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Sound transmission through a thin baffled plate: validation of a light fluid approximation with numerical and experimental results

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The response of a thin elastic rectangular ba%ed plate embedded in a gas and excited by an incident acoustic "eld is studied theoretically and experimentally. The model equations are analyzed by a perturbation method based on the expansion of the solution in eigenmodes and a small parameter. The small parameter expresses that the gas has a density which is small with respect to the density of the plate. The approximation obtained, the so-called light -uid approximation, is compared with the numerical solution of the exact boundary integral equations equivalent to the initial system of partial di!erential equations. Finally, the predictions given by the light #uid approximation are compared with experimental results. These two comparisons show the e$ciency and the accuracy of the method.

INTRODUCTION

Problems of sound radiation or transmission by vibrating structures is one of the oldest problems that acousticians have tried to solve. Several very useful books, providing either analytical solutions of canonic problems or developing analytical and numerical methods have been published during the past 30 years. The oldest one to mention is due to Junger and Feit [START_REF] Junger | Sound, Structures, and their Interaction[END_REF], which was published in 1972 by the Massachusetts Institute of Technology. Then a couple of books appeared during the 1980s [START_REF] Fahy | Sound and Structural <ibration[END_REF][START_REF] Lesueur | Rayonnement Acoustique des Structures[END_REF] which proposed a more modern approach of vibro-acoustics: in particular, numerical methods ("nite elements, boundary element methods, the statistical energy analysis method, etc) are widely developed. The most recent textbook has been published at the end of 1998 [START_REF] Ohayon | Structural Acoustics and <ibration[END_REF]: in our opinion, one of its main originalities is the use of functional analysis which is always required for a rigorous mathematical statement of mechanics problems.

A very fundamental review of the various problems raised by the coupling between a vibrating structure and a surrounding #uid is due to Crighton [START_REF] Crighton | [END_REF]. For a thin plate, the author made use of the following two intrinsic units: the inverse of the coincidence frequency (time unit) and the sound wavelength in the #uid at this frequency (length unit). The corresponding equations were called non-dimensional equations: we would prefer reduced equations, instead, because the number of independent variables on which the physical phenomenon depends is reduced to its minimum. The author mentioned that the reduced coupling parameter *the ratio of the #uid density to the plate surface mass, both expressed in this units system*is dimensionless and less than unity for any data of practical interest: he suggested that this could be advantageous for developing numerical approximations. We do not totally agree with this conclusion.

In the present paper, we look for a numerical approximation of the solution as a Taylor-like series in terms of a small parameter truncated at the "rst order term, which is the ratio of the #uid density to the plate surface mass, both expressed in the same coherent system of units. There is a classical controversy on this point: it is often claimed that this parameter has a dimension*the inverse of a length*while is dimensionless. In fact, the parameter that we use is dimensionless too. Indeed, the variables which appear in the mathematical equations which model a physical phenomenon have two di!erent interpretations. The "rst one is that they represent the physical quantities and, thus, they have a dimension. If quantitative results are looked at, a system of units must be adopted: the choice of a coherent system of units*in the present case, a system based on a length unit, a mass unit and a time unit*leads to the same equations for the measures of the physical quantities in that units system. Thus, the corresponding equations are written and solved for dimensionless variables. As a conclusion, we can say that the only di!erence between the reduced equations and the general form used here is the choice of the system of units.

A second remark is that changing the units system has no advantage. If the Taylor-like series in terms of truncated at the "rst order term provides an approximation with a relative error of %, the Taylor-like series in terms of truncated at the "rst order term has exactly the same relative accuracy, whatever the system of units could be: this is due to the fact that the change of units system is a linear operation.

Finally, we will mention a paper by Norris et al. [START_REF] Norris | [END_REF] in which a method much similar to ours is adopted.

In many situations of environmental noise pollution, the physical phenomenon involved is the radiation of an acoustic "eld by a vibrating structure embedded in air: that is, in a #uid with a density small compared to the structure one. This is the case in buildings where noise is transmitted through a solid structure (brick wall, glass, wood doors, etc.) which separates two rooms. Another example is the #ow noise, inside a high-speed vehicle (car, train, plane) generated by the vibrations of its hull which is excited by a #ow-induced external #uctuating wall pressure.

It is well known that the dynamic behaviour of a structure embedded in a gas is very close to the corresponding in vacuo one. Thus, in most situations, the presence of the surrounding gas is a small perturbating factor. The main in#uence of this factor is an increase of the damping of the in vacuo resonance modes of the structure. For the prediction of this vibro-acoustic behaviour, it is possible to take advantage of the existence of a small factor by using a perturbation method.

In a recent paper [7], the general problem of a #uid-loaded plate has been studied in some detail. Mainly three types of representation of solutions were considered: boundary integral expressions, #uid-loaded eigenmode series representation and resonance mode series expansion. For each of the corresponding equations, a perturbation method has been developed. A rigorous presentation of the eigenmode and resonance mode approaches, mathematically justi"ed and with a physical interpretation was developed in reference [8] for the case of a three-dimensional elastic body. It is assumed here that these results remain true for the thin-plate approximation of the elasticity equations.

In the present paper, we consider the eigenmode series representation of the solution. In section 2, the problem is stated, the eigenmode series representation is brie#y recalled and the perturbation method which gives the #uid-loaded eigenmodes and eigenfrequencies is summarized. The section 3 is devoted to the comparison between the light #uid approximation and the numerical solution of the exact boundary integral equations. The section 4 is devoted to the comparison of the perturbation approximation with experimental results: the experiments have been conducted on a stainless-steel plate mounted in a wall which separates two large-size anechomK c rooms.

STATEMENT OF THE PROBLEM

Consider a thin elastic plate, with thickness h, occupying the domain of the plane z"0 in a three-dimensional space. Along its boundary * , an external unit normal vector n can be de"ned almost everywhere. The ba%e, which occupies the complement of M " 6* , is perfectly rigid. The plate thickness is negligible compared to the wavelengths involved. The two half-spaces >(z'0) and \(z(0) contain a perfect gas.

The mechanical characteristics of the plate are: E"Young's modulus, "the Poisson ratio, D"Eh/12(1! )"rigidity, "plate mass per unit area. The plate is assumed to be clamped along * . The damping of the plate material can easily be introduced by an imaginary part in the Young's modulus: this is a correct modelization of elastic waves absorption in many standard materials, in particular in metals for which the relative value of the Young's modulus imaginary part is O(10\). The #uid is characterized by a density and a sound speed c . The system is excited by a harmonic acoustic source, S\(Q)e\ SR, located in \.

GOVERNING EQUATIONS

Let u(M)"u(x, y) be the plate displacement, positive in the z'0 direction; and let p>(Q)"p>(x, y, z) and p\(Q)"p\(x, y, z) denote the acoustic pressure "elds, respectively, in > and \. The pressure step P(Q)"P(x, y) across the plate is de"ned by

P(x, y)"lim m [p>(x, y, n)!p\(x, y, !n), n'0.
The functions u(M), p>(Q) and p\(Q) satisfy the following system of equations:

( #k)p>(Q)"0, Q3 >, ( #k)p\(Q)"S\(Q), Q3 \, (D ! )u(M)#P(M)"0, M3 , * X p>(M)"* X p\(M)" u(M) 0, M3 , M3 , u(M)"* n u"0, M3* (1) 
and a Sommerfeld condition on p> and p\.

GREEN'S REPRESENTATION OF THE PRESSURE FIELDS AND THE

INTEGRO-DIFFERENTIAL EQUATION FOR THE PLATE DISPLACEMENT

Let G S (Q, Q) be the Green function of the Helmholtz equation which satis"es a homogeneous Neumann condition on z"0 and the Sommerfeld condition at in"nity; that is

G S (Q, Q)"! e IP //Y 4 r(Q, Q) ! e IP //Y \ 4 r(Q, Q \ ) ,
where the co-ordinates of the points Q and Q \ are, respectively, (x, y, z) and (x, y, !z).

The pressure "elds can be written as

p>(Q)" u(M)G S (Q, M)d (M), Q3 >, p\(Q)"p\ (Q)! u(M)G S (Q, M)d (M), Q3 \, with p\ (Q)" \ G S (Q, Q)S\(Q)dQ. (2) 
By introducing equation ( 2) into the third of equations ( 1), one gets the well-known integro-di!erential equation for the plate displacement:

(D ! )u(M)#2 u(M)G S (M, M)d (M)"p\ (Q), M3 (3) 
with the boundary conditions of clamping. As done in reference [7], this equation can be replaced by its weak form (energy form), i.e.,

a(u, v)! +(u, v)! S (u, v),"1p\ , v2 (4) 
with

"2( / ) 1u, v2" u(M)v*(M)d (M), a(u, v)"D u v*#(1!v) 2 *u *x*y *v* *x*y ! *u *x *v* *y ! *u *y *v* *x d (M) S (u, v)" u(M)G S (M, M)v*(M)d (M)d (M).
Here v(M) is an appropriate test function, and v*(M) is its complex conjugate. One can recall that if v is replaced by u, the "rst integral is proportional to the kinetic energy of the plate, the second one is its potential energy, and the third one is proportional to the radiated energy.

The de"nition of the appropriate test function space is classical (see any elementary textbook on functional analysis or reference [START_REF] Ohayon | Structural Acoustics and <ibration[END_REF]). Simply recall that the functions v must have the same regularity as the plate displacement u and satisfy the same boundary conditions: the most classical set of test functions is generated by the in vacuo resonance modes of the plate.

EIGENMODE SERIES REPRESENTATION OF THE SOLUTION

AND LIGHT FLUID APPROXIMATION

REPRESENTATION OF THE SOLUTION AS A FLUID-LOADED PLATE EIGENMODE SERIES

The eigenmodes ; L and eigenvalues L of the #uid-loaded plate are de"ned by the eigenvalue problem

a(; L , v)" L +1; L , v2! S (; L , v),, (5) 
where ; L is sought in a suitable functional space: in particular, every function ; of this space satis"es the boundary conditions of clamping

;(M)"* n ;(M)"0, M3 .
It can be shown that the ; L satisfy the following orthogonality relationships:

1; L , ;* K 2! S (; L , ;* K )"0 for mOn,
or, equivalently a(; L , ;* K )"0 for mOn.

A pressure "eld can be associated with each eigenmode:

p L (Q)" ; L (M)G S (Q, M)d (M), Q3 $ . ( 6 
)
For simplicity, it is assumed that only simple eigenvalues are present. The response of the system can, thus, be expanded into the following series of ; L and p L :

u(M)" L L L ! 1p\ , ;* L 2 a(; L , ;* L ) ; L (M), M3 , p>(Q)" L L L ! 1p\ , ;* L 2 a(; L , ;* L ) p L (Q), Q3 >, p\(Q)"p\ (Q)! L L L ! 1p\ , ;* L 2 a(; L , ;* L ) p L (Q), Q3 \, (7) 
These series are de"ned for any real angular frequency , because the eigenvalues L have a non-zero imaginary part. When an eigenvalue has a multiplicity order equal to or greater than 2, the modi"cation of the former formulas is performed in the classical way (see, for example, reference [START_REF] Courant | Methods of Mathematical Physics[END_REF]).

LIGHT FLUID APPROXIMATION OF THE EIGENMODE SERIES

Because the #uid is a gas, the ratio "2 / is, in general, a small parameter, and an appropriate perturbation method can be used. The eigenvalues and eigenmodes are expanded with respect to : it is hoped that the sum of the "rst two terms (zero and "rst orders) provide a good approximation. The authors have followed the method developed in reference [START_REF] Nayfeh | Perturbation Methods[END_REF] called the Rayleigh}SchroK dinger method by Nayfeh. An approach to the perturbation methods, much similar to Nayfeh's one, is presented in reference [START_REF] Sanchez-Hubert | <ibration and Coupling of Continuous Systems[END_REF] where the formalism of functional analysis is emphasized.

Let us brie#y recall the basic principle. The eigenvalues L and the eigenmodes ; L are expanded as follows:

; L "; L # ; L # ; L #2 L " L # L # L #2 .
This expansion is introduced into equation ( 5) and the terms with like power of are made equal. This leads to a countable set of equations, the zero and "rst order ones being

a(; L , v)" L 1; L , v2, a(; L , v)" L 1; L , v2! L S (; L , v)# L 1; L , v2. (8) 
The solution of the zeroth order equation is the nth in vacuo eigenvalue and eigenmode. By setting v";* L in the second equation ( 8), it easily follows that the "rst order equation leads to

L " L S (; L , ;* L ) 1; L , ;* L 2 " L ; L (M)G S (M, M); L (M)d (M)d (M) ; L (M)d (M) , (9) 
;

L (M)"! O O O L L O ! L S (; L , ;* O ) 1; O , ;* O 2 ; O (M) "! O O O L L O ! L ; L (M)G S (M, M); O (M)d (M)d (M) ; O (M)d (M) ; O (M). (9a) 
The corresponding light #uid approximation of the system response is given by

u(M)K L L # L L # L ! 1p\ , ;* L # ;* L 2 a(; L # ; L , ;* L # ;* L ) [; L (M)# ; L (M)], ( 10 
)
p>(Q)K L L # L L # L ! 1p\ , ;* L # ;* L 2 a(; L # ; L , ;* L # ;* L ) pL L (M), p\(Q)Kp\ (Q)! L L # L L # L ! 1p\ , ;* L # ;* L 2 a(; L # ; L , ;* L # ;* L ) pL L (M), ( 10a 
) with pL L (M)" [; L (M)# ; L (M)]G S (M, M)d (M).
This result can be compared with the type of approximation*outer and inner expansions*which is developed in reference [START_REF] Norris | [END_REF]. Away from any in vacuo resonance frequency of the plate, can be made equal to 0 in expressions [START_REF] Nayfeh | Perturbation Methods[END_REF] and (10a), and one obtains the "rst two terms of the outer expansion. If is made equal to 0, these expressions are not de"ned at each in vacuo resonance frequency of the plate, as is the outer expansion of the cited article. In the neighborhood of in vacuo resonance frequency of the plate, these expressions correspond to the inner expansion.

Let us assume now that there exists one in vacuo eigenvalue with multiplicity order 2: for example P " P> . The corresponding eigenmodes ; P and ; P> are independent functions which can be assumed to be orthogonal. Upon using the perturbation expansions of these eigenmodes and two di!erent perturbation expansions of the double eigenvalue, it appears that equations (8) It must be mentioned that this approximation is valid under restrictive conditions: the "rst one is that the parameter is small compared to unity ( (0)4m\ seems quite correct; it is less obvious to give a criterium in reduced units). A second condition of validity is that the driving frequency must be away from the critical frequency (frequency for which the wavenumber in the plate is equal to the wavenumber in the #uid). In reference [7] it was suggested that the validity conditions of the light #uid approximation do not depend on the plate geometry and/or on the boundary conditions, and are the same for a bounded or an unbounded plate. If this assumption is adopted, the validity conditions to account for are those which apply for the simple situation of an in"nite plate.

EFFICIENCY OF THE LIGHT FLUID APPROXIMATION

A computer program has been developed for the case of a rectangular clamped ba%ed plate [START_REF] Jong | [END_REF]. The in vacuo eigenfrequencies and eigenmodes used in the light #uid approximation are calculated by Warburton's method [START_REF] Leissa | <ibration of Plates[END_REF].

The accuracy and e$ciency of the light #uid approximation is validated in two di!erent ways: in both cases, the system is excited by an incident spherical wave. In the "rst case, one compares the approximate sound level attenuation as obtained by the light #uid approximation with the numerical solution of the exact equations. In the second case, the approximate sound level attenuation is compared with experimental results.

COMPARISON BETWEEN THE LIGHT FLUID APPROXIMATION AND THE NUMERICAL SOLUTION OF THE EXACT EQUATIONS

The exact equations are solved by the method proposed in reference [START_REF] Mattei | [END_REF]. The system of partial di!erential equations is transformed into a system of boundary integral equations for the plate displacement u, the pressure step P and two-layer 0)50 m) in the plane z"0; source at x"0, y"! 1 ) 3m, z"! 7 ) 3m; "rst &&microphone'' at x"0, y"0, z"! 0 ) 5 m; second &&microphone'' at x"0, y"0, z"0)25 m. densities along * to account for the boundary conditions. The unknown functions are approximated by truncated series of Techebyche! polynomials. The coe$cients are solutions of a collocation system of linear algebraic equations which is equivalent to a Ritz}Galerkin system.

The plate material has the following characteristics: E"2)1;10 Pa, "0)33, "15)6 kg/m. The #uid physical properties are c "340 m/s, "1)29 kg/m. The wavelength at the coincidence frequency is A "0)0586 m. The plate dimensions are: (!0)77 m(x(0)77 m, !0)55 m(y(0)55 m); in reduced units, one has: ( !13)14 A (xN (13)14 A , !9)386 A (yN (9)386 A ). The coupling parameter is equal to 0)165 m\, or, in reduced units, to 0)0970 \ A . The point source is located at (x"0, y" !1)3m, z" ! 7)3 m). The di!erence between the sound levels at points (x"0m,y"0m,z"0)25 m) and at (x"0m, y"0m, z" ! 0)5 m) is calculated by both programs. The results are presented in Figure 1.

The frequency step is 1 Hz in the regular parts of the curves and 0)1 Hz around the peaks. The agreement between the two curves is excellent: the relative di!erence between resonance frequencies is O(10\) and the level di!erence is less than 1 dB (let us recall that the relative accuracy of Warburton's approximation of the resonance frequencies is O(10\)). Other calculations have been conducted for various examples and show a similar agreement.

COMPARISON BETWEEN THE LIGHT FLUID PREDICTIONS AND EXPERIMENT

The experiment has been conducted in the twin anechoic rooms of the Laboratoire de MeH canique et d'Acoustique. A large anechoic room is connected to a smaller semi-anechoic room by an aperture in which the plate is clamped. The wall between the two rooms is bare on the semi-anechoic side (almost perfectly rigid surface) and covered with glass-wool wedges on the other side (almost perfectly absorbent ba%e). The sound source is located in the semi-anechoic room. Thus, the experimental conditions are somewhat di!erent from the model problem of a perfectly rigid ba%e on both sides. But it can easily be seen analytically that the transmitted sound "eld close to the central part of the plate is not very much in#uenced by the absorbing properties of the ba%e.

Indeed, the transmitted pressure "eld has the following Green's representation,

p>(Q)" u(M)G S (Q, M)d (M)# * XY p(M)G S (Q,M)d (M),
where the function * XY p(M) is determined by a boundary integral equation expressing, for example, that a Robin condition is satis"ed along :

* XY p(M)# ik * XY p(M)G S (Q, M)d (M)" ! ik u(M)G S (Q,M)d (M).
The "rst term in the representation of p>(M) can be considered as an incident "eld, the source being the vibrating plate. The second term is a di!racted "eld, the incident "eld being the plate radiation: it corresponds to a single-layer potential with a source lying on the ba%e. As a consequence, close to the plate (energy source), the "rst term must be predominant, at least because the secondary source corresponding to the second term lies in the exterior of the plate. Furthermore, the former boundary integral equation shows that this term is a secondary radiation: the function * XY p(M) can be calculated by a classical convergent iterative procedure which leads to * XY p(M)"0 as zero order approximation. This conclusion is, of course, independent of the #uid density.

The experimental plate is made of stainless steel with the dimensions used in the former subsection. Its thickness has been measured at more than 25 points and a mean value h"0)0019 m has been deduced (the thickness #uctuations are about $10\ m).

The rigidity has been determined experimentally by the following procedure. The "rst 10 resonance frequencies of a circular plate with free boundary are measured and the rigidity is adjusted to get the best "t with the theoretical ones: this leads to D"122 N;m. Practically, the resonance frequencies of the circular plate are measured in air. Nevertheless, they are considered as equal to the in vacuo ones, because the main in#uence of the air embedding is the damping of the resonances, the shifting of the real part being a few percent (much less than the error due to the lack of the material isotropy or the thickness #uctuations). The Poisson ratio has been taken equal to 0)33.

The sound source is located at (x"0)26 m, y" !0)17 m, z" !3)0 m); a "rst microphone, which is located at (x" !0)26 m, y" !0)17 m, z" !0)25 m), records the sum of the incident and re#ected "elds; a second microphone, which is located at (x" !0)26 m, y" !0)17 m, z"0)25 m), records the transmitted "eld.

The transfer function between the second and the "rst microphones are measured and computed as functions of the frequency. Figure 2 shows the result obtained with a frequency step of 1 Hz and Figure 3 presents a third-octave mean transfer function.

CONCLUSION AND FINAL REMARKS

The comparison between the light #uid approximation and the experimental results shows the e$ciency of this theoretical approach. The "rst two sources of error in the numerical model are the non-isotropy and the thickness variations of the plate. A third source is that the plate is not an absolutely plane surface: it is, in fact, a very shallow shell (the central de#ection is about 1 cm), with boundaries slightly constrained. These discrepancies between the theoretical model and the experimental device can explain the shifts between the resonance frequencies. The resonance peaks of the computed curve are, in general, sharper and higher than the experimental ones: this is due to the fact that the stainless steel has been considered as perfectly elastic. If a small damping is introduced (for example by using a complex Young's modulus E(1#i ) with 10\( (10\) the peaks levels are much reduced. But, for this particular experiment, it does not seem very useful to work out a much more accurate theoretical modelling; indeed, from a practical point of view, the most signi"cant acoustical properties of the plate are described by its third-octave mean response which is not very much a!ected by all these modelling errors.

In the present work, the light #uid approximation has been developed for the representation of the solution as a series of the #uid-loaded plate eigenmodes. As shown in reference [7], a light #uid approximation can be established for any representation of the solution of the vibro-acoustics problem. In practice, such an approximation is based on the analytical or numerical solutions of two disjoint problems: on the one hand, the response of the in vacuo structure; on the other hand, the non-homogeneous Neumann problem for the Helmholtz equation. At each step of the perturbation method, these two problems are solved alternatively.

In our opinion, the perturbation method is e$cient if the "rst correcting order term is su$cient to provide the accuracy required for the real-life situation under consideration. Indeed, terms of higher orders imply to compute integrals over the structure surface which involve the iterated Green's kernel. Thus, to our knowledge, it is faster to solve the exact equations than to compute the approximate solution up to order 2. Nevertheless, at least for some simple geometries, it is, perhaps, possible to develop an integration algorithm which, being well adapted to the functions to integrate, will be particularly e$cient. But this is a matter of numerical techniques that the authors have not entered in, up to now.
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