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Abstract
We consider the variational wave equation in one-dimensional space with stochastic forc-

ing by an additive noise. Blow-up of local smooth solutions is established, and global
existence is proved in the class of weak martingale solutions.
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1 Introduction
We consider in this paper the variational wave equation with a stochastic forcing

dut − c(u) (c(u)ux)x dt = Φ dW, (t, x) ∈ (0, T )×T, (1.1)

where ut denotes ∂u/∂t (cf. Remark 2.1 below), T = R/Z denotes the one-dimensional torus,
and, over the filtered probability space (Ω,F ,P, (Ft)t>0), W is a cylindrical Wiener process (see
(2.1)). The equation (1.1) is the Euler–Lagrange equation associated to the Lagrangian

L
def=
∫∫ [ 1

2
[
u2
t − c(u)2 u2

x

]
dt + uΦ dW (t)

]
dx.

Our aim is to study the well-posedness of (1.1) up to an explosion time. We prove then that
regular solutions may blow-up in finite time. Finally we establish the existence of global-in-time
weak martingale solutions to (1.1).

The deterministic variational wave equation is recovered taking Φ ≡ 0. It appears in several
physical contexts. For example, nematic liquid crystals [S89, HS91, GHZ97], long waves on
a dipole chain [GHZ97, GI92, ZI92] and also in classical field theories and general relativity
[GHZ97]. An asymptotic (and simpler) equation has been derived by Hunter and Saxton [HS91]

[ut + uux]x = 1
2 u

2
x. (1.2)

Both the Hunter–Saxton equation (1.2) and the deterministic variational wave equation have
been widely studied in the literature [HZ95a, HZ95b, ZZ98, ZZ00, ZZ01, ZZ03, ZZ05, BC05,
BZ06, BZZ07, D11, BCZ15].

Considering the deterministic variational wave equation on the real line (x ∈ R), the local
(in time) well-posedness can be obtained using Kato’s theorem for the quasi-linear equations
[K75]. Singularities may appear in finite time in the non-linear case c′(·) 6≡ 0 [GHZ96]. However,
if the Riemann invariants ut ± c(u)ux are non-positive initially, then rarefactive solutions exist
globally in time [ZZ98]. Global weak solutions to the variational wave equation are not unique,
indeed, at least two types of solutions exist, dissipative and conservative ones. The conservative
solutions were obtained in [BZ06] using an equivalent system in the Lagrangian coordinates.
The total energy of the conservative solutions is equal to the initial energy for almost all t > 0.
The uniqueness of the conservative solutions is established in [BCZ15]. Dissipative solutions are
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obtained in [ZZ03, ZZ05] by studying an approximated system and then passing to the limit.
The dissipative solutions satisfy an energy inequality and a one-sided entropy inequality. To
the author’s knowledge, the uniqueness of the dissipative solutions remains an open problem.
However, for the simpler Hunter–Saxton equation (1.2), the dissipative solutions are unique
[D11].

Note that, in the stochastic case, the Hunter–Saxton equation (1.2) with noise has been
studied recently in [HKP21].

We consider the problem (1.1) under study in the class of systems of stochastic non-linear
hyperbolic equations. There are numerous works related to stochastic scalar conservation laws,
see for instance [CP21] and references therein. In hyperbolic systems of conservation laws with
stochastic forcing, which is our framework, the problematic and techniques are relatively different
from the scalar case.

Let us first make some comments on our results and the way they are established. The prob-
lem (1.1) admits an equivalent formulation as a 2 × 2 system (see (2.6) below). The existence
of local regular solutions to this 2 × 2 system is essentially a pathwise variation on the deter-
ministic result and certainly classical in spirit, but we prefer to give the proof in full details.
Global martingale solutions are obtained by the probabilistic compactness method. We adapt
the method of P. Zhang and Y. Zheng, [ZZ01, ZZ03, ZZ05] (see also [Gue23] in the context of the
Green–Naghdi equations with surface tension) for the deterministic treatment of the problem.
If the stochastic aspects are not present in [ZZ03, ZZ05], our framework is also different, insofar
as we consider periodic solutions and not solutions with certain localization properties. As a
consequence, our approximated system involves some additional “correction terms” (see (2.11)
below) to ensure the periodic character of the the solutions. One of the central technical tool
to recover the desired equation at the limit are Young measures, as introduced by DiPerna in
the context of systems of conservation laws, [DiP83]. Similar techniques have been used recently
for the Hunter–Saxton equation (1.2), the Camassa–Holm equation and the Degasperis–Procesi
equation with noise [CC24, HKP21, HKP23, GHKP22]. In addition, we exploit [BV19] (see also
[FN08]), where Young measures for the study of the stochastic isentropic Euler equations play a
central role too.

The paper is organized as follows. In Section 2 we introduce the kind of noise (white in time,
colored in space) that we consider. We present the equivalent 2 × 2 system (2.6) and we state
the main results of the paper. In Section 3, devoted to local-in-time solutions, we prove the
existence of regular solutions up to an explosion time, and also give some criterion for blow-up
(which amounts to the explosion of the Lipschitz norm of u) in finite time. Section 4 is devoted to
the approximated system obtain by truncation and correction of (2.6) (see (2.11)). We prove that
the approximate solutions exist globally in time, and that they satisfy some uniform estimates.
In Section 5 we prove that the sequence of approximated solutions is tight (in a suitable space),
and we use the Skorokhod–Jakubowski representation theorem to pass to the limit and to derive
the limit equation with some defect measures. Finally, it is proved in Section 6 that the defect
measures are trivial and that the limit is a global weak martingale solution to (1.1).

2 The equations and main results
2.1 The stochastic variational wave equation
Let U be an Hilbert space with an orthonormal basis (gk)k>1 and let U−1 be another Hilbert
space such that the injection U ↪→ U−1 is Hilbert–Schmidt. Let W be the cylindrical Wiener

3



process defined by
W (t) def=

∑
k>1

gk βk(t), t > 0, (2.1)

where (β1(t), β2(t), . . . ) are independent one-dimensional Wiener processes, see Section 4.1.2 in
[DPZ14]. Let Φ : U→ L2(T) such that for any k > 1 we have σk

def= Φgk ∈ C(T) and

q0
def=
∑
k

‖σk‖2W 1,∞(T) < ∞, q(x) def=
∑
k

σk(x)2. (2.2)

By (2.2) and the injection L∞(T) ↪→ L2(T), the map Φ is Hilbert–Schmidt. Let us assume that
c ∈ C∞(R) satisfies

0 < c1 6 c(u) 6 c2, (2.3)
0 6 c′(u) 6 c3. (2.4)

for some constants c1, c2, c3 ∈ (0,∞). We consider the stochastic variational wave equation with
additive noise in (0, T )×T

dut − c(u) (c(u)ux)x dt = Φ dW, (2.5a)
u(0, ·) = u0, ut(t = 0, ·) = v0. (2.5b)

We can also consider the equivalent form

dR + c(u)Rx dt = c̃′(u)
[
R2 − S2] dt + Φ dW, (2.6a)

dS − c(u)Sx dt = c̃′(u)
[
S2 − R2] dt + Φ dW, (2.6b)

completed with the equation

u(t, x) = C−1
{
C
{∫ t

0

(
R+S

2
)

(s, 0) ds + u0(0)
}

+
∫ x

0

S−R
2 (t, y) dy

}
, (2.7)

where
C(r) =

∫ r

0
c(σ) dσ, (2.8)

which expresses u as a non-local function of (R,S). The system (2.6) is deduced from (2.5) by
setting

R
def= ut − c(u)ux, S

def= ut + c(u)ux, c̃(u) def= 1
4 ln c(u). (2.9)

The corresponding initial conditions for (2.6) are therefore

R(0, ·) = R0
def= v0 − c(u0)u′0, S(0, ·) = S0

def= v0 + c(u0)u′0. (2.10)

Remark 2.1 (Notations). The subscript t, as in ut, always denote the partial derivative with
respect to t, and never the value at the given time t of a stochastic process X (the latter being
simply denoted by X(t)).

We will establish in Theorem 2.2 the existence of local regular solutions to (2.6), which are
strong in the probabilistic sense. It may happen that some of these solutions have a finite
time of existence, cf. Theorem 2.3. Nevertheless, global-in-time solutions, which are weak in
the probabilistic sense (martingale solutions), and defined in an L2-framework, are proved to
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exist, see Theorem 2.5. These global-in-time solutions are obtained as limits of solutions to the
following system

dRε + c(uε)Rεx dt = c̃′(uε)
[
(Rε)2 − (Sε)2 − χε(Rε) + 2Rε Θε

]
dt + Φε dW, (2.11a)

dSε − c(uε)Sεx dt = c̃′(uε)
[
(Sε)2 − (Rε)2 − χε(Sε) − 2Sε Θε

]
dt + Φε dW, (2.11b)

Rε(0, ·) = Rε0
def= JεR0, Sε(0, ·) = Sε0

def= JεS0, (2.11c)

coupled with the equation (x ∈ [0, 1])

uε(t, x) = C−1
{
C
{∫ t

0

(
Rε +Sε

2
)

(s, 0) ds + uε0(0)
}

+
∫ x

0

[
Sε−Rε

2 (t, y) − Θε(t)
]

dy
}
,

(2.12)
where Jε is a Friedrichs mollifier, defined as the convolution operator R 7→ R ∗ ρε, where (ρε) is
an approximation of the unit. In (2.11), the cut-off function χε is defined by

χε(ξ)
def=
(
ξ − 1

ε

)2
1[ 1

ε ,∞)(ξ) =
{(
ξ − 1

ε

)2
, ξ > 1/ε,

0, ξ < 1/ε.
(2.13)

We have also introduced a “correction term”

Θε(t) def=
∫ 1

0

Sε −Rε

2 (t, y) dy. (2.14)

Note that this correction Θε(t) is not necessary in the case of a problem set on the whole line
R, [ZZ03, ZZ05]. Finally, we define Φε : U→ ∩s>0H

s(T) such that for any k > 1 and ε > 0 we
have Φεgk

def= σεk
def= Jεσk ∈ C∞(T). Clearly, we have the domination |σεk| 6 |σk|, and thus (see

(2.2)) ∑
k

‖σεk‖2C(T) 6
∑
k

‖σk‖2C(T) = q0, qε(x) def=
∑
k

σk(x)2. (2.15)

2.2 Local and global existence
In what follows, if E is a Banach space, the space C([0, T ];E) of continuous functions [0, T ]→ E
is endowed with the norm

‖u‖C([0,T ];E) = sup
t∈[0,T ]

‖u(t)‖E .

The local existence theorem 2.2 below will be proved actually in a slightly more general version,
Theorem 3.7. To solve (2.5) in the class Hs+1 ×Hs, we need the noise to be a.s. Hs+1, which
is ensured by the following hypothesis:∑

k>1
‖σk‖2Hs+1(T) < ∞. (2.16)

Indeed, a martingale inequality and (2.1) give

E ‖ΦW‖2C([0,T ],Hs+1(T)) 6 C T
∑
k>1
‖σk‖2Hs+1(T) < ∞. (2.17)

Then (2.17) (considered for T = 1, 2, . . .) implies that there is a set Ωs of probability one such
that

ω ∈ Ωs ⇒ ∀T > 0, ΦW ∈ C([0, T ], Hs+1(T)). (2.18)
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Definition 2.1 (Regular solution to (2.5), up to an explosion time). Let (u0, v0) ∈ Hs+1(T)×
Hs(T). Let τ > 0 be a stopping time such that τ > 0 a.s. Let Ωs be defined in (2.18). A process
(u(t))06t<τ such that: a.s.,

u ∈ C([0, τ), Hs+1(T)) ∩ C1([0, τ), Hs(T)), (2.19)

is said to be a regular (or Hs+1) solution to (2.5) up to the explosion time τ if,

1. u(0, ·) = u0, P-almost surely,

2. for all stopping time τ ′ such that τ ′ < τ a.s., for all x ∈ T, the process (u(t ∧ τ ′, x))t>0
is predictable and, for all ω ∈ Ωs such that τ ′(ω) < τ(ω) (and thus P-a.s.), we have the
following identity in Hs−1(T)

ut(τ ′) = v0 +
∫ τ ′

0
c(u) (c(u)ux)x ds + ΦW (τ ′), (2.20)

3. the stopping time τ is an explosion time, in the sense that

τ = sup
n>1

τn, τn
def= inf

{
t ∈ [0, τ) ; ‖(ut(t), ux(t))‖L∞(T) > n

}
. (2.21)

If τ =∞ a.s., the solution is said to be global.

In (2.21), we use the following convention.
Remark 2.2 (Convention for the infimum). If T > 0 and (Pt)t>0 are some properties depending
on time, then the value of the infimum in the expressions

inf {t ∈ [0, T );Pt is true} , or inf {t ∈ [0, T ];Pt is true} (2.22)

is set to the terminal value T if, respectively,

∀t ∈ [0, T ), Pt is false, or ∀t ∈ [0, T ], Pt is false. (2.23)

Theorem 2.2 (Local existence of regular solutions). Let s > 3/2. Let c ∈ C∞(R) satisfies
(2.3) and |c′(u)| 6 c3. Let Φ satisfies (2.16) and let (u0, v0) ∈ Hs+1 ×Hs. Then (2.5) admits a
solution up to an explosion time τ∗ and, for i = 1, 2, two solutions (ui, τ∗i ) to (2.5) defined up
to an explosion time τ∗i coincide, in the sense that τ∗1 = τ∗2 and u1 = u2 on [0, τ∗1 ).

Remark 2.3. The local existence of regular solutions will be established for the equivalent system
(2.6).

We then observe that singularity’s formation can indeed occur in finite time.

Theorem 2.3 (Blow-up in finite time). Let s > 3/2. Assume that the conditions of Theorem
2.2 are satisfied, and that c′(u?) 6= 0 for some u? ∈ R. For any γ > 1/3 and ε > 0, there is
an initial datum uε0 ∈ C∞(T) such that the regular solution (u, τ∗) to (2.5) defined up to the
explosion time τ∗, with initial data (uε0, 0), satisfies

P(τ∗ 6 εγ) > 1− ε. (2.24)

Eventually, we can state the existence of global-in-time weak solutions.
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Definition 2.4 (Weak martingale solution). Assume (2.2), (2.3) and (2.4) . Let u0 ∈ H1(T)
and v0 ∈ L2(T). We say that the problem (2.5) admits a weak martingale solution if there exists
first a stochastic basis (

Ω̃, F̃ , P̃,
(
F̃t
)
,
(
W̃ (t)

))
, (2.25)

where
(
W̃ (t)

)
is a cylindrical Wiener process on U, and, second, an adapted stochastic process

(u(t)) with value in H1(T) such that, for all T > 0,

1. ut, ux ∈ L2(Ω̃;L∞([0, T ];L2(T))) and ut, ux ∈ C([0, T ];L2(T)− weak)) P̃-a.s.,

2. P̃-a.s., u(0, ·) = u0 and for all ϕ ∈ C1(T) and t ∈ [0, T ],∫
T

ut(t)ϕdx −
∫
T

v0 ϕdx +
∫ t

0

∫
T

(c(u(s))ϕ)x c(u(s))ux dxds =
∫
T

ϕΦW (t) dx

(2.26)

3. P̃-a.s, the solution u satisfies the energy “dissipation” inequality

d
∫
T

[
u2
t + c(u)2 u2

x

]
dx 6 ‖q‖L1(T) dt + 2

∫
T

ut Φ dx dW, (2.27)

4. ut, ux ∈ Cr([0, T );L2(T))) P̃-almost surely, i.e., for all t0 ∈ [0, T ) we have

lim
t↓t0
‖(ut(t)− ut(t0), ux(t)− ux(t0))‖L2 = 0. (2.28)

Remark 2.4. The right-continuity condition (2.28) can be interpreted as a dissipation condition.
Indeed, Dafermos [D11] proved that, in the case of the Hunter–Saxton equation (1.2), the right-
continuity condition is equivalent to the dissipation of the energy. This plays a crucial role in
the uniqueness of solutions [D11].

Theorem 2.5 (Global existence of weak martingale solutions). Let u0 ∈ H1(T) and v0 ∈ L2(T).
Assume (2.2), (2.3), (2.4) and suppose that

c0
def= inf

x∈T
c′(u0(x)) > 0. (2.29)

Then the problem (2.5) admits a weak martingale solution. Moreover, the solutions satisfies

• for all p ∈ [1, 3) we have

Ẽ

∫
[0,t]×T

c′(u) [|ut|p + |ux|p] dx dt 6 C(T, α), (2.30)

• for all p ∈ [1, 2], there exists C(p) > 0 such that for all t ∈ (0, T ], we have the entropy
inequality

Ẽ

∥∥∥[ut ± c(u)ux]−
∥∥∥p
L∞

(t) 6 C(p, T )
(
1 + t−p

)
. (2.31)

3 Local-in-time regular solutions
In this section we will consider the question of existence of local-in-time solutions in Hs to the
system (3.1) below, which covers both systems (2.6) and (2.11).
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3.1 Generalized system
For some given function θ ∈ C∞(R), we consider the system

dR + c(u)Rx dt = c̃′(u)
[
R2 − S2 − θ(R) + 2RΘ

]
dt + Φ dW, (3.1a)

dS − c(u)Sx dt = c̃′(u)
[
S2 − R2 − θ(S) − 2SΘ

]
dt + Φ dW, (3.1b)

R(0, ·) = R0, S(0, ·) = S0, (3.1c)

where u is defined by

u(t, x) = C−1
{
C
{∫ t

0

(
R+S

2
)

(s, 0) ds + u0(0)
}

+
∫ x

0

[
S−R

2 (t, y) − Θ(t)
]

dy
}
, (3.2)

with
Θ(t) def=

∫ 1

0

S −R
2 (t, y) dy. (3.3)

The original system (2.6) simply corresponds to the case θ ≡ 0 (one can prove that Θ(t) ≡ 0 in
that case1), while the approximate system (2.11) corresponds to the choice θ = χε (note that
χε is not of class C∞ though, but in the class W 2,∞

loc , this is why Theorem 4.5 will be stated in
the space H2(T)). In essential, the system (3.1) will be solved pathwise, with the help of the
following set of unknown functions:

P
def= R − ΦW, Q

def= S − ΦW. (3.4)

In terms of the unknown (P,Q), the system (3.1) can be rewritten as the following system of
PDEs with random coefficients:

Pt + c(u)Px = c̃′(u)
[
P 2 − Q2 − θ(P + ΦW ) + 2 (P + ΦW ) Θ

]
− (c(u) ΦW )x , (3.5a)

Qt − c(u)Qx = c̃′(u)
[
Q2 − P 2 − θ(Q + ΦW ) − 2 (Q + ΦW ) Θ

]
+ (c(u) ΦW )x , (3.5b)

P (0, ·) = R0, Q(0, ·) = S0, (3.5c)

where

u(t, x) = C−1
{
C
{∫ t

0

(
P +Q

2 + ΦW
)

(s, 0) ds + u0(0)
}

+
∫ x

0

[
Q−P

2 (t, y) − Θ(t)
]

dy
}
,

(3.6)
with

Θ(t) def=
∫ 1

0

Q− P
2 (t, y) dy. (3.7)

The system (3.5)-(3.6) has the form of the quasilinear system

Vt + A(V )Vx = Fθ(V ), in (0, T )×T, (3.8a)
V (0, ·) = V0, in T. (3.8b)

where
V

def=
(
P
Q

)
, (3.9)

1indeed, Θ satisfies Θ′ = Θ
∫
T

c̃′(u)(R + S) dx and Θ(0) = 0.
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and, (u,Θ) being given as a functions of V by (3.6)-(3.7), we set

A(V ) def=
(
c(u) 0

0 −c(u)

)
, (3.10)

and

Fθ(V ) def=
(
c̃′(u)

[
P 2 − Q2 − θ(P + ΦW ) + 2 (P + ΦW ) Θ

]
− (c(u) ΦW )x

c̃′(u)
[
Q2 − P 2 − θ(Q + ΦW ) − 2 (Q + ΦW ) Θ

]
+ (c(u) ΦW )x

)
. (3.11)

3.2 Local regular solutions
Let s > 3/2. We introduce the following definition.

Definition 3.1 (Regular solution to (3.8), up to an explosion time). Let V0 ∈ Hs(T;R2).
Let τ > 0 be a stopping time such that τ > 0 a.s. Let Ωs be defined in (2.18). A process
(V (t))06t<τ = (P (t), Q(t))06t<τ such that, we have: a.s.,

(t 7→ V (t)) ∈ C([0, τ), Hs(T;R2)) ∩ C1([0, τ), Hs−1(T;R2)), (3.12)

is said to be a regular (or Hs) solution to (3.8) up to the explosion time τ if,

1. for all stopping time τ ′ such that τ ′ < τ a.s., for all x ∈ T, the process (V (t ∧ τ ′, x))t>0
is predictable and, for all ω ∈ Ωs such that τ ′(ω) < τ(ω) (and thus P-a.s.), we have the
following identity in Hs−1(T)

V (τ ′) = V0 −
∫ τ ′

0
(A(V )Vx − Fθ(V ))(s) ds, (3.13)

2. the stopping time τ is an explosion time, in the sense that

τ = sup
n>1

τn, τn
def= inf

{
t ∈ [0, τ) ; ‖V (t)‖L∞(T;R2) > n

}
. (3.14)

If τ =∞ a.s., the solution is said to be global.

The integral identity (3.13) can be also expressed by integration along the characteristic
curves. We will see several instances of this formulation: to solve the linear system (with frozen
non-linear coefficients) associated to (3.8), and also to get some estimates on the solutions to
(3.8), with either θ = 0 or θ = χε, so we give a rather general form to the statement.

Proposition 3.2 (Integration along characteristic curves). Let τ > 0 be a stopping time such
that τ > 0 a.s. Let (v(t), c̄(t), f(t))06t<τ be a stochastic process such that, we have: a.s.,

[t 7→ v(t)] ∈ C([0, τ), Hs(T)) ∩ C1([0, τ), Hs−1(T)), (3.15)

and
[t 7→ (c̄, f)(t)] ∈ C1([0, τ), Hs−1(T))× C([0, τ), Hs−1(T)). (3.16)

Assume also: a.s., for all t > 0, x ∈ T, c̄(t, x) ∈ [c1, c2] (where c1, c2 are the constants in (2.3)).
Let (X(t, x)) denote the flow associated to c̄, and let y 7→ Y (t, y) denote the inverse of the map
x 7→ X(t, x). Then, there is equivalence between:
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1. for all stopping time τ ′ such that τ ′ < τ a.s.,

v(τ ′) = v(0) −
∫ τ ′

0
(c̄ vx − f)(s) ds, (3.17)

and

2. a.s., for all t ∈ [0, τ) and all x ∈ T,

v(t, x) = v(0, Y (t, x)) +
∫ t

0
f(s,X(s, Y (t, x))) ds. (3.18)

Proof of Proposition 3.2. Note first that (3.17) is equivalent to: a.s., for all t ∈ [0, τ),

v(t) = v(0) −
∫ t

0
(c̄ vx − f)(s) ds. (3.19)

Indeed, (3.17) can be applied to the stopping time t ∧ τ ′, from which we deduce (3.19) for
all t ∈ [0, τ ′(ω)), and thus for all t ∈ [0, τ(ω)) since τ ′ < τ is arbitrary. Conversely, (3.19)
yields (3.17) when τ ′ is simple, and the general case follows by approximation. This being said,
Proposition 3.2 is essentially a classical deterministic statement. It is not difficult to check that all
the terms are sufficiently regular to justify the equivalence through differentiation. In particular,
the equation

∂tv(t, x) + c̄(t, x)∂xv(t, x) = f(t, x) (3.20)

is satisfied a.s., for all t ∈ [0, τ) and all x ∈ T.

Energy estimates in Hs(T) are one of the main ingredient in the resolution of (3.8) locally in
time. A basic issue in the justification of such estimates for solutions a priori in Hs(T) is that the
term A(V )∂x involves an additional space derivative and necessitates the better Hs+1-regularity
to be safely manipulated. There are several ways to circumvent this problem, for instance by
working first on an approximate problem (by Friedrichs regularization of the term A(V )∂x, or
by direct resolution of an iterative scheme in a class of sufficiently smooth solutions). We choose
a different method, by a direct regularization of the equation and commutator estimates (based
on Kato–Ponce’s estimates [KP88] and DiPerna–Lions estimates [DL89]). We give the result on
the general equation (3.20).

Proposition 3.3 (Hs-estimate, linear equation). Let (v(t), c̄(t), f(t))06t<τ be as in Proposi-
tion 3.2. There is a constant Bs depending on s only such that, a.s., for all T ∈ [0, τ) satisfying

2TBs‖∂xc̄‖C([0,T ];L∞(T)) 6 1, (3.21)

one has

‖v‖C([0,T ];Hs(T)) 6 2‖v(0)‖Hs(T) + 2T‖f‖C([0,T ];Hs(T))

+ 2TBs‖v‖C([0,T ];W 1,∞(T) ‖c̄‖C([0,T ];Hs(T)). (3.22)

In particular, there is a constant Cs depending only on s such that, if T additionally satisfies

4TCs‖c̄‖C([0,T ];Hs(T)) 6 1, (3.23)

then
‖v‖C([0,T ];Hs(T)) 6 4‖v(0)‖Hs(T) + 4T‖f‖C([0,T ];Hs(T)). (3.24)
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We adopt the following notations: Λs denotes the operator (I−∂2
x)s/2, [A,B] = AB−BA the

commutator of two operators A and B. In order to prove Proposition 3.3, we recall the following
Kato–Ponce estimates [KP88]

‖f g‖Hr 6 C (‖f‖L∞ ‖g‖Hr + ‖f‖Hr ‖g‖L∞) , (3.25)
‖[Λr, f ] g‖L2 6 C (‖fx‖L∞ ‖g‖Hr−1 + ‖f‖Hr ‖g‖L∞) , (3.26)

where r > 0, and C > 0 is a constant depending only on r. We recall also the following estimate
[CM02]

‖F (f)− F (0)‖Hs 6 C (‖f‖L∞) ‖f‖Hs , (3.27)
for any f ∈ Hs with s > 1/2 and F ∈ C∞(R).

Proof of Proposition 3.3. The second estimate (3.24) follows from (3.22) and the continuous
injection of Hs(T) into W 1,∞(T) (the exponent s satisfying s > 3/2). To prove (3.22), we
introduce (ρδ), a standard approximation of the unit, and let Jδ denote the Friedrichs operator
f 7→ f ∗ ρδ, obtained by convolution by ρδ with respect to the variable x. Denote also by c̄ the
operator of multiplication by c̄. We apply Jδ to (3.20) to obtain

∂tv
δ(t, x) + c̄(t, x)∂xvδ(t, x) = fδ(t, x) + rδ(t, x), (3.28)

where
vδ = Jδv, fδ = Jδf, rδ = c̄∂xv

δ − Jδ(c̄∂xv) = [c̄, Jδ]∂xv.
We have

vδ ∈ C1([0, τ);Hs(T)), ∂xv
δ, fδ, rδ ∈ C0([0, τ);Hs(T)),

so we can apply Λs to (3.28) to get

∂tΛsvδ(t, x) + c̄(t, x)∂xΛsvδ(t, x) = Λsfδ(t, x) +Rδ(t, x), (3.29)

where
Rδ = Λsrδ + [c̄,Λs]∂xvδ. (3.30)

We can then multiply (3.29) by Λsvδ, integrate on T and integrate by parts to get

‖Λsvδ(t)‖L2(T) 6 ‖Λsvδ(0)‖L2(T)

+
∫ t

0

{ 1
2‖∂xc̄(σ)‖L∞(T)‖Λsvδ(σ)‖L2(T) + ‖Λsfδ(σ)‖L2(T) + ‖Rδ(σ)‖L2(T)

}
dσ, (3.31)

which yields, for T < τ(ω),

‖vδ‖C([0,T ];Hs(T)) 6 ‖vδ(0)‖Hs(T)

+ T
{ 1

2‖∂xc̄‖C([0,T ];L∞(T))‖vδ‖C([0,T ];Hs(T)) + ‖fδ‖C([0,T ];Hs(T)) + ‖Rδ‖C([0,T ]L2(T))
}
. (3.32)

Assume

‖Rδ‖C([0,T ];L2(T))

6 Bs
[
‖∂xc̄‖C([0,T ];L∞(T)) ‖v‖C([0,T ];Hs(T)) + ‖v‖C([0,T ];W 1,∞(T) ‖c̄‖C([0,T ];Hs(T))

]
, (3.33)

for a certain constant Bs. Then we can insert (3.33) in (3.32), pass to the limit δ → 0 and, after
replacing Bs by Bs + 1/2, conclude to (3.22). To establish (3.33), we write

Rδ = Λs[c̄, Jδ]∂xv + [c̄,Λs]∂xvδ = [Λs, [c̄, Jδ]]∂xv + [c̄, Jδ]Λs∂xv + [c̄,Λs]∂xvδ, (3.34)
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and use the Jacobi identity

[Λs, [c̄, Jδ]] + [[c̄, [Jδ,Λs]] + [Jδ, [Λs, c̄]] = 0,

and the fact that [Jδ,Λs] = 0 to get

Rδ = [Jδ, [c̄,Λs]]∂xv + [c̄, Jδ]Λs∂xv + [c̄,Λs]∂xvδ = Jδ[c̄,Λs]∂xv + [c̄, Jδ]∂x(Λsv). (3.35)

The intermediate identities between (3.30) and (3.35) can be understood in the sense of distribu-
tion, but we must check that each term in (3.35) is in L2(T) and satisfies the expected estimate.
We have [c̄,Λs]∂xv ∈ L2(T) by Kato-Ponce’s commutator estimate (3.26), with

‖[c̄(t),Λs]∂xv(t)‖L2(T)

6 CKP
[
‖∂xc̄(t)‖L∞(T) ‖∂xv(t)‖Hs−1(T) + ‖c̄(t)‖Hs(T) ‖∂xv(t)‖L∞(T)

]
,

and thus

‖[c̄(t),Λs]∂xv(t)‖L2(T)

6 CKP
[
‖∂xc̄‖C([0,T ];L∞(T)) ‖v‖C([0,T ];Hs(T)) + ‖v‖C([0,T ];W 1,∞(T) ‖c̄‖C([0,T ];Hs(T))

]
,

for t ∈ [0, T ]. By the commutator estimate Lemma II-1. in [DL89] (and more exactly, by the
proof of Lemma II-1), we have [c̄, Jδ]∂x(Λsv) ∈ L2(T) with

‖[c̄(t), Jδ]∂x(Λsv(t))‖L2(T) 6 CDPL‖∂xc̄(t)‖L2(T)‖Λsv(t)‖L2(T),

which yields Rδ(t) ∈ L2(T) for t ∈ [0, T ], and the estimate (3.33).

To go on our analysis, we consider now the deterministic quasilinear (but non-local) equation

∂tv + c̄[v]∂xv = F [v], (3.36)

on (0, T )×T, where c, F : C([0, T ];Hs(T))→ C([0, T ];Hs(T)) satisfy

‖∂xc̄[v]‖C([0,T ];L∞(T)) 6 C
(
‖v‖C([0,T ];L∞(T))

)
, (3.37)

and
‖∂xF [v]‖C([0,T ];L∞(T)) 6 C

(
‖v‖C([0,T ];L∞(T))

) (
1 + ‖∂xv‖C([0,T ];L∞(T))

)
, (3.38)

as well as the bounds

‖c̄[v]‖C([0,T ];Hs(T)) + ‖F [v]‖C([0,T ];Hs(T)) 6 C
(
‖v‖C([0,T ];L∞(T))

) (
1 + ‖v‖C([0,T ];Hs(T))

)
, (3.39)

for all v ∈ C([0, T ];Hs(T)), for a given function C : R+ → R+. We will also consider the Lipschitz
condition

‖c̄[v1]− c̄[v2]‖C([0,T ];L2(T)) + ‖F [v1]− F [v2]‖C([0,T ];L2(T))

6 C
(
‖v1‖C([0,T ];W 1,∞(T)) + ‖v2‖C([0,T ];W 1,∞(T))

)
‖v1 − v2‖C([0,T ];L2(T)). (3.40)

Proposition 3.4 (Hs-estimate, linear equation). Assume c̄, F in (3.36) satisfy (3.37) and (3.39).
Then, given R > 0, there is a constant νR > 0 such that, if TνR 6 1, then all solutions
v ∈ C([0, T ];Hs(T)) to the equation

∂tv + c̄[w]∂xv = F [w], (3.41)
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with initial datum v0 ∈ Hs(T) and entry w ∈ C([0, T ];Hs(T)) of size

‖v0‖Hs(T ) 6 R/3, ‖w‖C([0,T ];Hs(T)) 6 R,

satisfy the bound
‖v‖C([0,T ];Hs(T)) 6 R. (3.42)

Proof of Proposition 3.4. This is a straightforward consequence of the estimate (3.22), using
(3.37)-(3.39) and the injection Hs(T) ↪→ L∞(T), which yields

‖v‖C([0,T ];Hs(T)) 6 2‖v0‖Hs(T ) + CRT 6 2
3R+ CRT, (3.43)

for TνR 6 1, where νR > 0, CR > 0. We obtain then (3.42) by adjusting the vale of νR if
necessary.

Next, we state the contraction property in the low norm L2.

Proposition 3.5 (L2-contraction, linear equation). Assume c̄, F in (3.36) satisfy (3.37), (3.39)
and also (3.40). Given R > 0, there is a constant νR > 0 such that, if TνR 6 1, and v1, v2 ∈
C([0, T ];Hs(T)) are solutions of the respective equations

∂tvi + c̄[wi]∂xvi = F [wi], i ∈ {1, 2}, (3.44)

with respective initial datum v1,0, v2,0 ∈ Hs(T) and entries w1, w2 ∈ C([0, T ];Hs(T)) of size

‖v0‖Hs(T) 6 R/3, ‖wi‖C([0,T ];L∞(T)) 6 R, i ∈ {1, 2},

then
‖v1 − v2‖C([0,T ];L2(T)) 6 4‖v1,0 − v2,0‖L2(T) + 1

2‖w1 − w2‖C([0,T ];L2(T)). (3.45)

Proof of Proposition 3.5. The difference v̄ := v1 − v2 satisfies the equation

∂tv̄ + c̄[w1]∂xv̄ = f̄ := F [w1]− F [w2] + (c̄[w2]− c̄[w1])∂xv2, (3.46)

starting from v̄0 := v1,0 − v2,0, and thus the L2-estimate

‖v̄‖C([0,T ];L2(T)) 6 ‖v1,0 − v2,0‖L2(T)

+ T‖∂xc̄[w1]‖C([0,T ];L∞(T))‖v̄‖C([0,T ];L2(T)) + 2T‖f̄‖C([0,T ];L2(T)). (3.47)

We apply Proposition 3.4: if T is sufficiently small, then the bound (3.42) is satisfied by v1 and
v2. As a consequence of (3.37) and (3.40) (and of the injection Hs(T) ↪→ W 1,∞(T) again), we
obtain

‖v̄‖C([0,T ];L2(T)) 6 2‖v1,0 − v2,0‖L2(T) + C ′RT‖v̄‖C([0,T ];L2(T)) + C ′′RT‖w̄‖C([0,T ];L2(T)), (3.48)

with w̄ := w1 − w2, from which (3.45) follows for T sufficiently small.

We can then give a result of existence of solutions to (3.36) up to a time of explosion of the
Lipschitz norm of the solution.

Proposition 3.6 (Existence up to explosion of the sup-norm). Assume c̄, F in (3.36) satisfy
(3.37)-(3.38)-(3.39) and also (3.40). Let v0 ∈ Hs(T) and let T > 0. There exists a solution
v ∈ C([0, T ∗);Hs(T))∩C1([0, T ∗);Hs−1(T)) to (3.36) with initial datum v0 defined up to a time
T ∗ which satisfies

T ∗ = sup
n>1

Tn, Tn
def= inf

{
t ∈ [0, T ∗); ‖v(t)‖L∞(T) > n

}
. (3.49)
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Proof of Proposition 3.6. We consider the iterative scheme vk 7→ vk+1, where vk+1 is the solution
(given by the method of characteristics, cf. Proposition 3.2) to the equation

∂tv
k+1 + c̄[vk]∂xvk+1 = F [vk], (3.50)

with initial datum v0. By Proposition 3.4 and Proposition 3.5, there is a time T` depending
on ‖v0‖Hs(T) only such that the sequence (vk) converges in C([0, T`];Hs(T)) to a solution v to
(3.36) with initial datum v0 defined on [0, T`]. This gives the local existence. Local uniqueness
follows from (3.45) (possibly applied repeatedly). So the problem (3.36) with initial datum v0
admits a maximal solution defined up to the time S∗ defined by

S∗
def= sup

n>1
Sn, Sn

def= inf
{
t ∈ [0, T ∗); ‖v(t)‖Hs(T) > n

}
. (3.51)

Let us first introduce the explosion time of the Lipschitz norm:

T̂ ∗
def= sup

n>1
T̂n, T̂n

def= inf
{
t ∈ [0, T ∗); ‖v(t)‖W 1,∞(T) > n

}
. (3.52)

The norm in Hs(T) dominates the norm in W 1,∞(T) so S∗ 6 T̂ ∗. On the other hand, if
t < T̂n ∧ S∗, so that v solves (3.36) on [0, t] and

‖v‖C([0,t];W 1,∞(T)) 6 n,

we observe that (3.22) gives (for arbitrary times 0 6 r < r + σ 6 t)

‖v‖C([r,r+σ];Hs(T)) 6 2‖v(r)‖Hs(T) + 2σ
(
‖F [v]‖C([r,r+σ];Hs(T)) +Bsn ‖c̄[v]‖C([r,r+σ];Hs(T))

)
.

(3.53)

We deduce then from (3.39) that

‖v‖C([r,r+σ];Hs(T)) 6 2‖v(r)‖Hs(T) + 2σC(n) (1 +Bsn)
(
‖v‖C([r,r+σ];Hs(T)) + 1

)
, (3.54)

and thus
‖v‖C([r,r+σ];Hs(T)) 6 K(n)

(
‖v(r)‖Hs(T) + 1

)
, (3.55)

if σ < σ(n) for a σ(n) sufficiently small depending on n (and s) only. By iterating (3.55), we
obtain the bound ‖v‖C([0,t];Hs(T)) 6 H(n) for a given function H : N→ N, and thus t < SH(n).
Letting t ↑ T̂n ∧ S∗ gives T̂n ∧ S∗ 6 SH(n) 6 S∗ and thus T̂n 6 S∗. We conclude that T̂ ∗ 6 S∗

and finally that T̂ ∗ = S∗.
Let us now prove that T ∗ = T̂ ∗. Clearly T̂ ∗ 6 T ∗. We consider a time t < Tn ∧ T̂ ∗. By

differentiation in x in (3.36) on [0, t], we obtain the equation

∂tw + c[v]∂xw = ∂xF [v]− w∂xc[v], (3.56)

where w := ∂xv. By the comparison principle, and for s ∈ [0, t],

‖w(s)‖L∞(T) 6 ‖∂xv(0)‖L∞(T) +
∫ s

0
‖∂xF [v]− w∂xc[v]‖L∞(T)(σ) dσ. (3.57)

We use (3.37), (3.38) and the Grönwall lemma, to deduce from (3.57) that

sup
06s6t

‖w(s)‖L∞(T) 6
(
‖∂xv(0)‖L∞(T) + C(n)t

)
exp(C(n)t), (3.58)

for a certain constant C(n). This implies t < T̂H̃(n) for a certain function H̃ : N→ N, which, as
above, gives T ∗ 6 T̂ ∗, and so finally T ∗ = T̂ ∗.
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Theorem 3.7 (Local existence of regular solutions). Let s > 3/2. Assume (2.3), (2.16) and
|c′(u)| 6 c3. Let V0 ∈ Hs(T;R2) such that

∫
T

(Q0 − P0) dx = 0. Then (3.8) admits a solution
up to an explosion time τ and two solutions (Vi, τi), i = 1, 2 to (3.8) coincide, in the sense that
τ1 = τ2 and V1 = V2 on [0, τ1).

Proof of Theorem 3.7. We use Proposition 3.6 (the results can be extended to the case of two
equations in a straightforward way) to solve (3.8) pathwise. Therefore it will be sufficient to
prove that, a.s., u = u[V ] being defined by (3.6), and Fθ given by (3.11), the functions

V 7→ c[V ] := c(u), V 7→ Fθ(V )

satisfy (3.37)-(3.38)-(3.39)-(3.40). If we take into account the regularity (2.18) and the definition
of (P,Q) as the shift of (R,S) by ΦW , then the property (3.37) follows from the identity

c(u)ux = S −R
2 −Θ, (3.59)

and the bounds in (2.3). Similarly, we deduce (3.39) and (3.40) from (2.3), (2.18), (3.6), (3.59)
and (3.27). The property (3.38) is a straightforward consequence of (2.18) and the expression
(3.11) of Fθ. The local uniqueness is a consequence of (3.45), which gives V1 = V2 on [0, τ∗1 ∧ τ∗2 ),
but then also yields τ∗1 = τ∗2 since both are explosion times. Finally, the predictable character
of the stochastic processes can be deduced from the predictable character of each element of the
iteration (3.50).

3.3 Conservative form, integration along the characteristics, Itô’s for-
mula

The identity (3.13) should be understood in Hs−1(T). In particular, (3.13) is satisfied point-wise
for every x ∈ T and so is the system (3.1) (once interpreted in the standard integral form of
SDEs). The Itô formula can therefore be applied for every x ∈ T to the real-valued processes
(R(t, x))t<τ and (S(t, x))t<τ and gives, for all smooth function h ∈ C∞(R),

dh(R) + c(u)h(R)x dt = c̃′(u)
[
h′(R) (R2 − S2 − θ(R) + 2RΘ) + 1

2 q h
′′(R)

]
dt

+ h′(R) Φ dW, (3.60)

and

dh(S) − c(u)h(S)x dt = c̃′(u)
[
h′(S) (S2 − R2 − θ(S) − 2SΘ) + 1

2 q h
′′(S)

]
dt

+ h′(S) Φ dW. (3.61)

We can then use the identity (3.59) to obtain the conservative form

dh(R) + (c(u)h(R))x dt = h′(R) Φ dW
+ c̃′(u)

[
(S − R)Bh(R,S) − h′(R) θ(R) + 2 Θ (Rh′(R) − 2h(R)) + 1

2 q h
′′(R)

]
dt, (3.62)

and

dh(S) − (c(u)h(S))x dt = h′(S) Φ dW
= c̃′(u)

[
(R − S)Bh(S,R) − h′(S) θ(S) − 2 Θ (S h′(S) − 2h(S)) + 1

2 q h
′′(S)

]
dt, (3.63)

where
Bh(R,S) def= 2h(R) − (R+ S)h′(R). (3.64)
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By taking h(R) = R2, we obtain

Bh(R,S) = −2RS = Bh(S,R), R h′(R) − 2h(R) = 0, (3.65)

and, by adding (3.62) to (3.63),

(R2 + S2)(τ ′) = R2(0) + S2(0) +
∫ τ ′

0

[
(c(u) (S2 −R2))x − 2Rθ(R) − 2S θ(S) + 2 q

]
dt

+
∫ τ ′

0
2 (R + S) Φ dW, (3.66)

for all stopping time τ ′ < τ .

We will also need the evolution equation of h(R)
c(u) (and similarly for S, see below). To that

purpose, we compute the derivative of u.

Proposition 3.8 (Computation of ut). Let (V, τ) be a regular solution to (3.8) up to the explosion
time τ and let (u,Θ) being given as a functions of V by (3.6)-(3.7). We have then

Θ′(t) = α(t) + β(t)Θ(t), (3.67)

where
α(t) = 1

2

∫ 1

0
c̃′(u) (θ(R)− θ(S)) dy, β(t) =

∫ 1

0
c̃′(u) (R+ S) dy, (3.68)

and
ut = R+ S

2 − 1
c(u)

∫ x

0

[
ζ(t, y)− ζ̄(t)

]
dy, (3.69)

where
ζ = c̃′(u)

[
θ(R)− θ(S)

2 + (R+ S)Θ
]
, ζ̄(t) =

∫ 1

0
ζ(t, y) dy. (3.70)

Proof of Proposition 3.8. We consider the equations (3.62)-(3.63) with h(R) = R, and subtract
the first equation from the second one to obtain

∂t(S −R) + (c(u)(R+ S))x = c̃′(u) [(θ(R)− θ(S)) + 2 (R+ S) Θ] . (3.71)

By integration on (0, 1) in (3.71), we obtain (3.67). Then we observe that, taking x = 0 in (3.2)
gives

u(t, 0) =
∫ t

0

(
R + S

2

)
(s, 0) ds + u0(0), (3.72)

so that
C(u(t, x)) = C(u(t, 0))−

∫ x

0

[
S −R

2 (t, y)−Θ(t)
]

dy. (3.73)

By differentiation in (3.72) and (3.73) with respect to t, we obtain

c(u)ut = c(u(t, 0))
(
R+ S

2

)
(t, 0)−

∫ x

0

[
∂t(S −R)

2 (t, y)−Θ′(t)
]

dy. (3.74)

We use (3.71) and (3.67) to get

c(u)ut = c(u)R+ S

2 −
∫ x

0

[
ζ(t, y)− ζ̄(t)

]
dy, (3.75)

where ζ and ζ̄ are defined in (3.70). Dividing by c(u) yields (3.69).
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Set
Ξ def= ut −

R+ S

2 = − 1
c(u)

∫ x

0

[
ζ(t, y)− ζ̄(t)

]
dy. (3.76)

It follows from (3.60)-(3.61) and (3.69) that

d
[
h(R)
c(u)

]
+ [h(R)]x dt = h′(R) Φ dW

+ c̃′(u)
c(u)

[
4h(R) Ξ + (S + R)Fh(R,S) − h′(R) θ(R) + 2 ΘRh′(R) + 1

2 q h
′′(R)

]
dt, (3.77)

and

d
[
h(S)
c(u)

]
− [h(S)]x dt = h′(S) Φ dW

+ c̃′(u)
c(u)

[
4h(S) Ξ + (R + S)Fh(S,R) − h′(S) θ(S) − 2 ΘS h′(S) + 1

2 q h
′′(S)

]
dt, (3.78)

where
Fh(R,S) := 2h(R) − (R− S)h′(R). (3.79)

We complete this section with the the expression of (3.60)-(3.61) after integration along the
characteristic curves (cf. Proposition 3.2).
Proposition 3.9 (Integration along the characteristic curves). Let (V (t))t<τ be a regular solu-
tion to (3.8) up to the explosion time τ . Let h ∈ C∞(R). Let X± denote the flow associated to
the vector field ±c(u(t, ·)):

d
dtX

±(t, x) = ±c(u(t,X±(t, x))), X±(0, x) = x, x ∈ T, t ∈ [0, τ). (3.80)

Let also Y ±(t, ·) denote the inverse of the map x 7→ X±(t, x). We have then
1. X± and Y ± are well-defined, C1-maps on [0, τ) × T; for all x ∈ T, (X±(t, x)) and

(Y ±(t, x)) are predictable processes, and the stochastic integrals

Mh(t, x) =
∑
k

∫ t

0
{h′(R)σk}

(
s,X+(s, x)

)
dβk(s), (3.81)

and
Nh(t, x) =

∑
k

∫ t

0
{h′(S)σk}

(
s,X−(s, x)

)
dβk(s), (3.82)

define martingales,

2. we have

h(R)(t, x) = h(R0)(Y +(t, x)) + Mh(t, Y +(t, x))

+
∫ t

0

{
c̃′(u)

[
h′(R) (R2 − S2 − θ(R) + 2RΘ) + 1

2 q h
′′(R)

]} (
s,X+(s, Y +(t, x))

)
ds,

(3.83)

and

h(S)(t, x) = h(S0)(Y −(t, x)) + Nh(t, Y −(t, x))

+
∫ t

0

{
c̃′(u)

[
h′(S) (S2 − R2 − θ(S) − 2SΘ) + 1

2 q h
′′(S)

]} (
s,X−(s, Y −(t, x))

)
ds,

(3.84)

for all stopping time t ∈ [0, τ) and all x ∈ T.
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3.4 Energy estimate
We give here an energy estimate for the system (2.6). The corresponding estimate for (2.11) will
be proved later in Section 4.1.

Proposition 3.10 (Energy estimate). Let (R(t), S(t))t<τ be a regular solution to (2.6) up to a
stopping time τ . Let

E(t) def= ‖(R,S)(t)‖2L2(T) =
∫
T

(R2 + S2)(t, x) dx (3.85)

denote the total energy of the system. Then, for all stopping time t < τ a.s.,

E(t) = E(0) + 2 ‖q‖L1 t + 2M(t), (3.86)

whereM(t) is a martingale satisfying the bound

E
[
M(t ∧ T )2] 6 2 q0 E(0)T + 2 q2

0 T
2, (3.87)

for all T > 0.

Proof of Proposition 3.10. We apply (3.66) (where θ ≡ 0). By integration with respect to x ∈ T
in (and by the stochastic Fubini Theorem), we obtain (3.86) whereM(t) is the stochastic integral

M(t) def=
∫ t

0

∫
T

∑
k>1

(R+ S)(s, x)σk(x) dxdβk(s)

=
∫ ∞

0
1s<t

∫
T

∑
k>1

(R+ S)(s, x)σk(x) dxdβk(s), (3.88)

with variance

E
[
M(t)2] = E

∫ t

0

∑
k>1

∣∣∣∣∫
T

(R+ S)(s, x)σk(x) dx
∣∣∣∣2 ds. (3.89)

From (3.86) follows the global control on the energy

E [E(t ∧ T )] 6 E(0) + 2 q0 T, (3.90)

which in turns (using the Cauchy–Schwarz inequality and (2.2)) gives (3.87).

3.5 Solutions with finite explosion time
3.5.1 Some preliminary estimates

In this section, we consider solely the system (2.6). We establish a bound on the square R2 (resp.
S2) integrated along the characteristic curve X− (resp. X+). If applied to the first equation
(2.6a) for instance, the bound of S2 along X+ can be used to control the negative term −S2 in
the right-hand side of (2.6a), which then cannot prevent the blow-up due to the term R2. This is
exploited in the following section 3.5.2, where solutions with a finite blow-up time are exhibited.

Proposition 3.11 (Control along the opposite characteristic curve). Let (R(t), S(t))t<τ be a
regular solution to (2.6) up to a stopping time τ . Let X± denote the characteristic curves (3.80).
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There is a constant C depending on the constants c1 and c2 in (2.3) only, such that: for all
x1 ∈ T,∫ t∧T

0

[
R2(s,X−(s, x1 + 2c2T )) + S2(s,X+(s, x1))

]
ds 6C (T + 1) ‖(R0, S0)‖2L2(T) + C q0 T

2

+ Mx1(t ∧ T ), (3.91)

for all stopping time t such that t < τ a.s., and all T > 0, where Mx1(t) satisfies

E
[
Mx1(t ∧ T )2] 6 C q0 ‖(R0, S0)‖2L2(T) T + C q2

0 T
2, EMx1(t ∧ T ) = 0, (3.92)

for all T > 0 and all stopping time t < τ a.s.

Proof of Proposition 3.11. The letter C will denote any constant (possibly varying from line to
line) depending solely on c1 and c2. We consider the solution (R,S) as a periodic function defined
on the real line. To establish (3.91), we define

x2
def= x1 + 2 c2 T. (3.93)

The definition (3.93) and the bound of c(u) by c2 in (2.3) ensure that

X+(t ∧ T, x1) 6 X−(t ∧ T, x2). (3.94)

Since c(u) is bounded from below by c1, the map s 7→ X+(s, x1) is a C1-diffeomorphism from
[0, t] onto [x1, X

+(t, x1)], we denote by τ+
x1

its inverse and extend the domain of definition of τ+
x1

by setting
τ+
x1

(y) def= inf
{
s ∈ [0, t ∧ T ] ; X+(s, x1) > y

}
. (3.95)

Similarly, we set
τ−x2

(y) def= inf
{
s ∈ [0, t ∧ T ] ; X−(s, x2) 6 y

}
. (3.96)

We define x̄ def= (x1 + x2)/2 ∈ [X+(t ∧ T, x1), X−(t ∧ T, x2)] (see Figure 1), and we use the two

x

t

t ∧ T

x̄ X−(x2, t ∧ T )X+(x1, t ∧ T )

s

X+(x1, s) x2x1

Figure 1: Characteristics.

parametrizations

A1
def= {(s, y), x1 6 y 6 x̄, 0 6 s 6 τ+

x1
(y)} = {(s, y), 0 6 s 6 t ∧ T, X+(x1, s) 6 y 6 x̄},

A2
def= {(s, y), x̄ 6 y 6 x2, 0 6 s 6 τ−x2

(y)} = {(s, y), 0 6 s 6 t ∧ T, x̄ 6 y 6 X−(x2, s)}.
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Define

G
def=
(
R2 + S2 − M̃
c(u) [R2 − S2]

)
, M̃(t, x) def=

∫ t

0
2 [R(s, x) + S(s, x)] Φ(x) dW (s). (3.97)

Then, using (3.66) (with θ ≡ 0), we obtain

divt,xG 6 2 q0. (3.98)

Integrating now (3.98) on A1 ∪A2, using the divergence theorem and some changes of variables
we obtain

2
∫ t∧T

0

[
c(u)R2(s,X−(s, x2)) + c(u)S2(s,X+(s, x1))

]
ds

6 2 q0 T (x2 − x1) +
∫ x2

x1

(R2
0 + S2

0) dx −
∫ X−(t∧T,x2)

X+(t∧T,x1)
(R2 + S2) dx

+
∫ x̄

x1

M̃(τ+
x1

(y), y) dy +
∫ x2

x̄

M̃(τ−x2
(y), y) dy. (3.99)

This inequality (3.99) and the lower bound c(u) > c1 imply (3.91), where

Mx1(t ∧ T ) def= (2 c1)−1
[∫ x̄

x1

M̃(τ+
x1

(y), y) dy +
∫ x2

x̄

M̃(τ−x2
(y), y) dy

]
.

Since M̃ is a martingale and τ+
x1

(y) and τ−x2
(y) are stopping times, then EMx1(t∧T ) = 0. Using

|Mx1(t ∧ T )|2 6 C(T )
∫
T

sup
s∈[0,t∧T ]

|M̃(s, y)|2 dy (3.100)

and the energy inequality (3.90) we obtain (3.92).

3.5.2 Singularity formation

Let u? ∈ R be such that c′(u?) > 0. We introduce (using the continuity of c′(·)) a length L > 0
such that

|u − u?| 6 L =⇒ c′(u) > c′(u?)/2 > 0. (3.101)
Let ϕ ∈ C∞c (R) be supported in the interval [1/4, 3/4] and non trivial: we assume that ϕ′(x0) < 0,
for a given x0 ∈ (1/4, 3/4). For ε ∈ (0, 1) and α, ν, γ such that

α > 1, ν ∈ (0, α− 1), γ > 1/3, (3.102)

we consider the initial data

uε0(x) = u? + εα ϕ
( x

εα+ν+γ

)
, vε0(x) = 0, (3.103)

defined for x ∈ [0, 1) and extended by periodicity.

Theorem 3.12 (Blow-up in finite time). Let (u(t))t<τ be a regular solution up to the explosion
time τ of (2.5) with initial data given by (3.103). There exists ε0 > 0 depending on the constants
c1, c2 in (2.3) and c3, on L, on q0 and on the profile ϕ only, such that

P(τ 6 εγ) > 1− ε, (3.104)

for all ε < ε0.
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Proof of Theorem 3.12. Set xε = εα+ν+γx0 and

Rχ+(t) = R(t,X+(t, xε)), Sχ+(t) = S(t,X+(t, xε)), (3.105)

where X+ is the characteristic curve defined by (3.80). We will estimate the possible blow-up
of Rχ+ before a time εγ . The letters ε0 and C will denote any positive constant depending on
the constants c1, c2 in (2.3), on c3, on L, on q0 and on the profile ϕ only, with a value possibly
changing from line to line. We will however use the specific notation

δ
def= 1

3 c1 |ϕ
′(x0)|. (3.106)

By (3.83), we have

Rχ+(t) = R0(xε) +
∫ t

0
c̃′(u)(s,X+(s, xε))R2

χ+(s) ds (3.107a)

−
∫ t

0

(
c̃′(u)S2)(s,X+(s, xε)) ds +

∫ t

0

∑
k>1

σk(X+(s, xε)) dβk(s), (3.107b)

for all stopping time t < τ a.s. Using (2.3), the first term in the right-hand side (3.107a) is
bounded as follows:

R0(xε) = −c(u0(xε)) ε−ν−γ ϕ′(x0) > 3 δ ε−ν−γ . (3.108)

To bound from below the coefficient c′(u) in factor of R2
χ+(s) in (3.107a), we will use (3.101).

By (2.9) we have,

u(s,X+(s, xε)) − u0(xε) =
∫ s

0
Sχ+(r) dr, (3.109)

and so

sup
s6εγ∧t

∣∣u(s,X+(s, xε)) − u0(xε)
∣∣2 6 εγ

∫ εγ∧t

0
S2
χ+(r) dr. (3.110)

We use the estimate (3.91) to get

E

∫ εγ∧t

0
S2
χ+(r) dr 6 C E(0) + C ε2γ . (3.111)

The initial energy satisfies

E(0) =
∫
T

(
R2

0 + S2
0
)

(x) dx 6 2 c22 ε−2ν−2γ
∫
T

∣∣ϕ′ (ε−α−ν−γx)∣∣2 dx 6 C εα−ν−γ , (3.112)

so

εγ E

∫ εγ∧t

0
S2
χ+(r) dr 6 C

(
εα−ν + ε3γ) , (3.113)

and we infer from (3.110) and the Markov inequality that

P

(
sup

s6εγ∧t

∣∣u(s,X+(s, xε)) − u0(xε)
∣∣ > L/2

)
6 C

(
εα−ν + ε3γ) . (3.114)

For ε < ε0 we have ‖u0 − u?‖L∞ 6 εα‖ϕ‖L∞ 6 L/2, and then (3.101) and (3.114) imply

P

(
inf

s6εγ∧t
c′
(
u(s,X+(s, xε))

)
> c′(u?)/2

)
> 1− C

(
εα−ν + ε3γ) . (3.115)
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Let us now estimate the terms in (3.107b). Using the Doob maximal inequality, Ito’s isometry
and the definition (2.2) of the variance q, we have

P

 sup
s6εγ∧t

∣∣∣∣∣∣
∫ s

0

∑
k>1

σk(X+(s, xε)) dβk(s)

∣∣∣∣∣∣ > δ ε−ν−γ


6 C δ−2 ε2ν+2γ E

∣∣∣∣∣∣
∫ εγ∧t

0

∑
k>1

σk(X+(s, xε)) dβk(s)

∣∣∣∣∣∣
2

6 C ε2ν+3γ . (3.116)

By (2.3) and |c′(u)| 6 c3, we also have∣∣∣∣∣
∫ εγ∧t

0

(
c̃′(u)S2)(s,X+(s, xε)) ds

∣∣∣∣∣ 6 C

∫ εγ∧t

0
S2
χ+(r) dr, (3.117)

so (3.113) and the Markov inequality give

P

(
sup

s6εγ∧t

∣∣∣∣∫ s

0

(
c̃′(u)S2)(r,X+(r, xε)) dr

∣∣∣∣ > δ ε−ν−γ
)

6 C
(
εα + εν+3γ) . (3.118)

We gather the estimates (3.108), (3.115), (3.116), (3.118) to obtain, based on (3.107), and for
ε < ε0, the inequality

Rχ+(εγ ∧ t) > δ ε−ν−γ + c′(u?)
2

∫ εγ∧t

0
R2
χ+(s) ds, (3.119)

with a probability greater than 1 − Cεmin{α−ν,3γ}. Since min{α − ν, 3γ} > 1 and since the
blow-up in (3.119) occurs before the time 2εν+γ

c′(u?)δ , we can in particular conclude to (3.104).

4 Global-in-time regular solutions to the approximate sys-
tem

This section is devoted to the analysis of the approximate system (2.11). As already explained
when introducing the generalized system (3.1), the cut-off function χε is in the class W 2,∞

loc , but
not in C∞. Nevertheless, the non-linear estimate (3.27) holds true for s = 2 and F ∈W 2,∞

loc , and
so the results of Section 3.2 as well, if we limit ourselves to s = 2. By the change of unknown

P ε
def= Rε − ΦεW, Qε

def= Sε − ΦεW, (4.1)

we transform the stochastic system (3.1) into a system with random coefficients

P εt + c(uε)P εx = c̃′(uε)
[
|P ε|2 − |Qε|2 − χε(P ε + ΦεW ) + 2 (P ε + ΦεW ) Θε

]
− (c(uε) ΦεW )x , (4.2a)

Qεt − c(uε)Qεx = c̃′(uε)
[
|Qε|2 − |P ε|2 − χε(Qε + ΦεW ) − 2 (Qε + ΦεW ) Θε

]
+ (c(uε) ΦεW )x , (4.2b)

P ε(0, ·) = R0 ∗ ρε, Qε(0, ·) = S0 ∗ ρε, (4.2c)
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where

uε(t, x)

= C−1
{
C
{∫ t

0

(
P ε +Qε

2 + ΦεW
)

(s, 0) ds + uε0(0)
}

+
∫ x

0

[
Qε−P ε

2 (t, y) − Θε(t)
]

dy
}
,

(4.3)

with (for x ∈ [0, 1))

Θε(t) def=
∫ 1

0

Qε − P ε

2 (t, y) dy, uε0(x) = C−1
(∫ x

0

Sε0 −Rε0
2 dx

)
. (4.4)

Then in the definition 3.1 of the solution V stands for V ε = (P ε, Qε).

Theorem 4.1 (Regular solutions to the approximate system). Let ε > 0, R0, S0 ∈ H2(T) such
that

∫
T

(S0−R0) dx = 0. Then (2.11) admits a regular solution (V ε, τε) in H2(T), associated to
the initial data Rε0, Sε0, and defined up to the explosion time τε.

Our purpose is to prove that τε = ∞ a.s. We will use various estimates on the solution
(Rε, Sε) to show that blow-up cannot happen in finite time. Although we work at fixed ε here,
it will be useful, when possible, to prove some estimates uniform in ε to prepare the limit ε→ 0,
established in the next Section 5 and Section 6.

Notations. We use the following convention: the letter C will denote any constant independent
on ε, that may otherwise depend on the constant c0 in (2.29), on the constant c1 and c2 in (2.3),
on c3, on the value of the covariance q in (2.2), and on the L2-norms ‖R(0)‖L2(T) and ‖S(0)‖L2(T)
only. So

C = C
(
c0, c1, c2, c3, q0, ‖R(0)‖L2(T), ‖S(0)‖L2(T)

)
. (4.5)

The precise value of the constant may vary from lines to lines. An additional dependence on
other parameters will be indicated, as C(T ) in particular to indicate the additional dependence
on a given final time T .

4.1 Energy estimates
The aim of this section is to obtain energy estimates of the approximated system as in Proposition
3.10 and Proposition 3.11.

Proposition 4.2 (Energy estimate). Let (Rε(t), Sε(t))t<τε be a regular solution to (2.11) in
H2(T), up to a stopping time τε. Let

Eε(t) def= ‖(Rε, Sε)(t)‖2L2(T) =
∫
T

((Rε)2 + (Sε)2)(t, x) dx (4.6)

denote the total energy of the system. Then, for all stopping time t < τε a.s.,

Eε(t) + 2
∫ t

0

∫
T

c̃′(uε) [Rε χε(Rε) + Sε χε(Sε)] dx dt = Eε(0) + 2 ‖qε‖L1 t + Mε(t)

6 C + 2 q0 t + Mε(t),
(4.7)

whereMε(t) is a martingale satisfying the bound

E

[∣∣∣∣ sup
06s6τε∧T

Mε(s)
∣∣∣∣p] 6 C(p, T ), (4.8)
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for all p > 1. Moreover, we have

E

[
exp

(
η sup

06s6τε∧T
Eε(s)

)]
6 C(T ), (4.9)

for all η satisfying the smallness condition 4q0η 6 1.

A direct consequence of (4.7)-(4.8) is the bound

E

[∣∣∣∣ sup
06s6τε∧T

Eε(s)
∣∣∣∣p] 6 C(p, T ), (4.10)

for all p > 1. We also state the following corollary to Proposition 4.2.

Corollary 4.3 (Bound on the correction terms). Let (Rε(t), Sε(t))t<τε be a regular solution to
(2.11) in H2(T). The correction Θε defined in (2.14) satisfies the bound

E
[
‖Θε‖pL∞(0,τε∧T )

]
6 C(p, T ) ε1/2, (4.11)

for all p > 1, while

E
[
‖uεt − (Rε + Sε)/2‖pL1((0,τε∧T );L∞(T))

]
6 C(T, p) ε1/2. (4.12)

and
E
[
‖uεt − (Rε + Sε)/2‖pL∞((0,τε∧T )×T)

]
6 C(T, p), (4.13)

for all p > 1.

Proof of Proposition 4.2. We use the fact that ξχε(ξ) > 0 and integrate over x ∈ T in (3.66)
(where θ = χε), to obtain (4.7) with

Mε(t) def= 2
∫ t

0

∫
T

∑
k>1

(Rε + Sε)(s, x)σεk(x) dxdβk(s). (4.14)

Using Itô’s isometry, Jensen’s inequality and the bound (2.15), we then have

E[Mε(t ∧ T )]2 6 4 q0

∫ T

0
E

∫
T

[
(Rε + Sε)2] dx ds 6 8 q0 E(0)T + 8 q2

0 T
2 6 C(T ).

There remains to prove (4.9) and (4.8). Let η ∈ (0, 1]. By (4.7), we have

η sup
06s6t∧T

Eε(s) 6 C + η sup
06s6t∧T

Mε(s). (4.15)

Let

〈Mε,Mε〉(t) def= 4
∫ t

0

∑
k>1

∣∣∣∣∫ 1

0
σk(Rε + Sε) dx

∣∣∣∣2 ds (4.16)

denote the quadratic variation ofMε. We use an exponential martingale inequality:

P

(
sup

06s6t∧T
Mε(s) > (a+ b〈Mε,Mε〉(t ∧ T ))λ

)
6 e−2abλ2

, (4.17)
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with λ = 1 to obtain

E [exp (2ηZ)] 6 C(b), Z
def= sup

06s6t∧T
Mε(s)− b〈Mε,Mε〉(t ∧ T ), (4.18)

if η 6 b/2. By (4.15) and the Cauchy–Schwarz inequality, we have then

E

[
exp

(
η sup

06s6t∧T
Eε(s)

)]
6 C {E [exp (2ηZ)]}1/2 {E [exp (2bη〈Mε,Mε〉(t ∧ T ))]}1/2 . (4.19)

The bound (4.18) therefore gives

E

[
exp

(
η sup

06s6t∧T
Eε(s)

)]
6 C(b) {E [exp (2bη〈Mε,Mε〉(t ∧ T ))]}1/2 . (4.20)

By the Cauchy–Schwarz inequality, we also have

〈Mε,Mε〉(t ∧ T ) 6 q0 Eε(t ∧ T ) 6 q0 sup
06s6t∧T

E(s), (4.21)

so

E

[
exp

(
η sup

06s6t∧T
Eε(s)

)]
6 C(b)

{
E

[
exp

(
2bq0η sup

06s6t∧T
Eε(s)

)]}1/2
. (4.22)

We can let t ↑ τε and choose b = 1/(2q0) to conclude to (4.9), under the condition 4q0η 6 1. Let
us now establish (4.8). By the Burkholder–Davis–Gundy inequality, we have

E

[∣∣∣∣ sup
06s6t∧T

Mε(s)
∣∣∣∣p] 6 C(p)

{
E
[
〈Mε,Mε〉(t ∧ T )p/2

]}1/2
. (4.23)

We use (4.21), the bound |x|p/2 6 C(p)(1 + e|x|/(8q0)) and (4.9) to conclude.

Proof of Corollary 4.3. We assume 2 6 p. We use the equations (3.67)-(3.68), where θ = χε
(this is why we will add an exponent ε to the quantities α and β below). By integration in
(3.67), we obtain

Θε(t) =
∫ t

0
αε(s) e−

∫ t
s
βε(σ)dσ ds, (4.24)

which gives

‖Θε‖pL∞(0,t∧T ) 6
∫ t∧T

0
|αε(s)|p ds

(∫ t∧T

0
e
p′
∫ t
s
|βε(σ)|dσ ds

)p/p′
, (4.25)

where p′ is the conjugate exponent to p, and then

E
[
‖Θε‖pL∞(0,t∧T )

]
6

{
E

[∫ t∧T

0
|αε(s)|2pds

]}1/2
E

(∫ t∧T

0
exp

(
p′
∫ t∧T

s

|βε(σ)|dσ
)

ds
)(2p)/p′


1/2

.

(4.26)
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We estimate αε in two manners. Let us introduce the notation

M̄ε(t) = sup
06s6t

Mε(s), (4.27)

whereMε is the martingale (4.14). First we have

|αε(s)| 6 c3

∫ 1

0
|χε(Rε) + χε(Sε)|(s, x) dx 6 c3E(s) 6 C(T ) + c3M̄ε(s). (4.28)

We can also use the bound χε(R) 6 Rχε(R)ε and the second term in the left-hand side of (4.7)
to obtain∫ t∧T

0
|αε(s)|ds 6 ε

∫ t∧T

0

∫ 1

0
c̃′(uε) [Rε χε(Rε) + Sε χε(Sε)] dx ds 6 ε

[
C(T ) + M̄ε(t ∧ T )

]
.

(4.29)
We combine (4.28) with (4.29) to obtain∫ t∧T

0
|αε(s)|2p ds 6 C(T )

[
1 +

∣∣M̄ε(s)
∣∣2p] ε, (4.30)

and the bound (4.8) gives

E

[∫ t∧T

0
|αε(s)|2p ds

]
6 C(p, T ) ε. (4.31)

To estimate the remaining term in (4.26), we first note that(∫ t∧T

0
exp

(
p′
∫ t∧T

s

|βε(σ)|dσ
)

ds
)(2p)/p′

6 C(p, T ) exp
(

C(p, T ) sup
06s6t∧T

E(σ)1/2
)
, (4.32)

and
C(p, T ) sup

06s6t∧T
E(σ)1/2 6 C(p, T ) + (8q0)−1 sup

06s6t∧T
E(s). (4.33)

Using (4.9), (4.32) and (4.33) yields,

E

(∫ t∧T

0
exp

(
p′
∫ t∧T

s

|βε(σ)|dσ
)

ds
)(2p)/p′

 6 C(p, T ) (4.34)

We combine (4.31) and (4.34) with (4.26) to conclude to (4.11) with t instead of τε. Then we
let t ↑ τε to get (4.11). The estimates (4.12) and (4.13) are a consequence of (3.69) (where all
quantities are indexed by ε) and the bounds

E
[
‖ζε‖pL1((0,τε∧T )×T)

]
6 C(T, p) ε1/2, (4.35)

and
E
[
‖ζε‖pL∞((0,τε∧T );L1(T))

]
6 C(T, p), (4.36)

where
ζε = c̃′(uε)

[
χε(Rε)− χε(Sε)

2 + (Rε + Sε)Θε

]
. (4.37)

This follows easily from the bounds (4.28)-(4.29) and (4.7)-(4.8)-(4.11).
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Let Xε,± denote the flow associated to the vector field ±c(uε(t, ·)) (characteristic curves):

d
dtX

ε,±(t, x) = ±c(uε(t,Xε,±(t, x))), Xε,±(0, x) = x, x ∈ T, t ∈ [0, τε). (4.38)

In parallel with Proposition 3.11, we have the following result.

Proposition 4.4 (Control along the opposite characteristic curve). Consider a regular solution
(Rε(t), Sε(t))t<τε to (2.11) up to a stopping time τε. Let Xε,± denote the characteristic curves
(4.38). There is a constant C as in (4.5), such that: for all x1 ∈ T and x2 = x1 + 2c2T ,∫ t∧T

0

[
(Rε)2(s,X−(s, x2)) + (Sε)2(s,X+(s, x1))

]
ds 6 C + CMε

x1
(t ∧ T ), (4.39)

for all stopping time t such that t < τε a.s., where Mε
x1

(t) satisfies the bound

E

[
sup

s∈[0,τε∧T )
sup
x1
|Mε

x1
(s)|2

]
6 C(T ). (4.40)

Proof. The proof of Proposition 4.4 is similar to the one of Proposition 3.11. The constant in
(3.100) is independent on x1, then we obtain (4.40) by following the proof of (3.92) and using
(4.10).

4.2 Global solutions
We can now use the estimates established in Section 4.1 to show that the regular solutions of
(2.11) given by Theorem 4.1 exist globally in time almost surely.

Theorem 4.5. Let ε > 0, R0, S0 ∈ L2(T) such that
∫
T

(S0−R0) dx = 0. Let τε be the explosion
time of the solution of (2.11) given by Theorem 4.1. Then P(τε =∞) = 1.

Proof of Theorem 4.5. By (2.16), (2.18) (satisfied by ΦεW ) and the bounds (4.40) and (4.11),
there exists Ω̄ε such that P(Ω̄ε) = 1 and, for all ω ∈ Ω̄ε, for all T > 0,

ΦεW ∈ C([0, T ], H3(T)), Mε
· ∈ L∞([0, τε ∧ T )×R), Θε ∈ L∞(0, τε ∧ T ). (4.41)

Let ω ∈ Ω̄ε be fixed. We have to establish the bound

sup
t∈[0,τε∧T )

‖V ε(t)‖L∞(T) <∞, (4.42)

for all T > 0. We remark that ξ2 − χε(ξ) > 0, so the equations (4.2) imply

P εt + c(uε)P εx > −c̃′(uε)
[
(Sε)2 + 2 ([P ε]− + |ΦεW |) |Θε|

]
− c(uε) (ΦεW )x, (4.43)

where s− = max(−s, 0) is the negative part of a real s ∈ R. We integrate along the characteristics
in (4.43) (cf. (3.83) for instance) and use (4.39) to get

‖[P ε]−(t)‖L∞(T) 6 C(ω, ε, T )
(

1 +
∫ t

0
‖[P ε]−(s)‖L∞(T)ds

)
, (4.44)

for t ∈ [0, τε ∧ T ], which gives

sup
t∈[0,τε∧T )

‖[P ε]−(t)‖L∞(T) 6 C(ω, ε, T ), (4.45)
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by the Grönwall lemma. The bounds on the positive part of P ε is established in a similar manner:
it follows from (4.2) and the bound R2 − χε(R) 6 2ε−1R+ that

P εt + c(uε)P εx 6 C(ω, ε, T )
[
1 + [P ε]+

]
. (4.46)

By the comparison principle (or integration along the characteristics) and the Grönwall lemma,
(4.46) implies

sup
t∈[0,τε∧T )

‖[P ε]+(t)‖L∞(T) 6 C(ω, ε, T ). (4.47)

We have a of course the bounds similar to (4.45)-(4.47) on Qε, so (4.42) is indeed satisfied.

4.3 L3− estimates
In this section we will establish the following almost L3 estimates with weights on Rε and Sε.

Proposition 4.6 (Estimates in L3−
t,x). Let α ∈ [0, 1). We have the bound

sup
ε
E

∫ T

0

∫
T

c′(uε)
[
|Rε|2+α + |Sε|2+α]dxdt 6 C(T, α), (4.48)

for all T > 0.

Proof of Proposition 4.6. Let h : R → R be the non-decreasing function of class W 2,∞ defined
as

h(R) def=
∫ R

0

(
r2 + 1

)α
2 dr.

The function h satisfies the growth conditions

|h(R)| 6 C (1 + |R|2)
α+1

2 , |h′(R)| 6 C (1 + |R|)α, |h′′(R)| 6 C, R ∈ R. (4.49)

We sum up the two equations (3.62) and (3.63) with θ = χε and integrate on T to obtain (using
h′(R)χε(R) > 0 and the energy estimate (4.10))

E

∫ T

0

∫
T

c′(uε) ∆1(Rε, Sε) dx dt 6 C(T ) + C(T )E
∫ T

0
|Θε(t)|

∫
T

(|Rε|2 + |Sε|2)
1+α

2 dx dt,

(4.50)
where

∆1(R,S) := (R − S) (Bh(R,S) − Bh(S,R)), (4.51)

and Bh(R,S) is defined in (3.64). By Hölder’s inequality, (4.11) and (4.10), we can bound the
last term in (4.50) and get

E

∫ T

0

∫
T

c′(uε) ∆1(Rε, Sε) dxdt 6 C(T, α). (4.52)

Similarly, starting from (3.77)-(3.78) and using the estimates (4.13) and (4.10) we can establish
the bound

E

∫ T

0

∫
T

c′(uε)
c(uε) ∆2(Rε, Sε) dxdt 6 C(T, α), (4.53)

where
∆2(R,S) := (R + S) (Fh(R,S) + Fh(S,R)), (4.54)
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and Fh(R,S) is defined in (3.79).
We claim that

(R − S)2 (|R|α + |S|α) 6 C(α) ∆1(R,S), (R + S)2 (|R|α + |S|α) 6 C(α) ∆2(R,S). (4.55)

Summing up the two estimates (4.52) and (4.53) and using (2.3) and (4.55) one then gets (4.48).
Let us now give a proof of the first inequality in (4.55) (the second inequality is obtained by
similar arguments). Using the definition of Bh(R,S) and the monotonicity of ξ 7→ ξ/h′(ξ) we
obtain

∆1(R,S) > 1−α
1+α (R− S) [Rh′(S) − S h′(R)] + (R− S) [2h(R) − Rh′(R) − 2h(S) + S h′(S)]

= 1−α
1+α (R− S)2 [h′(R) + h′(S)] + 2(R− S)

[
h(R)− 1

1+αRh
′(R)− h(S) + 1

1+αSh
′(S)

]
.

The result follows from the monotonicity of ξ 7→ h(ξ)− ξ h′(ξ)/(α+ 1) and from the bound from
below h′(ξ) > |ξ|α.

4.4 One-sided entropy estimates
The central result in this section is Proposition 4.8. We will need first a control on c′(u(t)) for
small times. More precisely, recall that

c0 = inf
x∈T

c′(u0(x)) > 0 (4.56)

by (2.29). For ε sufficiently small, we have then

inf
x∈T

c′(uε(0, x)) > c0/2. (4.57)

Consider the stopping time

t̄ε
def= inf

{
t > 0, inf

x∈T
c′(uε(t, x)) 6 c0/4

}
. (4.58)

We have the following estimate on t̄ε.

Lemma 4.7. We have

E
[
(t̄ε)−p

]
6 C(p), (4.59)

for all p > 1.

Proof of Lemma 4.7. By continuity of the map u 7→ c′(u) and by (4.57), there exists η > 0 such
that

‖v − uε(0, ·)‖L∞(T) 6 η =⇒ inf
x∈T

c′(v(x)) > c0/4, (4.60)

for any v ∈ C(T). In particular,

η 6 sup
s6t̄ε
‖uε(s)− uε0‖L∞(T). (4.61)

We apply the estimate
‖v‖2L∞(T) 6 ‖v‖L2(T) ‖∂xv‖L2(T),
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valid for any v ∈ H1(T), to v = uε(t)− uε0. Writing

uε(t)− uε0 =
∫ t

0
uεt (s) ds (4.62)

yields
‖uε(t)− uε0‖2L∞(T) 6 2 t ‖uεt‖L∞((0,t),L2(T)) ‖∂xuε‖L∞((0,t);L2(T)), (4.63)

and, by (4.61)

(t̄ε)−1 6 (t̄ε ∧ T )−1 6 2 η−1 ‖uεt‖L∞((0,T ),L2(T)) ‖∂xuε‖L∞((0,T );L2(T)), (4.64)

where T is an arbitrary positive time (we may take T = 1). We use the identities (3.59)-(3.69)
and the bounds (4.11), (4.13), (4.10) to conclude to (4.59).

We can now state the following one-sided estimate, where s− = −min{s, 0} denotes the
negative part of a real s.

Proposition 4.8 (Oleinik’s estimate). We have

E

[∥∥∥(Rε)− (τ ∧ T, ·)
∥∥∥p
L∞(T)

]
+ E

[∥∥∥(Sε)− (τ ∧ T, ·)
∥∥∥p
L∞(T)

]
6 C(p, T )

(
1 + E

[
1

(τ ∧ T )p
])

,

(4.65)
for all p ∈ [1, 2], for any time T > 0 and any stopping time τ > 0 a.s.

Proof of Proposition 4.8. For simplicity, we will drop the superscript ε on the quantities R, S,
etc. in the proof. Let us consider the equation for P = R− ΦW : use

R2 = (P + ΦW )2 > 1
2 P

2 − |ΦW |2, (4.66)

and
2RΘ = 2 (P + ΦW ) Θ > − 1

4 P
2 − C(|Θ|2 + |ΦW |2), (4.67)

to obtain
Pt + c(u)Px > c̃′(u)

4 P 2 − CS2 − Cχε(P + ΦW )− CK2
T , (4.68)

where

KT :=
{

sup
t∈[0,T ]

(
‖ΦW (t)‖2W 1,∞(T) + |Θ(t)|2

)}1/2

. (4.69)

We deduce from (4.68) that

Ht + c(u)Hx 6 − c̃
′(u)
8 H2 + CS2 + CK2

T , (4.70)

where H def= (P +KT )−. Integrate along the characteristics: for t 6 τ ∧ T ,

H(t,X+(t, x)) 6 H(s,X+(s, x)) −
∫ t

s

c̃′(u)
8 H2(r,X+(r, x)) dr + AT . (4.71)

where
AT

def= C

∫ τ∧T

0
S2(s,X+(s, x))) ds + C T K2

T . (4.72)
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On the interval [0, t̄ε], assuming τ ∧ T > t̄ε, we have

H(σ,X+(σ, x)) 6 H(s,X+(s, x)) − c0
32

∫ σ

s

H2(r,X+(r, x)) dr + AT , [s, σ] ⊂ [0, t̄ε]. (4.73)

We deduce from (4.73) that

H(t,X+(t, x)) 6 32
c0t

+ AT , ∀t ∈ (0, t̄ε]. (4.74)

Indeed, assume that (4.74) is not realized, and let t1 ∈ (0, t̄ε] be such that

H(t1, X+(t1, x)) >
32
c0t1

+ AT . (4.75)

Define
t0

def= sup
{
t ∈ (0, t1];H(t,X+(t, x)) 6 32

c0t

}
. (4.76)

We have t0 > 0 since H(0, x) <∞ and, by continuity,

H(t0, X+(t0, x)) = 32
c0t0

, H(t,X+(t, x)) > 32
c0t
, ∀t ∈ (t0, t1]. (4.77)

Taking s = t0 and σ = t1 in (4.73) therefore gives

H(t1, X+(t1, x)) 6 32
c0t0

+
[

32
c0r

]t1
t0

+ AT = 32
c0t1

+ AT , (4.78)

which is in contradiction with (4.75). Whatever the value of τ may be, infer from (4.74) that,
for all x ∈ T,

H(τ ∧ T ∧ t̄ε, x) 6
32

c0τ ∧ T ∧ t̄ε
+ AT . (4.79)

If τ ∧T > t̄ε, we complete the argument as follows: we use (4.71) between the times t̄ε and τ ∧T
and exploit (4.74) with t = t̄ε to get

H(τ ∧ T, x) 6 32
c0 t̄ε

+ 2AT . (4.80)

Finally, we deduce from (4.79) and (4.80) that

H(τ ∧ T ∧ t̄ε, x) 6
32

c0τ ∧ T ∧ t̄ε
+ 2AT , (4.81)

and thus, using (2.17), (4.11) and Proposition 4.4 to estimate E [ApT ],

E
[
‖H(τ ∧ T, ·)‖pL∞(T)

]
6 C(p, T )

(
1 + E

[
1

(τ ∧ T )p
])

. (4.82)

Then we conclude with the inequality R− 6 H + 2KT .

5 First limit elements
It follows from (3.62)-(3.63) that (Rε, Sε) satisfies the following set of equations

dh(Rε) + (c(uε)h(Rε))x dt = h′(Rε) Φε dW + 2 c̃′(uε) Θε (Rε h′(Rε) − 2h(Rε)) dt
= c̃′(uε)

[
(Sε − Rε)Bh(Rε, Sε) − h′(Rε)χε(Rε) + 1

2 q
ε h′′(Rε)

]
dt, (5.1)
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and

dh(Sε) − (c(uε)h(Sε))x dt + h′(Sε) Φε dW − 2 c̃′(uε) Θε (Sε h′(Sε) − 2h(Sε)) dt
= c̃′(uε)

[
(Rε − Sε)Bh(Sε, Rε) − h′(Sε)χε(Sε) + 1

2 q
ε h′′(Sε)

]
dt. (5.2)

In this section, we use the estimates derived in the previous part to obtain a first set of limit
elements, including random Young measures (see Proposition 5.6). Then we pass to the limit in
(5.1)-(5.2) to obtain a first set of limit equations with defect measures. In the next section 6, we
will complete the analysis of the limit elements, prove that the Young measures reduce to Dirac
masses, and establish the limit equation for good.

The plan of this section is the following one: some elements on random Young measures are
given in Section 5.1. Taking the limit of the stochastic integral in (5.1)-(5.2) is done as usual
by strengthening the probabilistic mode of convergence, passing from convergence in law to a.s.-
convergence, at the expense of a modification of the probability spaces and measures. We use
the Skorokhod–Jakubowski theorem to that effect, explained in Section 5.2. Compactness results
are established in Section 5.3 and the limit equation with defect measure derived in Section 5.4.

5.1 Young measures
Let T > 0 and let PT ([0, T ] × T × R2) denote the space of (non-negative) measures µ on
[0, T ]×T×R2 having total measure

µ([0, T ]×T×R2) = T. (5.3)

We start this section by defining Young measures on [0, T ]×T.

Definition 5.1. Let µ ∈ PT ([0, T ] × T ×R2), we say that µ is a Young measure on [0, T ] × T
(with state space R2) if for almost all (t, x) ∈ [0, T ] × T there exists a probability measure µt,x
on R2 such that

• the map (t, x) 7→ 〈µt,x, ϕ〉 is measurable for any ϕ ∈ Cb(R2)

• 〈µ, ψ〉 =
∫

[0,T ]×T
∫
R2 ψ(t, x, ξ) dµt,x(ξ, η) dx dt for any ψ ∈ Cb([0, T ]×T×R2).

We denote by Y the space of Young measures on [0, T ]×T with state space R2.

The space Y is equipped with the topology of weak convergence in PT ([0, T ]×T×R2), i.e.

µε → µ iff 〈µε, ψ〉 → 〈µ, ψ〉 ∀ψ ∈ Cb([0, T ]×T×R2). (5.4)

The weak convergence in the space PT ([0, T ]×T×R2) (and also Y ) coincides with the conver-
gence with respect to the Prokhorov metric [Bil99, p.72]. Then, Y is a Polish (separable and
completely metrizable) space, [Bil99, Theorem 6.8]. In order to obtain tightness in the space
Y , one needs to identify some compact subsets of Y . For that purpose, we recall the following
result (see Proposition 4.1 in [BV19])

Proposition 5.2. Let f ∈ C(R2) be a non-negative function satisfying

lim
|(ξ,η)|→∞

f(ξ, η) = ∞. (5.5)

Let also C > 0, then the set{
µ ∈ Y ,

∫
[0,T ]×T×R2

f(ξ, η) dµ(t, x, ξ, η) 6 C

}
(5.6)

is a compact subset of Y .
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Remark 5.1 (Convergence in Y ). If µ and µ1, µ2, . . . are Young measures in the set (5.6), and if
(5.5) is satisfied, then to check the weak convergence µn → µ (which corresponds to convergence
against continuous and bounded functions on T× [0, T ]×R2, cf. (5.4)), it is sufficient to check
convergence against functions in C0(T × [0, T ] × R2) (functions which tend to 0 at infinity).
Actually, we can even conclude that∫ T

0

∫
T

∫
R2
ϕ(t, x)g(ξ, η) dµn →

∫ T

0

∫
T

∫
R2
ϕ(t, x)g(ξ, η) dµ, (5.7)

for all ϕ ∈ C([0, T ] × T) and g ∈ C(R2) satisfying |g(ξ, η)| 6 Cf(ξ, η)δ, where δ ∈ [0, 1), since
for any µ in the set (5.6), and for any cut-off function χ̄R ∈ C([0,∞)) such that χR ≡ 1 on the
interval [0, R], we have the uniform bound∣∣∣∣∣

∫ T

0

∫
T

∫
R2
ϕ(t, x) [g(ξ, η)− g(ξ, η)χ̄R(f(ξ, η))] dµ

∣∣∣∣∣ 6 ‖ϕ‖C([0,T ]×T) C R
δ−1. (5.8)

In the same spirit as Remark 5.1, and following the proof of Proposition 4.4 in [BV19] we
can establish the following result.

Proposition 5.3. Let [t1, t2] ⊂ [0, T ] and let (an)n be a sequence of non-negative C([t1, t2]×T)-
valued random variables. Let also (µn)n be a sequence of random Young measures (Y -valued
random variables) satisfying

C(f) def= sup
n
E

(∫
[t1,t2]×T×R2

an(t, x) f(ξ, η) dµn(t, x, ξ, η)
)γ

< ∞, (5.9)

where f ∈ C(R2) is a non-negative function and γ > 0. Assume that almost-surely µn → µ in
Y , and an → a in C([t1, t2]×T), then

E

(∫
[t1,t2]×T×R2

a(t, x) f(ξ, η) dµ(t, x, ξ, η)
)γ

6 C(f). (5.10)

Moreover, for all g ∈ C(R2) satisfying |g(ξ, η)| 6 f(ξ, η)δ with δ ∈ (0, 1) and all ϕ ∈ L
1

1−δ ([t1, t2]×
T) we have

lim
n
E

∣∣∣∣ ∫
[t1,t2]×T×R2

an(t, x)ϕ(t, x) g(ξ, η) dµn(t, x, ξ, η)

−
∫

[t1,t2]×T×R2
a(t, x)ϕ(t, x) g(ξ, η) dµ(t, x, ξ, η)

∣∣∣∣γ = 0. (5.11)

Proof of Proposition 5.3. The proof follows from [BV19, Proposition 4.4] applied to the measure
µ′n := anµn. Although µ′n may not have the required total mass (5.3), the arguments hold true.
Note also that [BV19, Proposition 4.4] addresses the case γ = 1 only, but the arguments can be
adapted easily if one uses Egorov’s theorem directly, instead of Vitali’s theorem.

5.2 Quasi-Polish spaces and the Skorokhod–Jakubowski theorem
In order to study the limit ε → 0, we need to prove the compactness of (Rε, Sε) in the non-
metrizable space C([0, T ], L2

w(T)), where L2
w is the L2 space equiped with its weak topology.

Therefore, the classical Skorokhod theorem cannot be used. We use instead the generalized
Skorokhod–Jakubowski theorem [J97].
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Definition 5.4. A topological space (X , τ) is said to be quasi-Polish if there is a sequence (fn)n
of continuous functions fn : X → [−1, 1] separating points in X .

We refer to [BOS16, Section 3] (where the terminology “quasi-Polish” was introduced by the
way), [GHKP22, Appendix B], and the references therein for more details on quasi-Polish spaces.
Remark 5.2. (i) Any Polish space is a quasi-Polish space; (ii) A countable product of quasi-
Polish spaces is a quasi-Polish space (if, for each k, (fk,n) is a separating sequence of continuous
functions on Xk, and if πk : X → Xk is the projection from the product space X onto the factor
Xk, then {fk,n ◦ πk; k, n ∈ N} is a separating sequence of continuous functions on X ); (iii) The
spaces C([0, T ], H1

w(T)), C([0, T ], L2
w(T)) are quasi-Polish spaces.

We recall now the Skorokhod–Jakubowski theorem [J97, Theorem 2]

Theorem 5.5. Let (X , τ) be a quasi-Polish space and let (Xn)n be a sequence of X -valued
random variable. Suppose that for all δ > 0 there exists a compact subset Kδ ⊂ X such that

inf
n
P(Xn ∈ Kδ) > 1− δ.

Then, up to a subsequence of (Xn)n (noted also (Xn)n), there exists a probability space (Ω̃, F̃ , P̃),
an X -valued random variable X̃ and an X -valued sequence of random variables (X̃n)n defined
on (Ω̃, F̃ , P̃) such that

Xn ∼ X̃n, n = 1, 2, · · · (5.12)
X̃n →τ X̃ for almost all ω ∈ Ω̃. (5.13)

Remark 5.3. The probability space (Ω̃, F̃ , P̃) can be chosen to be ([0, 1],B[0,1],L).

5.3 Compactness
Let Rε, Sε and uε be the global solutions of (2.11)-(2.12) given by Theorems 4.1 and 4.5. Let L2

denote the Lebesgue measure on [0, T ]× T. We define for any (t, x) ∈ [0, T ]× T and any ε > 0
the measures

µεt,x
def= δRε(t,x) ⊗ δsε(t,x), µε

def= µεt,x o L2. (5.14)

That is to say

〈µε, ψ〉 =
∫

[0,T ]×T

∫
R2
ψ(t, x, ξ, η) dµεt,x(ξ, η) dx dt =

∫
[0,T ]×T

ψ(t, x,Rε(t, x), Sε(t, x)) dxdt,

for all ψ ∈ Cb([0, T ]×T×R2).
Let S be a countable set of functions in C∞c (R) which is dense in C0(R). Set

Xε
R

def= (f(Rε))f∈S , Xε
S

def= (f(Sε))f∈S . (5.15)

Let also L2
w denote the L2 space equipped with its weak topology and define C([0, T ], L2

w(T))ℵ0

as the countable product

C([0, T ], L2
w(T))ℵ0 def=

∏
κ∈N

C([0, T ], L2
w(T)), (5.16)
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with the product topology. Let X denote the product (which is a quasi-Polish space) of the
following spaces

Y ,
(
C([0, T ], L2

w(T))ℵ0
)2
, C([0, T ]×T), C([0, T ],U−1(T)), C(0, T ), L1((0, T );C(T)). (5.17)

Our aim is to show that the (law of the) sequence of X -valued Random variables (Xε)ε defined
by

Xε def= (µε, Xε
R, X

ε
S , u

ε,W,Θε,Ξε) (5.18)
is tight in X .

Proposition 5.6. For any δ > 0, there exists a compact Kδ ∈ X such that

sup
ε
P (Xε /∈ Kδ) 6 δ.

Proof of Proposition 5.6. The proof will be done in several steps. We show that every element
in Xε is tight in its proper space. We use the same convention as in (4.5) for the use of the
constant C.

Step 1. (Young measure). By the energy estimate (4.10) (with p = 1), we obtain the bound

E

∫
[0,T ]×T×R2

[
ξ2 + η2] dµε(t, x, ξ, η) = E

∫
[0,T ]×T

∫
R2

[
ξ2 + η2] dµεt,x(ξ, η) dx dt 6 C(T ),

(5.19)

and then, by the Markov inequality,

P

(∫
[0,T ]×T×R2

[
ξ2 + η2]dµε(t, x, ξ, η) > C(T )/δ

)
6 δ,

for all δ > 0: Proposition 5.2 shows that (µε)ε is tight.
Step 2. (Factor (Xε

R, X
ε
S)ε). It follows from the energy estimate (4.10) (still with p = 1)

that, for f ∈ S,
E
[
‖f(Rε)‖2C([0,T ];L2(T)

]
6 C(T ). (5.20)

Let now ϕ ∈ H1(T). By (5.1) we have∫
T

[f(Rε)(t)− f(Rε)(s)]ϕdx =
∫ t

s

∫
T

c(uε)f(Rε)ϕx dxdσ +
∫
T

[∫ t

s

f ′(Rε) Φε dW (σ)
]
ϕdx

+
∫ t

s

∫
T

[ 1
2 q

ε f ′′(Rε) + c̃′(uε)
[(

(Rε)2 − (Sε)2) f ′(Rε) + 2 (Sε − Rε) f(Rε)
]]
ϕdx dσ

+
∫ t

s

∫
T

c̃′(uε) [(2 ΘεRε − χε(Rε)) f ′(Rε) − 4 Θε f(Rε)]ϕdx dσ.

Using the energy estimate (4.10) and straightforward computations gives us

E

∣∣∣∣∫
T

[f(Rε)(t)− f(Rε)(s)]ϕdx
∣∣∣∣4 6 C(T, ‖ϕ‖H1(T)) |t− s|2. (5.21)

By [Bas11, Theorem 8.2] we deduce from (5.21) that, for all R > 0,

P

(
sup

06s<t6T

∫
T
f(Rε)(t)− f(Rε)(s)ϕdx

|t− s|1/4
> R

)
6 C(T, ‖ϕ‖H1(T))R−4. (5.22)
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Combining (5.20) with (5.22) (and the Markov inequality) gives us

P

(
‖f(Rε)‖2C([0,T ];L2(T)) + sup

06s<t6T

∫
T
f(Rε)(t)− f(Rε)(s)ϕdx

|t− s|1/4
> R

)
6 C(T, ‖ϕ‖H1(T))R−1.

(5.23)
Then, using [L96, Lemma C.1] we obtain that (f(Rε))ε is tight in C([0, T ], L2

w(T)). Now if δ > 0
is fixed and if {f1, f2, . . . } is an enumeration of S, then, for any n > 1, there exists a compact
Kn such that P(fn(Rε) ∈ Kc

n) 6 δ/2n. From the union bound

P(∃n > 1, fn(Rε) ∈ Kc
n) 6

∑
n>1

P(fn(Rε) ∈ Kc
n) 6 δ,

and Tychonoff’s theorem, we can then deduce that (Xε
R) is tight. The proof for (Xε

S) is similar.

Step 3. (Factor (uε)ε). Using the identity uεt = (Rε + Sε)/2 + Ξε we obtain

‖uε(t) − uε(s)‖L2(T) 6 C(T ) |t − s| sup
t∈[0,T ]

‖(Rε, Sε,Ξε)‖L2(T).

Then, using the identity uεx = (Sε − Rε)/(2c(uε)) − Θε/c(uε) and the bounds (4.10), (4.11),
(4.13), we obtain

E sup
t∈[0,T ]

‖uε‖2H1(T) + E sup
t,s∈[0,T ]
s6=t

‖uε(t) − uε(s)‖2L2(T)

|t − s|2
6 C(T ).

This implies that

P

 sup
t∈[0,T ]

‖uε‖2H1(T) + sup
t,s∈[0,T ]
s6=t

‖uε(t) − uε(s)‖2L2(T)

|t − s|2
> C(T )/δ

 6 δ. (5.24)

By [Sim87, Theorem 5], (5.24) implies that (uε)ε is tight in the space C([0, T ]×T).

Step 4. (Factor (W )ε). The process W belongs to the Polish space C([0, T ],U−1) almost
surely [DPZ14, Theorem 4.5]. It is tight by [Bil99, Theorem 1.3], but also for the more elementary
reason that E‖W‖2C([0,T ],U−1) <∞.

Step 5. (Factor (Θε,Ξε)ε). The bounds (4.11) and (4.13) show that (Θε,Ξε) is tight in
C(0, T )× L1((0, T );C(T)).

5.4 Limit equation with defect measure
5.4.1 Application of the Skorokhod–Jakubowski theorem

From Proposition 5.6 and Theorem 5.5 we deduce the following result.

Theorem 5.7 (Convergence up to a change of the probability space). There exists a sequence
(εn)n, a probability space (Ω̃, F̃ , P̃), a X -valued sequence of random variables (X̃n)n and another
X -valued random variable X̃ defined on (Ω̃, F̃ , P̃) such that for all n ∈ N we have

Xεn ∼ X̃n, n = 1, 2, · · · (5.25)
X̃n → X̃ in X P̃-a.s. in Ω̃. (5.26)
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Remark 5.4. For the sake of simplicity, we omit the subsequence in the remainder of this paper
and we write

Xε ∼ X̃ε, ∀ε (in fact for a countable values of ε) (5.27)
X̃ε → X̃ in X for almost all ω ∈ Ω̃. (5.28)

The P̃-a.s. convergence (which also gives convergence in probability) in Theorem 5.7 will be
exploited to pass to the limit in the equations (5.1) and (5.2). We examine first all terms but
the stochastic integral in Section 5.4.2 below, and then devote Section 5.4.3 to the analysis of
the stochastic integral.

5.4.2 Convergence et identification of some deterministic elements

As in (5.18) we have the decomposition

X̃ε def=
(
µ̃ε, X̃ε

R, X̃
ε
S , ũ

ε, W̃ ε, Θ̃ε, Ξ̃ε
)
, (5.29)

X̃
def=
(
µ̃, X̃R, X̃S , ũ, W̃ , Θ̃, Ξ̃

)
. (5.30)

If any of the original factors µε, Rε, . . . satisfy P-a.s. a relation which can be characterized in
terms of a Borel subset A of X , then this relation is still satisfied P̃-a.s. by the factors with
tildas. If moreover A is closed for the topology considered on X , then the relation is also satisfied
P̃-a.s. by the limit factors since

P̃
(
X̃ ∈ A

)
> lim sup

ε→0
P̃
(
X̃ε ∈ A

)
= 1. (5.31)

As a consequence, we have the following identities.

Proposition 5.8. The following identities hold P̃-almost surely:

Θ̃ = 0, Ξ̃ = 0, (5.32)

as well as (2.12) with tildas and

ũεx = S̃ε − R̃ε

2 c(ũε) − Θ̃ε

c(ũε) , ũεt = S̃ε + R̃ε

2 + Ξ̃ε, ũx = S̃ − R̃

2 c(ũ) , ũt = S̃ + R̃

2 , (5.33)

and

µ̃ε = δR̃ε(t,x) ⊗ δS̃ε(t,x) o L
2, µ̃ = µ̃t,x o L2, (5.34)

where, for L2-almost all (t, x) ∈ [0, T ]×T, µ̃t,x is probability measures on R2. In particular, we
have ũ ∈ H1((0, T )×T) with

‖ũ‖H1((0,T )×T) 6 C
(
‖S̃‖L2((0,T )×T) + ‖R̃‖L2((0,T )×T)

)
. (5.35)

Finally, we have the following convergence results: for all function g : R→ R+ such that g(ξ) =
o(ξ) when ξ →∞, P̃-a.s.

lim
ε→0

∫ T

0

∫
T

c̃′(ũε)
[
g(R̃ε)χε(R̃ε) + g(S̃ε)χε(S̃ε)

]
dxdt = 0. (5.36)

Due the equality of laws (5.27), all the estimates obtained in Section 4 are valid with the
tildas.
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Proof of Proposition 5.8. The identities in (5.32) follow from (4.11)-(4.13) (apply (5.31) with A
a closed ball around the origin of arbitrary small radius). We also deduce (5.36) from (4.7) and
the fact that χε(R) 6= 0 ⇒ εR > 1. Let us prove also (5.34) for instance: the first identity
between the components µε, Rε, Sε of Xε can be characterized by the four relations∫

[0,T ]×T×R×R
ϕ(t, x)(α1ξ + α2η + α3ξ

2 + α4η
2) dµ(t, x, ξ, η)

=
∫

[0,T ]×T
ϕ(t, x)(α1R(t, x) + α2S(t, x) + α3R(t, x)2 + α4S(t, x)2) dxdt, (5.37)

where αi ∈ {0, 1}, for ϕ ranging in a dense countable subset of C([0, T ]×T), and is therefore a
Borel set since each term in (5.37) defines a Borel function (in fact continuous or semi-continuous
function) of

(µ,R, S) ∈ Y × C([0, T ], L2
w(T))× C([0, T ], L2

w(T)). (5.38)

The last equation µ = µt,x o L2 can be characterized by the relations∫
[0,T ]×T×R×R

ϕ(t, x) dµ(t, x, ξ, η) =
∫

[0,T ]×T
ϕ(t, x) dx dt, (5.39)

for ϕ ranging in a dense countable subset of C([0, T ]×T), [BV19, Section 4.1], so is a Borel set
as well.

Proposition 5.9. After redefinition of (t, x) 7→ µ̃t,x on a L2-negligible set, we have the following
convergence properties: P̃-a.s., for all functions f1, f2 ∈ C(R) satisfying the growth condition

|f(ξ)| 6 Cf (1 + |ξ|r), |f ′(ξ)| 6 Cf (1 + |ξ|r−1), |f ′′(ξ)| 6 Cf , r ∈ [1, 2), (5.40)

for all ϕ ∈ C(T), we have∫
T

f1(R̃ε) + f2(S̃ε)ϕdx →
[
t 7→

∫
T×R2

ϕ(x) [f1(ξ) + f2(ζ)] dµ̃t,x(ξ, ζ) dx
]

(5.41)

in C([0, T ]). Moreover, at the initial time t = 0, we have

µ̃0,x = δR0(x) ⊗ δS0(x). (5.42)

Proof of Proposition 5.9. We first observe that if a function g ∈ L1(0, T ) coincide a.e. with a
function h ∈ C([0, T ]), then the set of right-Lebesgue points of g is the full set [0, T ) and

h(t) = lim
δ→0

1
δ

∫ t+δ

t

g(s) ds (5.43)

for all t ∈ [0, T ). We consider therefore the representative µ̃∗t,x of µ̃t,x given by∫
T×R2

ϕ(x)F (ξ, ζ) dµ̃∗t,x(ξ, ζ) dx def= lim
δ→0

1
δ

∫ t+δ

t

∫
T×R2

ϕ(x)F (ξ, ζ) dµ̃s,x(ξ, ζ) dxds, (5.44)

where ϕ ∈ C(T), F ∈ C0(R2). By differentiation’s theory, (5.44) is satisfied for all t ∈ Iϕ,F ,
where Iϕ,F is the set of right-Lebesgue points of the function

t 7→
∫
T×R2

ϕ(x)F (ξ, ζ) dµ̃s,x(ξ, ζ) dx (5.45)
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and is of full measure in [0, T ). We denote by I the intersection of the sets Iϕ,f over ϕ in a
dense countable subset of C(T) and F in a dense countable subset of C0(R2). Without loss of
generality, we can assume that the functions F of the form

F1,2(ξ, ζ) = f1(ξ) + f2(ζ), f1, f2 ∈ S, (5.46)

are here taken into account. If f1, f2 ∈ S, then, by (5.28), the left-hand side of (5.41) is converging
in C([0, T ]) to a continuous function Λ. It is also converging in D′(0, T ) to the function

Γ(t) def=
∫
T×R2

ϕ(x)F1,2(ξ, ζ) dµ̃t,x(ξ, ζ) dx, F1,2(ξ, ζ) def= f1(ξ) + f2(ζ), (5.47)

since µ̃ε → µ̃ in Y . Consequently Γ and Λ coincide a.e. and by our initial observation, (5.41) is
satisfied with the representative µ̃∗t,x of µ̃t,x. A simple limiting argument shows that the result
holds true for f1 and f2 satisfying (5.40). The last assertion (5.42) is a simple consequence of
the fact that Rε0 and Sε0 are deterministic so P̃-a.s.,(

X̃ε(0), X̃ε
S(0)

)
= (f(Rε0), f(Sε0))f∈S . (5.48)

This is equivalent to (R̃ε(0), S̃ε(0)) = (Rε0, Sε0), P̃-a.s. Since (Rε0, Sε0) converges strongly to
(R0, S0) in L2(T), µ̃0,x reduces to the Dirac mass δ(R0(x),S0(x)) = δR0(x) ⊗ δS0(x).

Using the estimates (4.10), (4.48), (4.65) with Proposition 5.3 we obtain the following result.

Proposition 5.10. Let t0 ∈ (0, T ) and r ∈ (1, 2), p ∈ (1,∞), q ∈ (1, 3). Then the measure µ̃
satisfies

Ẽ

∫
[0,T ]×T×R2

[
|ξ|2 + |η|2

]
dµ̃(t, x, ξ, η) < ∞, (5.49)

and

Ẽ

(∫
[t0,T ]×T×R2

[
|ξ−|p + |η−|p

]
dµ̃(t, x, ξ, η)

)2/p

< ∞, (5.50)

Ẽ

∫
[0,T ]×T×R2

c′(ũ(t, x)) [|ξ|q + |η|q] dµ̃(t, x, ξ, η) < ∞. (5.51)

Moreover, for any functions f, g ∈ C(R2) satisfying

|f(ξ, η)| 6 C [1 + |ξ|r + |η|r] , |g(ξ, η)| 6 C
[
1 + |ξ−|p + |η−|p + |ξ+|q + |η+|q

]
, (5.52)

we have

lim
ε→0

Ẽ

∣∣∣∣ ∫
[0,T ]×T×R2

φ(t, x) f(ξ, η) dµ̃ε(t, x, ξ, η)

−
∫

[0,T ]×T×R2
φ(t, x) f(ξ, η) dµ̃(t, x, ξ, η)

∣∣∣∣ = 0, (5.53)

and

lim
ε→0

Ẽ

∣∣∣∣ ∫
[t0,T ]×T×R2

c′(ũε(t, x))ϕ(t, x) g(ξ, η) dµ̃ε(t, x, ξ, η)

−
∫

[t0,T ]×T×R2
c′(ũ(t, x))ϕ(t, x) g(ξ, η) dµ̃(t, x, ξ, η)

∣∣∣∣2/p = 0, (5.54)
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for all φ ∈ L
2

2−r ([0, T ] × T), ϕ ∈ ∪q′∈(q,3)L
q′
q′−q ([t0, T ] × T). Finally, the convergence (5.41)

holds true when f1, f2 ∈ C(R) satisfy the growth condition |f1(ξ)| + |f2(ξ)| 6 C(1 + |ξ|r) and
ϕ ∈ L

2
2−r (T).

5.4.3 The stochastic integral

We would like to show that the equations (5.1)-(5.2) are satisfied P̃-a.s. by the quantities with
tildas and then pass to the limit as ε→ 0. So we would like to establish, for all ϕ ∈ C1(T) and
h ∈ S, the identity

M̃ϕ,h(t) =
∫
T

∫ t

t0

h′(R̃ε)ϕΦε dW̃ ε(s) dx, (5.55)

where

M̃ϕ,h(t) def=
∫
T

h(R̃ε)(t, x)ϕ(x) dx −
∫
T

h(R̃ε)(t0, x)ϕ(x) dx −
∫ t

t0

∫
T

(c(ũε)h(R̃ε))ϕx dx ds

−
∫ t

t0

∫
T

c̃′(ũε)
[
(S̃ε − R̃ε)Bh(R̃ε, S̃ε) − h′(R̃ε)χε(R̃ε) − 1

2 q
ε h′′(R̃ε)

]
ϕdx ds

− 2
∫ t

t0

∫
T

c̃′(ũε) Θ̃ε (R̃ε h′(R̃ε) − 2h(R̃ε)) dxds, (5.56)

(the term Bh being defined by (3.64)). The identification (5.55) is not trivial. We can either use
a characterization in law of the stochastic integral in terms of martingales as in [Ond10, BO11,
HS12, Hof13, DHV16] for instance, or resort to the trick of Bensoussan, [Ben95, p. 282], which
uses a regularization by convolution of the integrand of the stochastic integral and the stochastic
Fubini theorem to “fully integrate” the dW (s). This last approach will indeed give (5.55)-(5.56),
the details are left to the reader. Let us however specify what is the filtration involved here and
what are the properties of the Wiener process W̃ ε. Let

(
F̃0,ε
t

)
denote the filtration generated

by the process X̃ε and let
(
F̃εt
)
be the augmented filtration, obtained by the completion of the

right-continuous filtration
(
F̃0,ε
t+

)
.

Lemma 5.11 (Equivalent cylindrical Wiener process). The process W̃ ε is a (F̃εt )-adapted cylin-
drical Wiener process, the increment W̃ ε(t)− W̃ ε(s) is independent on F̃εs for all t > s > 0 and
P̃-a.s

W̃ ε =
∑
k

β̃εk gk (5.57)

in C([0, T ],U−1), where (β̃ε1(t), β̃ε2(t), . . . ) are independent one-dimensional Wiener processes.

Proof. We obtain directly from the definition of the filtration (F̃εt ) that W̃ ε is a (F̃εt )-adapted
Wiener process. If t > s > 0, that W̃ ε(t)− W̃ ε(s) is independent on F̃0,ε

s means

Ẽ
[
G
(
W̃ ε(t)− W̃ ε(s)

)
H(X̃ε(s1), . . . , X̃ε(sm))

]
= 0, (5.58)

for all m > 1, all times 0 6 s1 6 · · · 6 sm 6 s, and all continuous functions G : U−1 → R,
H : Xm → R. The condition (5.58) is clearly invariant by change of the probability space and so
true, since satisfied by the original variables when the tildas are removed. We have then

Ẽ
[
G
(
W̃ ε(t)− W̃ ε(s′)

)
Ỹs
]

= 0, (5.59)
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for all s < s′ 6 t and all bounded F̃0,ε
s+ -measurable random variable Ỹs. By continuity of

r 7→ W̃ ε(r), we can let s′ ↓ s in (5.59) and obtain the independence of W̃ ε(t)− W̃ ε(s) and F̃εs+,
and thus also independence with the completed σ-algebra. Finally, we have the expansion (5.57)
with

β̃εk(t) def= 〈W̃ ε(t), gk〉U−1 . (5.60)

The map w 7→ 〈w, gk〉U−1 is continuous C([0, T ];U−1)→ C([0, T ]), so, for each J finite, (β̃εk(t))k∈J
and (βk(t))k∈J have the same laws in C([0, T ])J . It follows that (β̃ε1(t), β̃ε2(t), . . . ) are independent
one-dimensional Wiener processes.

Once (5.55)-(5.56) is established we can use [DGHT11, Lemma 2.1] to pass to the limit in
the stochastic integral. This is explained in the next section 5.4.4.

5.4.4 Limit equation with defect measure

We introduce the following notations

〈f(R,S)〉(t, x) def=
∫
R2
f(ξ, η) dµ̃t,x(ξ, η), (5.61)

for any f such that (5.61) is well defined. As a consequence of Proposition 5.9 and Proposi-
tion 5.10, if t0 ∈ (0, T ) and if f and g satisfy (5.52) while f1, f2 satisfy (5.40), then, up to a
subsequence, we have, P̃-a.s.,

f(R̃ε, S̃ε) ⇀ 〈f(R,S)〉 in L2/r([0, T ]×T),

c′(ũε) g(R̃ε, S̃ε) ⇀ c′(ũ) 〈g(R,S)〉 in Lq
′/q([t0, T ]×T) ∀q′ ∈ (q, 3),∫

T

f1(R̃ε) + f2(S̃ε)ϕdx →
∫
T

〈f1(R) + f2(S)〉ϕdx in C([0, T ]).

Using the dominated convergence theorem, we also have

lim
ε
‖Φ− Φε‖2L2(U,L2(T)) =

∑
k>1

lim
ε
‖σk − σεk‖2L2(T) = 0. (5.62)

Let (F̃t) be defined as the augmented filtration generated by X̃. Lemma 5.11 has a completely
equivalent version for

(
(F̃t), (W̃ (t))

)
so we can claim that(

Ω̃, P̃, F̃ , (F̃t), (W̃ (t))
)
is a stochastic basis. (5.63)

We can now pass to the limit [ε→ 0] in (5.55)-(5.56), using [DGHT11, Lemma 2.1] and a similar
argument as (5.62) for the stochastic integral, (5.36), and Proposition 5.10, to obtain the limit
equation∫

T

〈h(R)〉(t, x)ϕ(x) dx −
∫
T

〈h(R)〉(t0, x)ϕ(x) dx −
∫ t

t0

∫
T

c(ũ) 〈h(R)〉ϕx dxds

=
∫ t

t0

∫
T

c̃′(ũ)
[〈

2 (S −R)h(R) + h′(R) (R2 − S2)
〉

+ 1
2 q 〈h

′′(R)〉
]
ϕdxds

+
∫
T

∫ t

t0

〈h′(R)〉ϕΦ dW̃ (s) dx, (5.64)
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and, similarly,∫
T

〈h(S)〉(t, x)ϕ(x) dx −
∫
T

〈h(S)〉(t0, x)ϕ(x) dx +
∫ t

t0

∫
T

c(ũ) 〈h(S)〉ϕx dxds

=
∫ t

t0

∫
T

c̃′(ũ)
[〈

2 (R− S)h(S) + h′(S) (S2 −R2)
〉

+ 1
2 q 〈h

′′(S)〉
]
ϕdxds

+
∫
T

∫ t

t0

〈h′(S)〉ϕΦ dW̃ (s) dx, (5.65)

those equations (5.64) and (5.65) being satisfied when h ∈W 2,∞
loc (R) is such that

|h(ξ)| 6 C(1 + |ξ|r), |h′(ξ)| 6 C(1 + |ξ|r−1), |h′′(ξ)| 6 C, (5.66)

for some given constant C > 0 and some exponent r ∈ [1, 2). In particular, for h(ξ) = ξ, we
obtain∫

T

〈R〉(t, x)ϕ(x) dx −
∫
T

〈R〉(t0, x)ϕ(x) dx −
∫ t

t0

∫
T

c(ũ) 〈R〉ϕx dxds

= −
∫ t

t0

∫
T

c̃′(ũ)
[
〈R2〉 − 2 〈RS〉 + 〈S2〉

]
ϕdxds +

∫
T

∫ t

t0

ϕΦ dW̃ (s) dx, (5.67)

and, similarly,∫
T

〈S〉(t, x)ϕ(x) dx −
∫
T

〈S〉(t0, x)ϕ(x) dx +
∫ t

t0

∫
T

c(ũ) 〈S〉ϕx dx ds

= −
∫ t

t0

∫
T

c̃′(ũ)
[
〈R2〉 − 2 〈RS〉 + 〈S2〉

]
ϕdxds +

∫
T

∫ t

t0

ϕΦ dW̃ (s) dx, (5.68)

Assume 〈RS〉 = 〈R〉〈S〉 (actually, this is established as a first step in the next section 6). Then
(5.67)-(5.68) is the expected limit equation (2.6) in conservative form, up to the defect (non-
negative) terms 〈R2〉−〈R〉2 and 〈S2〉−〈S〉2. We will show in Section 6 that these defect measures
are trivial. To that effect, we will need an evolution equation for some non-linear functions of
〈R〉, as stated in the following proposition.

Proposition 5.12 (Renormalization in (5.67)). Let h ∈ C∞(R) satisfy the growth condition
(5.66). We have then∫

T

h(〈R〉)(t, x)ϕ(x) dx −
∫
T

〈h(〈R〉)(t0, x)ϕ(x) dx −
∫ t

t0

∫
T

c(ũ)h(〈R〉)ϕx dx ds

=
∫ t

t0

∫
T

c̃′(ũ)
[
2 (〈R〉 − 〈S〉) [〈R〉h′(〈R〉) − h(〈R〉)] − h′(〈R〉)

〈
(R− S)2

〉
+ 1

2 q h
′′(〈R〉)

]
ϕdx ds

+
∫
T

∫ t

t0

h′(〈R〉)ϕΦ dW̃ (s) dx, (5.69)

for all 0 6 t0 6 t.

Proof of Proposition 5.12. The proof is the same as in [DL89]: by regularization and study
of the remainder terms. Since we have to treat additional stochastic terms here, and since
renormalization will again be invoked later (in the derivation of (6.32) precisely), we give few
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details. Let (ρδ) be an approximation of the unit constituted of even functions and let Jδ be the
Friedrichs regularization operator F 7→ F ∗ ρδ. We use ϕ := Jδϕ in (5.67) to obtain the equation

dRδ(t, x) +
[
c(ũ(t, x))Rδ(t, x)

]
x

dt = F δ(t, x) dt + γδ(t, x) dt + Φδ(x) dW̃ (t), (5.70)

where Rδ = Jδ〈R〉, Φδ = JδΦ and

F δ(t) = JδF (t), F
def= −c̃′(ũ)

[
〈R2〉 − 2 〈RS〉 + 〈S2〉

]
, (5.71)

and γδ is the commutator
γδ =

[
c(ũ)Rδ

]
x
− Jδ [c(ũ)〈R〉]x . (5.72)

The equation (5.70) is an equation satisfied for all x ∈ T by the real-valued stochastic process
(Rδ(t, x)). Let h ∈ C∞c (R). The Itô formula and (5.70) give

dh(Rδ(t, x)) + h′(Rδ(t, x))
[
c(ũ(t, x))Rδ(t, x)

]
x

dt = h′(Rδ(t, x))F δ(t, x) dt
+ h′(Rδ(t, x)) γδ(t, x) dt + 1

2 h
′′(Rδ(t, x)) qδ(x) dt + h′(Rδ(t, x)) Φδ(x) dW̃ (t), (5.73)

where qδ is defined in (2.15). By the chain-rule for H1-functions and (5.33) we have

h′(Rδ)
[
c(ũ)Rδ

]
x

=
[
c(ũ)h(Rδ)

]
x

+ 2 c̃′(ũ)
(
S̃ − R̃

) [
h′(Rδ)Rδ − h(Rδ)

]
. (5.74)

We combine (5.74) with (5.33), integrate (5.73) against a function ϕ ∈ C1(T) and pass to the
limit δ → 0 (on the formulation integrated in time) to obtain (5.69). The term involving the
commutator γδ is ∫ t

t0

∫
T

h′(Rδ) γδ ϕdxds, (5.75)

which converges to 0 since h′(Rδ) and ϕ are bounded, while γδ → 0 in L1((t0, t)×T) by [DL89,
Lemma II.1.ii)] applied with α = 2, p = 2. The limit of the other terms is obtained by standard
considerations.

6 Reduction of the Young measures
Our aim is to show that µ̃t,x = δR̃(t,x) ⊗ δS̃(t,x). We prove in a first step that µ̃t,x = ν̃1

t,x ⊗ ν̃2
t,x

where ν̃1
t,x and ν̃2

t,x are two probability measures on R that will be identified later.

6.1 Compensated compactness
For almost all (t, x) ∈ [0, T ]×T we can define the marginals ν̃1

t,x and ν̃2
t,x of µ̃t,x:

ν̃1
t,x(A) def= µ̃t,x(A×R), ν̃2

t,x(A) def= µ̃t,x(R×A) ∀A ∈ B(R).

The aim of this section is to prove the following lemma

Lemma 6.1. For almost all (ω, t, x) ∈ Ω̃× [0, T ]×T we have

µ̃t,x = ν̃1
t,x ⊗ ν̃2

t,x. (6.1)
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Proof of Lemma 6.1. We will use the div-curl lemma. Our aim is to prove that, given f ∈
C∞c (R), the sequence {

f(R̃ε)t +
[
c(ũ) f(R̃ε)

]
x

}
ε

(6.2)

is tight in H−1((0, T )×T). By (5.1), we can write (6.2) as the sum

∂tM
ε
R̃

+ T ε +
[
(c(ũ)− c(ũε)) f(R̃ε)

]
x
, (6.3)

where

T ε
def= 1

2 q
ε f ′′(R̃ε) + c̃′(ũε)

[(
(R̃ε)2 − (S̃ε)2) f ′(R̃ε) + 2 (S̃ε − R̃ε) f(R̃ε)

]
+ c̃′(ũε)

[(
2 Θ̃ε R̃ε − χε(R̃ε)

)
f ′(R̃ε) − 4 Θ̃ε f(R̃ε)

]
,

and
Mε
R̃

(t, x) def=
∑
k

∫ t

0
f ′(R̃ε(s, x))σεk (x) dβ̃εk(s).

Clearly, the quantity
[c(ũ)− c(ũε)] f(R̃ε) (6.4)

tends to 0 P̃-almost surely in L2((0, T )×T) and so the sequence{[
(c(ũ)− c(ũε)) f(R̃ε)

]
x

}
ε

(6.5)

is tight in H−1((0, T )× T). There remains to examine the terms Mε
R̃

and T ε, which is done in
the following two steps, before we conclude the argument in Step 3.

Step 1. Using the Itô isometry with the embedding L2 ↪→ H−1 gives us

Ẽ ‖Mε
R̃

(t+ h, ·)−Mε
R̃

(t, ·)‖2H−1(T) 6 Ẽ ‖Mε
R̃

(t+ h, ·)−Mε
R̃

(t, ·)‖2L2(T) 6 C T |h|.

Integrating with respect to t, we obtain

Ẽ ‖Mε
R̃

(·+ h, ·)−Mε
R̃
‖2L2((0,T−h),H−1(T)) 6 C |h|.

Using the Itô isometry again we also have

Ẽ ‖Mε
R̃

(t, ·)‖2L2(T) 6 C T t,

and integrating with respect to t yields Ẽ‖Mε
R̃

(t, ·)‖2L2((0,T )×T) 6 C. By [Sim87, Theorem 3], the
set{

M ∈ L2((0, T )×T); ‖M‖L2((0,T )×T) + sup
h∈[0,T/2]

∥∥∥∥M(·+ h)−M√
h

∥∥∥∥
L2((0,T−h),H−1(T))

6 R

}

is compact in L2((0, T ), H−1(T)). It follows then that (Mε
R̃

)ε is tight in L2([0, T ], H−1(T)).
Finally, we can define ∂tMε

R̃
as a H−1((0, T ) × T)-valued random variable and the sequence

(∂tMε
R̃

)ε is tight in H−1((0, T )×T).

Step 2. Since f ∈ C∞c (R) , χε(ξ) 6 ξ2 and by the inequality (4.48) we obtain that (T ε)ε is
bounded in Lp(Ω̃× (0, T )×T) for all p ∈ (1, 3/2). By the compact embedding Lp((0, T )×T) b
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H−1([0, T ] × T), it follows that (T ε)ε is tight in H−1((0, T ) × T). We can therefore conclude
that the sequence (6.2) is tight in H−1((0, T )×T).

Step 3. The counterpart of the analysis above for the variable Sε is that, for all g ∈ C∞c (R),
the sequence {

g(S̃ε)t −
[
c(ũ) g(S̃ε)

]
x

}
ε

is tight in H−1((0, T )×T). Set

Ỹ ε
def=
(

f(R̃ε)
c(ũ) f(R̃ε)

)
, Z̃ε

def=
(
c(ũ) g(S̃ε)
g(S̃ε)

)
,

and

Ỹ
def=
(
〈f(R)〉

c(ũ) 〈f(R)〉

)
, Z̃

def=
(
c(ũ) 〈g(S)〉
〈g(S)〉

)
.

We know that (Ỹ ε, Z̃ε) converges weakly to (Ỹ , Z̃) as ε → 0 and from the previous steps, we
have that

{
divt,xỸ ε

}
ε
and

{
curlt,xZ̃ε

}
ε
are tight in H−1((0, T )×T). Then, for any α > 0 there

exists a compact set Kα ⊂ H−1((0, T )×T) such that

divt,xỸ ε ∈ Kα and curlt,xZ̃ε ∈ Kα (6.6)

with a probability larger than 1−α. If (6.6) is realized, the div-curl lemma ensures that Ỹ ε · Z̃ε
converges weakly to Ỹ · Z̃ as ε→ 0. We have therefore

〈f(R)g(S)〉 = 〈f(R)〉 〈g(S)〉 (6.7)

for almost all (ω, t, x) ∈ Aα where P̃ × L2(Aα) > (1 − α)T . We choose a decreasing sequence
(αn)n that converges to 0 and assume without loss of generality that (Kαn)n and (Aαn)n to be
increasing sequences of sets. Then A := ∪nAαn is of full measure, P̃× L2(A) = T , and (6.7) on
A.

Remark 6.1. As a consequence of (6.7) and (5.50), and provided t0 > 0, we can partially relax
the growth condition (5.66) on the function h in (5.64) and (5.69), to admit the following growth

|h(ξ)| 6 C(1 + |ξ−|p + |ξ+|r), p ∈ [1,∞), r ∈ [1, 2). (6.8)

6.2 An evolution equation for the defect measure
Our goal here is the show that the measures ν̃1

t,x and ν̃2
t,x are Dirac measures, which we will

characterize by the identities 〈R2〉 = 〈R〉2 and 〈S2〉 = 〈S〉2. We introduce the non-negative
quantity ∆ def= 1

2
(
〈R2〉 − 〈R〉2

)
and derive an evolution transport equation (inequality, see (6.20))

satisfied by ∆. Since ∆(t, ·) → 0 when t ↓ 0 (see Proposition 6.4), this will imply ∆(t, ·) = 0 at
all positive times t ∈ [0, T ].

Since the map ξ 7→ ξ2 does not satisfy (6.8), we have to work with suitable truncate functions.
For κ > 0, we define the truncate function

Qκ(ξ) def= 1
2 ξ

2 − 1
2
(
(ξ − κ)+)2 . (6.9)
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Lemma 6.2. For any T > 0 we have, P̃-a.s., and in L2(Ω),

lim
κ→∞

‖〈Q′κ(R)〉 − Q′κ (〈R〉)‖L2([0,T ]×T) = lim
κ→∞

‖〈Q′κ(R)〉 − 〈R〉‖L2([0,T ]×T) = 0. (6.10)

Also, for all κ > 0, we have for almost all (ω, t, x) ∈ Ω̃× [0, T ]×T,

1
2 [〈Q′κ(R)〉 − Q′κ (〈R〉)]2 6 〈Qκ(R)〉 − Qκ (〈R〉) , (6.11)

and
∆κ

def= 〈Qκ(R)〉 −Qκ(〈R〉) 6 ∆ def= 1
2
[
〈R2〉 − 〈R〉2

]
, (6.12)

and, P̃-a.s.,
lim
κ→∞

‖∆κ −∆‖L1([0,T ]×T) = 0. (6.13)

Proof of Lemma 6.2. By differentiation in (6.9), we obtain

ξ −Q′κ(ξ) = (ξ − κ)+. (6.14)

By the triangular inequality, we have then

|〈Q′κ(R)〉 − Q′κ(〈R〉)| 6 |〈Q′κ(R)〉 − 〈R〉| + |Q′κ(〈R〉) − 〈R〉|
= 〈R−Q′κ(R)〉 + 〈R〉 −Q′κ(〈R〉).

Since ξ 7→ (ξ − κ)+ is convex, we obtain

|〈Q′κ(R)〉 − Q′κ(〈R〉)| 6 2〈(R− κ)+〉,

and by Jensen’s inequality again,

|〈Q′κ(R)〉 − Q′κ(〈R〉)|2 6 4〈
[
(R− κ)+]2〉.

Since 〈R2〉 ∈ L1(Ω× (0, T )× T), (6.10) follows. Let us now establish (6.11). We want to prove
that the function

ϕ(κ) def= 〈Qκ(R)〉 − Qκ (〈R〉) − 1
2 [〈Q′κ(R)〉 − Q′κ (〈R〉)]2

is non-negative. We have ∂κQκ(ξ) = (ξ − κ)+ = ξ ∨ κ− κ and Q′κ(ξ) = ξ − ξ ∨ κ, so

ϕ′(κ) = (〈R ∨ κ〉 − 〈R〉 ∨ κ)
[
1−

(
〈1{R>κ}〉 − 1{〈R〉>κ}

)]
. (6.15)

Since ξ 7→ ξ ∨ κ is convex, 〈R ∨ κ〉 − 〈R〉 ∨ κ is non-negative by Jensen’s inequality, while

1−
(
〈1{R>κ}〉 − 1{〈R〉>κ}

)
> 0. (6.16)

We have then ϕ′(κ) > 0, so it will be sufficient to study the case κ = 0. Set ξ− = −min(ξ, 0).
We have Q0(ξ) = (ξ−)2/2, Q′0(ξ) = −ξ−, so

2ϕ(0) = 〈(R−)2〉 − (〈R〉−)2 −
(
〈R−〉 − 〈R〉−

)2
. (6.17)

If 〈R〉 > 0, then
2ϕ(0) = 〈(R−)2〉 −

(
〈R−〉

)2 (6.18)
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is non-negative, by Jensen’s inequality. If 〈R〉 < 0, then, using Jensen’s inequality again, we get

2ϕ(0) = 〈(R−)2〉 − (〈R〉)2 −
(
〈R−〉 + 〈R〉

)2
> − 2 〈R〉 (〈R−〉 + 〈R〉) = −2 〈R〉 〈R+〉 > 0,

and this achieves the proof of (6.11). The inequality (6.12) follows from Jensen’s inequality since

1
2 ξ

2 −Qκ(ξ) = 1
2
(
(ξ − κ)+)2 (6.19)

is a convex function of ξ. By (6.19) and (6.12), we also have

Ẽ ‖∆κ −∆‖L1([0,T ]×T) = 1
2 Ẽ

∫ T

0

∫
T

∫
R

(
(ξ − κ)+)2 dµ̃t,x dxdt− 1

2 Ẽ

∫ T

0

∫
T

(
(R̃− κ)+)2 dxdt,

and (6.13) follows by dominated convergence.

Here is the central proposition of this section.

Proposition 6.3 (Evolution equation for the defect measure). Let ∆ be defined by (6.12). Let
t0 ∈ (0, T ). Then P̃-almost surely, we have[√

∆/c(ũ)
]
t

+
[√

c(ũ) ∆
]
x
6 0 in D′((t0, T )×T). (6.20)

Proof of Proposition 6.3. The proof breaks into several steps.

Step 1. (Truncation) We derive a first equation for the version ∆κ of ∆ with truncation
defined in (6.12). We use the equations (5.64) and (5.69) with h = Qκ (cf. Remark 6.1).
Subtracting the second equation from the first one gives us

[∆κ]t + [c(ũ) ∆κ]x = 1
2 q [〈Q′′κ(R)〉 − Q′′κ(〈R〉)] + ∂tMκ (6.21)

+ c̃′(ũ) [〈Ψκ(R)〉 − Ψκ(〈R〉)] + c̃′(ũ)Q′κ(〈R〉)
(
〈R2〉 − 〈R〉2

)
(6.22)

+ c̃′(ũ)
[
2 〈S〉∆κ + 〈S2〉 [Q′κ(〈R〉) − 〈Q′κ(R)〉]

]
(6.23)

in D′((t0, T )×T), where
Ψκ(ξ) def= ξ2Q′κ(ξ) − 2 ξ Qκ(ξ), (6.24)

and
Mκ(t) def=

∫ t

t0

[〈Q′κ(R)〉 −Q′κ(〈R〉)] Φ dW̃ (s). (6.25)

Step 2. (Preparation for renormalization) Different obstructions prevent us from pas-
sing to the limit [κ → ∞] on the parameter of truncation κ in (6.21)-(6.22)-(6.23). Indeed, we
can make no sense of a term c̃′(ũ)L(〈R〉, 〈S〉) (or c̃′(ũ)〈L(R,S)〉) unless L satisfies the growth
condition |L(ξ, η)| 6 C(L)(1 + |ξ|3−γ + |η|3−γ) with γ > 0 for positive ξ, η. It is therefore not
possible to define the limit as κ → ∞ of the three last terms of (6.21)-(6.22)-(6.23). Renor-
malization will help to solve this problem. Indeed, the first term in (6.23) has a factor ∆κ, the
second term in (6.23) is controlled by ∆1/2

κ as a consequence of (6.11). However, the second term
in (6.22) has not the desired form, since this is 2c̃′(ũ)Q′κ(〈R〉)∆ and not 2c̃′(ũ)Q′κ(〈R〉)∆κ. We
exploit the fact that Q′κ(ξ) 6 κ and the inequality (6.12) to write

(6.22) 6 c̃′(ũ) [〈Φκ(R)〉 − Φκ(〈R〉)] + 2 c̃′(ũ)Q′κ(〈R〉) ∆κ, (6.26)

where
Φκ(ξ) = Ψκ(ξ) + κ (ξ2 − 2Qκ(ξ)) = −κ2(ξ − κ)+. (6.27)
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Since Φκ is concave, we obtain

(6.22) 6 2 c̃′(ũ)Q′κ(〈R〉) ∆κ, (6.28)

and thus

[∆κ]t + [c(ũ) ∆κ]x 6 1
2 q [〈Q′′κ(R)〉 − Q′′κ(〈R〉)] + ∂tMκ (6.29)

+ c̃′(ũ)
[
2 (Q′κ(〈R〉) + 〈S〉) ∆κ + 〈S2〉 [Q′κ(〈R〉) − 〈Q′κ(R)〉]

]
. (6.30)

Step 3. (Renormalization) Let H(c,∆) be a smooth function of its argument. We can do
the formal computations

dH(c(ũ),∆κ) + ∂x [c(ũ)H(c(ũ),∆κ)] dt = ∂H
∂c (c(ũ),∆κ) [∂tc(ũ) + c(ũ) ∂xc(ũ)] dt

+ ∂H
∂∆ (c(ũ),∆κ) [d∆κ + ∂x (c(ũ) ∆κ)] dt + 1

2
∂2H
∂∆2 (c(ũ),∆κ) d〈Mκ,Mκ〉(t)

+ ∂xc(ũ)
(
H −∆∂H

∂∆
)

(c(ũ),∆κ) dt,

where 〈Mκ,Mκ〉t is the quadratic variation of the martingale Mκ defined in (6.25), i.e.

〈Mκ,Mκ〉(t)
def= q

∫ t

t0

|〈Q′κ(R)〉 −Q′κ(〈R〉)|2 ds. (6.31)

Using the formulas

∂tc(ũ) = c′(ũ) ũt = 2 c(ũ) c̃′(ũ) (〈R〉+ 〈S〉), ∂xc(ũ) = c′(ũ) ũx = 2 c̃′(ũ) (〈S〉 − 〈R〉),

we obtain

dHκ + ∂x (c(ũ)Hκ) dt = 4 c(ũ) c̃′(ũ) ∂Hκ∂c 〈S〉dt + ∂Hκ
∂∆ [d∆κ + ∂x (c(ũ) ∆κ) dt]

+ 1
2
∂2Hκ
∂∆2 d〈Mκ,Mκ〉(t) + 2 c̃′(ũ)

(
Hκ −∆κ

∂Hκ
∂∆
)

(〈S〉 − 〈R〉) dt,

where, for a function F = F (c,∆), Fκ stands for F (c(ũ),∆κ). By (6.29)-(6.30), we then deduce
the following inequality in D′((t0, T )×T)

∂tHκ + ∂x (c(ũ)Hκ) 6 4 c(ũ) c̃′(ũ)∂Hκ∂c 〈S〉 + 1
2 q

∂Hκ
∂∆ [〈Q′′κ(R)〉 − Q′′κ(〈R〉)] + ∂tNκ

+ ∂Hκ
∂∆ c̃′(ũ)

[
2 (Q′κ(〈R〉) + 〈S〉) ∆κ + 〈S2〉 [Q′κ(〈R〉) − 〈Q′κ(R)〉]

]
+ 1

2
∂2Hκ
∂∆2 ∂t〈Mκ,Mκ〉(t) + 2 c̃′(ũ)

(
Hκ −∆κ

∂Hκ
∂∆
)

(〈S〉 − 〈R〉), (6.32)

where
Nκ(t) def=

∫ t

t0

∂H
∂∆ [〈Q′κ(R)〉 −Q′κ(〈R〉)] Φ dW̃ (s). (6.33)

The rigorous derivation of (6.32) uses a preliminary step of convolution and DiPerna-Lions’
commutator lemma and the chain-rule for the H1-function c(ũ). This is very similar to the proof
of Proposition 5.12, so we will not give the details here.

Step 4. (Limit [κ → ∞]) Assume that the function H in (6.32) satisfies the following
bounds: there is a constant CH > 0 such that, for all c ∈ [c1, c2], for all ∆,∆′ > 0,∣∣∆∂H

∂∆ (c,∆)
∣∣ 6 CH

(
1 + ∆1/2

)
,
(

1 + ∆1/2
) ∣∣∂H

∂∆ (c,∆)
∣∣ 6 CH , (6.34)

and
|F (c,∆) − F (c,∆′)|2 6 CH |∆ − ∆′| , F ∈

{
H, ∂H∂c ,∆

∂H
∂∆
}
. (6.35)
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Moreover, we assume that for all c ∈ [c1, c2], the map ∆ 7→ H(c,∆) is concave. We consider the
limit of (6.32) when κ → ∞ along a given sequence. By taking a subsequence if necessary, we
can assume that the convergences

〈Q′κ(R)〉 − Q′κ (〈R〉) → 0, 〈Q′κ(R)〉 − 〈R〉 → 0 (6.36)

are satisfied P̃-a.s. in L2((0, T )×R) as in (6.10), but also a.s. in (ω, t, x). From (6.35), we can
then deduce the following convergence results in D′((t0, T )×T):

∂tHκ + ∂x (c(ũ)Hκ) → ∂tH + ∂x (c(ũ)H) , (6.37)
4 c(ũ) c̃′(ũ)∂Hκ∂c 〈S〉 → 4 c(ũ) c̃′(ũ)∂H∂c 〈S〉, (6.38)

2 c̃′(ũ)
(
Hκ −∆κ

∂Hκ
∂∆
)

(〈S〉 − 〈R〉) → 2 c̃′(ũ)
(
H −∆∂H

∂∆
)

(〈S〉 − 〈R〉), (6.39)
∂Hκ
∂∆ c̃′(ũ) 〈S〉∆κ → ∂H

∂∆ c̃
′(ũ) 〈S〉∆, (6.40)

where, for a function F = F (c,∆), F stands for F (c(ũ)(t, x),∆(t, x)). Next, the bounds (6.11),
(6.34) and the convergence (6.36) show that

∂tNκ,
∂Hκ
∂∆ [〈Q′′κ(R)〉 − Q′′κ(〈R〉)] , c̃′(ũ)∂H∂∆ 〈S

2〉 [Q′κ(〈R〉) − 〈Q′κ(R)〉] (6.41)

all converge to 0 in D′((t0, T ) × T). Let us give few details about the convergence of the last
term in (6.41): by (6.11) and (6.34), we have the bound∣∣c̃′(ũ) ∂H∂∆ 〈S

2〉 [Q′κ(〈R〉) − 〈Q′κ(R)〉]
∣∣ 6 CH c̃

′(ũ) 〈S2〉, (6.42)

while the term converges to 0 P̃-a.s., a.e. in (t, x). The P̃-a.s. convergence to 0 follows by
dominated convergence. We also have

1
2
∂2Hκ
∂∆2 ∂t〈Mκ,Mκ〉(t) 6 0. (6.43)

There remains to examine the term
∂Hκ
∂∆ c̃′(ũ)Q′κ(〈R〉) ∆κ, (6.44)

which can be split as

F c̃′(ũ) 〈R〉 + [Fκ − F ] c̃′(ũ) 〈R〉 − Fκ c̃
′(ũ) [〈R〉 −Q′κ(〈R〉)] , (6.45)

with F = ∆∂H
∂∆ (c,∆) and Fκ = ∆κ

∂H
∂∆ (c,∆κ). The same arguments as above then show that the

two last terms in (6.45) converge to 0 and we finally deduce from (6.32) the inequality

∂tH + ∂x (c(ũ)H) 6 2 c̃′(ũ)
{

2 c(ũ)∂H∂c 〈S〉 + ∆∂H
∂∆ (〈R〉 + 〈S〉) +

(
H −∆∂H

∂∆
)

(〈S〉 − 〈R〉)
}
,

that is to say

∂tH + ∂x (c(ũ)H) 6 2 c̃′(ũ)
{[

2 c(ũ) ∂H∂c + H
]
〈S〉 +

[
2 ∆ ∂H

∂∆ −H
]
〈R〉
}
. (6.46)

Step 5. (Conclusion) We take now

H(c,∆) = Hδ(c,∆) def=
√

∆/c+ δ, (6.47)

where δ is a positive parameter. It is easy to check that the map ∆ 7→ H(c,∆) is concave and
that (6.34) and (6.35) are satisfied. In (6.46), we obtain

∂tHδ + ∂x (c(ũ)Hδ) 6 2 δ c̃′(ũ) 〈S〉 − 〈R〉√
∆/c+ δ

6 2 δ 1
2 c̃′(ũ) |〈S〉 − 〈R〉| . (6.48)

Taking the limit [δ → 0] in (6.48) yields (6.20).
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To fully exploit (6.20), we need to show that ∆(t0)→ 0 when t0 → 0. This is the content of
the following proposition.

Proposition 6.4 (No initial boundary layer). Recall that ∆ is defined by (6.12). Set also

∆̌ def= 1
2
(
〈S2〉 − 〈S〉2

)
. (6.49)

Then, as t→ 0, we have, P̃-almost surely, the convergences

〈R〉(t) → R0, 〈S〉(t) → S0, in L2(T), (6.50)

and
∆(t), ∆̌(t) → 0, in L1(T). (6.51)

Proof of Proposition 6.4. Let Q̄κ denote the truncation of ξ 7→ ξ2/2 from above and from below
defined by

Q̄κ(ξ) = 1
2

[
ξ2 −

(
(ξ − κ)+)2 − ((ξ + κ)−

)2]
. (6.52)

We apply (5.41) with f1 = f2 = Q̄κ and ϕ ≡ 1 to obtain P̃-almost surely, for t > 0,∫
T

[
〈Q̄κ(R)〉 + 〈Q̄κ(S)〉

]
(t, x) dx = lim

ε→0

∫
T

[
Q̄κ(R̃ε) + Q̄κ(S̃ε)

]
(t, x) dx. (6.53)

Since Q̄κ(ξ) 6 ξ2/2, the estimate∫
T

[
〈Q̄κ(R)〉 + 〈Q̄κ(S)〉

]
(t, x) dx 6 1

2 lim inf
ε→0

‖(R̃ε, S̃ε)(t)‖2L2(T) (6.54)

follows. We then use the energy inequality (4.7) to get a bound on the right-hand side of (6.54).
Indeed, we can pass to the limit in the energy inequality (4.7) since the explicit expression of the
martingaleMε is given by (4.14) and

2
∫
T

∫ ·
t0

(
R̃ε + S̃ε

)
Φε dW̃ ε dx → Me

def= 2
∫
T

∫ ·
t0

(〈R〉 + 〈S〉) Φ dW̃ dx in C([t0, T ]).

Using also (5.42) to treat the initial terms, we obtain∫
T

[
〈Q̄κ(R)〉 + 〈Q̄κ(S)〉

]
(t, x) dx 6 1

2 ‖(R0, S0)‖2L2(T) + ‖q‖L1(T) t + 1
2 Me(t). (6.55)

Taking κ→∞ in (6.55) then gives us∫
T

[
〈R2〉 + 〈S2〉

]
(t, x) dx 6 ‖(R0, S0)‖2L2(T) + 2 ‖q‖L1(T) t + Me(t), (6.56)

and so

‖(〈R〉, 〈S〉)‖2L2(T)(t) + 2
∫
T

(
∆(t) + ∆̌(t)

)
dx 6 ‖(R0, S0)‖2L2(T) + 2 q0 t + Me(t). (6.57)

The convergence of (R̃ε, S̃ε) to (〈R〉, 〈S〉) in C([0, T ], L2
w(T)) has the consequence that

‖(R0, S0)‖2L2(T) 6 lim inf
t→0

‖(〈R〉, 〈S〉)‖2L2(T). (6.58)

From (6.57) and (6.58), we deduce (6.51) and the convergence of the norms

lim
t→0
‖(〈R〉, 〈S〉)‖2L2(T) = ‖(R0, S0)‖2L2(T), (6.59)

which, combined with the weak convergence, gives (6.50).
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We can now conclude the proof of reduction (to Dirac masses) of the Young measures.

Proposition 6.5 (Reduction of the Yong measures). For almost all (ω, t, x) ∈ Ω̃ × [0, T ] × T,
we have

µ̃t,x = δ(〈R〉(t,x),〈S〉(t,x)). (6.60)

Proof of Proposition 6.5. By (6.20) and (6.51), we have ∆(t) = 0 for all t, which is equivalent
to ν1

t,x = δ〈R〉(t,x) P̃-a.s., for a.e. (t, x). We can also establish in a completely similar manner
the identity ν2

t,x = δ〈S〉(t,x) P̃-a.s., for a.e. (t, x). Then (6.60) follows from the decomposition
(6.1).

6.3 Existence of weak martingale solutions
Proof of Theorem 2.5. Once the reduction (6.60) of the Young measure is established, the equa-
tions (5.67)-(5.68) take the desired form∫

T

〈R〉(t, x)ϕ(x) dx =
∫
T

R0(x)ϕ(x) dx +
∫ t

0

∫
T

c(ũ) 〈R〉ϕx dxds

−
∫ t

0

∫
T

c̃′(ũ) [〈R〉 − 〈S〉]2 ϕdx ds +
∫
T

∫ t

0
ϕΦ dW̃ (s) dx, (6.61)∫

T

〈S〉(t, x)ϕ(x) dx =
∫
T

S0(x)ϕ(x) dx −
∫ t

0

∫
T

c(ũ) 〈S〉ϕx dxds

−
∫ t

0

∫
T

c̃′(ũ) [〈R〉 − 〈S〉]2 ϕdx ds +
∫
T

∫ t

0
ϕΦ dW̃ (s) dx. (6.62)

where R0 and S0 are defined by (2.10). Summing up (6.61) and (6.62) and using the identities
(5.33) with the chain-rule for H1-functions we obtain (2.26). We have already establish that
R̃, S̃ ∈ L2(Ω;L∞([0, T ];L2(T))) and R̃, S̃ ∈ C([0, T ];L2(T) − weak)) P̃-a.s. Doing the same
proof of Proposition 6.4 for any t0 we obtain the right continuity (2.28). The energy dissipation
(2.27) follows from (6.56). Taking into account (5.63), we can conclude to the existence of a weak
martingale solution to (2.5). Finally, the estimates (2.30)-(2.31) follow from (5.51)-(4.65).
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