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This paper is concerned with problems of #uid/structure interaction. The aim is to show
how the resonance modes can be used to describe the response of a #uid-loaded structure
(displacement of the structure and sound pressure in the #uid) for any kind of excitation
(periodic, randomly dependent on time and space, or transient). First, the expression of the
response of the system in terms of resonance modes is recalled. To compute the resonance
modes, it is necessary to solve a system of equations in the harmonic regime. Several
numerical methods are considered and a comparison of their respective e$ciency is
presented. Finally, two examples of applications are studied in detail. Namely, a thin plate
excited by a turbulent wall pressure and a thin shell excited by a transient acoustic signal.
For this last example, some experimental data are compared with numerical results.
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1. INTRODUCTION

The number of publications on #uid/structure interactions over the past three decades is
quite impressive. Let us only mention some of the most important books recently published
on this topic. The earliest one is due to Junger and Feit [1], the "rst edition of which
appeared in 1972. Then two books were published in the 1980s [2, 3]. These three books
provide a very complete overview of the knowledge in the domain and the physics of the
phenomena is presented in a classical way which is very easy to follow. A more recent text
book [4] proposes a very rigorous mathematical statement of the problem together with the
most recent numerical methods. Let us also mention the CISM Course [5] in which the
basic concepts of the #uid/structure interaction phenomena are described. Finally, a very
interesting analytical study is due to Crighton [6] who points out the e$ciency of
asymptotic techniques.

This paper shows how the resonance modes can be used to describe the response of
a #uid-loaded structure (displacement of the structure and sound pressure in the #uid).
Most of the results concerning the interaction between a vibrating structure and a #uid,
mainly those involving a heavy #uid, show that the response of the structure is governed by
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the #uid-loaded resonance modes. Their role seems essential for large bandwidth
excitations (as, for example, turbulent wall pressure) or transient excitations. It is then
interesting to develop numerical methods based on the expansion of the response of the
system into a series of the #uid-loaded resonance modes.

This paper summarizes some results previously obtained by the authors [7}12]. It also
includes three original parts.

The "rst one is a presentation of the theoretical development which is more general than
the ones given previously (see reference [5], for example). The second one is a comparison of
the e$ciency of several numerical methods used to solve the equations of the boundary
value problem. The comparison is made on a one-dimensional example. The third one deals
with the di!raction of a transient acoustic wave by an axially symmetrical shell (Line-2@
shape): numerical predictions are compared with experimental results.

Section 2 is devoted to the description of the equations. The excitation can be
harmonically time dependent, transient or random in space and time. First, the response of
the system to a harmonic excitation is expanded into a series of eigenmodes which depend
on frequency. By using a Fourier inverse transform, it is then possible to express the
response of the system to a transient excitation in terms of the #uid-loaded structure
resonance modes. These modes do not depend on frequency. When the resonance modes are
known, the response of the system to any kind of excitation is obtained. The coe$cients of
the series are given in an explicit form, which, in general, cannot be computed numerically.
Nevertheless, these coe$cients can also be obtained as solutions of an in"nite system of
linear equations which can be solved approximately by a truncation procedure.

Section 3 presents several numerical methods for solving the equations corresponding to
the harmonic regime and a comparison of their e$ciency on a simple example. The example
chosen is a one-dimensional ba%ed plate, in contact with a heavy #uid (water) on one side,
and with a vacuum on the other side; the plate is clamped at its boundaries. Two groups of
methods are described.

In the "rst group, the equations are transformed into boundary integral equations by
using the Green representations for the displacement and the sound pressure. The system
obtained is solved by three numerical kinds of approximations. The unknown functions are
successively approximated by piecewise constant functions, then by truncated series of
orthogonal polynomials (Legendre or Tchebyche! ). A third method consists of
approximating the displacement by polynomial functions which satisfy the boundary
conditions for the plate displacement, and the acoustic pressure by polynomials. In the
second group, the Green representation of the acoustic pressure is still used but the plate
equation is written in a variational form. The pressure is approximated by a truncated series
of Legendre polynomials, while the plate displacement is approximated by Legendre
polynomial functions which satisfy the boundary equations. The pressure/displacement
relationship is replaced by a system of &&adapted'' collocation equations; the plate equation
is replaced by the corresponding Ritz}Galerkin equations.

Section 4 presents the "rst example: a rectangular ba%ed plate excited by a wall pressure
induced by a turbulent #ow. The model of turbulent wall pressure is the one proposed by
Corcos [13]. The power density spectrum of the plate displacement is computed by solving
a sequence of harmonic equations. For a given frequency, the problem is transformed into
a system of Boundary Integral Equations and the unknown functions are approximated by
truncated series of Tchebyche! polynomials. The coe$cients are solutions of the &&adapted''
collocation equations. The power density spectrum of the plate displacement shows sharp
peaks for each resonance frequency of the #uid-loaded structure.

Section 5 presents the second example: a Line 2@ shell excited by a transient incident sound
wave. The response of the system is expressed as a truncated series of the #uid-loaded
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structure resonance modes. These modes are calculated by using the variational
formulation and polynomial functions satisfying the boundary conditions. The sound
pressure di!racted by the shell is calculated and compared to experimental results: the
agreement is quite good.

2. GENERAL STATEMENT OF THE PROBLEM

Consider a thin shell occupying a surface R and denote by X the exterior domain; R is
assumed to have everywhere a unit external normal vector n. The shell is made of an elastic
material characterized by a density k, a Young modulus E and the Poisson ratio l; its
thickness is denoted by h. It is immersed in a #uid which extends to in"nity and which is
characterized by a density k

0
and a sound speed c

0
; its interior is a vacuum (see Figure 1).

For simplicity, it is assumed that all the mechanical and geometrical characteristics of the
system are constant. In this section, the superscript &&&'' is used for functions which depend
on time. The capital letters F, U and P denote vector functions.

The system is excited by a force density F3 applied to the shell and an incident acoustic
pressure pJ

i
, both of which are zero outside a time interval [0,¹], F3 is square integrable in

time and space, while pJ
i

is square integrable in time and on any space domain of "nite
dimension (this corresponds to a "nite energy excitation).

Let U3 be the displacement vector of the shell with components (u8
1
, u8

2
, u8

3
): the "rst two

ones are tangent to R, the third one is normal and positive when pointing out to the exterior
of the shell. The sound "eld radiated by the shell is denoted by pJ

S
. The equations governing

the response of the system have the following form:

AU3 #khU3G #P3
S
"F3 !P3

i
on R,

*p8
S
!(1/c2

0
)pJ(

S
"0 in X,

k
0
uJ(
3
#Tr L

n
pJ
S
"!Tr L

n
pJ
i

on R. (1)

Here the matrix A is the partial derivative operator which describes the shell properties. The
notation Tr f stands for the limit value of the function f when the current point in X tends to
Figure 1. Sketch of the #uid-loaded structure.
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a point on R: this notation is necessary when f has a discontinuity across R or is expressed
by an integral which becomes hyper-singular on R (this occurs with layer potentials). P3

S
is

the vector (0, 0, Tr pJ
S
) and P3

i
is the vector (0, 0, Tr pJ

i
). The notation f$ stands for the second

partial derivative of f with respect to time. These equations are completed by initial
conditions (for example, every function and its "rst time derivative is zero for t(0), by
boundary conditions and, if needed, by continuity conditions on U3 . An outgoing wave
condition is also added for pJ

S
.

In the domain X, the acoustic pressure "eld pJ
S

can be represented by a boundary integral
in terms of a layer density uNJ , that is,

pJ
S
"KI uNJ , (2)

where KI is an integral operator. In general, its kernel will be any linear combination of the
free"eld Green kernel of the wave equation and its normal derivative (see its Fourier
transform in equation (8)). For simple geometries (ba%ed plate, for example), use can be
made of the Green function which satis"es the Neumann boundary condition on R.

The values of pJ
S

and of its normal derivative on the shell surface R can be written as

Tr pJ
S
"KI

1
uNJ , Tr L

n
pJ
S
"KI

2
uNJ , (3)

where KI
1

and KI
2

are related to KI in a very simple way.
The system of equations (1) is then replaced by

AU3 #khU3G #KMI
1
uNJ "F3 !P3

i
on R,

k
0
uJ(
3
#KI

2
uNJ "!Tr L

n
pJ
i

on R. (4)

Let us note that the "rst equation is a vector equation where KMI
1
uN J is the vector (0, 0, KI

1
uN J ).

The second equation is scalar. All the unknown functions are de"ned on the shell surface
only. These equations can also be written in a variational form (which corresponds to the
energy balance)

A(U3 , V3 )#P dt PR

kh[U3G #KMI
1
uNJ ] )V3 *dR"P dt PR

[F3 !P3
i
] )V3 *dR,

P dt PR

[k
0
uJ(
3
#KI

2
uNJ ]WI *dR"!P dt PR

Tr L
n
pJ
i
WI *dR, (5)

where V3 and WI are test functions, A(U3 , V3 ) is the bilinear form corresponding to the
expression of the potential energy of the shell, ( )* denotes a complex conjugate and U )V is
the scalar product of the two vectors U and V. In the following, all integration elements will
be omitted unless there is any ambiguity.

2.1. HARMONIC REGIME AND EIGENMODES SERIES

The basic idea developed in this subsection and in the next one is the same as that used by
Morse and Ingard [14] (section 9.5 on Room Acoustics) for the evaluation of the acoustic
response of a room to either a harmonic or a transient source. They consider a room with
absorbing walls and make several assumptions. Though the physical system is not
conservative, for any excitation frequency the existence of eigenmodes and eigenvalues
which are frequency dependent is assumed; the response of the room to any source is
expanded into a series of these eigenmodes. The response of the room to a transient
4



excitation is then determined by an inverse Fourier transform which is calculated by the
residues method under the following hypotheses: the eigenmodes and eigenfrequencies
depend analytically on the frequency; the coe$cients of the harmonic response expansion
have poles only (no branch cuts) which correspond to the resonance frequencies (free
oscillations) of the room. We do not know any general mathematical justi"cation of this
theoretical approach. But as long as an analytical solution exists (separation of variables),
this approach can be applied. From a physicist's point of view, what is true for a
parallelepipedic enclosure should remain true for any other shape of practical interest.

For the present problem, the vibro-acoustic response of a #uid-loaded shell, it can be
proved that the forthcoming developments are valid in very simple situations. We, thus,
assume that they remain valid for any situation. We will precise the assumptions made at
each step.

Let f be the time Fourier transform of a function fI de"ned as it is usual in acoustics by

f (u)"P
`=

~=

fI (t)e*utdt. (6)

Equations (5) become

A(U, V)#PR

[!u2khU#KM u
1

uN ] )V*"PR

[F!P
i
] )V*,

PR

[!u2k
0
u
3
#Ku

2
uN ]W*"!PR

Tr L
n
p
i
W*, (7)

where KM u
1

and Ku
2

are the Fourier transforms of the operators KMI
1

and KI
2
. They depend

on the angular frequency u. More precisely, the integral representation of the acoustic
pressure "eld, its value and the value of its normal derivative on R can be written as

p
S
(M)"KuuN "PR

[G(M,M@)#iL
n(M{)

G(M,M@)]uN (M@) dM@,

Tr p
S
(M)"Ku

1
uN

"!

iuN (M)

2
#PR

[G(M,M@)#iL
n(M{)

G(M,M@)]uN (M@) dM@,

Tr L
n
p
S
(M)"Ku

2
uN

"!

uN (M)

2
#Pf PR

L
n(M)

[G(M,M@)#iL
n(M{)

G(M,M@)]uN (M@) dM@, (8)

where G(M,M@)"!exp(iur(M,M@)/c
0
)/(4nr(M,M@)) is the free"eld Green kernel of the

Helmholtz equation which satis"es the Sommerfeld condition corresponding to the time
dependence, i is a function of u with non-zero imaginary part and such that
i(!u*)"i* (u), and the symbol Pf denotes the "nite part of the hyper-singular integral.
With this choice, the operator Ku

2
has an inverse MKu

2
N~1 for any real frequency, that is the

function uN can be calculated for any given u and Tr p
S
.

Finally, replacing the unknown function uN by s:

s"uN /u2k
0
, (9)
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one gets

A(U,V)!u2kh PR CU!

k
0

kh
KM u

1
sD )V*"PR

[F!P
i
] )V*,

PR

[!u
3
#Ku

2
s] W*"!

1

u2k
0
PR

Tr L
n
p
i
W*. (10)

Let us de"ne the eigenmodes and eigenvalues of equation (10). Their existence, which can be
proved in very simple situations, is assumed for the general case. Introducing the notation
U<

n
"(u(

n1
, u(

n2
, u(

n3
), the eigenmodes (U<

n
, sL

n
) and eigenvalues K

n
satisfy the following system

of homogeneous equations:

A(U<
n
, V)!K

nPR CU< n!
k
0

kh
KM u

1
s(
nD )V*"0, PR

[!u(
n3
#Ku

2
s(
n
]W*"0. (11)

From the last equation, s(
n

can be expressed as a function of u(
n3

:

s(
n
"Yu

2
u(
n3

, (12)

where Yu
2

is the symbolic inverse of Ku
2

.
The system of equations (11) reduce to one equation only

A(U<
n
, V)!K

n PR CU< n!
k
0

kh
KM u

1
(Yu

2
u(
n3

)D )V*"0. (13)

The eigenmodes and eigenvalues depend on the angular frequency. It can be shown [15]
that the eigenmodes satisfy the following orthogonality relationship:

A(U<
n
U< *

m
)"K

n PR CU< n!
k
0

kh
KM u

1
sL
nD )U< m"0 if mOn

"N2
n
(u) if m"n. (14)

Here, N
n

can be seen as playing a role equivalent to the norm of U<
n
.

The displacement U, solution of equations (10) is sought as a series of the eigenmodes:

U"+
n

a
n
U<

n
. (15)

By introducing this series and using the formal inverse of Ku
2
, the system of equations (10) is

replaced by the following equation:

+
n

a
nGA(U<

n
, V)!u2kh PR CU< n!

k
0

kh
KM u

1
(Yu

2
u(
n3

)D )V*H
"PR

[F!P
i
#KM u

1
(Yu

2
Tr L

n
p
i
] )V*. (16)
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To determine the coe$cients of the expansion of U, this equation is written for V"U*
m
. An

explicit form of the operator Yu
2

is not needed. Indeed, the Green formula applied to the
functions

U
i
"Ku(Yu

2
Tr L

n
p
i
) and tK

m
"Kus(

n
(17)

leads to the following equality:

PR

Ku(Yu
2

Tr L
n
p
i
)u(

m3
"PR

Tr L
n
p
i
Tr tK

m
. (18)

This result together with the orthogonality relationship provides the following expression
for the coe$cients a

n
:

a
n
"!

K
n

N2
n
(u) (u2kh!K

n
) PR

[(F!P
i
) )U<

n
#Tr L

n
p
i
TrtK

n
]. (19)

Finally, the acoustic pressure radiated by the shell is given by the series

p
S
"+

n

a
n
p(
n
#p

N
(20)

with

pL
n
"k

0
u2Kus(

n
and p

N
"!Ku(Yu

2
Tr L

n
p
i
).

The sum p
i
#p

N
satis"es a homogeneous Neumann condition on the shell surface, that is

p
N

is the pressure "eld re#ected by a perfectly rigid structure. The result is summarized as
follows:

U"

=
+
n/1

a
n
UK

n
, p

S
"k

0
u2

=
+
n/1

a
n
tK

n
#p

N
,

a
n
"!

K
n
U

n
N2

n
(u)(u2kh!K

n
)
, U

n
"PR

[(F!P
i
) )U<

n
#Tr L

n
p
i
TrtK

n
], (21)

where all the quantities involved, considered as functions of the complex variable u satisfy
the following relationship:

f (!u*)"f *(u) (22)

for any real excitation (transient force and incident acoustic pressure).

2.2. TRANSIENT REGIME AND RESONANCE MODES

The transient response of the system is obtained by taking the inverse Fourier transform
of the harmonic displacement and pressure "eld. This leads to a representation of the
solution in terms of the resonance modes of the #uid-loaded structure (free oscillation
modes).

The existence of the resonance modes and of the resonance frequencies has been proved
for three-dimensional elasticity [16]. It is assumed that the results of this reference are still
valid for the thin-body approximate equations of elasticity.
7



The resonance modes (U
n
, p

n
) of the structure/#uid system and the resonance angular

frequencies u
n

are de"ned by

A(U
n
, V)!u2

n
kh PR CUn

!

k
0

kh
KM un

1
s
nD )V*"0,

PR

[!u
n3
#Kun

2
s
n
]W*"0, p

n
"k

0
u2

n
Kuns

n
. (23)

The resonance frequencies u
n

are related to the eigenvalues K
n

de"ned in the previous
paragraph by

u2
n
kh"K

n
(u

n
). (24)

It has been shown that, for any nO0, this equation has two solutions that we denote u
n
and

u
~n

. They have the following property [16]:

u
n
"X

n
!iq

n
with X

n
'0, q

n
'0, u

~n
"!u*

n
. (25)

The inverse Fourier transforms to be calculated have the following form:

FI (t)"
1

2n P
`=

~=

f (u)

N2
n
(u) (u2kh!K

n
)
e~*ut du. (26)

The use of the method of residues immediately leads to

FI (t)"!iY(t) C
f (u

n
)

N2
n
(u

n
)[2u

n
kh!K@

n
(u

n
)]

e~*un t!
f *(u

n
)

N*2
n

(u
n
)[2u*

n
kh!K@*

n
(u

n
)]

e*u*
n tD , (27)

where Y(t) is the Heaviside step function and K@
n
(u) is the derivative of K

n
with respect to u;

use has been made of the result K@
n
(!u*)"!K*@

n
(u) which is deduced from the property

of K
n
(u) given in equation (22). The function FI (t) is real valued. Thus, the transient response

of the system has the expression:

U3 (t)"iY(t)
=
+
n/1
C

K
n
(u

n
)U

n
(u

n
)

N2
n
(u

n
)[2u

n
kh!K@

n
(u

n
)]

U
n
e~*Xn t

!

K*
n
(u

n
)U*

n
(u

n
)

N*2
n

(u
n
)[2u*

n
kh!K@*

n
(u

n
)]

U*
n
e*Xn tD e~qn t,

pJ (t)"pJ
i
(t)#pJ

N
(t)#iY(t)

=
+
n/1
C

K
n
(u

n
)U

n
(u

n
)

N2
n
(u

n
)[2u

n
kh!K@

n
(u

n
)]

p
n
e~*Xn t

!

K*
n
(u

n
)U*

n
(u

n
)

N*2
n

(u
n
)[2u*

n
kh!K@*

n
(u

n
)]

p*
n
e*Xn tD e~qn t, (28)

where Y is the Heaviside function. This kind of expression is used in example 2 (section 5).
This result is based on the following hypotheses. The eigenmodes and the eigenvalues

depend analytically on the frequency (this is reasonable because they are solutions of an
8



equation which depends analytically on the frequency). As a consequence, the factors N
n
(u)

have the same property; furthermore, it is assumed that they have no zero.
Let us make a "nal comment on the expansions in resonance modes.
By applying the time Fourier transform to expression (28), one gets a representation of

the response of the system to a harmonic excitation in terms of resonance modes:

U(u)"i
=
+
n/1
C

K
n
(u

n
)U

n
(u

n
)

N2
n
(u

n
)[2u

n
kh!K@

n
(u

n
)]

1

i(X
n
!u)#q

n

U
n

#

K*
n
(u

n
)U*

n
(u

n
)

N*2
n

(u
n
)[2u*

n
kh!K@*

n
(u

n
)]

1

i(X
n
#u)!q

n

U*
nD ,

p (u)"p
i
(u)#p

N
(u)#i

=
+
n/1
C

K
n
(u

n
)U

n
(u

n
)

N2
n
(u

n
)[2u

n
kh!K@

n
(u

n
)]

1

i(X
n
!u)#q

n

p
n

#

K*
n
(u

n
)U*

n
(u

n
)

N*2
n

(u
n
)[2u*

n
kh!K@*

n
(u

n
)]

1

i(X
n
#u)!q

n

U*
nD . (29)

This last expression shows clearly that the response of the system is maximum when the
excitation frequency is equal to the real part of any resonance frequency. Such a property is
not pointed out by the eigenmodes series representation of the solution.

2.3. REMARKS

(1) From a purely theoretical point of view, the series representations (28) and (29) are
very attractive because explicit expressions of the coe$cients are given. But, in practice, they
cannot be calculated easily mainly because they involve the derivative of the eigenvalues
with respect to the angular frequency.

When the #uid is a gas, its in#uence on the vibrations of the structure is small and
a perturbation method can be used to derive an approximation of the resonance modes and
frequencies of the #uid-loaded structure from its in vacuo modes and frequencies. An
approximation of expressions (28) and (29) can then be obtained. In general, the coe$cients
of the expansions are computed by solving a truncated form of an in"nite system of
algebraic linear equations.

(2) The main di$culty is to calculate the #uid-loaded resonance modes. There exists a few
cases for which a method of separation of variables is available. In general, only numerical
approximations can be obtained. It is then necessary to have an e$cient computer program
for solving the system of equations (23) which correspond to the steady state equations for
any complex angular frequency.

For this reason, in the next section several numerical methods to solve equations (23) are
examined for the simple example of a one-dimensional ba%ed plate excited by a point
harmonic source. The convergence of these methods has already been proved in theoretical
papers (see references [17, 18], for example). Here our point is to develop numerical
comparisons. The results obtained are discussed in order to provide criteria for determining
the values of the parameters corresponding to each method.

(3) Finally, it must be mentioned that the representation of the solution in terms of
resonance modes is much more interesting for transient regimes. For harmonic or random
excitations, a direct numerical method ("nite elements, boundary elements, etc.) is often
9



much less time consuming. But for transient excitations, the series of resonance modes
seems to be the best way to describe the successive wavefronts which are experimentally
observed. For example, in reference [16], the contributions of the resonance modes are
easily interpreted as surface waves.

3. COMPARISONS BETWEEN SOME NUMERICAL METHODS

The example chosen in this section is a one-dimensional ba%ed plate excited by
a harmonic source. Two main methods are described. In the &&fully integral'' method, the
acoustic pressure and the plate displacement are represented by integrals based on the use
of the Helmholtz and plate Green kernels. In the &&mixed integro-di!erential'' method, the
acoustic pressure is represented by a boundary integral, while the plate displacement is
considered as the solution of a di!erential equation.

3.1. STATEMENT OF THE EXAMPLE

Consider a one-dimensional plate which occupies the segment R"(!¸/2(x(#

¸/2) of the y"0 axis and which is clamped at both ends. The remaining
part R@"(DxD'#¸/2) is a perfectly rigid ba%e. The half-space D"(y'0) is occupied
by a #uid, while the other half-space is a vacuum. The characteristics of the plate are:
thickness h, density k, Young's modulus E, the Poisson ratio l. The characteristics of
the #uid are: density k

0
, sound speed c

0
. The plate is excited by a harmonic unit point

force located at x"S; the excitation angular frequency is u; and there is no acoustic
source.

Let w and p be the plate displacement and the acoustic pressure respectively. They satisfy
the following system of equations:

D(L4w/Lx4)!khu2w#P"d
S

on R,

*p#k2p"0 in D,

Tr (Lp/Ly)"G
u2k

0
w on R

0 on R @

w (!¸/2)"w (¸/2)"w@(!¸/2)"w@(¸/2)"0,

with D"Eh3/12(1!l2) , k2"u2/c2
0

, P"Tr p. (30)

The uniqueness of the solution is ensured by adding a Sommerfeld condition on p. Let G be
the Green function of the Helmholtz equation which satis"es a Neumann condition on
RXR@ and the Sommerfeld condition. The acoustic pressure is expressed in terms of the
plate displacement by

p"u2k
0 PR

Gw. (31)
10



Using this expression, the system of equations (30), is replaced by a system of
integro-di!erential equations on R:

D(L4w/Lx4)!khu2w#P"d
S

on R,

k
0
u2 PR

Gw!P"0 on R,

w (!¸/2)"w (¸/2)"w@ (!¸/2)"w@(¸/2)"0. (32)

The variational form of these equations is given by

PR CD
L2w
Lx2

L2v*
Lx2

!khu2wv*#Pv*D"v*(S) on R,

PR Ck0
u2 PR

Gw!PDW*"0 on R, (33)

where v and W are test functions (see, for example, reference [4]).
Let C be the Green kernel of the plate equation which satis"es the Sommerfeld condition

corresponding to outgoing waves. A Green's formula applied to C and w gives
a representation of w in terms of the excitation force, the acoustic pressure and boundary
sources. The system of equations (32) is thus replaced by the following system of integral
equations:

w#C*P#C*[u`
1
d
L@2

!u~
1

d
~L@2

#u`
2
d@
L@2

!u~
2

d@
~L@2

]"C*dS on R,

k
0
u2 PR

Gw!P"0 on R, (34)

w (!¸/2)"w (¸/2)"w@ (!¸/2)"w@(¸/2)"0,

where C* f stands for the convolution product of the plate Green kernel by the function
f and d@

a
"Ld

a
/Lx is the derivative with respect to x of the Dirac measure located in x"a;

the scalars u$

1
are the values of the third derivative of w at x"$¸/2; the scalars u$

2
are the

values of the second derivative of w at x"$¸/2. The boundary conditions provide the
four additional integral equations required to determine the two unknown functions and
the four boundary sources.

In the next subsections, two families of numerical methods are studied. The "rst family
solves equations (34): two families of approximation functions are used and the system is
solved by a collocation method. We call it the boundary integral/collocation method. The
second family solves equations (33). The unknown functions are approximated by
polynomial functions. The di!erential equation is approximated either by Ritz}Galerkin
equations or by collocation equations, while the integral equation is approximated by
collocation equations. We call it the mixed diwerential-boundary integral/Ritz-collocation
method. These methods are quite classical. The aim of this section is to compare their
e$ciency and provide some practical rules of convergence for the particular case of a heavy
#uid (water).
11



3.2. THE BOUNDARY INTEGRAL/COLLOCATION METHOD

The simplest approximation of the solution of equation (34) is provided by piecewise
constant functions. A more re"ned approximation is obtained by using orthogonal
polynomials.

3.2.1. Approximation by piecewise constant functions

The interval R is divided into sub-intervals p
i

centered at the points x
i
. It must be

remarked that the plate displacement and the acoustic pressure have not the same
wavelength. Thus, two sets of sub-intervals are de"ned: pd

i
(i"1,2,Nd ) for the

displacement and pp
i
(i"1,2,Np) for the pressure. The "rst equation (34) is written at the

centers of each interval pd
i
, while the second one is written at the centers of each interval pp

i
.

This "nally provides (Nd#Np#4) equations when the four boundary conditions are
added.

The functions w and P are approximated by piecewise constant functions with values
w
i
and P

i
on p

i
.

The accuracy of the approximations depends on two main parameters. The "rst one is, of
course, Nd and Np which must be large enough so that the space variations of the unknown
functions are correctly described. The second parameter is the accuracy of the numerical
integration of the kernels C and G over each sub-interval p

i
.

3.2.2. Approximation by orthogonal polynomials and adapted collocation

The unknown functions are approximated by truncated series of orthogonal polynomials
;

i
(we have tested Legendre and Tchebyche! polynomials):

w+

Nd
+
i/0

w
i
;

i
, P+

Np
+
i/0

t
i
;

i
.

The "rst equation of equation (34) is written at the zeros of the polynomial ;
Nd`1

and the
second one at the zeros of the polynomial ;

Np`1
. This leads to a system of equations that

are called here &&adapted collocation equations''. The interest of choosing these collocation
points is that the equations obtained are equivalent to Ritz}Galerkin equations which are
known for giving a much more accurate result (see, for example, references [7] or [15]).

It is also possible to choose for the ;
i
a combination of orthogonal polynomials which

satisfy the boundary conditions. Thus, the four equations which express the boundary
conditions and require a rather signi"cant computing time, are no more necessary. This
results in a signi"cant computing time economy.

3.3. THE MIXED DIFFERENTIAL-BOUNDARY INTEGRAL/RITZ COLLOCATION METHOD

In this section, the acoustic pressure in equations (33) is approximated by a sum of
normalized Legendre polynomials t

i
(x)"A

i
P

i
(2x/¸) (A

i
is the norm of P

i
):

P+

Np
+
i/0

uN
i
t

i
. (35)

The displacement is approximated by a sum of polynomial functions. These polynomial
functions are linear combinations of Legendre polynomials chosen such to satisfy the
boundary conditions. The displacement approximation and the approximation functions
12



are de"ned by

w+

Nd
+
i/0

w
i
=

i
,

=
i
(x)"B

i CPi A
2x

¸ B!
4i#10

2i#7
P

i`2 A
2x

¸ B#
2i#3

2i#7
P

i`4 A
2x

¸ BD , (36)

where B
i
is a normalizing factor. The function=

i
is a polynomial of degree (i#4). It seems

reasonable to adopt the same degree of polynomial approximations for both the pressure
and the displacement: thus Np"(Nd#4).

These approximations are introduced into equations (33). The test functions are chosen
equal to the approximation functions, that is the equations are written for

v"=
i
, i"1, 2,2,Nd, W"t

i
, i"1, 2,2,Np. (37)

The "rst equation (33) is replaced by the corresponding Ritz}Galerkin equations, while the
second equation is replaced by the set of adapted collocation equations:

Nd
+
i/0

w
i PR CD

L2=
i

Lx2

L2=
j

Lx2
!khu2=

i
=

jD#
Np
+
k/0

uN
k PR

t
k
=

j
"=

j
(S), j"1, 2,2, Nd,

k
0
u2

Nd
+
i/0

w
i PR

G=
i
(X

r
)!

Np
+
k/0

uN
k
t
k
(X

r
)"0, r"1, 2,2,Np, (38)

where the X
r

are the zeros of the function t
Np`1

.
The main advantage of this formulation is that the parameters D and kh can be functions

of the variable x. In the "rst equation (38) the numerical evaluation of the integrals requires
a rather large amount of time.

For constant plate parameters, the integrals involved in the left side of the "rst equations
can be computed exactly by using a Gauss}Legendre procedure. In this case and if the
excitation force is a square integrable function F (x), an adapted collocation can be used and
the system is replaced by

Nd
+
i/0

w
i CD

L4=
i

Lx4
(>

q
)!khu2=

i
(>

q
)#

Np
+
k/0

uN
k
t
k
(>

q
)"F (>

q
), q"1, 2,2,Nd,

k
0
u2

Nd
+
i/0

w
i PR

G=
i
(X

r
)!

Np
+
k/0

uN
k
t
k
(X

r
)"0, r"1, 2,2,Np, (39)

where the >
q

are the zeros of the polynomial t
Nd`1

. This approximation can be improved
by using more collocation points in both of the two equations and solving the rectangular
system thus obtained by a least-squares method.

In the last section, the transient vibro-acoustics response of a Line-2@ is studied. Though
this shell has a constant thickness and is made of a homogeneous material, the elasticity
equations have variable coe$cients. Thus, the approximation equations which have been
adopted are similar to those described in this subsection.

3.4. NUMERICAL COMPARISON BETWEEN THE TWO FAMILIES OF APPROXIMATIONS

The example studied in this section is a one-dimensional ba%ed plate, immersed in water
and excited by a harmonic point force. The response of the system is computed by the
13



TABLE 1

Characteristics of the three plates

Material E k l h kh/D CF
(Pa) (kg m~3) (mm) (kg m~3 N~1) (m~1)

Plate 1: steel 2)26]1011 7800 0)28 10 3)82]10~3 12)8
Plate 2: aluminum 0)73]1011 2650 0)33 10 3)88]10~3 37)7
Plate 3: aluminum 0)73]1011 2650 0)33 3 34)38]10~3 125)8
methods presented in the previous section. For numerical comparisons, three plates are
examined. Their characteristics are summarized in Table 1. The &&coupling factor'' (CF) is
de"ned as the ratio k

0
/kh. The length of each plate is ¸"1 m. The #uid (water) is

characterized by k
0
"1000 kg/m3 and c

0
"1500 m/s.

These three examples present a particular interest from a numerical point of view. The
ratio kh/D in the "rst two plates have very close values but the coupling factor is di!erent.
This means that plates 1 and 2 have very close values for their in vacuo eigenfrequencies but
they have di!erent resonance frequencies in water (see below). Plates 2 and 3 correspond to
the same material but di!erent thicknesses. Then, comparisons between plates 1 and 2 point
out the in#uence of the coupling factor and comparisons between plates 2 and 3 point out
the in#uence of the thickness of the plate. The "rst eigenfrequencies of the plates (in vacuo)
and the "rst resonance frequencies in water are:

Eigenfrequencies:

Plate 1: 57)6, 158)9, 311)4, 514)8 Hz,
Plate 2: 57)1, 157)6, 308)8, 510)5 Hz,
Plate 3: 17)1, 47)3, 92)6, 153)2, 228)8, 319)6, 425)4, 546)5 Hz.

Resonance frequencies in water:

Plate 1: 16, 84, 188, 346 Hz,
Plate 2: 54, 125, 239, 393 Hz,
Plate 3: 9, 22, 43, 71, 109, 157, 215, 283, 362 Hz.

The two families of methods described in the previous section have been applied.
Method I is the boundary integral/collocation method. The approximation functions are
piecewise constant functions. Nd and Np are the numbers of constants used to approximate
the displacement and the sound pressure respectively. The two series of collocation points
are equally spaced on the plate. As seen before, this leads to a linear system of order
(Nd#Np#4). In method I@, the collocation functions are orthogonal (Legendre or
Tchebyche! ) polynomials and the two series of collocation points are the zeros of the
polynomials Nd#1 and Np#1 respectively.

Method II is the mixed di!erential-boundary integral/Ritz-collocation method. The
displacement is approximated by polynomial functions and the sound pressure by Legendre
polynomials. Nd and Np are the numbers of functions used to approximate the
displacement and the sound pressure respectively. We have chosen to approximate the
displacement and the pressure by polynomial functions of the same maximum degree. This
corresponds to Np"(Nd#4). As mentioned above (section 3.3), if the plate excitation is
a square integrable function, the Ritz equations can be replaced by a set of adapted
collocation equations (method II@).
14



The frequencies studied range from 56 to 1500 Hz. For each frequency, the convergence
has been studied by varying the values of (Nd,Np). Three types of curves have been
computed: the displacement on the plate, the sound pressure on a line parallel and very
close to the plate (distance"¸/40), and the sound pressure radiated at a distance R"1 m
from the plate.

The convergence of each method is evaluated from comparisons on the displacement
curves (on a linear-scale) only. This corresponds to the most strict conditions. In most cases,
the convergence on the other two curves (sound pressure at ¸/40 and at R"1 m) is reached
for lower values of (Nd,Np). Let us mention that the values given in Tables 2 and 3 are not
exactly the lowest values which give an accurate displacement. For each plate and
frequency, 10}12 couples (Nd, Np) have been tested. The values given in the tables
correspond to the lowest values tested which gave the right curve (computed with large
values of (Nd, Np)) with a discrepancy less than 1%.

The results obtained with method I are summarized in Table 2. For each plate and each
frequency, Table 2 gives the values (Nd, Np) and the number M of zeros of the displacement
curve. In the convergence tests, the values of Np have been chosen smaller or at most equal
to Nd since the most classical criterion for collocation methods applied to integral
equations is simply related to the wavelength in the propagation medium. It says that the
number of collocation points must be such that the length of the sub-elements is equal or
less than one-sixth of the wavelength. In the examples chosen, the wavelength in the #uid is
much smaller than the wavelength in the plate. For example, at 500 Hz, the wavelength in
water is equal to 3 m, the wavelength in plate 1 and 2 is 0)45 m, the wavelength in plate 3 is
0)25 m.

Table 2 shows that this criterion does not apply so simply. First, the best results have
been obtained for equal values of Nd and Np. Furthermore, the numbers Nd and Np clearly
depend not only on the wavelength but also on the coupling factor.

Although the wavelength is the same in plates 1 and 2, Nd is larger for plate 2 for which
the coupling factor is approximately three times larger than the coupling factor for plate 1.
To emphasize the role of the coupling factor, let us mention the results obtained in air. For
TABLE 3

Method II*values of (Nd!Np) and M

F (Hz) 56 120 250 500 1500

Plate 1 4}8; 1 7}11; 1 8}12; 3 13}17; 3 19}23; 7
Plate 2 4}8; 1 7}11; 2 9}13; 3 15}19; 5 19}23; 8
Plate 3 11}15; 3 15}19; 5 19}23; 8 26}30; 11 *

TABLE 2

Method I*values of (Nd!Np) and M

F (Hz) 56 120 250 250 1500

Plate 1 6}6; 1 10}10; 1 12}12; 3 30}30; 3 60}60; 7
Plate 2 30}30; 1 30}30; 2 40}40; 3 40}40; 5 80}80; 8
Plate 3 30}30; 3 40}40; 5 40}40; 8 60}60; 11 98}98; 18
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the same calculation for plate 3, only 10}01 is needed at 56 Hz and 12}07 at 120 Hz, the
coupling factor is equal to 0)16 m~1 in this case.

The same curves have been obtained with method I@, with similar values of (Nd, Np). It
does not seem that using orthogonal polynomials provides any improvement, from
a numerical point of view. On the contrary, for equal values of (Nd, Np), this requires
a larger computing time since it includes the computation of integrals of products of
polynomials and Hankel functions.

Figures 2 and 3 show two examples of convergence for the displacement on plate 2, for
two frequencies 56 and 1500 Hz.

The results obtained with method II are summarized in Table 3. For each frequency and
each plate, Table 3 gives the values Nd and Np"(Nd#4). M has of course the same values
as in Table 2.

It can be seen that the values of Nd mainly depend on the number of maxima of the
displacement. In most cases, 2M)Nd)4 M. For both plates 1 and 2, values of the ratio
kh/D are very close to each other; thus, at each frequency, the value of Nd can be chosen of
the same order of magnitude for both plates. It is larger for plate 3 for which the
wavenumbers and then M are larger. For plate 3, we do not give any result at 1500 Hz: it
Figure 3. Plate displacement showing convergence of Method I. Plate 2 at 1500 Hz. (], Nd"30; Np"30, n,
Nd"40, Np"40; e, Nd"90, Np"90; continuous line Nd"98, Np"98).

Figure 2. Plate displacement showing convergence of Method I. Plate 2 at 56 Hz (], Nd"12, Np"6; n,
Nd"18, Np"20; e, Nd"30, Np"30; continuous line Nd"40, Np"40).
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appeared that the system of equations becomes unstable unless the working precision is
increased (for example with a Mathematica program, the regular precision of 16 digits is not
su$cient): nevertheless, by taking precautions, it has been possible to suppress these
instabilities and obtain reliable results.

Figures 4 and 5 show the convergence of the method for plate 2 at 56 and 1500 Hz.
Figures 6 and 7 present a comparison between the curves obtained for plate 2 with methods
I and II at 56 and 1500 Hz respectively. The two methods do not give exactly the same
result. The di!erences on the maxima is about 2% at 56 Hz, and 5% at 1500 Hz: this is
absolutely not signi"cant, the di!erence induced on the pressure "eld being much less than
0)1 dB. Nevertheless, it is necessary to give an explanation of this discrepancy. It is of course
possible to prove that both approximation methods converge to the exact solution. But, in
practice, due to rounding errors, the numerical results do not converge to the exact solution;
furthermore, the rounding errors depending on the numerical method, a perfect agreement
between various numerical approximations cannot be expected.

On a few examples, method II@ has also been tested. It appears that, for the same choice of
(Nd,Np), the results have the same accuracy, but the computation time is reduced.

Finally, Figures 8 and 9 present the directivity patterns of the plates at 56 and 1500 Hz,
calculated with method II.
Figure 5. Plate displacement showing convergence of Method II. Plate 2 at 1500 Hz. (], Nd"11; n, Nd"15;
e, Nd"19; continuous line, Nd"27).

Figure 4. Plate displacement showing convergence of Method II. Plate 2 at 56 Hz. (], Nd"2; n, Nd"3;
e, Nd"4; continuous line, Nd"5).
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Figure 6. Comparison between methods I and II (marked with e) for plate 2 at 56 Hz.

Figure 7. Comparison between methods I and II (marked with e) for plate 2 at 1500 Hz.

Figure 8. Directivity pattern at 1 m. Plate 1 (continuous line), plate 2 (marked with e) and plate 3 (marked with
n) at 56 Hz.
It has been shown that for both methods, the convergence does not depend only on the
wavelengths in the #uid and in the plate. The coupling factor is also an important
parameter. The comparison of Tables 2 and 3 provides an interesting result. The rules of
convergence are di!erent with methods I and II. With method I, the e!ect of the coupling
18



Figure 9. Directivity pattern at 1 m. Plate 1 (continuous line), plate 2 (marked with e) and plate 3 (marked with
n) at 1500 Hz.
factor is clearly essential when the wavenumbers are equal (as for plates 1 and 2). With
method II, the values of the wavenumber in the plate (or the number M of maxima) is the
main parameter.

4. RESPONSE OF A THIN PLATE TO A TURBULENT WALL PRESSURE EXCITATION

The aim of this section is the prediction of the response of a simple structure*a
two-dimensional ba%ed rectangular plate*induced by a turbulent #ow, that is the
determination of the various power density spectra (displacement and pressure "elds). The
calculation of these spectra is based on the solution of the #uid-loaded plate equation for
a continuous set of harmonic excitations. The method used here is based on the expansion
of the unknown functions in series of Tchebyche! polynomials and adapted collocation
equations, as described in section 3.2.2.

The plate is made of purely elastic steel characterized by: Young's modulus
E"2)0]1011 Pa, Poisson ratio l"0)3, density k"7800 kg/m3; its size is 1)0]0)7 m2;
with thickness h"0)05 m.

One of the two half-spaces is occupied by water, with density 1000 kg/m3 and sound
velocity 1500 m/s. The other half-space is a vacuum.

The plate is excited by a turbulent #ow parallel to its longest sides. There is no acoustic
source. The acoustic #uid loading of the plate is modelled as if the #uid was at rest: indeed,
a few numerical experiments have shown that, for small Mach numbers, the #uid velocity
has a quite negligible in#uence on the acoustic pressure on the plate.

4.1. MODEL USED FOR THE TURBULENCE AND RESPONSE OF THE PLATE TO THE

CORRESPONDING WALL PRESSURE

The turbulent wall pressure excitation, which is a space}time random process, is
characterized by a cross-power density spectrum [19] U

p
(x, y; x@, y@; u) where u is the

angular frequency. Among the many models available in the literature (see for example
references [20] or [21]), we have chosen the one proposed by Corcos who adopts the
following form for the wall pressure:

U
p
(x, y; x@, y@; u)"U0

p
(u) e~axu@x~x{@@Uc e~ayu@y~y{@@Uc e*u(y~y{)@Uc (40)
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with a
y
"0)1, a

x
"7a

y
and ;

c
"0)7;

=
. Following reference [22], the spectrum U0

p
(u) is

de"ned by

log
10

U
e
(u)"!5)1!0)9 log

10
f
e
!0)34 (log

10
f
e
)2!0)04(log

10
f
e
)3

with f
e
"ud/2n;

=
, q

0
"1/2k

0
;2

=
, U0

p
(u)"(q

0
d/;

=
)U

e
(u), (41)

where d"0)10 m is the turbulent boundary layer thickness.
As shown in many papers (in particular in reference [8]), the cross-spectral density

S
u
(M,M@; u) of the plate displacement is related to the cross-spectrum density of the

excitation by

S
u
(M,M@; u)"PR PR

u (Q,M; u) U
p
(Q,Q@; u) u* (Q@,M@; u) dQ dQ@, (42)

where u(Q,M; u) is the response of the #uid-loaded plate to a harmonic unit point force
d
Q

and u* is the complex conjugate of u. The numerical problem is the determination of the
plate displacement u for a harmonic excitation.

4.2. MAIN STEPS OF THE COMPUTATION AND RESULTS

The computation of u(M,Q; u) was made with the numerical method presented in
section 3.2.2. The acoustic pressure on the plate surface is described by the Green
representation corresponding to a #uid at rest. The Green representation of the plate
displacement is used: it involves boundary layer integrals to account for the boundary
conditions. The Green representation of the plate displacement, the continuity condition
between the plate displacement and the normal component of the #uid particle
displacement, and the boundary conditions provide a system of four integral equations.

The unknown functions which depend on one variable*the two layer densities*are
expanded into truncated series of Tchebyche! polynomials. The unknown functions which
depend on two variables*the plate displacement and the acoustic pressure on the plate
surface*are expanded into truncated series of products of two Tchebyche! polynomials.
The coe$cients of these expansions are evaluated by an adapted collocation method.
A detailed presentation of this speci"c case is given in reference [7].

The last step is the evaluation of the power density spectrum of the displacement. This
requires the computation of quadruple integrals. But, due to the variable separation of both
the plate displacement representation and the power density spectrum of the excitation, the
calculation is reduced to the evaluation of the product of two double integrals.

Figure 10 presents an example of the response of the plate excited by a turbulent
boundary layer. The power density spectrum of the plate velocity S

v
"u2S

u
has been

calculated for two di!erent conditions. The continuous curve is the response of the
water-loaded plate. It is compared to the response of the in vacuo plate excited by the same
wall pressure. This clearly shows the #uid-loading in#uence. The two curves are obtained
for x"0)9¸

x
and y"0)9¸

y
. With this location, all the modes of the plate are visible. The

#uid loading has two consequences which can be observed on these curves: the added mass
e!ect, that shifts the peaks toward the low-frequency domain, and the damping e!ect, that
reduces their amplitude. The positions of the amplitude maxima are compared to the
resonance frequencies of the #uid-loaded plate (see Table 4). One can see that the maxima of
the response of the plate occur for frequencies which are very close to the real part of the
20



Figure 10. Power spectral density of the velocity of the plate at x"0)9¸
x
, y"0)9¸

y
: **, power spectral

density of the velocity in water; } - - } - -, power spectral density of the in vacuo velocity.

TABLE 4

Resonance frequencies of the plate and peak frequencies of the plate velocity power density
spectrum

Mode no. Resonance frequencies (Hz) Peak frequencies
of S

v
(Hz)

1 23)5 (1!i8)1]10~3) 23)6
2 50)2 (1!i2)0]10~5) 50)3
3 81)9 (1!i6)1]10~5) 81)9
4 90)7 (1!i4)4]10~3) 90)6
5 108)2 (1!i4)6]10~5) 108)3
6 152)3 (1!i2)6]10~4) 152)3
7 152)5 (1!i5)2]10~5) 152)9
8 173)9 (1!i7)5]10~3) 176)0
9 205)3 (1!i2)4]10~4) 208)2

10 216)4 (1!i1)4]10~5) 216)4
11 252)7 (1!i1)0]10~3) 254)2
12 301)2 (1!i3)6]10~4) 301)4
13 314)1 (1!i1)0]10~3) 315)0
14 320)2 (1!i3)7]10~4) 320)0
15 340)4 (1!i1)1]10~3) 341)0
16 346)3 (1!i4)3]10~5) 345)0
resonance frequencies; their amplitudes get smaller as the damping of the resonance modes
increases. For example, the response of the plate close to 82 and 90 Hz presents a di!erence
of more than 20 dB. This could be expected simply by looking at the resonance frequencies:
at 90 Hz the resonance frequency has an imaginary part 100 times greater than the one at
82 Hz. The mode that corresponds to 90 Hz is signi"cantly damped by the #uid loading.
One can also remark that the resonance modes which present a high damping are modes
with a maximum amplitude at the center of the plate (this occurs for the "rst, fourth, eighth,
etc., modes).
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This example clearly shows that, for an excitation with a wide frequency band, the
response of the system structure/#uid is governed by the #uid-loaded modes. It also
suggests that a re"ned mesh is required around each resonance frequency, while a rather
large frequency mesh or an interpolation algorithm between two successive resonance
frequencies is su$cient. In our opinion, the use of the resonance modes representation of the
structure response is certainly one of the best methods, if not the best. The example of the
next section seems to con"rm the assertion.

5. DIFFRACTION OF A TRANSIENT ACOUSTIC WAVE BY A ¸INE-2@ SHELL

The shell Line-2@ is composed of three elementary thin shells R
1
, R

2
and R

3
. The elements

R
1

and R
3

are two identical hemi-spherical end-caps which close the extremities of
a cylindrical element R

2
. They all have the same mean radius R and the same thickness

h which is assumed to be a few percents of R; the length of the cylindrical part is 2¸.
The three elements are made of the same material, characterized by a density .

s
, a Young

modulus E and the Poisson ratio l.
A co-ordinate system is associated with each element (see Figure 11). The shell is

immersed in a #uid, water, extending to in"nity and is excited by an incident transient
wave.

As described in section 2.2, the response of the system is sought as a series of the
#uid-loaded resonance modes of the shell and of the corresponding radiated acoustic
pressure. The resonance modes are computed with the method described in section 3.3. The
details concerning this example are presented in references [12, 15].

5.1. MAIN STEPS OF THE NUMERICAL PROCEDURE

The "rst step is to compute the resonance modes. This requires one to solve the
homogeneous equations governing the harmonic regime.

Because the structure has an axis of symmetry, it is possible to expand all the unknown
quantities*the shell displacement (three components), the layer density and the
corresponding di!racted acoustic pressure*into Fourier series of the angular variable u.

The angular harmonics of the shell displacement components and of the layer density
satisfy a system of integro-di!erential equations of one variable only, the curvilinear
abscissa along a meridian of the shell. Because of the spherical end-caps, variable
coe$cients occur. The shell displacement is approximated by polynomial functions (linear
combinations of Legendre polynomials) which satisfy the boundary conditions at the poles
and the continuity conditions at the junctions of the spherical parts of the shell and the
cylindrical part. The layer density is approximated by a truncated series of Legendre
polynomials. Use is made of Ritz}Galerkin equations for the shell equation and of adapted
collocation equations for the continuity relationship between the normal component of the
shell displacement and of the #uid particle displacement.

A very straightforward method is used to calculate the transient response of the shell. For
each angular harmonic, each component of the shell displacement is expressed as a linear
combination of the corresponding component of the modal resonance displacements; the
layer density is expressed as a linear combination of the modal resonance layer densities.
These four expansions, which are considered as independent, are introduced into the
variational form of the governing time-dependent equations. Using the modal resonance
displacement components and the modal resonance layer densities as test functions, one
obtains a system of linear algebraic equations which provides the unknown coe$cients.
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Figure 11. Geometry of Line-2@ and the three co-ordinate systems.
5.2. COMPARISON BETWEEN NUMERICAL PREDICTIONS AND EXPERIMENTAL RESULTS

A Line-2@ shell, made of an aluminum alloy, has been used for experiments. Its radius is
0)020 m, its total length is 0)080 m and its thickness is 0)001 m. Its mechanical characteristics
are: density"2611 kg/m3, Young's modulus 0)81]1011 Pa, the Poisson ratio"0)30. It
was immersed in a large water tank with anechoic boundaries. An acoustic transducer,
located on the symmetry axis of the target, was used for the generation of a short signal with
a spectrum centered around 250 kHz (four oscillations, lasting 0)2 ms). A unique transducer
was used for the sound emission and the recording of the re#ected wave. The re#ected wave
in the backward direction was recorded 1 m away from the shell.

In Figure 12, the experimental signal is compared with the predicted one, for a total time
interval of 2)0 ms, that is 10 times the duration of the incident wave. It must be noticed that
the re#ected wave is very sensitive to the relative positions of the transducer and of the
target: a small error in the orientation of the target can change the di!racted wave by
a rather large amount. Nevertheless, the agreement between the two curves is very good.

Though the re#ected signal was computed as a whole, the specular re#ection and the
successive wave packets, which correspond roughly to creeping waves having travelled
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Figure 12. Comparison between measurement and prediction of the time-dependent sound "eld di!racted in
the axial incidence direction by a Line-2 @ shell made of aluminum alloy with radius R"0)02 m, total length 4R and
thickness h"0)001 m: **, computed signal; } - } - } -, measured signal.
several times around the target, appear clearly. This shows the strong e$ciency of the
expansion of the di!racted acoustic transient pressure in terms of the resonance modes.

6. CONCLUSION

The aim of this paper was to point out the e$ciency of the resonance modes of the #uid-
loaded structure to describe the response of a coupled system structure/#uid to any
excitation and more speci"cally to a transient excitation.

In all the examples presented, the #uid is water, because, in a heavy #uid, the resonance
modes are far from the in vacuo modes and cannot be easily deduced from them, as, for
example, by a perturbation method.

The resonance modes are obtained by solving the equations corresponding to a harmonic
regime with a complex frequency. Several numerical methods have been tested, to determine
some practical rules of convergence. The e!ect of the heavy #uid is pointed out. It is shown
that these rules depend on two main parameters: the wavenumber in the plate and the
coupling factor.

Then two examples are presented. The "rst one corresponds to a ba%ed plated excited by
a turbulent wall pressure. A numerical comparison shows the in#uence of the #uid on the
response of the system and the importance of the resonance modes which, obviously, govern
the power density spectrum of the system response.

The second example corresponds to a thin shell excited by a transient acoustic wave. The
signal di!racted by the shell is expressed as a series of resonance modes and is compared
with experimental results obtained in a water tank. The quality of the agreement between
numerical predictions and experiments points out that the resonance modes series is
certainly one of the best tools to solve this class of problems.

The authors have been very pleased with the opportunity which has been o!ered them to
write a paper for the birthday of their friend Philip Doak. They are sure that, as usual, Phil
will have comments and criticisms2. They suggest that this discussion takes place when he
likes at Les Arcenaux, where "sh and wine are still gorgeous!
24



REFERENCES

1. M. C. JUNGER and D. FEIT 1993 Sound, Structures, and Their interaction. Acoustical Society of
America (1972 and 1986 by Massachusetts Institute of Technology).

2. F. FAHY 1985 Sound and Structural Vibration. London: Academic Press.
3. C. LESUEUR 1988 Rayonnement acoustique des structures. Collection de la Direction des Etudes et

Recherches d'ElectriciteH de France, Eyrolles, Paris.
4. R. OHAYON and C. SOIZE 1998 Structural Acoustics and Vibration. London: Academic Press.
5. D. HABAULT 1999 Fluid-structure Interactions in Acoustics. CISM Courses and Lectures N. 396.

Wien*New York: Springer.
6. D. G. CRIGHTON 1989 Journal of Sound and Vibration 133, 1}27. The 1988 Rayleigh medal lecture:
#uid loading*the interaction between sound and vibration.

7. P.-O. MATTEI 1996 Journal of Sound and Vibration 196, 299}315. A two-dimensional Tchebyche!
collocation method for the study of the vibration of #uid-loaded rectangular plate.

8. P. J. T. FILIPPI and D. MAZZONI 1997 In Uncertainty Modeling in Finite Element, Fatigue and
Stability of Structures, (Prof. Ayyub, Prof. Guran and Prof. Haldar, editors), Vol. 9 of Series on
Stability, Vibrations and Control of Systems, 117}158. Singapore: World Scienti"c Publisher.
Chapter 5. Response of a vibrating structure to a turbulent wall pressure: #uid-loaded structure
modes series and boundary element method.

9. D. HABAULT and P. J. T. FILIPPI 1998 Journal of Sound and Vibration 213, 333}374. Light #uid
approximation for sound radiation and di!raction by thin elastic plates.

10. S. MARTIN-SEIGLE, M.-C. PED LISSIER and P. J. T. FLIPPI 1999 Flow, Turbulence and Combustion 61,
71}83. Euromech 369 special issue. Acoustic radiation from a "nite length cylindrical shell excited
by an internal acoustic source: solution based on a Boundary Element Method and a matched
asymptotic expansion.

11. C. DURANT, G. ROBERT, P. J. T. FILIPPI and P.-O. MATTEI 2000 Journal of Sound and Vibration
229, 1115}1155. Vibroacoustics response of a thin cylindrical shell excited by a turbulent internal
#ow: comparison between numerical prediction and experimentation.

12. C. MAURY and P. J. T. FILIPPI Journal of Sound and Vibration (accepted for publication). Transient
acoustic di!raction and radiation by an axisymmetrical elastic shell: a new statement of the basic
equations and a numerical method based on polynomial approximations.

13. G. M. CORCOS 1963 Journal of the Acoustical Society of America 35, 192}199. Resolution of
pressure in turbulence.

14. P. M. MORSE and K. U. INGARD 1968 Theoretical Acoustics. New York: McGraw Hill.
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