could not be corroborated with experimental data.

Conclusion

A new DEM model was used to simulate the compaction and sintering of ceramic powders at the scale of a whole part. DEM has been chosen because it can directly take into account the powder's granular microstructure, simulating the rearrangement and the plastic deformation of agglomerates. The model chosen considers an agglomerate as a single discrete element, reducing the total number of particles to be simulated and decreasing the computational cost. Results demonstrate that an entire system can be simulated using only agglomerates without requiring billions of particles. A good agreement with experimental data and FEM simulations regarding stress-density curve, density gradient, elastic spring-back, and final geometry is obtained. As classically observed experimentally [START_REF] Lou | The Effects of Lubrication on the Density Gradient of Titanium Powder Compacts[END_REF][START_REF] Lemieux | Benefits of die wall lubrication for powder compaction[END_REF], the DEM simulations show that the friction coefficient between the powder and the die is the primary factor for the density gradient in the pellet.

DEM simulations indicate the presence of a diabolo-effect right after ejection, and it occurs due to a non-homogenous spring-back caused by the density gradient. During the sintering process, this density gradient induces non-homogeneous densification, which results in a final geometry with a so-called diabolo effect.

This work is a proof of concept for DEM to simulate correctly the evolution of a ceramic powder from the compaction stage up to the sintered stage at the length scale of an industrial part. The advantage of DEM is that a more realistic representation of the powder is modelled. In particular, DEM could be used to model composites, to investigate the effects of the initial density (before compaction) or of size distribution. Still, it should be clear that the material parameters used in the simulations need some fitting and that an experimental characterization is still necessary.
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 3 Figure 3 -Evolution of a contact between two agglomerates using an elastoplastic model. A contact may be plastic if the overlap increases through time and is irreversible or elastic if unloading arises. A contact may snap if this overlap decreases further than a critical value. Note how the unloading stiffness increases as the plastic indentation increases.
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 4 Figure 4 -a) Process kinematics of the compaction process implemented for DEM simulations, b) DEM compact before compaction, after compaction and after sintering.
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 5 Figure 5 -Axial and radial stress during load for experimental data [8] and DEM simulation of powder A.
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 6 Figure 6 -Influence of agglomerates' friction coefficient µaggl.. Increasing the value of this material parameter results in a less fluid powder.

Figure 7 -

 7 Figure7-Density gradient of the pellet cross-section after loading for FEM (adapted from[START_REF] Alvain | modélisation et simulation numérique de la mise en forme de pièces par compression et frittage de poudres dures[END_REF]) and DEM simulations.
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 8 Figure 8 -2D density gradient of a 3D compact: influence of the friction coefficient between agglomerates and the cylinder die µdie.