
HAL Id: hal-04283100
https://hal.science/hal-04283100

Submitted on 13 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Sound transmission through a thin baffled plate:
validation of a light fluid approximation with numerical

and experimental results.
Paul J.T. Filippi, Pierre-Olivier Mattei, Cédric Maury, A. H. P. van Der

Burgh, C. J. M. de Jong

To cite this version:
Paul J.T. Filippi, Pierre-Olivier Mattei, Cédric Maury, A. H. P. van Der Burgh, C. J. M. de Jong.
Sound transmission through a thin baffled plate: validation of a light fluid approximation with nu-
merical and experimental results.. Journal of Sound and Vibration, 2000, 229 (5), pp.1157-1169.
�10.1006/jsvi.1999.2595�. �hal-04283100�

https://hal.science/hal-04283100
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


The response of a thin elastic rectangular ba%ed plate embedded in a gas and
excited by an incident acoustic "eld is studied theoretically and experimentally.
The model equations are analyzed by a perturbation method based on the
expansion of the solution in eigenmodes and a small parameter. The small
parameter expresses that the gas has a density which is small with respect to the
density of the plate. The approximation obtained, the so-called light -uid
approximation, is compared with the numerical solution of the exact boundary
integral equations equivalent to the initial system of partial di!erential equations.
Finally, the predictions given by the light #uid approximation are compared with
experimental results. These two comparisons show the e$ciency and the accuracy
of the method.

1. INTRODUCTION

Problems of sound radiation or transmission by vibrating structures is one of the
oldest problems that acousticians have tried to solve. Several very useful books,
providing either analytical solutions of canonic problems or developing analytical
and numerical methods have been published during the past 30 years. The oldest
one to mention is due to Junger and Feit [1], which was published in 1972 by the
Massachusetts Institute of Technology. Then a couple of books appeared during
the 1980s [2,3] which proposed a more modern approach of vibro-acoustics: in
particular, numerical methods ("nite elements, boundary element methods, the
statistical energy analysis method, etc) are widely developed. The most recent
textbook has been published at the end of 1998 [4]: in our opinion, one of its main
originalities is the use of functional analysis which is always required for a rigorous
mathematical statement of mechanics problems.
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A very fundamental review of the various problems raised by the coupling
between a vibrating structure and a surrounding #uid is due to Crighton [5]. For
a thin plate, the author made use of the following two intrinsic units: the inverse of
the coincidence frequency (time unit) and the sound wavelength in the #uid at this
frequency (length unit). The corresponding equations were called non-dimensional

equations: we would prefer reduced equations, instead, because the number of
independent variables on which the physical phenomenon depends is reduced to its
minimum. The author mentioned that the reduced coupling parameter e@*the ratio
of the #uid density to the plate surface mass, both expressed in this units system*is
dimensionless and less than unity for any data of practical interest: he suggested
that this could be advantageous for developing numerical approximations. We do
not totally agree with this conclusion.

In the present paper, we look for a numerical approximation of the solution as
a Taylor-like series in terms of a small parameter e truncated at the "rst order term,
which is the ratio of the #uid density to the plate surface mass, both expressed in the
same coherent system of units. There is a classical controversy on this point: it is
often claimed that this parameter e has a dimension*the inverse of a length*while
e@ is dimensionless. In fact, the parameter that we use is dimensionless too. Indeed,
the variables which appear in the mathematical equations which model a physical
phenomenon have two di!erent interpretations. The "rst one is that they represent
the physical quantities and, thus, they have a dimension. If quantitative results are
looked at, a system of units must be adopted: the choice of a coherent system of
units*in the present case, a system based on a length unit, a mass unit and a time
unit*leads to the same equations for the measures of the physical quantities in that
units system. Thus, the corresponding equations are written and solved for
dimensionless variables. As a conclusion, we can say that the only di!erence
between the reduced equations and the general form used here is the choice of the
system of units.

A second remark is that changing the units system has no advantage. If the
Taylor-like series in terms of e@ truncated at the "rst order term provides an
approximation with a relative error of a%, the Taylor-like series in terms of
e truncated at the "rst order term has exactly the same relative accuracy, whatever
the system of units could be: this is due to the fact that the change of units system is
a linear operation.

Finally, we will mention a paper by Norris et al. [6] in which a method much
similar to ours is adopted.

In many situations of environmental noise pollution, the physical phenomenon
involved is the radiation of an acoustic "eld by a vibrating structure embedded in
air: that is, in a #uid with a density small compared to the structure one. This is the
case in buildings where noise is transmitted through a solid structure (brick wall,
glass, wood doors, etc.) which separates two rooms. Another example is the #ow
noise, inside a high-speed vehicle (car, train, plane) generated by the vibrations of its
hull which is excited by a #ow-induced external #uctuating wall pressure.

It is well known that the dynamic behaviour of a structure embedded in a gas is
very close to the corresponding in vacuo one. Thus, in most situations, the presence
of the surrounding gas is a small perturbating factor. The main in#uence of this
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factor is an increase of the damping of the in vacuo resonance modes of the
structure. For the prediction of this vibro-acoustic behaviour, it is possible to take
advantage of the existence of a small factor by using a perturbation method.

In a recent paper [7], the general problem of a #uid-loaded plate has been
studied in some detail. Mainly three types of representation of solutions were
considered: boundary integral expressions, #uid-loaded eigenmode series
representation and resonance mode series expansion. For each of the corresponding
equations, a perturbation method has been developed. A rigorous presentation of
the eigenmode and resonance mode approaches, mathematically justi"ed and with
a physical interpretation was developed in reference [8] for the case of a
three-dimensional elastic body. It is assumed here that these results remain true for
the thin-plate approximation of the elasticity equations.

In the present paper, we consider the eigenmode series representation of the
solution. In section 2, the problem is stated, the eigenmode series representation is
brie#y recalled and the perturbation method which gives the #uid-loaded
eigenmodes and eigenfrequencies is summarized. The section 3 is devoted to the
comparison between the light #uid approximation and the numerical solution of
the exact boundary integral equations. The section 4 is devoted to the comparison
of the perturbation approximation with experimental results: the experiments have
been conducted on a stainless-steel plate mounted in a wall which separates two
large-size anechomK c rooms.

2. STATEMENT OF THE PROBLEM

Consider a thin elastic plate, with thickness h, occupying the domain R of the
plane z"0 in a three-dimensional space. Along its boundary LR, an external unit
normal vector n can be de"ned almost everywhere. The ba%e, which occupies the
complement R@ of RM "RXLR, is perfectly rigid. The plate thickness is negligible
compared to the wavelengths involved. The two half-spaces X`(z'0) and
X~(z(0) contain a perfect gas.

The mechanical characteristics of the plate are: E"Young's modulus, l"the
Poisson ratio, D"Eh3/12(1!l2)"rigidity, k"plate mass per unit area. The
plate is assumed to be clamped along LR. The damping of the plate material can
easily be introduced by an imaginary part in the Young's modulus: this is a correct
modelization of elastic waves absorption in many standard materials, in particular
in metals for which the relative value of the Young's modulus imaginary part is
O(10~4). The #uid is characterized by a density k

0
and a sound speed c

0
. The

system is excited by a harmonic acoustic source, S~(Q )e~*ut, located in X~.

2.1. GOVERNING EQUATIONS

Let u (M)"u (x, y) be the plate displacement, positive in the z'0 direction; and
let p`(Q)"p`(x, y, z) and p~(Q)"p~ (x, y, z) denote the acoustic pressure "elds,
respectively, in X` and X~. The pressure step P(Q)"P(x, y) across the plate is
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de"ned by

P(x, y)"lim
m?=

[p`(x, y, n)!p~ (x, y, !n), n'0.

The functions u(M), p` (Q) and p~ (Q) satisfy the following system of equations:

(D#k2)p`(Q)"0, Q3X`,

(D#k2)p~(Q)"S~(Q), Q3X~,

(DD2!ku2)u(M)#P(M)"0, M3R,

L
z
p`(M)"L

z
p~(M)"G

u2k
0
u (M)

0,

M3R,

M3R@,

u(M)"Lnu"0, M3LR (1)

and a Sommerfeld condition on p` and p~.

2.2. GREEN'S REPRESENTATION OF THE PRESSURE FIELDS AND THE

INTEGRO-DIFFERENTIAL EQUATION FOR THE PLATE DISPLACEMENT

Let G
u
(Q, Q@) be the Green function of the Helmholtz equation which satis"es

a homogeneous Neumann condition on z"0 and the Sommerfeld condition at
in"nity; that is

G
u
(Q, Q@)"!

e*kr (Q,Q{)

4nr (Q, Q@)
!

e*kr (Q,Q{~)

4nr (Q, Q@
~

)
,

where the co-ordinates of the points Q@ and Q@
~

are, respectively, (x@, y@, z@) and
(x@, y@, !z@).

The pressure "elds can be written as

p`(Q)"u2k
0 PR

u (M@)G
u
(Q, M@) dp(M@), Q3X`,

p~(Q)"p~
0

(Q)!u2k
0 PR

u(M@ )G
u
(Q, M@) dp (M@), Q3X~,

with

p~
0

(Q)"PX~

G
u
(Q, Q@)S~ (Q@) dQ@. (2)
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By introducing equation (2) into the third of equations (1), one gets the well-known
integro-di!erential equation for the plate displacement:

(DD2!ku2)u(M)#2k
0
u2 PR

u(M@)G
u
(M, M@) dp(M@)"p~

0
(Q), M3R (3)

with the boundary conditions of clamping. As done in reference [7], this equation
can be replaced by its weak form (energy form), i.e.,

a (u, v)!ku2M(u, v)!eb
u
(u, v)N"Sp~

0
, vT (4)

with

e"2(k
0
/k)

Su, vT"PR

u (M)v*(M) dp(M),

a (u, v)"D PR GDuDv*#(1!v) C2
L2u

LxLy

L2v*

LxLy
!

L2u

Lx2

L2v*

Ly2
!

L2u

Ly2

L2v*

Lx2 DH dp(M)

b
u
(u, v)"PR PR

u(M)G
u
(M, M@)v*(M@) dp (M) dp (M@).

Here v(M) is an appropriate test function, and v* (M) is its complex conjugate.
One can recall that if v is replaced by u, the "rst integral is proportional to the
kinetic energy of the plate, the second one is its potential energy, and the third one
is proportional to the radiated energy.

The de"nition of the appropriate test function space is classical (see any
elementary textbook on functional analysis or reference [4]). Simply recall that the
functions v must have the same regularity as the plate displacement u and satisfy the
same boundary conditions: the most classical set of test functions is generated by
the in vacuo resonance modes of the plate.

3. EIGENMODE SERIES REPRESENTATION OF THE SOLUTION

AND LIGHT FLUID APPROXIMATION

3.1. REPRESENTATION OF THE SOLUTION AS A FLUID-LOADED PLATE EIGENMODE SERIES

The eigenmodes ;
n
and eigenvalues K

n
of the #uid-loaded plate are de"ned by

the eigenvalue problem

a(;
n
, v)"K

n
MS;

n
, vT!eb

u
(;

n
, v)N, (5)
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where ;
n is sought in a suitable functional space: in particular, every function ; of 

this space satis"es the boundary conditions of clamping

;(M)"Ln; (M)"0, M3R.

It can be shown that the ;
n

satisfy the following orthogonality relationships:

S;
n
, ;*

m
T!eb

u
(;

n
, ;*

m
)"0 for mOn,

or, equivalently

a(;
n
,;*

m
)"0 for mOn.

A pressure "eld can be associated with each eigenmode:

p
n
(Q)"u2k

0 PR

;
n
(M@)G

u
(Q, M@) dp(M@), Q3X

$. (6)

For simplicity, it is assumed that only simple eigenvalues are present. The response
of the system can, thus, be expanded into the following series of ;

n
and p

n
:

u (M)"
=
+
n/1

K
n

K
n
!ku2

Sp~
0

,;*
n
T

a(;
n
, ;*

n
)
;
n
(M), M3R,

p`(Q)"
=
+
n/1

K
n

K
n
!ku2

Sp~
0

,;*
n
T

a(;
n
,;*

n
)
p
n
(Q) , Q3X`,

p~(Q)"p~
0

(Q)!
=
+
n/1

K
n

K
n
!ku2

Sp~
0

,;*
n
T

a(;
n
,;*

n
)
p
n
(Q), Q3X~, (7)

These series are de"ned for any real angular frequency u, because the eigenvalues
K

n
have a non-zero imaginary part. When an eigenvalue has a multiplicity order

equal to or greater than 2, the modi"cation of the former formulas is performed in
the classical way (see, for example, reference [9]).

3.2. LIGHT FLUID APPROXIMATION OF THE EIGENMODE SERIES

Because the #uid is a gas, the ratio e"2k
0
/k is, in general, a small parameter,

and an appropriate perturbation method can be used. The eigenvalues and
eigenmodes are expanded with respect to e: it is hoped that the sum of the "rst two
terms (zero and "rst orders) provide a good approximation. The authors have
followed the method developed in reference [10] called the Rayleigh}SchroK dinger

method by Nayfeh. An approach to the perturbation methods, much similar to
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Nayfeh's one, is presented in reference [11] where the formalism of functional
analysis is emphasized.

Let us brie#y recall the basic principle. The eigenvalues K
n
and the eigenmodes

;
n
are expanded as follows:

;
n
";0

n
#e;1

n
#e2;2

n
#2 K

n
"K0

n
#eK1

n
#e2K2

n
#2 .

This expansion is introduced into equation (5) and the terms with like power of
e are made equal. This leads to a countable set of equations, the zero and "rst order
ones being

a(;0
n
, v)"K0

n
S;0

n
, vT,

a (;1
n
, v)"K1

n
S;0

n
, vT!K0

n
b
u
(;0

n
, v)#K0

n
S;1

n
, vT. (8)

The solution of the zeroth order equation is the nth in vacuo eigenvalue and
eigenmode. By setting v";0*

n
in the second equation (8), it easily follows that the

"rst order equation leads to

K1
n
"K0

n

b
u
(;0

n
, ;0*

n
)

S;0
n
, ;0*

n
T

"K0
n

:R :R;0
n
(M)G

u
(M, M@);0

n
(M@) dp(M) dp (M@)

:R;0
n
(M)2 dp(M)

,

(9)

;1
n
(M)"!

=
+

q/1, qOn

K0
n

K0
q
!K0

n

b
u
(;0

n
,;0*

q
)

S;0
q
,;0*

q
T
;0

q
(M)

"!
=
+

q/1, qOn

K0
n

K0
q
!K0

n

:R :R;0
n
(M)G

u
(M, M@);0

q
(M@) dp(M) dp(M@)

:R;0
q
(M)2 dp(M)

;0
q
(M).

(9a)

The corresponding light #uid approximation of the system response is given by

u(M)K
=
+
n/1

K0
n
#eK1

n
K0

n
#eK1

n
!ku2

Sp~
0

,;0*
n

#e;1*
n

T
a(;0

n
#e;1

n
,;0*

n
#e;1*

n
)
[;0

n
(M)#e;1

n
(M)], (10)

p`(Q)K
=
+
n/1

K0
n
#eK1

n
K0

n
#eK1

n
!ku2

Sp~
0

,;0*
n

#e;1*
n

T
a (;0

n
#e;1

n
,;0*

n
#e;1*

n
)
pL
n
(M),

p~(Q)Kp~
0

(Q)!
=
+
n/1

K0
n
#eK1

n
K0

n
#eK1

n
!ku2

Sp~
0

,;0*
n

#e;1*
n

T
a (;0

n
#e;1

n
,;0*

n
#e;1*

n
)
pL
n
(M), (10a)

with

pL
n
(M)"u2k

0 PR

[;0
n
(M@)#e;1

n
(M@)]G

u
(M, M@) dp (M@).
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This result can be compared with the type of approximation*outer and
inner expansions*which is developed in reference [6]. Away from any in vacuo

resonance frequency of the plate, e can be made equal to 0 in expressions (10) and (10a),
and one obtains the "rst two terms of the outer expansion. If e is made equal to 0,
these expressions are not de"ned at each in vacuo resonance frequency of the plate,
as is the outer expansion of the cited article. In the neighborhood of in vacuo

resonance frequency of the plate, these expressions correspond to the inner
expansion.

Let us assume now that there exists one in vacuo eigenvalue with multiplicity
order 2: for example K

r
"K

r`1
. The corresponding eigenmodes ;

r
and ;

r`1
are

independent functions which can be assumed to be orthogonal. Upon using
the perturbation expansions of these eigenmodes and two di!erent perturbation
expansions of the double eigenvalue, it appears that equations (8) stand for M;

r
, K

r
N

and M;
r`1

, K
r`1

N. As a consequence, equalities (9) and (9a) are still valid, but the
correcting terms K1

r
and K1

r`1
are a priori di!erent. Expressions (10) and (10a)

remain unchanged.
It must be mentioned that this approximation is valid under restrictive

conditions: the "rst one is that the parameter e is small compared to unity
(e(0)4 m~1 seems quite correct; it is less obvious to give a criterium in reduced
units). A second condition of validity is that the driving frequency must be away
from the critical frequency (frequency for which the wavenumber in the plate is
equal to the wavenumber in the #uid). In reference [7] it was suggested that the
validity conditions of the light #uid approximation do not depend on the plate
geometry and/or on the boundary conditions, and are the same for a bounded or an
unbounded plate. If this assumption is adopted, the validity conditions to account
for are those which apply for the simple situation of an in"nite plate.

4. EFFICIENCY OF THE LIGHT FLUID APPROXIMATION

A computer program has been developed for the case of a rectangular clamped
ba%ed plate [12]. The in vacuo eigenfrequencies and eigenmodes used in the light
#uid approximation are calculated by Warburton's method [13].

The accuracy and e$ciency of the light #uid approximation is validated in two
di!erent ways: in both cases, the system is excited by an incident spherical wave. In
the "rst case, one compares the approximate sound level attenuation as obtained
by the light #uid approximation with the numerical solution of the exact equations.
In the second case, the approximate sound level attenuation is compared with
experimental results.

4.1. COMPARISON BETWEEN THE LIGHT FLUID APPROXIMATION AND THE NUMERICAL

SOLUTION OF THE EXACT EQUATIONS

The exact equations are solved by the method proposed in reference [14]. The
system of partial di!erential equations is transformed into a system of boundary
integral equations for the plate displacement u, the pressure step P and two-layer
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Figure 1. Comparison between the light #uid approximate transfer function (} ) }e} ) }) and the
&&exact'' one (**): steel plate with thickness 2 mm, occupying R"(!0)77 m(x(0)77m,
!0)50 m(y(0)50 m) in the plane z"0; source at x"0, y"!1)3 m, z"!7)3 m; "rst
&&microphone'' at x"0, y"0, z"!0)5 m; second &&microphone'' at x"0, y"0, z"0)25 m.

densities along LR to account for the boundary conditions. The unknown functions
are approximated by truncated series of Techebyche! polynomials. The coe$cients
are solutions of a collocation system of linear algebraic equations which is
equivalent to a Ritz}Galerkin system.

The plate material has the following characteristics: E"2)1]1011 Pa, l"0)33,
k"15)6 kg/m2. The #uid physical properties are c

0
"340 m/s, k

0
"1)29 kg/m3.

The wavelength at the coincidence frequency is j
c
"0)0586 m.

The plate dimensions are: (!0)77 m(x(0)77 m, !0)55 m(y(0)55 m); in
reduced units, one has: (!13)14j

c
(xN (13)14j

c
, !9)386j

c
(yN (9)386j

c
).

The coupling parameter is equal to 0)165 m~1, or, in reduced units, to
0)0970 j~1

c
. The point source is located at (x"0, y"!1)3 m, z"!7)3 m). The

di!erence between the sound levels at points (x"0 m, y"0 m, z"0)25 m) and at
(x"0 m, y"0 m, z"!0)5 m) is calculated by both programs. The results are
presented in Figure 1.

The frequency step is 1 Hz in the regular parts of the curves and 0)1 Hz around
the peaks. The agreement between the two curves is excellent: the relative di!erence
between resonance frequencies is O(10~3) and the level di!erence is less than 1 dB
(let us recall that the relative accuracy of Warburton's approximation of the
resonance frequencies is O(10~3)). Other calculations have been conducted for
various examples and show a similar agreement.
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4.2. COMPARISON BETWEEN THE LIGHT FLUID PREDICTIONS AND EXPERIMENT

The experiment has been conducted in the twin anechoic rooms of the Labora-
toire de MeH canique et d'Acoustique. A large anechoic room is connected to
a smaller semi-anechoic room by an aperture in which the plate is clamped. The
wall between the two rooms is bare on the semi-anechoic side (almost perfectly rigid
surface) and covered with glass-wool wedges on the other side (almost perfectly
absorbent ba%e). The sound source is located in the semi-anechoic room. Thus, the
experimental conditions are somewhat di!erent from the model problem of a per-
fectly rigid ba%e on both sides. But it can easily be seen analytically that the
transmitted sound "eld close to the central part of the plate is not very much
in#uenced by the absorbing properties of the ba%e.

Indeed, the transmitted pressure "eld has the following Green's representation,

p`(Q)"u2k
0 PR

u (M@)G
u
(Q, M@) dp(M@)#PR@

L
z{
p(M@)G

u
(Q, M@) dp (M@),

where the function L
z{
p (M@) is determined by a boundary integral equation express-

ing, for example, that a Robin condition is satis"ed along R@:

L
z{
p(M)#

ik

f PR@
L
z{
p(M@)G

u
(Q, M@ ) dp(M@)"!

ik

f
u2k

0 PR

u (M@)G
u
(Q, M@) dp(M@).

The "rst term in the representation of p`(M) can be considered as an incident
"eld, the source being the vibrating plate. The second term is a di!racted "eld, the
incident "eld being the plate radiation: it corresponds to a single-layer potential
with a source lying on the ba%e. As a consequence, close to the plate (energy
source), the "rst term must be predominant, at least because the secondary source
corresponding to the second term lies in the exterior of the plate. Furthermore, the
former boundary integral equation shows that this term is a secondary radiation:
the function L

z{
p (M@) can be calculated by a classical convergent iterative procedure

which leads to L
z{
p(M@)"0 as zero order approximation. This conclusion is, of

course, independent of the #uid density.
The experimental plate is made of stainless steel with the dimensions used in the

former subsection. Its thickness has been measured at more than 25 points and
a mean value h"0)0019 m has been deduced (the thickness #uctuations are about
$10~4 m).

The rigidity has been determined experimentally by the following procedure. The
"rst 10 resonance frequencies of a circular plate with free boundary are measured
and the rigidity is adjusted to get the best "t with the theoretical ones: this leads to
D"122 N]m. Practically, the resonance frequencies of the circular plate are
measured in air. Nevertheless, they are considered as equal to the in vacuo ones,
because the main in#uence of the air embedding is the damping of the resonances,
the shifting of the real part being a few percent (much less than the error due to the
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Figure 2. Comparison between the measured transfer function (**) and its light -uid approxima-
tion (} ) } ) }).

Figure 3. Comparison between the measured mean (third octaves) transfer function and its light
-uid approximation K.

lack of the material isotropy or the thickness #uctuations). The Poisson ratio has
been taken equal to 0)33.

The sound source is located at (x"0)26 m, y"!0)17 m, z"!3)0 m); a "rst
microphone, which is located at (x"!0)26 m, y"!0)17 m, z"!0)25 m), records
the sum of the incident and re#ected "elds; a second microphone, which is located
at (x"!0)26 m, y"!0)17 m, z"0)25 m), records the transmitted "eld.

The transfer function between the second and the "rst microphones are measured
and computed as functions of the frequency. Figure 2 shows the result obtained
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with a frequency step of 1 Hz and Figure 3 presents a third-octave mean transfer 
function.

5. CONCLUSION AND FINAL REMARKS

The comparison between the light #uid approximation and the experimental
results shows the e$ciency of this theoretical approach. The "rst two sources of
error in the numerical model are the non-isotropy and the thickness variations of
the plate. A third source is that the plate is not an absolutely plane surface: it is, in
fact, a very shallow shell (the central de#ection is about 1 cm), with boundaries
slightly constrained. These discrepancies between the theoretical model and the
experimental device can explain the shifts between the resonance frequencies. The
resonance peaks of the computed curve are, in general, sharper and higher than the
experimental ones: this is due to the fact that the stainless steel has been considered
as perfectly elastic. If a small damping is introduced (for example by using a
complex Young's modulus E(1#ie) with 10~4(e(10~3) the peaks levels are
much reduced. But, for this particular experiment, it does not seem very useful to
work out a much more accurate theoretical modelling; indeed, from a practical
point of view, the most signi"cant acoustical properties of the plate are described by
its third-octave mean response which is not very much a!ected by all these
modelling errors.

In the present work, the light #uid approximation has been developed for the
representation of the solution as a series of the #uid-loaded plate eigenmodes. As
shown in reference [7], a light #uid approximation can be established for any
representation of the solution of the vibro-acoustics problem. In practice, such an
approximation is based on the analytical or numerical solutions of two disjoint
problems: on the one hand, the response of the in vacuo structure; on the other
hand, the non-homogeneous Neumann problem for the Helmholtz equation. At
each step of the perturbation method, these two problems are solved alternatively.

In our opinion, the perturbation method is e$cient if the "rst correcting order
term is su$cient to provide the accuracy required for the real-life situation under
consideration. Indeed, terms of higher orders imply to compute integrals over the
structure surface which involve the iterated Green's kernel. Thus, to our knowledge,
it is faster to solve the exact equations than to compute the approximate solution
up to order 2. Nevertheless, at least for some simple geometries, it is, perhaps,
possible to develop an integration algorithm which, being well adapted to the
functions to integrate, will be particularly e$cient. But this is a matter of numerical
techniques that the authors have not entered in, up to now.
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