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This paper is concerned with problems of #uid/structure interaction. The aim is to show how the resonance modes can be used to describe the response of a #uid-loaded structure (displacement of the structure and sound pressure in the #uid) for any kind of excitation (periodic, randomly dependent on time and space, or transient). First, the expression of the response of the system in terms of resonance modes is recalled. To compute the resonance modes, it is necessary to solve a system of equations in the harmonic regime. Several numerical methods are considered and a comparison of their respective e$ciency is presented. Finally, two examples of applications are studied in detail. Namely, a thin plate excited by a turbulent wall pressure and a thin shell excited by a transient acoustic signal. For this last example, some experimental data are compared with numerical results.

INTRODUCTION

The number of publications on #uid/structure interactions over the past three decades is quite impressive. Let us only mention some of the most important books recently published on this topic. The earliest one is due to Junger and Feit [START_REF] Junger | Sound, Structures, and Their interaction[END_REF], the "rst edition of which appeared in 1972. Then two books were published in the 1980s [START_REF] Fahy | Sound and Structural Vibration[END_REF][START_REF] Lesueur | Rayonnement acoustique des structures[END_REF]. These three books provide a very complete overview of the knowledge in the domain and the physics of the phenomena is presented in a classical way which is very easy to follow. A more recent text book [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF] proposes a very rigorous mathematical statement of the problem together with the most recent numerical methods. Let us also mention the CISM Course [START_REF] Habault | Fluid-structure Interactions in Acoustics[END_REF] in which the basic concepts of the #uid/structure interaction phenomena are described. Finally, a very interesting analytical study is due to Crighton [6] who points out the e$ciency of asymptotic techniques.

This paper shows how the resonance modes can be used to describe the response of a #uid-loaded structure (displacement of the structure and sound pressure in the #uid). Most of the results concerning the interaction between a vibrating structure and a #uid, mainly those involving a heavy #uid, show that the response of the structure is governed by 1

The role of the resonance modes in the response of a fluid-loaded structure the #uid-loaded resonance modes. Their role seems essential for large bandwidth excitations (as, for example, turbulent wall pressure) or transient excitations. It is then interesting to develop numerical methods based on the expansion of the response of the system into a series of the #uid-loaded resonance modes. This paper summarizes some results previously obtained by the authors [7}12]. It also includes three original parts.

The "rst one is a presentation of the theoretical development which is more general than the ones given previously (see reference [START_REF] Habault | Fluid-structure Interactions in Acoustics[END_REF], for example). The second one is a comparison of the e$ciency of several numerical methods used to solve the equations of the boundary value problem. The comparison is made on a one-dimensional example. The third one deals with the di!raction of a transient acoustic wave by an axially symmetrical shell (Line-2 shape): numerical predictions are compared with experimental results.

Section 2 is devoted to the description of the equations. The excitation can be harmonically time dependent, transient or random in space and time. First, the response of the system to a harmonic excitation is expanded into a series of eigenmodes which depend on frequency. By using a Fourier inverse transform, it is then possible to express the response of the system to a transient excitation in terms of the #uid-loaded structure resonance modes. These modes do not depend on frequency. When the resonance modes are known, the response of the system to any kind of excitation is obtained. The coe$cients of the series are given in an explicit form, which, in general, cannot be computed numerically. Nevertheless, these coe$cients can also be obtained as solutions of an in"nite system of linear equations which can be solved approximately by a truncation procedure. Section 3 presents several numerical methods for solving the equations corresponding to the harmonic regime and a comparison of their e$ciency on a simple example. The example chosen is a one-dimensional ba%ed plate, in contact with a heavy #uid (water) on one side, and with a vacuum on the other side; the plate is clamped at its boundaries. Two groups of methods are described.

In the "rst group, the equations are transformed into boundary integral equations by using the Green representations for the displacement and the sound pressure. The system obtained is solved by three numerical kinds of approximations. The unknown functions are successively approximated by piecewise constant functions, then by truncated series of orthogonal polynomials (Legendre or Tchebyche! ). A third method consists of approximating the displacement by polynomial functions which satisfy the boundary conditions for the plate displacement, and the acoustic pressure by polynomials. In the second group, the Green representation of the acoustic pressure is still used but the plate equation is written in a variational form. The pressure is approximated by a truncated series of Legendre polynomials, while the plate displacement is approximated by Legendre polynomial functions which satisfy the boundary equations. The pressure/displacement relationship is replaced by a system of &&adapted'' collocation equations; the plate equation is replaced by the corresponding Ritz}Galerkin equations.

Section 4 presents the "rst example: a rectangular ba%ed plate excited by a wall pressure induced by a turbulent #ow. The model of turbulent wall pressure is the one proposed by Corcos [START_REF] Corcos | [END_REF]. The power density spectrum of the plate displacement is computed by solving a sequence of harmonic equations. For a given frequency, the problem is transformed into a system of Boundary Integral Equations and the unknown functions are approximated by truncated series of Tchebyche! polynomials. The coe$cients are solutions of the &&adapted'' collocation equations. The power density spectrum of the plate displacement shows sharp peaks for each resonance frequency of the #uid-loaded structure.

Section 5 presents the second example: a Line 2 shell excited by a transient incident sound wave. The response of the system is expressed as a truncated series of the #uid-loaded structure resonance modes. These modes are calculated by using the variational formulation and polynomial functions satisfying the boundary conditions. The sound pressure di!racted by the shell is calculated and compared to experimental results: the agreement is quite good.

GENERAL STATEMENT OF THE PROBLEM

Consider a thin shell occupying a surface and denote by the exterior domain; is assumed to have everywhere a unit external normal vector n. The shell is made of an elastic material characterized by a density , a Young modulus E and the Poisson ratio ; its thickness is denoted by h. It is immersed in a #uid which extends to in"nity and which is characterized by a density and a sound speed c ; its interior is a vacuum (see Figure 1). For simplicity, it is assumed that all the mechanical and geometrical characteristics of the system are constant. In this section, the superscript && & '' is used for functions which depend on time. The capital letters F, U and P denote vector functions.

The system is excited by a force density F applied to the shell and an incident acoustic pressure pJ G , both of which are zero outside a time interval [0, ¹], F is square integrable in time and space, while pJ G is square integrable in time and on any space domain of "nite dimension (this corresponds to a "nite energy excitation).

Let U be the displacement vector of the shell with components (u , u , u ): the "rst two ones are tangent to , the third one is normal and positive when pointing out to the exterior of the shell. The sound "eld radiated by the shell is denoted by pJ 1

. The equations governing the response of the system have the following form:

AU # hU G #P 1 "F !P G on , p 1 !(1/c )pJ ( 1 "0 in , uJ ( #Tr * L pJ 1 "!Tr * L pJ G on . ( 1 
)
Here the matrix A is the partial derivative operator which describes the shell properties. The notation Tr f stands for the limit value of the function f when the current point in tends to a point on : this notation is necessary when f has a discontinuity across or is expressed by an integral which becomes hyper-singular on (this occurs with layer potentials). P 1 is the vector (0, 0, Tr pJ 1

) and P G is the vector (0, 0, Tr pJ G ). The notation f $ stands for the second partial derivative of f with respect to time. These equations are completed by initial conditions (for example, every function and its "rst time derivative is zero for t(0), by boundary conditions and, if needed, by continuity conditions on U . An outgoing wave condition is also added for pJ 1 . In the domain , the acoustic pressure "eld pJ 1 can be represented by a boundary integral in terms of a layer density N J , that is,

pJ 1 "K I N J , (2) 
where K I is an integral operator. In general, its kernel will be any linear combination of the free"eld Green kernel of the wave equation and its normal derivative (see its Fourier transform in equation ( 8)). For simple geometries (ba%ed plate, for example), use can be made of the Green function which satis"es the Neumann boundary condition on .

The values of pJ 1 and of its normal derivative on the shell surface can be written as

Tr pJ 1 "K I N J , Tr * L pJ 1 "K I N J , (3) 
where K I and K I are related to K I in a very simple way. The system of equations ( 1) is then replaced by

AU # hU G #K M I N J "F !P G on , uJ ( #K I N J "!Tr * L pJ G on . (4) 
Let us note that the "rst equation is a vector equation where K M I N J is the vector (0, 0, K I N J ). The second equation is scalar. All the unknown functions are de"ned on the shell surface only. These equations can also be written in a variational form (which corresponds to the energy balance)

A(U , V )# dt h[U G #K M I N J ] ) V * d " dt [F !P G ] ) V * d , dt [ uJ ( #K I N J ] I * d "! dt Tr * L pJ G I * d , (5) 
where V and I are test functions, A(U , V ) is the bilinear form corresponding to the expression of the potential energy of the shell, ( )* denotes a complex conjugate and U ) V is the scalar product of the two vectors U and V. In the following, all integration elements will be omitted unless there is any ambiguity.

HARMONIC REGIME AND EIGENMODES SERIES

The basic idea developed in this subsection and in the next one is the same as that used by Morse and Ingard [START_REF] Morse | Theoretical Acoustics[END_REF] (section 9.5 on Room Acoustics) for the evaluation of the acoustic response of a room to either a harmonic or a transient source. They consider a room with absorbing walls and make several assumptions. Though the physical system is not conservative, for any excitation frequency the existence of eigenmodes and eigenvalues which are frequency dependent is assumed; the response of the room to any source is expanded into a series of these eigenmodes. The response of the room to a transient excitation is then determined by an inverse Fourier transform which is calculated by the residues method under the following hypotheses: the eigenmodes and eigenfrequencies depend analytically on the frequency; the coe$cients of the harmonic response expansion have poles only (no branch cuts) which correspond to the resonance frequencies (free oscillations) of the room. We do not know any general mathematical justi"cation of this theoretical approach. But as long as an analytical solution exists (separation of variables), this approach can be applied. From a physicist's point of view, what is true for a parallelepipedic enclosure should remain true for any other shape of practical interest.

For the present problem, the vibro-acoustic response of a #uid-loaded shell, it can be proved that the forthcoming developments are valid in very simple situations. We, thus, assume that they remain valid for any situation. We will precise the assumptions made at each step.

Let f be the time Fourier transform of a function f I de"ned as it is usual in acoustics by

f ( )" > \ f I (t)e SR dt. (6) 
Equations ( 5) become

A(U, V)# [! hU#K M S N ] ) V*" [F!P G ] ) V*, [! u #KS N ] *"! Tr * L p G *, (7) 
where K M S and KS are the Fourier transforms of the operators K M I and K I . They depend on the angular frequency . More precisely, the integral representation of the acoustic pressure "eld, its value and the value of its normal derivative on can be written as (8) where G(M, M)"!exp(i r(M, M)/c )/(4 r(M, M)) is the free"eld Green kernel of the Helmholtz equation which satis"es the Sommerfeld condition corresponding to the time dependence, is a function of with non-zero imaginary part and such that (! *)" *( ), and the symbol Pf denotes the "nite part of the hyper-singular integral. With this choice, the operator KS has an inverse +KS ,\ for any real frequency, that is the function N can be calculated for any given and Tr p 1 . Finally, replacing the unknown function N by :

p 1 (M)"KS N " [G(M, M)# * L +Y G(M, M)] N (M) dM, Tr p 1 (M)"KS N "! N (M) 2 # [G(M, M)# * L +Y G(M, M)] N (M) dM, Tr * L p 1 (M)"KS N "! N (M) 2 #Pf * L + [G(M, M)# * L +Y G(M, M)] N (M) dM,
" N / , (9) 
one gets

A(U, V)! h U! h K M S ) V*" [F!P G ] ) V*, [!u #KS ] *"! 1 Tr * L p G *. ( 10 
)
Let us de"ne the eigenmodes and eigenvalues of equation (10). Their existence, which can be proved in very simple situations, is assumed for the general case. Introducing the notation U < L "(u( L , u( L , u( L ), the eigenmodes (U < L , L L ) and eigenvalues L satisfy the following system of homogeneous equations:

A(U < L , V)! L U < L ! h K M S ( L ) V*"0, [!u( L #KS ( L ] *"0. ( 11 
)
From the last equation, ( L can be expressed as a function of u( L :

( L "YS u( L , ( 12 
)
where YS is the symbolic inverse of KS . The system of equations (11) reduce to one equation only

A(U < L , V)! L U < L ! h K M S (YS u( L ) ) V*"0. (13) 
The eigenmodes and eigenvalues depend on the angular frequency. It can be shown [START_REF] Maury | The`se de meH canique*speH cialiteH : Acoustique et dynamique des vibrations[END_REF] that the eigenmodes satisfy the following orthogonality relationship:

A(U < L U < * K )" L U < L ! h K M S L L ) U < K "0 if mOn "N L ( ) i f m"n. ( 14 
)
Here, N L can be seen as playing a role equivalent to the norm of U < L . The displacement U, solution of equations ( 10) is sought as a series of the eigenmodes:

U" L L U < L . ( 15 
)
By introducing this series and using the formal inverse of KS , the system of equations ( 10) is replaced by the following equation:

L L A(U < L , V)! h U < L ! h K M S (YS u( L ) ) V* " [F!P G #K M S (YS Tr * L p G ] ) V*. (16) 
To determine the coe$cients of the expansion of U, this equation is written for V"U* K . An explicit form of the operator YS is not needed. Indeed, the Green formula applied to the functions

G "KS(YS Tr * L p G ) and K K "KS ( L (17)
leads to the following equality:

KS(YS Tr * L p G )u( K " Tr * L p G Tr K K . ( 18 
)
This result together with the orthogonality relationship provides the following expression for the coe$cients L :

L "! L N L ( )( h! L ) [(F!P G ) ) U < L #Tr * L p G Tr K L ]. (19) 
Finally, the acoustic pressure radiated by the shell is given by the series

p 1 " L L p( L #p , ( 20 
) with pL L " KS ( L and p , "!KS(YS Tr * L p G ).
The sum p G #p , satis"es a homogeneous Neumann condition on the shell surface, that is p , is the pressure "eld re#ected by a perfectly rigid structure. The result is summarized as follows: (21) where all the quantities involved, considered as functions of the complex variable satisfy the following relationship:

U" L L U K L , p 1 " L L K L #p , , L "! L L N L ( )( h! L ) , L " [(F!P G ) ) U < L #Tr * L p G Tr K L ],
f (! *)"f *( ) (22) 
for any real excitation (transient force and incident acoustic pressure).

TRANSIENT REGIME AND RESONANCE MODES

The transient response of the system is obtained by taking the inverse Fourier transform of the harmonic displacement and pressure "eld. This leads to a representation of the solution in terms of the resonance modes of the #uid-loaded structure (free oscillation modes).

The existence of the resonance modes and of the resonance frequencies has been proved for three-dimensional elasticity [START_REF] Bardos | [END_REF]. It is assumed that the results of this reference are still valid for the thin-body approximate equations of elasticity.

The resonance modes (U L , p L ) of the structure/#uid system and the resonance angular frequencies L are de"ned by

A(U L , V)! L h U L ! h K M SL L ) V*"0, [!u L #KSL L ] *"0, p L " L KSL L . ( 23 
)
The resonance frequencies L are related to the eigenvalues L de"ned in the previous paragraph by

L h" L ( L ). ( 24 
)
It has been shown that, for any nO0, this equation has two solutions that we denote L and \L . They have the following property [START_REF] Bardos | [END_REF]:

L " L !i L with L '0, L '0, \L "! * L . ( 25 
)
The inverse Fourier transforms to be calculated have the following form:

F I (t)" 1 2 > \ f ( ) N L ( )( h! L ) e\ SR d . ( 26 
)
The use of the method of residues immediately leads to

F I (t)"!iY(t) f ( L ) N L ( L )[2 L h! L ( L )] e\ SLR! f *( L ) N* L ( L )[2 * L h! * L ( L )] e S * L R , ( 27 
)
where Y(t) is the Heaviside step function and L ( ) is the derivative of L with respect to ; use has been made of the result L (! *)"! * L ( ) which is deduced from the property of L ( ) given in equation [START_REF] Durant | et de la re & ponse vibro-acoustique d'une conduite sollicite& e par un e& coulement interne[END_REF]. The function F I (t) is real valued. Thus, the transient response of the system has the expression:

U (t)"iY(t) L L ( L ) L ( L ) N L ( L )[2 L h! L ( L )] U L e\ L R ! * L ( L ) * L ( L ) N* L ( L )[2 * L h! * L ( L )] U* L e L R e\O L R, pJ (t)"pJ G (t)#pJ , (t)#iY(t) L L ( L ) L ( L ) N L ( L )[2 L h! L ( L )] p L e\ L R ! * L ( L ) * L ( L ) N* L ( L )[2 * L h! * L ( L )] p* L e L R e\OLR, ( 28 
)
where Y is the Heaviside function. This kind of expression is used in example 2 (section 5). This result is based on the following hypotheses. The eigenmodes and the eigenvalues depend analytically on the frequency (this is reasonable because they are solutions of an equation which depends analytically on the frequency). As a consequence, the factors N L ( ) have the same property; furthermore, it is assumed that they have no zero.

Let us make a "nal comment on the expansions in resonance modes. By applying the time Fourier transform to expression (28), one gets a representation of the response of the system to a harmonic excitation in terms of resonance modes:

U( )"i L L ( L ) L ( L ) N L ( L )[2 L h! L ( L )] 1 i( L ! )# L U L # * L ( L ) * L ( L ) N* L ( L )[2 * L h! * L ( L )] 1 i( L # )! L U* L , p( )"p G ( )#p , ( )#i L L ( L ) L ( L ) N L ( L )[2 L h! L ( L )] 1 i( L ! )# L p L # * L ( L ) * L ( L ) N* L ( L )[2 * L h! * L ( L )] 1 i( L # )! L U* L . ( 29 
)
This last expression shows clearly that the response of the system is maximum when the excitation frequency is equal to the real part of any resonance frequency. Such a property is not pointed out by the eigenmodes series representation of the solution.

REMARKS

(1) From a purely theoretical point of view, the series representations (28) and (29) are very attractive because explicit expressions of the coe$cients are given. But, in practice, they cannot be calculated easily mainly because they involve the derivative of the eigenvalues with respect to the angular frequency.

When the #uid is a gas, its in#uence on the vibrations of the structure is small and a perturbation method can be used to derive an approximation of the resonance modes and frequencies of the #uid-loaded structure from its in vacuo modes and frequencies. An approximation of expressions (28) and (29) can then be obtained. In general, the coe$cients of the expansions are computed by solving a truncated form of an in"nite system of algebraic linear equations.

(2) The main di$culty is to calculate the #uid-loaded resonance modes. There exists a few cases for which a method of separation of variables is available. In general, only numerical approximations can be obtained. It is then necessary to have an e$cient computer program for solving the system of equations ( 23) which correspond to the steady state equations for any complex angular frequency.

For this reason, in the next section several numerical methods to solve equations (23) are examined for the simple example of a one-dimensional ba%ed plate excited by a point harmonic source. The convergence of these methods has already been proved in theoretical papers (see references [START_REF] Kress | Linear Integral Equations[END_REF]18], for example). Here our point is to develop numerical comparisons. The results obtained are discussed in order to provide criteria for determining the values of the parameters corresponding to each method.

(3) Finally, it must be mentioned that the representation of the solution in terms of resonance modes is much more interesting for transient regimes. For harmonic or random excitations, a direct numerical method ("nite elements, boundary elements, etc.) is often much less time consuming. But for transient excitations, the series of resonance modes seems to be the best way to describe the successive wavefronts which are experimentally observed. For example, in reference [START_REF] Bardos | [END_REF], the contributions of the resonance modes are easily interpreted as surface waves.

COMPARISONS BETWEEN SOME NUMERICAL METHODS

The example chosen in this section is a one-dimensional ba%ed plate excited by a harmonic source. Two main methods are described. In the &&fully integral'' method, the acoustic pressure and the plate displacement are represented by integrals based on the use of the Helmholtz and plate Green kernels. In the &&mixed integro-di!erential'' method, the acoustic pressure is represented by a boundary integral, while the plate displacement is considered as the solution of a di!erential equation.

STATEMENT OF THE EXAMPLE

Consider a one-dimensional plate which occupies the segment "(!¸/2(x(# ¸/2) of the y"0 axis and which is clamped at both ends. The remaining part "("x"'#¸/2) is a perfectly rigid ba%e. The half-space D"(y'0) is occupied by a #uid, while the other half-space is a vacuum. The characteristics of the plate are: thickness h, density , Young's modulus E, the Poisson ratio . The characteristics of the #uid are: density , sound speed c . The plate is excited by a harmonic unit point force located at x"S; the excitation angular frequency is ; and there is no acoustic source.

Let w and p be the plate displacement and the acoustic pressure respectively. They satisfy the following system of equations:

D(*w/*x)! h w#P" 1 on , p#kp"0 in D, Tr (*p/*y)" w on 0 o n w(!¸/2)"w(¸/2)"w(!¸/2)"w(¸/2)"0, with D"Eh/12(1! ) , k" /c , P"Tr p. ( 30 
)
The uniqueness of the solution is ensured by adding a Sommerfeld condition on p. Let G be the Green function of the Helmholtz equation which satis"es a Neumann condition on 6 and the Sommerfeld condition. The acoustic pressure is expressed in terms of the plate displacement by p" Gw.

(31) Using this expression, the system of equations (30), is replaced by a system of integro-di!erential equations on :

D(*w/*x)! h w#P" 1 on ,
Gw!P"0 on ,

w(!¸/2)"w(¸/2)"w(!¸/2)"w(¸/2)"0. ( 32 
)
The variational form of these equations is given by

D *w *x *v* *x ! h wv*#Pv* "v*(S) on , Gw!P *"0 on , (33) 
where v and are test functions (see, for example, reference [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF]). Let be the Green kernel of the plate equation which satis"es the Sommerfeld condition corresponding to outgoing waves. A Green's formula applied to and w gives a representation of w in terms of the excitation force, the acoustic pressure and boundary sources. The system of equations ( 32) is thus replaced by the following system of integral equations:

w# * P# * [u> * !u\ \* #u> * !u\ \* ]" * 1 on ,
Gw!P"0 on , (34)

w(!¸/2)"w(¸/2)"w(!¸/2)"w(¸/2)"0,
where * f stands for the convolution product of the plate Green kernel by the function f and ? "* ? /*x is the derivative with respect to x of the Dirac measure located in x"a; the scalars u $ are the values of the third derivative of w at x"$¸/2; the scalars u $ are the values of the second derivative of w at x"$¸/2. The boundary conditions provide the four additional integral equations required to determine the two unknown functions and the four boundary sources.

In the next subsections, two families of numerical methods are studied. The "rst family solves equations (34): two families of approximation functions are used and the system is solved by a collocation method. We call it the boundary integral/collocation method. The second family solves equations (33). The unknown functions are approximated by polynomial functions. The di!erential equation is approximated either by Ritz}Galerkin equations or by collocation equations, while the integral equation is approximated by collocation equations. We call it the mixed diwerential-boundary integral/Ritz-collocation method. These methods are quite classical. The aim of this section is to compare their e$ciency and provide some practical rules of convergence for the particular case of a heavy #uid (water).

THE BOUNDARY INTEGRAL/COLLOCATION METHOD

The simplest approximation of the solution of equation ( 34) is provided by piecewise constant functions. A more re"ned approximation is obtained by using orthogonal polynomials.

Approximation by piecewise constant functions

The interval is divided into sub-intervals G centered at the points x G . It must be remarked that the plate displacement and the acoustic pressure have not the same wavelength. Thus, two sets of sub-intervals are de"ned: B G (i"1, 2 , Nd) for the displacement and N G (i"1, 2 , Np) for the pressure. The "rst equation ( 34) is written at the centers of each interval B G , while the second one is written at the centers of each interval N G . This "nally provides (Nd#Np#4) equations when the four boundary conditions are added.

The functions w and P are approximated by piecewise constant functions with values w G and P G on G . The accuracy of the approximations depends on two main parameters. The "rst one is, of course, Nd and Np which must be large enough so that the space variations of the unknown functions are correctly described. The second parameter is the accuracy of the numerical integration of the kernels and G over each sub-interval G .

Approximation by orthogonal polynomials and adapted collocation

The unknown functions are approximated by truncated series of orthogonal polynomials ; G (we have tested Legendre and Tchebyche! polynomials):

w+ ,B G w G ; G , P+ ,N G G ; G .
The "rst equation of equation ( 34) is written at the zeros of the polynomial ; ,B> and the second one at the zeros of the polynomial ;

,N> . This leads to a system of equations that are called here &&adapted collocation equations''. The interest of choosing these collocation points is that the equations obtained are equivalent to Ritz}Galerkin equations which are known for giving a much more accurate result (see, for example, references [7] or [START_REF] Maury | The`se de meH canique*speH cialiteH : Acoustique et dynamique des vibrations[END_REF]).

It is also possible to choose for the ; G a combination of orthogonal polynomials which satisfy the boundary conditions. Thus, the four equations which express the boundary conditions and require a rather signi"cant computing time, are no more necessary. This results in a signi"cant computing time economy.

THE MIXED DIFFERENTIAL-BOUNDARY INTEGRAL/RITZ COLLOCATION METHOD

In this section, the acoustic pressure in equations ( 33) is approximated by a sum of normalized Legendre polynomials G

(x)"A G P G (2x/¸) (A G is the norm of P G ): P+ ,N G N G G . ( 35 
)
The displacement is approximated by a sum of polynomial functions. These polynomial functions are linear combinations of Legendre polynomials chosen such to satisfy the boundary conditions. The displacement approximation and the approximation functions are de"ned by

w+ ,B G w G = G , = G (x)"B G P G 2x ¸ ! 4i#10 2i#7 P G> 2x ¸ # 2i#3 2i#7 P G> 2x ¸ , (36) 
where B G is a normalizing factor. The function = G is a polynomial of degree (i#4). It seems reasonable to adopt the same degree of polynomial approximations for both the pressure and the displacement: thus Np"(Nd#4).

These approximations are introduced into equations (33). The test functions are chosen equal to the approximation functions, that is the equations are written for

v"= G , i"1, 2, 2 , Nd, " G , i"1, 2, 2 , Np. ( 37 
)
The "rst equation ( 33) is replaced by the corresponding Ritz}Galerkin equations, while the second equation is replaced by the set of adapted collocation equations:

,B G w G D *= G *x *= H *x ! h = G = H # ,N I N I I = H "= H (S), j"1, 2, 2 , Nd, ,B G w G G= G (X P )! ,N I N I I (X P )"0, r"1, 2, 2 , Np, (38) 
where the X P are the zeros of the function ,N> . The main advantage of this formulation is that the parameters D and h can be functions of the variable x. In the "rst equation (38) the numerical evaluation of the integrals requires a rather large amount of time.

For constant plate parameters, the integrals involved in the left side of the "rst equations can be computed exactly by using a Gauss}Legendre procedure. In this case and if the excitation force is a square integrable function F(x), an adapted collocation can be used and the system is replaced by

,B G w G D *= G *x (> O )! h = G (> O )# ,N I N I I (> O )"F(> O ), q"1, 2, 2 , Nd, ,B G w G G= G (X P )! ,N I N I I (X P )"0, r"1, 2, 2 , Np, (39) 
where the > O are the zeros of the polynomial ,B> . This approximation can be improved by using more collocation points in both of the two equations and solving the rectangular system thus obtained by a least-squares method.

In the last section, the transient vibro-acoustics response of a Line-2 is studied. Though this shell has a constant thickness and is made of a homogeneous material, the elasticity equations have variable coe$cients. Thus, the approximation equations which have been adopted are similar to those described in this subsection.

NUMERICAL COMPARISON BETWEEN THE TWO FAMILIES OF APPROXIMATIONS

The example studied in this section is a one-dimensional ba%ed plate, immersed in water and excited by a harmonic point force. The response of the system is computed by the methods presented in the previous section. For numerical comparisons, three plates are examined. Their characteristics are summarized in Table 1. The &&coupling factor'' (CF) is de"ned as the ratio / h. The length of each plate is ¸"1 m. The #uid (water) is characterized by "1000 kg/m and c "1500 m/s. These three examples present a particular interest from a numerical point of view. The ratio h/D in the "rst two plates have very close values but the coupling factor is di!erent. This means that plates 1 and 2 have very close values for their in vacuo eigenfrequencies but they have di!erent resonance frequencies in water (see below). Plates 2 and 3 correspond to the same material but di!erent thicknesses. Then, comparisons between plates 1 and 2 point out the in#uence of the coupling factor and comparisons between plates 2 and 3 point out the in#uence of the thickness of the plate. The "rst eigenfrequencies of the plates (in vacuo) and the "rst resonance frequencies in water are:

Eigenfrequencies:

Plate The two families of methods described in the previous section have been applied. Method I is the boundary integral/collocation method. The approximation functions are piecewise constant functions. Nd and Np are the numbers of constants used to approximate the displacement and the sound pressure respectively. The two series of collocation points are equally spaced on the plate. As seen before, this leads to a linear system of order (Nd#Np#4). In method I, the collocation functions are orthogonal (Legendre or Tchebyche! ) polynomials and the two series of collocation points are the zeros of the polynomials Nd#1 and Np#1 respectively.

Method II is the mixed di!erential-boundary integral/Ritz-collocation method. The displacement is approximated by polynomial functions and the sound pressure by Legendre polynomials. Nd and Np are the numbers of functions used to approximate the displacement and the sound pressure respectively. We have chosen to approximate the displacement and the pressure by polynomial functions of the same maximum degree. This corresponds to Np"(Nd#4). As mentioned above (section 3.3), if the plate excitation is a square integrable function, the Ritz equations can be replaced by a set of adapted collocation equations (method II). The frequencies studied range from 56 to 1500 Hz. For each frequency, the convergence has been studied by varying the values of (Nd, Np). Three types of curves have been computed: the displacement on the plate, the sound pressure on a line parallel and very close to the plate (distance"¸/40), and the sound pressure radiated at a distance R"1 m from the plate.

The convergence of each method is evaluated from comparisons on the displacement curves (on a linear-scale) only. This corresponds to the most strict conditions. In most cases, the convergence on the other two curves (sound pressure at ¸/40 and at R"1 m) is reached for lower values of (Nd, Np). Let us mention that the values given in Tables 2 and3 are not exactly the lowest values which give an accurate displacement. For each plate and frequency, 10}12 couples (Nd, Np) have been tested. The values given in the tables correspond to the lowest values tested which gave the right curve (computed with large values of (Nd, Np)) with a discrepancy less than 1%.

The results obtained with method I are summarized in Table 2. For each plate and each frequency, Table 2 gives the values (Nd, Np) and the number M of zeros of the displacement curve. In the convergence tests, the values of Np have been chosen smaller or at most equal to Nd since the most classical criterion for collocation methods applied to integral equations is simply related to the wavelength in the propagation medium. It says that the number of collocation points must be such that the length of the sub-elements is equal or less than one-sixth of the wavelength. In the examples chosen, the wavelength in the #uid is much smaller than the wavelength in the plate. For example, at 500 Hz, the wavelength in water is equal to 3 m, the wavelength in plate 1 and 2 is 0)45 m, the wavelength in plate 3 is 0)25 m.

Table 2 shows that this criterion does not apply so simply. First, the best results have been obtained for equal values of Nd and Np. Furthermore, the numbers Nd and Np clearly depend not only on the wavelength but also on the coupling factor.

Although the wavelength is the same in plates 1 and 2, Nd is larger for plate 2 for which the coupling factor is approximately three times larger than the coupling factor for plate 1.

To emphasize the role of the coupling factor, let us mention the results obtained in air. For the same calculation for plate 3, only 10}01 is needed at 56 Hz and 12}07 at 120 Hz, the coupling factor is equal to 0)16 m\ in this case.

The same curves have been obtained with method I, with similar values of (Nd, Np). It does not seem that using orthogonal polynomials provides any improvement, from a numerical point of view. On the contrary, for equal values of (Nd, Np), this requires a larger computing time since it includes the computation of integrals of products of polynomials and Hankel functions.

Figures 2 and3 show two examples of convergence for the displacement on plate 2, for two frequencies 56 and 1500 Hz.

The results obtained with method II are summarized in Table 3. For each frequency and each plate, Table 3 gives the values Nd and Np"(Nd#4). M has of course the same values as in Table 2.

It can be seen that the values of Nd mainly depend on the number of maxima of the displacement. In most cases, 2M)Nd)4 M. For both plates 1 and 2, values of the ratio h/D are very close to each other; thus, at each frequency, the value of Nd can be chosen of the same order of magnitude for both plates. It is larger for plate 3 for which the wavenumbers and then M are larger. For plate 3, we do not give any result at 1500 Hz: it appeared that the system of equations becomes unstable unless the working precision is increased (for example with a Mathematica program, the regular precision of 16 digits is not su$cient): nevertheless, by taking precautions, it has been possible to suppress these instabilities and obtain reliable results.

Figures 4 and5 show the convergence of the method for plate 2 at 56 and 1500 Hz. Figures 6 and7 present a comparison between the curves obtained for plate 2 with methods I and II at 56 and 1500 Hz respectively. The two methods do not give exactly the same result. The di!erences on the maxima is about 2% at 56 Hz, and 5% at 1500 Hz: this is absolutely not signi"cant, the di!erence induced on the pressure "eld being much less than 0)1 dB. Nevertheless, it is necessary to give an explanation of this discrepancy. It is of course possible to prove that both approximation methods converge to the exact solution. But, in practice, due to rounding errors, the numerical results do not converge to the exact solution; furthermore, the rounding errors depending on the numerical method, a perfect agreement between various numerical approximations cannot be expected.

On a few examples, method II has also been tested. It appears that, for the same choice of (Nd, Np), the results have the same accuracy, but the computation time is reduced.

Finally, Figures 8 and9 present the directivity patterns of the plates at 56 and 1500 Hz, calculated with method II. It has been shown that for both methods, the convergence does not depend only on the wavelengths in the #uid and in the plate. The coupling factor is also an important parameter. The comparison of Tables 2 and3 provides an interesting result. The rules of convergence are di!erent with methods I and II. With method I, the e!ect of the coupling factor is clearly essential when the wavenumbers are equal (as for plates 1 and 2). With method II, the values of the wavenumber in the plate (or the number M of maxima) is the main parameter.

RESPONSE OF A THIN PLATE TO A TURBULENT WALL PRESSURE EXCITATION

The aim of this section is the prediction of the response of a simple structure*a two-dimensional ba%ed rectangular plate*induced by a turbulent #ow, that is the determination of the various power density spectra (displacement and pressure "elds). The calculation of these spectra is based on the solution of the #uid-loaded plate equation for a continuous set of harmonic excitations. The method used here is based on the expansion of the unknown functions in series of Tchebyche! polynomials and adapted collocation equations, as described in section 3.2.2.

The plate is made of purely elastic steel characterized by: Young's modulus E"2)0;10 Pa, Poisson ratio "0)3, density "7800 kg/m; its size is 1)0;0)7 m; with thickness h"0)05 m.

One of the two half-spaces is occupied by water, with density 1000 kg/m and sound velocity 1500 m/s. The other half-space is a vacuum.

The plate is excited by a turbulent #ow parallel to its longest sides. There is no acoustic source. The acoustic #uid loading of the plate is modelled as if the #uid was at rest: indeed, a few numerical experiments have shown that, for small Mach numbers, the #uid velocity has a quite negligible in#uence on the acoustic pressure on the plate.

MODEL USED FOR THE TURBULENCE AND RESPONSE OF THE PLATE TO THE CORRESPONDING WALL PRESSURE

The turbulent wall pressure excitation, which is a space}time random process, is characterized by a cross-power density spectrum [START_REF] Crighton | Modern Methods in Analytical Acoustics[END_REF] N (x, y; x, y; ) where is the angular frequency. Among the many models available in the literature (see for example references [20] or [START_REF] Blake | Mechanics of Flow-Induced Sound and Vibration[END_REF]), we have chosen the one proposed by Corcos who adopts the following form for the wall pressure:

N (x, y; x, y; )" N ( ) e\?VSV\VY3A e\? W SW\WY3A e S W\WY 3A (40) 
with W "0)1, V "7 W and ; A "0)7;

. Following reference [START_REF] Durant | et de la re & ponse vibro-acoustique d'une conduite sollicite& e par un e& coulement interne[END_REF], the spectrum

N ( ) is de"ned by log C ( )"!5)1!0)9 log f C !0)34 (log f C )!0)04(log f C ) with f C " /2 ; , q "1/2 ; , N ( )"(q /; ) C ( ), (41) 
where "0)10 m is the turbulent boundary layer thickness.

As shown in many papers (in particular in reference [START_REF] Filippi | Uncertainty Modeling in Finite Element, Fatigue and Stability of Structures[END_REF]), the cross-spectral density S S (M, M; ) of the plate displacement is related to the cross-spectrum density of the excitation by

S S (M, M; )" u(Q, M; ) N (Q, Q; ) u*(Q, M; ) dQ dQ, (42) 
where u(Q, M; ) is the response of the #uid-loaded plate to a harmonic unit point force / and u* is the complex conjugate of u. The numerical problem is the determination of the plate displacement u for a harmonic excitation.

MAIN STEPS OF THE COMPUTATION AND RESULTS

The computation of u(M, Q; ) was made with the numerical method presented in section 3.2.2. The acoustic pressure on the plate surface is described by the Green representation corresponding to a #uid at rest. The Green representation of the plate displacement is used: it involves boundary layer integrals to account for the boundary conditions. The Green representation of the plate displacement, the continuity condition between the plate displacement and the normal component of the #uid particle displacement, and the boundary conditions provide a system of four integral equations.

The unknown functions which depend on one variable*the two layer densities*are expanded into truncated series of Tchebyche! polynomials. The unknown functions which depend on two variables*the plate displacement and the acoustic pressure on the plate surface*are expanded into truncated series of products of two Tchebyche! polynomials. The coe$cients of these expansions are evaluated by an adapted collocation method. A detailed presentation of this speci"c case is given in reference [7].

The last step is the evaluation of the power density spectrum of the displacement. This requires the computation of quadruple integrals. But, due to the variable separation of both the plate displacement representation and the power density spectrum of the excitation, the calculation is reduced to the evaluation of the product of two double integrals. Figure 10 presents an example of the response of the plate excited by a turbulent boundary layer. The power density spectrum of the plate velocity S T " S S has been calculated for two di!erent conditions. The continuous curve is the response of the water-loaded plate. It is compared to the response of the in vacuo plate excited by the same wall pressure. This clearly shows the #uid-loading in#uence. The two curves are obtained for x"0)9¸V and y"0)9¸W. With this location, all the modes of the plate are visible. The #uid loading has two consequences which can be observed on these curves: the added mass e!ect, that shifts the peaks toward the low-frequency domain, and the damping e!ect, that reduces their amplitude. The positions of the amplitude maxima are compared to the resonance frequencies of the #uid-loaded plate (see Table 4). One can see that the maxima of the response of the plate occur for frequencies which are very close to the real part of the resonance frequencies; their amplitudes get smaller as the damping of the resonance modes increases. For example, the response of the plate close to 82 and 90 Hz presents a di!erence of more than 20 dB. This could be expected simply by looking at the resonance frequencies: at 90 Hz the resonance frequency has an imaginary part 100 times greater than the one at 82 Hz. The mode that corresponds to 90 Hz is signi"cantly damped by the #uid loading. One can also remark that the resonance modes which present a high damping are modes with a maximum amplitude at the center of the plate (this occurs for the "rst, fourth, eighth, etc., modes).

This example clearly shows that, for an excitation with a wide frequency band, the response of the system structure/#uid is governed by the #uid-loaded modes. It also suggests that a re"ned mesh is required around each resonance frequency, while a rather large frequency mesh or an interpolation algorithm between two successive resonance frequencies is su$cient. In our opinion, the use of the resonance modes representation of the structure response is certainly one of the best methods, if not the best. The example of the next section seems to con"rm the assertion.

DIFFRACTION OF A TRANSIENT ACOUSTIC WAVE BY A ¸INE-2 SHELL

The shell Line-2 is composed of three elementary thin shells , and . The elements and are two identical hemi-spherical end-caps which close the extremities of a cylindrical element . They all have the same mean radius R and the same thickness h which is assumed to be a few percents of R; the length of the cylindrical part is 2¸.

The three elements are made of the same material, characterized by a density Q , a Young modulus E and the Poisson ratio .

A co-ordinate system is associated with each element (see Figure 11). The shell is immersed in a #uid, water, extending to in"nity and is excited by an incident transient wave.

As described in section 2.2, the response of the system is sought as a series of the #uid-loaded resonance modes of the shell and of the corresponding radiated acoustic pressure. The resonance modes are computed with the method described in section 3.3. The details concerning this example are presented in references [START_REF] Maury | Transient acoustic di!raction and radiation by an axisymmetrical elastic shell: a new statement of the basic equations and a numerical method based on polynomial approximations[END_REF][START_REF] Maury | The`se de meH canique*speH cialiteH : Acoustique et dynamique des vibrations[END_REF].

MAIN STEPS OF THE NUMERICAL PROCEDURE

The "rst step is to compute the resonance modes. This requires one to solve the homogeneous equations governing the harmonic regime.

Because the structure has an axis of symmetry, it is possible to expand all the unknown quantities*the shell displacement (three components), the layer density and the corresponding di!racted acoustic pressure*into Fourier series of the angular variable .

The angular harmonics of the shell displacement components and of the layer density satisfy a system of integro-di!erential equations of one variable only, the curvilinear abscissa along a meridian of the shell. Because of the spherical end-caps, variable coe$cients occur. The shell displacement is approximated by polynomial functions (linear combinations of Legendre polynomials) which satisfy the boundary conditions at the poles and the continuity conditions at the junctions of the spherical parts of the shell and the cylindrical part. The layer density is approximated by a truncated series of Legendre polynomials. Use is made of Ritz}Galerkin equations for the shell equation and of adapted collocation equations for the continuity relationship between the normal component of the shell displacement and of the #uid particle displacement.

A very straightforward method is used to calculate the transient response of the shell. For each angular harmonic, each component of the shell displacement is expressed as a linear combination of the corresponding component of the modal resonance displacements; the layer density is expressed as a linear combination of the modal resonance layer densities. These four expansions, which are considered as independent, are introduced into the variational form of the governing time-dependent equations. Using the modal resonance displacement components and the modal resonance layer densities as test functions, one obtains a system of linear algebraic equations which provides the unknown coe$cients. 

COMPARISON BETWEEN NUMERICAL PREDICTIONS AND EXPERIMENTAL RESULTS

A Line-2 shell, made of an aluminum alloy, has been used for experiments. Its radius is 0)020 m, its total length is 0)080 m and its thickness is 0)001 m. Its mechanical characteristics are: density"2611 kg/m, Young's modulus 0)81;10 Pa, the Poisson ratio"0)30. It was immersed in a large water tank with anechoic boundaries. An acoustic transducer, located on the symmetry axis of the target, was used for the generation of a short signal with a spectrum centered around 250 kHz (four oscillations, lasting 0)2 ms). A unique transducer was used for the sound emission and the recording of the re#ected wave. The re#ected wave in the backward direction was recorded 1 m away from the shell.

In Figure 12, the experimental signal is compared with the predicted one, for a total time interval of 2)0 ms, that is 10 times the duration of the incident wave. It must be noticed that the re#ected wave is very sensitive to the relative positions of the transducer and of the target: a small error in the orientation of the target can change the di!racted wave by a rather large amount. Nevertheless, the agreement between the two curves is very good.

Though the re#ected signal was computed as a whole, the specular re#ection and the successive wave packets, which correspond roughly to creeping waves having travelled several times around the target, appear clearly. This shows the strong e$ciency of the expansion of the di!racted acoustic transient pressure in terms of the resonance modes.

CONCLUSION

The aim of this paper was to point out the e$ciency of the resonance modes of the #uidloaded structure to describe the response of a coupled system structure/#uid to any excitation and more speci"cally to a transient excitation.

In all the examples presented, the #uid is water, because, in a heavy #uid, the resonance modes are far from the in vacuo modes and cannot be easily deduced from them, as, for example, by a perturbation method.

The resonance modes are obtained by solving the equations corresponding to a harmonic regime with a complex frequency. Several numerical methods have been tested, to determine some practical rules of convergence. The e!ect of the heavy #uid is pointed out. It is shown that these rules depend on two main parameters: the wavenumber in the plate and the coupling factor.

Then two examples are presented. The "rst one corresponds to a ba%ed plated excited by a turbulent wall pressure. A numerical comparison shows the in#uence of the #uid on the response of the system and the importance of the resonance modes which, obviously, govern the power density spectrum of the system response.

The second example corresponds to a thin shell excited by a transient acoustic wave. The signal di!racted by the shell is expressed as a series of resonance modes and is compared with experimental results obtained in a water tank. The quality of the agreement between numerical predictions and experiments points out that the resonance modes series is certainly one of the best tools to solve this class of problems.

Figure 1 .

 1 Figure 1. Sketch of the #uid-loaded structure.

Figure 3 .

 3 Figure 3. Plate displacement showing convergence of Method I. Plate 2 at 1500 Hz. (;, Nd"30; Np"30, ᭝, Nd"40, Np"40; ᭛, Nd"90, Np"90; continuous line Nd"98, Np"98).

Figure 2 .

 2 Figure 2. Plate displacement showing convergence of Method I. Plate 2 at 56 Hz (;, Nd"12, Np"6; ᭝, Nd"18, Np"20; ᭛, Nd"30, Np"30; continuous line Nd"40, Np"40).

Figure 5 .

 5 Figure 5. Plate displacement showing convergence of Method II. Plate 2 at 1500 Hz. (;, Nd"11; ᭝, Nd"15; ᭛, Nd"19; continuous line, Nd"27).

Figure 4 .

 4 Figure 4. Plate displacement showing convergence of Method II. Plate 2 at 56 Hz. (;, Nd"2; ᭝, Nd"3; ᭛, Nd"4; continuous line, Nd"5).

Figure 6 .

 6 Figure 6. Comparison between methods I and II (marked with ᭛) for plate 2 at 56 Hz.

Figure 7 .

 7 Figure 7. Comparison between methods I and II (marked with ᭛) for plate 2 at 1500 Hz.

Figure 8 .

 8 Figure 8. Directivity pattern at 1 m. Plate 1 (continuous line), plate 2 (marked with ᭛) and plate 3 (marked with ᭝) at 56 Hz.

Figure 9 .

 9 Figure 9. Directivity pattern at 1 m. Plate 1 (continuous line), plate 2 (marked with ᭛) and plate 3 (marked with ᭝) at 1500 Hz.

Figure 10 .

 10 Figure 10. Power spectral density of the velocity of the plate at x"0)9¸V, y"0)9¸W: **, power spectral density of the velocity in water; } --} --, power spectral density of the in vacuo velocity.

Figure 11 .

 11 Figure 11. Geometry of Line-2 and the three co-ordinate systems.

Figure 12 .

 12 Figure 12. Comparison between measurement and prediction of the time-dependent sound "eld di!racted in the axial incidence direction by a Line-2 shell made of aluminum alloy with radius R"0)02 m, total length 4R and thickness h"0)001 m: **, computed signal; } -} -} -, measured signal.

TABLE 1

 1 Characteristics of the three plates

	Material	E			h	h/D	CF
		(Pa)	(kg m\)		(mm) (kg m\ N\) (m\)
	Plate 1: steel	2)26;10	7800	0)28	10	3)82;10\	12)8
	Plate 2: aluminum	0)73;10	2650	0)33	10	3)88;10\	37)7
	Plate 3: aluminum	0)73;10	2650	0)33	3	34)38;10\	125)8

TABLE 3

 3 

			TABLE 2			
			Method I*values of (Nd!Np) and M		
	F (Hz)	56	120	250	250	1500
	Plate 1	6}6; 1	10}10; 1	12}12; 3	30}30; 3	60}60; 7
	Plate 2	30}30; 1	30}30; 2	40}40; 3	40}40; 5	80}80; 8
	Plate 3	30}30; 3	40}40; 5	40}40; 8	60}60; 11	98}98; 18
			Method II*values of (Nd!Np) and M		
	F (Hz)	56	120	250	500	1500
	Plate 1	4}8; 1	7}11; 1	8}12; 3	13}17; 3	19}23; 7
	Plate 2	4}8; 1	7}11; 2	9}13; 3	15}19; 5	19}23; 8
	Plate 3	11}15; 3	15}19; 5	19}23; 8	26}30; 11	*

TABLE 4

 4 Resonance frequencies of the plate and peak frequencies of the plate velocity power density spectrum

	Mode no.	Resonance frequencies (Hz)	Peak frequencies
			of S T	(Hz)
	1	2 3 )5 (1!i8)1;10\)	2 3 )6
	2	5 0 )2 (1!i2)0;10\)	5 0 )3
	3	8 1 )9 (1!i6)1;10\)	8 1 )9
	4	9 0 )7 (1!i4)4;10\)	9 0 )6
	5	108)2 (1!i4)6;10\)	108)3
	6	152)3 (1!i2)6;10\)	152)3
	7	152)5 (1!i5)2;10\)	152)9
	8	173)9 (1!i7)5;10\)	176)0
	9	205)3 (1!i2)4;10\)	208)2
	10	216)4 (1!i1)4;10\)	216)4
	11	252)7 (1!i1)0;10\)	254)2
	12	301)2 (1!i3)6;10\)	301)4
	13	314)1 (1!i1)0;10\)	315)0
	14	320)2 (1!i3)7;10\)	320)0
	15	340)4 (1!i1)1;10\)	341)0
	16	346)3 (1!i4)3;10\)	345)0

The authors have been very pleased with the opportunity which has been o!ered them to write a paper for the birthday of their friend Philip Doak. They are sure that, as usual, Phil will have comments and criticisms 2 . They suggest that this discussion takes place when he likes at Les Arcenaux, where "sh and wine are still gorgeous!