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Abstract
Gaussian smoothed sliced Wasserstein distance has been recently introduced for comparing prob-
ability distributions, while preserving privacy on the data. It has been shown that it provides
performances similar to its non-smoothed (non-private) counterpart. However, the computational
and statistical properties of such a metric have not yet been well-established. This work investi-
gates the theoretical properties of this distance as well as those of generalized versions denoted as
Gaussian-smoothed sliced divergences GσSD

p. We first show that smoothing and slicing preserve
the metric property and the weak topology. To study the sample complexity of such divergences,
we then introduce ˆ̂µn the double empirical distribution for the smoothed-projected µ. The distri-
bution ˆ̂µn is a result of a double sampling process: one from sampling according to the origin
distribution µ and the second according to the convolution of the projection of µ on the unit sphere
and the Gaussian smoothing. We particularly focus on the Gaussian smoothed sliced Wasserstein
distance and prove that it suffers from an unavoidable bias of approximation of order log(n/2).
We also derive other properties, including continuity, of different divergences with respect to the
smoothing parameter. We support our theoretical findings with empirical studies in the context of
privacy-preserving domain adaptation.

1 Introduction

Divergences for comparing two distributions have been shown to be important for achieving good
performance in the contexts of generative modeling (Arjovsky et al., 2017; Salimans et al., 2018),
domain adaptation (Long et al., 2015; Courty et al., 2016; Lee et al., 2019), and in computer
vision (Bonneel et al., 2011; Solomon et al., 2015) among many more applications (Kolouri et al.,
2017; Peyré and Cuturi, 2019). Examples of divergences that have proved useful for these tasks are
the Maximum Mean Discrepancy (Gretton et al., 2012; Long et al., 2015; Sutherland et al., 2017),
the Wasserstein distance (Monge, 1781; Kantorovich, 1942; Villani, 2009) or its variant the sliced
Wasserstein distance (SW) (Bonneel and Coeurjolly, 2019; Kolouri et al., 2019a; Nguyen et al., 2020;
Kolouri et al., 2016).

The SW distance has the advantage of being computationally efficient, since it uses a closed-form
solution for distributions with support on R, by computing the expectation of one-dimensional (1D)
random projections of distributions in Rd. Owing to this efficiency and the resulting scalability, this
distance has been successfully applied in several applications ranging from generative models to
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domain adaptation (Kolouri et al., 2019b; Deshpande et al., 2019; Wu et al., 2019; Lee et al., 2019)
and its statistical properties have been well-studied in Nadjahi et al. (2020).

Recently, Gaussian smoothed variants of the Wasserstein distance and the sliced Wasserstein
distance have been introduced respectively in Nietert et al. (2021) and in Rakotomamonjy and
Ralaivola (2021). One main motivation behind these variants is to provide a privacy guarantee for
the distribution comparison task as Gaussian smoothing is known to be a mechanism for achieving
differential privacy (Dwork et al., 2014). While the properties of the Gaussian smoothed Wasserstein
distance have been extensively studied by Nietert et al. (2021), the properties of the Gaussian
smoothed sliced Wasserstein distance have not been fully investigated yet although they are known to
be more computationally efficient . In this work, we fill this gap by providing a theoretical analysis
of the Gaussian smoothed sliced Wasserstein distance.

We investigate the theoretical properties of the Gaussian-smoothed sliced Wasserstein distance
and the ones of more general Gaussian-smoothed sliced divergences induced by some base distances
or divergences for distributions defined in Rd. Specifically, as for main contributions, we establish
the topological properties of these divergences.

Then, we focus on the sample complexity of such divergences by introducing the double empirical
distribution for the smoothed-projected origin distribution µ. The new empirical distribution is a
result of double sampling process: one from sampling according to the origin distribution and the
second according to the convolution of the projection of µ on the unit sphere and the Gaussian
smoothing. We particularly focus on the Gaussian smoothed sliced Wasserstein distance since the
Wasserstein base distance enjoys an order statistic representation Bobkov and Ledoux (2019). Under
some mild assumptions we also prove that the Gaussian-smoothed sliced divergences satisfy an order
relation with respect to the noise level and are also continuous with respect to this parameter. Given
the importance of the noise level in the privacy/utility trade-off achieved by the divergence, this latter
property is of high impact as it supports a computationally cheap warm-start/fine-tuning procedure
when looking for a privacy/utility compromise of the divergence. Our theoretical study is backed by
some numerical experiments on toy problems and on domain adaptation illustrating how owing to the
topology induced by our metric and its continuity, differential privacy comes almost for free (without
loss of performance) and multiple models with different level of privacy can be cheaply computed.

The paper is organized as follows: after introducing the notation and some background in Section
2, we detail the topological properties of Gaussian-smoothed sliced divergence in Section 3.1 while
the statistical properties are established in Section 3.2. The noise analyses are provided in Section 3.3.
Experimental analyses for supporting the theory and showcasing the relevance of our divergences in
domain adaptation are depicted in Section 4. Discussions on the perspectives and limitations are in
Section 5. All the proofs of the theoretical results and some additional experiments are postponed to
the appendices in the supplementary.

2 Preliminaries

For the reader’s convenience, we provide a brief summary of standard notations and definitions used
throughout the paper.

Notation. For d ∈ N∗, let P(Rd) be the set of Borel probability measures on Rd and Pp(Rd) ⊂
P(Rd), those with finite moment of order p, i.e., Pp(Rd) ≜ {µ ∈ P :

∫
∥x∥pdµ(x) < ∞}, where
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∥ · ∥ is the Euclidean norm. We denote Mp(µ) =
∫
x ∥x∥

pdµ(x). For two probability distributions
µ and ν, we denote their convolution as µ ∗ ν ∈ P(Rd), namely (µ ∗ ν)(A) =

∫
x

∫
y 1A(x +

y)dµ(x)dν(y), where 1A(·) is the indicator function over A. Given two independent random
variables X ∼ µ and Y ∼ ν, we remind that X + Y ∼ µ ∗ ν. The d-dimensional unit-sphere is
noted as Sd−1 ≜ {θ ∈ Rd : ∥θ∥ = 1}. We denote by ud the uniform distribution on Sd−1 and we
use δ(·) to denote the Kronecker delta function. We note as Eµf the expectation of the function f
with respect to µ.

Sliced Wasserstein distance. We remind in this paragraph several measures of similarity between
two distributions. The Wasserstein distance of order p ∈ [1,∞) between two measures in Pp(Rd) is
given by the relaxation of the optimal transport problem, and it is defined as

Wp
p(µ, ν) = inf

γ∈Π(µ,ν)

∫
Rd×Rd

∥x− x′∥pγ(x, x′)dxdx′

where Π(µ, ν) ≜ {γ ∈ P(Rd×Rd)|π1#γ = µ, π2#γ = ν} and π1, π2 are the marginal projectors of
γ on each of its coordinates. When d = 1, the Wasserstein distance can be calculated in closed-form
owing to the cumulative distributions of µ and ν (Rachev and Rüschendorf, 1998). In practice for
empirical distributions, the closed-form solution requires only the sorting of the samples, which
makes it very efficient. Because of this efficiency, efforts have been devoted to derive a metric
for high-dimensional distributions based on 1D Wasserstein distance. The main idea is to project
high-dimensional probability distributions onto a random one-dimensional space and then to compute
the Wasserstein distance. This operation can be theoretically formalized through the use of the
Radon transform, leading to the so-called sliced Wasserstein distance (Bonneel and Coeurjolly, 2019;
Kolouri et al., 2019a; Nguyen et al., 2020; Kolouri et al., 2016).

Definition 1. For any p ∈ [1,∞) and two measures µ, ν ∈ Pp(Rd), the sliced Wasserstein distance
(SW) reads as

SWp(µ, ν) ≜
∫
Sd−1

Wp
p(Ruµ,Ruν)ud(u)du.

where Ru is the Radon transform of a probability distribution, namely Ruµ(·) =
∫
Rd µ(s)δ(· −

s⊤u)ds. In practice, the integral is approximated through a Monte-Carlo simulation leading to a
sum of 1D Wasserstein distances over a fixed number of random directions u.

Gaussian-smoothed sliced Wasserstein distance. Based on this definition of SW, replacing the
Radon projected measures with their Gaussian-smoothed counterpart leads to the following definition:

Definition 2. The σ-Gaussian-smoothed p-Sliced Wasserstein distance between probability distribu-
tions µ and ν in Pp(Rd) writes as

GσSW
p(µ, ν) ≜

∫
Sd−1

Wp
p(Ruµ ∗ Nσ,Ruν ∗ Nσ)ud(u)du,

where Nσ = N (0, σ2) is the zero-mean σ2-variance Gaussian measure.

It is important to note here that the smoothing (convolution) operation occurs after projection onto
the one-dimensional space. Hence, assuming X ∼ µ, Y ∼ ν, for a given direction u, we compute in
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the integral the one-dimensional Wasserstein distance between the probability laws of u⊤X + Z
and u⊤Y + Z ′ where Z,Z ′ ∼ Nσ are independent random variables. The metric properties of
GσSWp for p ≥ 1have been discussed in a recent work (Rakotomamonjy and Ralaivola, 2021). This
latter work has also shown, in the context of differential privacy, the importance of convolving the
Radon projected distribution with a Gaussian instead of computing the SW distance of the original
distribution smoothed with a d-dimensional Gaussian µ ∗ NσId , where Id denotes the d× d identity
matrix.

Gaussian-smoothed sliced divergence. The idea of slicing high-dimensional distributions before
feeding them to a divergence between probability distributions can be extended to distances other than
the Wasserstein distance. These sliced divergences have been studied by Nadjahi et al. Nadjahi et al.
(2020). In a similar way, we can define a Gaussian-smoothed sliced divergence, given a divergence
DRd : Pp(Rd)× Pp(Rd) → R+ for d ≥ 1 as:

Definition 3. The σ-Gaussian-smoothed p-Sliced Divergence between probability distributions µ
and ν in Pp(Rd) associated to the base divergence D ≜ DR, p ≥ 1 is

GσSD
p(µ, ν) ≜

∫
Sd−1

Dp(Ruµ ∗ Nσ,Ruν ∗ Nσ)ud(u)du.

where the superscript p refers to a power.

Typical relevant divergences are the maximum mean discrepancy (MMD) (Gretton et al., 2012)
or the Sinkhorn divergence (Genevay et al., 2018; Peyré and Cuturi, 2019). In Section 4, we report
empirical findings based on these divergences as well as on the Wasserstein distance.

3 Theoretical properties

In this section, we analyze the properties of the Gaussian-smoothed sliced divergence, in terms of
topological and statistical properties and the influence of the Gaussian smoothing parameter σ on the
distance.

3.1 Topology

It has already been shown in Rakotomamonjy and Ralaivola (2021) that the Gaussian-smoothed
sliced Wasserstein is a metric on P(Rd). In the next, we extend these results to any divergence D(·, ·)
under certain assumptions.

Theorem 1. For any σ > 0, p ≥ 1, the following properties hold:

1. if D(·, ·) is non-negative (or symmetric), then GσSD(·, ·) is non-negative (or symmetric);

2. if D(·, ·) satisfies the identity of indiscernibles, i.e. for µ′, ν ′ ∈ P(R), D(µ′, ν ′) = 0 if and
only if µ′ = ν ′, then this identity also holds for GσSD(·, ·) for any µ, ν ∈ Pp(Rd);

3. if D(·, ·) satisfies the triangle inequality then GσSD(·, ·) satisfies the triangle inequality.
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The above theorem shows that under mild hypotheses over the base divergence D, as being a
metric for instance, the metric property of its Gaussian-smoothed sliced version naturally derives.
As exposed in the appendix, the more involved property to prove is the identity of indiscernibles.
We further postponed to the appendix two other topological properties: (i) GσSD metrizes the weak
topology on Pp(Rd) and (ii) GσSD is lower semi-continuous with respect to the weak topology in
Pp(Rd).

3.2 Statistical properties

The next theoretical question we are interested in is about the incurred error when the true distribution
µ is approximated by its empirical distribution µ̂n. Such a case is common in practical applications
where only (high-dimensional) empirical samples are at disposal. Specifically, we are interested
in quantifying two key properties of empirical Gaussian-smoothed divergence: (i) the convergence
of GσSD(µ̂n, ν̂n) to GσSD(µ, ν) (ii) the convergence of ĜσSD(µ, ν) to GσSD(µ, ν), i.e., when
approximating the expectation over the random projection with sample mean.

Let µ̂n = 1
n

∑n
i=1 δXi and ν̂n = 1

n

∑n
i=1 δYi be the empirical probability measures of indepen-

dent observations. The smoothed Gaussian sliced divergence between µ̂n and ν̂n is given by

GσSD
p(µ̂n, ν̂n) =

∫
Sd−1

Dp
(
Ruµ̂n ∗ Nσ,Ruν̂n ∗ Nσ

)
ud(u)du.

Remark 1. Remark that for a fixed u ∈ Sd−1, the distributions Ruµ̂n ∗ Nσ and Ruν̂n ∗ Nσ are
continuous, in particular they are a mixture of Gaussian distributions centered on the projected
samples with variance σ2.

Lemma 1. Conditionally on the samples {Xi}i=1,...,n and {Yj}j=1,...,n, one has: Ruµ̂n ∗ Nσ =
1
n

∑n
i=1N (u⊤Xi, σ

2) and Ruν̂n ∗ Nσ = 1
n

∑n
i=1N (u⊤Yi, σ

2).

Note that we further need to sample with respect to the continuous mixture Gaussian measures in
Lemma 1 in order to get a fully empirical measure version of GσSD(µ, ν). To this end, we define in
the next section the double empirical divergence of GσSD .

3.2.1 Double empirical divergence of GσSD

Let T x1 , . . . , T
x
n and T y1 , . . . , T

y
n be i.i.d. observations of Ruµ̂n ∗ Nσ and Ruν̂n ∗ Nσ, respectively.

Sampling i.i.d. {T xi }i=1,...,n is given by the following scheme: for i = 1, . . . , n, we first choose
the component N (u⊤Xi, σ

2) from the mixture 1
n

∑n
i=1N (u⊤Xi, σ

2) then we generate T xi =
u⊤Xi + Zxi , where Zxi ∼ Nσ. Hence, we define, for a given u

ˆ̂µn =
1

n

n∑
i=1

δTx
i
=

1

n

n∑
i=1

δu⊤Xi+Zx
i

and

ˆ̂νn =
1

n

n∑
i=1

δT y
i
=

1

n

n∑
i=1

δu⊤Yi+Z
y
i
.

The measure ˆ̂µn ∈ P(R) defines an empirical version of the continuous Ruµ̂n ∗ Nσ denoted as
̂Ruµ̂n ∗ Nσ (similarly ˆ̂νn = ̂Ruν̂n ∗ Nσ). Using the aforementioned notation, we define:
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Definition 4. The double empirical smoothed Gaussian sliced divergence reads as

ĜσSD
p
(µ̂n, ν̂n) ≜

∫
Sd−1

Dp(ˆ̂µn, ˆ̂νn)ud(u)du.

Remark 2. (i) It is worth to comment the double randomnesses showing in the definition of
ĜσSD

p
(µ̂n, ν̂n): the first comes from sampling according to the original probability measure (µ or

ν) whereas the second takes place from sampling according to the mixture 1
n

∑n
i=1N (u⊤Xi, σ

2).
(ii) The empirical measure of the convolution ̂Ruµ ∗ Nσ could be written as 1

n

∑n
i=1 δUx

i +Q
x
i

allow-
ing to sample in a one shot n i.i.d. samples Uxi +Qxi such that Uxi ∼ Ruµ and Qxi ∼ Nσ. From
an empirical view, sampling according to Ruµ ∗ Nσ is intractable. For that reason, our theoretical
results and numerical experiments are based on ˆ̂µn, ˆ̂νn, and hence with respect to ĜσSD(µ̂n, ν̂n).

3.2.2 Sample complexity of GσSW
p

Let T x(l) the l-th order variable of T x, namely T x(1) = mini=1,...,n T
x
i , T

x
(n) = maxi=1,...,n T

x
i and

T x(l) defines the l-th smallest of {T xi : i = 1, . . . , n}. The (ordered) collection of observed values
{T x(1) ≤ T x(2) ≤ · · · ≤ T x(n)} is called the order statistic of T x.

Herein, our goal is to quantify the error made when approximating GσSW(µ, ν) with ĜσSW(µ̂n, ν̂n).
More precisely, we are interested in establishing an order of the convergence rate of ĜσSD(µ̂n, ν̂n)
towards GσSD(µ, ν), according to the sample size n. This rate stands for the so-called sample
complexity.

We denote hereafter by µ⊗n and N⊗n
σ the n-fold product extensions of µ and Nσ, respec-

tively. We denote by Eµ⊗n |N⊗n
σ

[·] = Eµ⊗n

[
EN⊗n

σ
[·|X1, . . . , Xn]

]
. Next, we focus on the sample

complexity for the special case of Gaussian-smoothed sliced Wasserstein distance.

Proposition 1. Fix σ > 0, p ≥ 1. Then,

Eµ⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, µ)] ≤ Ξp,σ;µ

(
4 log(

n

2
) +

log n

n

)
,

where Ξp,σ;µ = 23p−1(Cp+ e
5/3)(M2p(µ)+2pσ4p)1/2 with Cp is a positive constant depending

only on p.

Let us sketch the proof of Proposition 1 to show why we get a bias-like term of order log(n2 ). By
application of triangle inequality for Wasserstein distance, we get Wp

p(
ˆ̂µn,Ruµ∗Nσ) ≤ 2p−1(I+II)

where

I = Wp
p

( 1
n

n∑
i=1

δu⊤Xi+Zx
i
,
1

n

n∑
i=1

δUx
i +Q

x
i

)
and

II = Wp
p

( 1
n

n∑
i=1

δUx
i +Q

x
i
,Ruµ ∗ Nσ

)
.

6



Remark 3. Due to the fact that in the I term we have to upper bound a p-Wasserstein distance
between two empirical measures, our proof shows that the expectation of I is of order O(log(n2 )). It
is indeed an expectation of the absolute order statistics of the samples. To best of our knowledge, the
(only) tight upper bound of absolute order statistics can be found in Gribkova (2020) (see Theorem 13
in Appendix C). We further highlight that the true empirical version of Ruµ ∗ Nσ is untractable and
unfeasible to be implemented. We then approximate this latter using the double empirical version ˆ̂µn,
which is prone to this unavoidable bias of approximation.

Remark 4. The term II is p-Wasserstein between Ruµ ∗ Nσ an its true empirical measure, for that
reason we get a standard order of O( lognn ), which comes from a by-product of Fournier and Guillin
(2015) (see Theorem 11 in Appendix C).

Remark 5. An algorithmic consequence of this bias of approximation would tend not to use the Gaus-
sian smoothed sliced in a generative modelling framework, i.e. θ̂σn = argminθ∈PΘ(Rd) ĜσSW

p
(µ̂n, µθ)

with µθ a generative model.

Remark 6. The obtained complexity sample showing in Proposition 1 is given only for the Gaussian
smoothed Wasserstein distance, since the based Wasserstein distance satisfies a result for order
statistic representation (see Appendix 12). For the other types of based divergence, one could
establish a line of theoretical research to investigate such representations, specifically for MMD and
Sinkhorn divergences.

Remark 7. Note that the sample complexity depends on the amount of smoothing through the moment
of the Gaussian noise : the larger the amount of smoothing (and thus the privacy), the worse is the
constant of the complexity. Hence, a trade-off on privacy and statistical estimation appears here as a
reasonable guarantee on the differential privacy usually requires a large Gaussian variance.

Proposition 2. Fix σ > 0, p ≥ 1. Then,

Eµ⊗n |N⊗n
σ

Eν⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, ν̂n)] ≤ 3p−1GσSW

p(µ, ν) + Ξp,σ;µ,ν

(
4 log(

n

2
) +

log n

n

)
,

and

GσSW
p(µ, ν) ≤ 3p−1Eµ⊗n |N⊗n

σ
Eν⊗n |N⊗n

σ
[ĜσSW

p
(µ̂n, ν̂n)] + Ξp,σ;µ,ν

(
4 log(

n

2
) +

log n

n

)
,

where Ξp,σ;µ,ν = 3p−123p+1(Cp + e5/3)
{
(M2p(µ) + 2pσ4p)1/2 + (M2p(ν) + 2pσ4p)1/2

}
.

Despite that our theoretical results are addressed only for Gaussian-smoothed sliced Wasserstein
distance, our emprical results show that given other base divergences D, shows that the sample
complexity of GσSD

p is proportional to the one dimensional sample complexity of Dp (p = 2).
Figure 1 provides an empirical illustration of this statement.

3.2.3 Projection complexity

To compute the Gaussian-smoothed sliced divergence, one may resort to a Monte Carlo scheme to
numerically approximate the integral in GσSD

p(µ, ν). Towards this, let define the following sum:

ĜσSD
p(µ, ν) =

1

L

L∑
l=1

Dp(Rul
µ ∗ Nσ,Rul

ν ∗ Nσ),

7



Figure 1: Measuring the divergence between two sets of samples in R50, of increasing size,
randomly drawn from N (0, I). We compare three sliced divergences and their Gaussian-smoothed
sliced versions with a σ = 3: (top) dimension has been set to d = 50; (bottom) sample complexity
with different dimensions. This plot confirms that the complexity is dimension-independent.

where ul is a random vector uniformly drawn from Sd−1, for l = 1, . . . , L. Theorem 2 shows that
for a fixed dimension d, the root mean square error of Monte Carlo (MC) approximation is of order
O
(

1√
L

)
, which corresponds to the projection complexity. We denote by u⊗L

d and the L-fold product
extensions of the uniform measure ud on the unit sphere.

Theorem 2. Let σ > 0, p ≥ 1. Then the error related to the MC-estimation of GσSD
p is bounded as

follows

E
u
⊗L
d

[|ĜσSD
p(µ, ν)−GσSD

p(µ, ν)|] ≤ A(p, σ)√
L

,

where A2(p, σ) =
∫
Sd−1

(
Dp(Ruµ ∗ Nσ,Ruν ∗ Nσ)− ϑ̄p

)2
ud(u)du, with ϑ̄p =

∫
Sd−1 D

p(Ruµ ∗
Nσ,Ruν ∗ Nσ)ud(u)du.

The term A2(p, σ) corresponds to the variance of Dp(Ruµ ∗ Nσ,Ruν ∗ Nσ) with respect to
u ∼ ud. It is worth to note that the precision of the Monte Carlo scheme approximation depends
on the number of projections L and the variance of the evaluations of the divergence Dp . The
estimation error decreases at the rate L−1/2 according to the number of projections used to compute
the smoothed sliced divergence.

Remark 8. Given the above results, we provide a finer analysis of GσSW
p(µ, ν)’s sample complexity.

that is bounded by the sample and projection complexities,

complexity(GσSW
p) = O

(
log(

n

2
) +

log n

n
+
A(p, σ)√

L

)
.

If we consider the number of projections as L = ⌊nβ⌋ for some β ∈ (0, 1) then the overall complexity
complexity(GσSW

p(µ, ν)) = O(log(n2 ) + n−β/2).

3.3 Noise-level dependencies

The parameter σ of the Gaussian smoothing function Nσ may significantly influence the attained
privacy level. Hence, we provide theoretical results analyzing the effect of the noise level σ on the
induced Gaussian-smoothed sliced divergence.
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Figure 2: Absolute difference between the approximated Monte Carlo approximation of all diver-
gences compared to the true one (evaluated with 10, 000 number of projections). The two sets of 500
samples in R50 are randomly drawn from N (0, I). The Gaussian-smoothed sliced divergences are
parameterized with σ = 3.

Order relation. We first show that the noise level tends to reduce the difference between two
distributions as measured using GσSD

p(µ, ν) provided the base divergence D satisfies some mild
assumptions.

Proposition 3. Let µ, ν ∈ Pp(Rd) and consider the noise levels σ1, σ2 such that 0 ≤ σ1 ≤ σ2 <∞.
Assume that the base divergence D satisfies D(µ′ ∗Nσ2 , ν

′ ∗ Nσ2) ≤ D(µ′ ∗Nσ1 , ν
′ ∗ Nσ1), for any

µ′, ν ′ ∈ P(R). Then, Gσ2SD
p(µ, ν) ≤ Gσ1SD

p(µ, ν).

Note that the assumption for the base divergence inequality holds for the Gaussian-smoothed
Wasserstein distance Nietert et al. (2021). While we conjecture that it holds also for smoothed
Sinkhorn and MMD, we leave the proofs for future works. Based on the property in Proposition 3,
we show some specific properties of the metric with respect to the noise level σ.

Proposition 4. GσSD
p(µ, ν) is decreasing with respect to σ and we have limσ→0GσSD

p(µ, ν) =
Dp(µ, ν).

The proof of Proposition 4 comes straightforwardly from Proposition 3 by taking σ2 = σ and
letting σ1 → 0. This property interestingly states that the GσSD

p recovers the sliced divergence
when the noise level vanishes.

Continuity. Now we analyze the continuity properties of some GσSD
p(µ, ν) w.r.t. the noise level.

Proposition 5. For any two distributions µ and ν for which the sliced Wasserstein is well-defined,
the Gaussian-smoothed sliced Wasserstein distance is continuous w.r.t. to σ.

Proposition 6. Assume that the kernel defining the maximum mean discrepancy (MMD) divergence
is bounded. Then the Gaussian-smoothed sliced GσMMD is continuous w.r.t. to σ.

The above propositions show that most distribution divergences are continuous with respect to σ
under mild conditions.
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4 Numerical Experiments

In this section, we report on a series of experiments that support the established theoretical results.
We also highlight the usefulness of the findings in a context of privacy-preserving domain adaptation
problem.

4.1 Supporting the theoretical results

Sample complexity. The first experiment (see Figure 1) analyzes the sample complexity of different
base divergences. It shows that the sample complexity stays similar to the one of their original
and sliced counterparts up to a constant (see Proposition 1). For this purpose, we have considered
samples in Rd randomly drawn from a Normal distribution N (0, I). For the Sinkhorn divergence,
the entropy regularization has been set to 0.1 and for MMD, we used a Gaussian kernel for which
the bandwidth has been set to the mean of all pairwise distances between samples. The number of
projections has been fixed to L = 50 and we perform 20 runs per experiment. For the first study,
the convergence rate has been evaluated by increasing the samples number up to 25,000 with fixed
dimension d = 50. For the second one, we vary both the dimension and the number of samples.

Figure 1 shows the sample complexity of some sliced divergences, respectively noted as SWD,
SKD and MMD for Sliced Wasserstein distance, Sinkhorn divergence and Maximum Mean discrep-
ancy and their Gaussian-smoothed sliced versions, named as GS SWD, GS SKD and GS MMD.
On the top plot, we can see that all Gaussian-smoothed sliced divergences preserve the complexity
rate with just a slight to moderate overhead. The worst difference is for Sinkhorn divergence, while
MMD almost comes for free in term of complexity. From the bottom plot where sample complexities
for different dimensions d are given, we confirm the finding that Gaussian smoothing keeps the
independence of the convergence rate to the dimension of sliced divergences.

Two other experiments on the sample complexity and identity of indiscernibles are also reported
in the supplementary material.

Projection complexity. We have also investigated the impact of the number of projections when
estimating the distance between two sets of 500 samples drawn from the same distribution, N (0, I).
Figure 2 plots the approximation error between the true expectation of the sliced divergences
(computed for a number of L = 10, 000 projections) and its approximated versions. We remark
that, for all methods, the error ranges within 10-fold when approximating with 50 projections and
decreases with the number of projections.

Performance path on the impact of the noise parameter. Since the Gaussian smoothing param-
eter σ is key in a privacy preserving context, as it impacts on the level of privacy of the Gaussian
mechanism, we have analyzed its impact on the smoothed sliced divergence. We have reproduced
the experiment for the sample complexity but with different values of σ. The number of projections
has been set to 50. Figure 3 shows these sample complexities. The first very interesting point to note
is that the smoothing parameter has almost no effect on the GS MMD sample complexity. For the
GS SWD and GS SKD divergences, instead, the smoothing tends to increase the divergence at fixed
number of samples. Another interpretation is that to achieve a given value of divergence, one needs
more far samples when the smoothing is larger (i.e. for getting a given divergence value at σ = 5, one
needs almost 10-fold more samples for σ = 15). This overhead of samples needed when smoothing
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Figure 3: Measuring the divergence between two sets of samples in R50 drawn from N (0, I). We
plot the sample complexity for different Gaussian-smoothed sliced divergence at different level of
noises.

Figure 4: Domain adaptation performances using different divergences on distributions with respect
to the Gaussian smoothing. (Left) USPS to MNIST. (Middle) Office-31 Webcam to DSLR. (Right)
Office-31 Amazon to Webcam.

increases is properly described, for the Gaussian-smoothed sliced SWD in our Proposition 1, as the
sample complexity depends on the moments of the Gaussian.

As for conclusion from these analyses, we highlight that the Gaussian-smoothed sliced MMD
seems to present several strong benefits: its sample complexity does not depend on the dimension
and seems to be the best one among the divergence we considered. More interestingly, it is not
impacted by the amount of Gaussian smoothing and thus not impacted by a desired privacy level.

4.2 Domain adaptation with GσSW

As an application, we have considered the problem of unsupervised domain adaptation for a clas-
sification task. In this context, given source examples Xs and their label ys and unlabeled target
examples Xt, our goal is to design a classifier h(·) learned from the source examples that generalizes
well on the target ones. A classical approach consists in learning a representation mapping g(·) that
leads to invariant latent representations, invariance being measured as a distance between empirical
distributions of mapped source and target samples. Formally, this leads to the following problem

min
g,h

{
Lc(h(g(Xs)),ys) +D(g(Xs), g(Xt))

}
where Lc can be the cross-entropy loss or a quadratic loss and D a divergence between empirical
distributions, in our case, D will be any Gaussian-smoothed sliced divergence. We solve this problem
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Figure 5: Domain adaptation performances using different divergences on distributions with respect
to the Gaussian smoothing using one-epoch-fine-tuned models. (Left) USPS to MNIST. (Middle)
Office-31 Webcam to DSLR. (Right) Office-31 Amazon to Webcam.

through stochastic gradient descent, similarly to many approaches that use sliced Wasserstein distance
as a distribution distance Lee et al. (2019). Note that, in practice, using a smoothed divergence
preserves the privacy of the target samples as shown by (Rakotomamonjy and Ralaivola, 2021).

When performing such model adaptation, a privacy/utility trade-off that has to be handled. In
practice, one would prefer the most private model while not hurting its performance. Hence, one
would seek the largest noise level σ > 0 to use while preserving accuracy on target domain. Hence,
it is useful to evaluate how the model performs on a range of noise level (hence, privacy level). This
can be computationally expensive at it requires to fully train several models on hundreds of epochs.
Instead, we leverage on the continuity of our GσSD to employ a fine-tuning strategy: we train a
domain adaptation model for the largest desired value of σ (over the full number of epochs) and
when σ is decreased, we just fine-tune the lasted model by training on only one epoch.

Our experiments evaluate the studied Gaussian-smoothed sliced divergences in classical un-
supervised domain adaptation. We have considered two datasets: a handwritten digit recognition
(USPS/MNIST) and Office 31 datasets.

In our first analysis, we have compared our GσSD performances with non-smoothed divergences.
The first one is the sliced Wasserstein distance (SWD) Lee et al. (2019) and the second one is
the Jenssen-Shannon approximation based on adversarial approach, known as DANN Ganin and
Lempitsky (2015). For all methods and for each dataset, we used the same neural network architecture
for representation mapping and for classification. Approaches differ only on how distance between
distributions have been computed. Here for each noise value σ, we have trained the model from
scratch for 100 epochs. Results are depicted in Figure 4. For the two problems, we can see that
performances obtained with the Gaussian-smoothed sliced Wasserstein or MMD divergences are
similar to those obtained with DANN or SWD across all ranges of noise. The smoothed version of
Sinkhorn is less stable and induces a slight loss of performance. Owing to the metric property and
the induced weak topology, the privacy preservation comes almost without loss of performance in
this domain adaptation context.

In the second analysis, we have studied the privacy/utility trade-off when fine-tuning models,
using only one epoch, for decreasing values of σ. Results are shown in Figure 5. They highlight that
depending on the data and the used smoothed divergence, performance varies between one percent
for Office 31 to four percent for USPS to MNIST. Note that except for the largest value of σ, we are
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training a model using only one epoch instead of a hundred. A very large gain in complexity is thus
achieved for swiping the full range of noise level. Hence depending on the importance this slight
drop in performance will have, it is worth using a large value of σ and preserving strong privacy or
go through a validation procedure of several (cheaply obtained) models.

5 Conclusion

This work provided the properties of Gaussian-smoothed sliced divergences for comparing distri-
butions. We derived several theoretical results related to their topological and statistical properties
and showed, under mild conditions on their base divergences, the smoothing and slicing operations
preserves the metric property. From a statistical point of view, we introduced the double empirical
distribution and focused on the sample complexity of the smoothed sliced Wasserstein distance.
We proved that it suffers from an unavoidable bias of approximation. We analyzed the behavior of
these divergences on domain adaptation problems and confirm the fact that using those divergences
yields only to slight loss of performances while preserving privacy. An important direction for future
research is establishing order statistic representations for Sinkhorn and MMD divergences. Further-
more, in the obtained bound we use upper bound of higher moments of the smoothing distribution,
that would think to consider non Gaussian smoothing distribution enjoying this property.
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A Proofs and additional theoretical results

In the following sections, we give the proofs of the theoretical guarantees given in the main of the
paper. For a sake of completeness, we add other results that we consider interesting.

A.1 Proof of Theorem 1: GσSD is a proper metric on Pp(Rd)× Pp(Rd)

Before starting the proof, we add this notation: the characteristic function of a probability distribution
µ ∈ P(Rd) is φµ(t) = Eµ[e

iX⊤t]. Given this definition, similarly to the Fourier transform,
the characteristic function of the convolution of two probability distributions readsas φν∗µ(t) =
φν(t) · φµ(t).

• Non-negativity (or symmetry). The non-negativity (or symmetry) follows directly from the
non-negativity (or symmetry) of Dp, see Definition 3.
• Identity property. If the base divergence Dp satisfies the identity property in one dimensional
measures, then for any µ ∈ Pp(Rd) and u ∈ Sd−1, one has that Dp(Ruµ ∗ Nσ,Ruµ ∗ Nσ) =
0, hence, by Definition 3, GσSD

p(µ, µ) = 0. Let us now prove the fact that for any µ, ν ∈
Pp(Rd),GσSD

p(µ, ν) = 0 entails µ = ν a.s. On one hand, GσSD
p(µ, ν) = 0 gives the fact that

Dp(Ruµ ∗ Nσ,Ruν ∗ Nσ) = 0 for ud-almost every u ∈ Sd−1, hence Ruµ ∗ Nσ = Ruν ∗ Nσ

for ud-almost every u ∈ Sd−1. Following the techniques in proof of Proposition 5.1.2 in Bonnotte
(2013), for any measure η ∈ P(Rm) (with m ≥ 1), F [η](·) stands for the Fourier transform of η and
is given as F [η](v) =

∫
Rm e

−is⊤vdη(s) for any v ∈ Rm. Then

F [Ruµ ∗ Nσ](v) =

∫
R
e−ivtd(Ruµ ∗ Nσ)(t)

=

∫
R

∫
R
e−i(r+t)vdRuµ(r)dNσ(t) (by the definition of the convolution operator)

=

∫
Rd

∫
R
e−i(⟨u,s⟩+t)vdµ(s)dNσ(t) (by the definition of Radon Transform)

=

∫
R
e−itvdNσ(t)

∫
Rd

e−i(⟨u,s⟩)vdµ(s)

= F [Nσ](v)F [µ](vu).

Since for ud-almost every u ∈ Sd−1,Ruµ ∗Nσ = Ruν ∗Nσ, and hence F [Ruµ ∗Nσ] = F [Ruν ∗
Nσ] ⇔ F [Nσ]F [µ] = F [Nσ]F [ν] (by the Fourier transform of the convolution) ⇔ F [µ] = F [ν].
Since the Fourier transform is injective, we conclude that µ = ν.
•Triangle inequality. Assume that D is a metric and let µ, ν, η ∈ Pp(Rd). We then have

GσSD(µ, ν) =
{∫

Sd−1

Dp(Ruµ ∗ Nσ,Ruν ∗ Nσ)ud(u)du
}1/p

≤
{∫

Sd−1

(
D(Ruµ ∗ Nσ,Ruη ∗ Nσ) + D(Ruη ∗ Nσ,Ruν ∗ Nσ)

)p
ud(u)du

}1/p

≤︸︷︷︸
(⋆)

{∫
Sd−1

(
Dp(Ruµ ∗ Nσ,Ruη ∗ Nσ)ud(u)du

}1/p

+
{∫

Sd−1

Dp(Ruη ∗ Nσ,Ruν ∗ Nσ)
)p
ud(u)du

}1/p
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= GσSD(µ, η) + GσSD(η, ν),

where inequality in (⋆) follows from the application of Minkowski inequality.

A.2 GσSD metrizes the weak topology and is lower semi-continuous

Now, we establish under which conditions on the divergence D, the convergence of a sequence in
GσSD implies weak convergence in Pp(Rd). We say that {µk}k∈N converges weakly to µ and write,
µk ⇒ µ, if

∫
f(x)dµk(x) →

∫
f(x)dµ(x), as k → ∞, for every f in the space of all bounded

continuous real functions.

Theorem 3. Let σ > 0, p ≥ 1, µ ∈ Pp(Rd), and {µk ∈ Pp(Rd)}k∈N a sequence of distribu-
tions. Assume that the divergence D is bounded and metrizes the weak topology on P(R). Then,
limk→∞GσSD(µk, µ) = 0 if and only if µk ⇒ µ.

Note that Theorem 3 extends the results of Nadjahi et al. (2020) to Gaussian-smoothed distri-
butions, as we retrieve them as a special case for σ = 0. In addition, based on Theorem 3.2 by Lin
et al. (2021) and the above, we can also claim that the Gaussian-smoothed SWD metrizes the weak
convergence.

Proposition 7. Let σ > 0, p ≥ 1 and assume that the base divergence D is lower semi-continuous
w.r.t. the weak topology in P(R). Then, GσSD is lower semi-continuous with respect to the weak
topology in Pp(Rd).

When the base divergence D is equal to the Wasserstein distance Wp, that is lower semi-
continuous (Villani, 2009), then Proposition 7 shows that the smoothed sliced Wasserstein distance is
semi-lower continuous too.

A.2.1 Proof of Theorem 3

The proof is done by double implications:
“⇒” Assume that µk ⇒ µ. Fix u ∈ Sd−1, the mapping u 7→ Ru is continuous from Rd to

R, then an application of continuous mapping Theorem 6 entails that Ruµk ⇒ Ruµ. By Lévy’s
continuity Theorem 7 Ruµk ∗ Nσ ⇒ Ruµ ∗ Nσ. Therefore, limk→∞D(Ruµk,Ruµ ∗ Nσ) = 0.
Since we suppose that the divergence D is bounded, then there exists K ≥ 0 such that for any k,
Dp(Ruµk,Ruµ ∗ Nσ) ≤ K. An application of bounded convergence Theorem 5 yields

lim
k→∞

GσSD
p(µk, µ) = lim

k→∞

∫
Sd−1

Dp(Ruµk ∗ Nσ,Ruµ ∗ Nσ)ud(u)du = 0.

“⇐” (By contrapositive). Suppose that µk doesn’t converge weakly to µ and assume that
limk→∞GσSD

p(µk, µ) = 0. On one hand, since Rd is a complete separable space then us-
ing Theorem 10 that tells that weak convergence is equivalent to the convergence correspond-
ing to Lévy-Prokhorov distance Λ (see Definition 5), there exists ε > 0 and a subsequence
{µs(k)}k∈N such that Λ(µs(k), µ) > ε. One the other hand, we have limk→∞GσSD

p(µs(k), µ) =

0, that is equivalent to {D(Ruµs(k) ∗ Nσ,Ruν ∗ Nσ)}k converges to 0 in Lp(Sd−1) = {f :

Sd−1 → R|
∫
Sd−1 f(u)ud(u)du < ∞}. By application of Proposition 10, there exists a sub-

sequence {µs(t(k))}k such that lim
k→∞

D(Ruµs(t(k)) ∗ Nσ,Ruµ ∗ Nσ) = 0 almost everywhere
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for all u ∈ Sd−1. Recall that the divergence D metrizes the weak convergence in P(R) then
Ruµs(t(k)) ∗ Nσ ⇒ Ruµ ∗ Nσ almost everywhere for all u ∈ Sd−1. Therefore, Ruµs(t(k)) ⇒ Ruµ

almost everywhere for all u ∈ Sd−1. Using Cramér-Wold device, see Proposition 11, we get
µs(t(k)) ⇒ µ. Since the Lévy-Prokhorov distance metrizes the weak convergence, it entails that
lim
k→∞

Λ(µs(t(k)), µk) = 0, that contradicts the fact that Λ(µs(k), µ) > ε. We then conclude by

contrapositive that µk ⇒ µ.

A.2.2 Proof of Proposition 7

Recall that the base divergence D is lower semi-continuous w.r.t. the weak topology in P(R), namely
for every sequence of measures {µ′k}k∈N and {ν ′k}k∈N in P(R) such that µ′k ⇒ µ′ and ν ′k ⇒ ν ′, one
has D(µ′, ν ′) ≤ lim inf

k→∞
D(µ′k, ν

′
k).

Now, let {µk}k∈N and {νk}k∈N are two sequences of measure in Pp(Rd) such that µk ⇒ µ and
νk ⇒ ν. By continuous mapping theorem 6 and Levy’s continuity theorem, we obtain Ruµk ∗Nσ ⇒
Ruµ ∗ Nσ and Ruνk ∗ Nσ ⇒ Ruν ∗ Nσ for all u ∈ Sd−1. Since the base divergence D is a lower
semi-continuous with respect to weak topology in P(R), then

Dp(Ruµ∗Nσ,Ruν∗Nσ) ≤
(
lim inf
k→∞

D(Ruµk∗Nσ,Ruνk∗Nσ)
)p ≤ lim inf

k→∞
Dp(Ruµk∗Nσ,Ruνk∗Nσ).

It gives

GσSD
p(µ, ν) ≤

∫
Sd−1

lim inf
k→∞

Dp(Ruµk ∗ Nσ,Ruνk ∗ Nσ)ud(u)du.

Furthermore, by application of Fatou’s lemma 8, we get

GσSD
p(µ, ν) ≤ lim inf

k→∞

∫
Sd−1

Dp(Ruµk ∗ Nσ,Ruνk ∗ Nσ)ud(u)du = lim inf
k→∞

GσSD
p(µk, νk),

which is the desired result.

A.3 Proofs of statistical properties

A.3.1 Proof of Lemma 1

Straighforwardly, for every Borelian I ∈ B(R), we have

Ruµ̂n ∗ Nσ(I) =

∫
r

∫
s
1I(r + s)dRuµ̂ndNσ(s)

=

∫
r

∫
s
1I(r + s)d{ 1

n

n∑
i=1

δu⊤Xi
}(r)dNσ(s)

=
1

n

n∑
i=1

∫
s
1I(u

⊤Xi + s)dNσ(s)

=
1

n

n∑
i=1

∫
s
1I(u

⊤Xi + s)fNσ(s)ds

=
1

n

n∑
i=1

∫
s′
1I(s

′)fNσ(s
′ − u⊤Xi)ds′
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=
1

n

n∑
i=1

∫
s′
1I(s

′)fN (u⊤Xi,σ2)(s
′)ds′ (since fNσ(s

′ − u⊤Xi) = fN (u⊤Xi,σ2)(s
′))

=
1

n

n∑
i=1

∫
s′
1I(s

′)dN (u⊤Xi, σ
2)(s′)

=
1

n

n∑
i=1

N (u⊤Xi, σ
2)(I).

Thanks to Theorem of Cramér and Wold (Cramér and Wold, 1936), we conclude the equality between
the measures Ruµ̂n ∗ Nσ = 1

n

∑n
i=1N (u⊤Xi, σ

2).

A.3.2 Additional Proposition

Proposition 8. Assume that the divergence D equal to the Wasserstein distance Wp. Then,

GσSW
p(µ̂n, ν̂n) ≤

1

n

n∑
i=1

∫
Sd−1

Wp
p

(
N (u⊤Xi, σ

2),N (u⊤Yi, σ
2)
)
ud(u)du.

In particular, GσSW
2(µ̂n, ν̂n) ≤ 1

n

∑n
i=1 ∥Xi − Yi∥2.

Proposition 8 ensures that GσSW
p(µ̂n, ν̂n) is upper bounded by the mean of the SWD between

Gaussian distributions centered on the projected samples and with variance σ2. In the case of p = 2
and using the closed form of Wasserstein distance between Gaussian distributions (Bures distance),
we have the mean of the squared L2-norms between samples as an upper bound for GσSW

2(µ̂n, ν̂n).

Proof of Proposition 8. Setting the divergence D equals to the Wasserstein distance Wp. By Lemma 1,
we have

GσSW
p(µ̂n, ν̂n) =

∫
Sd−1

Wp
p

(
1

n

n∑
i=1

N (u⊤Xi, σ
2),

1

n

n∑
i=1

N (u⊤Yi, σ
2)

)
ud(u)du.

Then using scaling property of Wp (i.e. Wp(aα, aβ) = |a|Wp(α, β) for all probability measures
α, β and a ∈ R), hence

GσSW
p(µ̂n, ν̂n) =

1

np

∫
Sd−1

Wp
p

( n∑
i=1

N (u⊤Xi, σ
2),

n∑
i=1

N (u⊤Yi, σ
2)

)
ud(u)du.

Remark that N (u⊤Xi, σ
2) and N (u⊤Yi, σ

2) are independent then from an additive property,
see Panaretos and Zemel (2019), we get

Wp
p

( n∑
i=1

N (u⊤Xi, σ
2),

n∑
j=1

N (u⊤Yi, σ
2)

)
≤

( n∑
i=1

Wp

(
N (u⊤Xi, σ

2),N (u⊤Yi, σ
2)
))p

≤ np−1
n∑
i=1

Wp
p

(
N (u⊤Xi, σ

2),N (u⊤Yi, σ
2)
)
,
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where the last inequality is due to
(∑n

i=1 ai

)p
≤ np−1

∑n
i=1 a

p
i for ai ≥ 0 and p ≥ 1. Then,

GσSW
p(µ̂n, ν̂n) ≤

1

n

n∑
i=1

∫
Sd−1

Wp
p

(
N (u⊤Xi, σ

2),N (u⊤Yi, σ
2)
)
ud(u)du.

For p = 2, using the closed form of Wasserstein distance between Gaussian, we have

W2
2

(
N (u⊤Xi, σ

2),N (u⊤Yi, σ
2)
)
= |u⊤(Xi − Yi)|2,

hence

GσSW
2(µ̂n, ν̂n) ≤

1

n

n∑
i=1

∫
Sd−1

|u⊤(Xi − Yi)|2ud(u)du ≤ 1

n

n∑
i=1

∥Xi − Yi∥2.

A.3.3 Order statistics representation of ĜσSW
p
(µ̂n, ν̂n)

Lemma 2. For fixed u ∈ Sd−1, one has

Wp
p(
ˆ̂µn, ˆ̂νn) =

1

n

n∑
l=1

|T x(l) − T y(l)|
p =

1

n

n∑
l=1

∣∣∣(u⊤Xi + Zxi
)
(l)

−
(
u⊤Yi + Zyi

)
(l)

∣∣∣p.
and the double-empirical smoothed Gaussian sliced Wasserstein satisfies

ĜσSW
p
(µ̂n, ν̂n) =

1

n

n∑
l=1

∫
Sd−1

∣∣∣(u⊤Xi + Zxi
)
(l)

−
(
u⊤Yi + Zyi

)
(l)

∣∣∣pud(u)du.
Proof of Lemma 2. By Lemma 3, we obtain

Wp
p(
ˆ̂µn, ˆ̂νn) = Wp

p

( 1

n

n∑
i=1

δu⊤Xi+Zx
i
,
1

n

n∑
i=1

δu⊤Yi+Z
y
i

)
=

1

n

n∑
l=1

∣∣∣(u⊤Xi + Zxi
)
(l)

−
(
u⊤Yi + Zyj

)
(l)

∣∣∣p.
Then,

ĜσSW
p
(µ̂n, ν̂n) =

1

n

n∑
l=1

∫
Sd−1

∣∣∣(u⊤Xi + Zxi
)
(l)

−
(
u⊤Yi + Zyj

)
(l)

∣∣∣pud(u)du.
A.3.4 Proof of Proposition 1

For this proof and the following ones, we use frequently the triangle inequality for Wasserstein dis-
tance and the quantities ˆ̂µn and 1

n

∑n
i=1 δUx

i +Q
x
i
, the empirical measure probabilities of 1

n

∑n
i=1 δu⊤Xi+Zx

i

and Ruµ ∗ Nσ, respectively.
On one hand, using triangle inequality of Wasserstein distance, we have

Eµ⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, µ)] =

∫
Sd−1

Eµ⊗n |N⊗n
σ

[
Wp

p(
ˆ̂µn,Ruµ ∗ Nσ)

]
ud(u)du
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=

∫
Sd−1

Eµ⊗n |N⊗n
σ

[
Wp

p

( 1

n

n∑
j=1

δu⊤Xi+Zx
j
,Ruµ ∗ Nσ

)]
ud(u)du

≤
∫
Sd−1

2p−1Eµ⊗n |N⊗n
σ

[
Wp

p

( 1

n

n∑
i=1

δu⊤Xi+Zx
i
,
1

n

n∑
i=1

δUx
i +Q

x
i

)
+Wp

p

( 1

n

n∑
i=1

δUx
i +Q

x
i
,Ruµ ∗ Nσ

)]
ud(u)du.

• Control of Eµ⊗n |N⊗n
σ

[
Wp

p

(
1
n

∑n
i=1 δu⊤Xi+Zx

i
, 1n

∑n
i=1 δUx

i +Q
x
i

)]
.

By application of Theorem 12 for α̂n = 1
n

∑n
i=1 δu⊤Xi+Zx

i
and β̂n = 1

n

∑n
i=1 δUx

i +Q
x
i
, we have

Eµ⊗n |N⊗n
σ

[
Wp

p

( 1

n

n∑
i=1

δu⊤Xi+Zx
i
,
1

n

n∑
i=1

δUx
i +Q

x
i

)]
=

1

n

n∑
l=1

Eµ⊗n |N⊗n
σ

[∣∣∣(u⊤Xi + Zxi
)
(l)

−
(
Uxi +Qxi

)
(l)

∣∣∣p]
≤ 2p−1

n

n∑
l=1

{
Eµ⊗n |N⊗n

σ

[∣∣∣(u⊤Xi + Zxi
)
(l)

∣∣∣p]+Eµ⊗n |N⊗n
σ

[∣∣∣(Uxi +Qxi
)
(l)

∣∣∣p]}.
On other hand, using Theorem 13 with ρ = 1

2 we get C(ρ) = C(12) =
√
2e5/3, then

Eµ⊗n |N⊗n
σ

[∣∣(u⊤Xi + Zxi
)
(l)

∣∣p] ≤ √
2e5/3

n+ 1√
l(n− l + 1)

(
Eµ⊗n |N⊗n

σ

[∣∣u⊤X1 + Zx1
∣∣2p])1/2

≤
√
2e5/3

n+ 1√
l(n− l + 1)

(
22p−1

{
Eµ⊗n |N⊗n

σ

[
|u⊤X1|2p

]
+Eµ⊗n |N⊗n

σ

[
|Zx1

∣∣2p]})1/2

≤
√
2e5/3

n+ 1√
l(n− l + 1)

(
22p−1

(
M2p(µ) +M2p(|Nσ|)

))1/2

≤ 2pe5/3
n+ 1√

l(n− l + 1)

(
M2p(µ) +M2p(|Nσ|)

)1/2
,

where we recall that for any integer k, Mk(µ) =
∫
Rd ∥x∥kdµ(x) and Mk(|Nσ|) =

∫
R |t|kdNσ(t).

Similarly,

Eµ⊗n |N⊗n
σ

[∣∣(Uxi +Qxi
)
(l)

∣∣pb] ≤ √
2e5/3

n+ 1√
l(n− l + 1)

(
Eµ⊗n |N⊗n

σ

[∣∣Ux1 +Qx1
∣∣2p])1/2

≤
√
2e5/3

n+ 1√
l(n− l + 1)

(
22p−1Eµ⊗n |N⊗n

σ

[
|Ux1 |2p

]
+Eµ⊗n |N⊗n

σ

[
|Qx1

∣∣2p])1/2

≤
√
2e5/3

n+ 1√
l(n− l + 1)

(
22p−1

(
M2p(µ) +M2p(|Nσ|)

))1/2

≤ 2pe5/3
n+ 1√

l(n− l + 1)

(
M2p(µ) +M2p(|Nσ|)

)1/2
.
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Therefore,

Eµ⊗n |N⊗n
σ

[∣∣(u⊤Xi + Zxi
)
(l)

∣∣p]+Eµ⊗n |N⊗n
σ

[∣∣∣(Uxi +Qxi
)
(l)

∣∣∣p]
≤ 2p+1e5/3

n+ 1√
l(n− l + 1)

(
M2p(µ) +M2p(|Nσ|)

)1/2
.

Hence,

Eµ⊗n |N⊗n
σ

[
Wp

p

( 1

n

n∑
i=1

δu⊤Xi+Zx
i
,
1

n

n∑
i=1

δUx
i +Q

x
i

)]
≤ 22p

n
e5/3

(
M2p(µ) +M2p(|Nσ|)

)1/2 n∑
l=1

n+ 1√
l(n− l + 1)

.

• Control of Eµ⊗n |N⊗n
σ

[
Wp

p

(
1
n

∑n
i=1 δUx

i +Q
x
i
,Ruµ ∗ Nσ

)]
.

By application of Theorem 11, we get

Eµ⊗n |N⊗n
σ

[
Wp

p

( 1

n

n∑
i=1

δUx
i +Q

x
i
,Ruµ ∗ Nσ

)]
≤ Cp,qM

p/q
q

(
Ruµ ∗ Nσ

)
∆n(p, q).

Moreover, Let us first upper bound the q-th moment of Mq(Ruµ ∗ Nσ), for all k ≥ 1. For all
u ∈ Sd−1, one has

Mq(Ruµ ∗ Nσ) =

∫
R
|t|qd(Ruµ ∗ Nσ)(t)

=

∫
R

∫
R
|r + t|qdRuµ(r)dNσ(t)

=

∫
Rd

∫
R
|⟨u, s⟩+ t|qdµ(s)dNσ(t).

Using the elementary inequality (a+ b)q ≤ 2q−1(aq + bq) for k ≥ 1, a ≥ 0, and b ≥ 0, we obtain

Mq(Ruµ ∗ Nσ) ≤ 2q−1

∫
Rd

∫
R

(
|⟨u, s⟩|q + |t|q

)
dµ(s)dNσ(t)

≤ 2q−1
(
∥u∥

∫
Rd

∥s∥qdµ(s) +
∫
R
|t|qdNσ(t)

)
≤ 2q−1

(∫
Rd

∥s∥qdµ(s) +
∫
R
|t|qdNσ(t)

)
= 2q−1(Mq(µ) +Mq(|Nσ|)).

Then we arrive at

Eµ⊗n |N⊗n
σ

[
Wp

p

( 1

n

n∑
i=1

δUx
i +Q

x
i
,Ruµ ∗ Nσ

)]
≤ 2q−1Cp,q(Mq(µ) +Mq(Nσ))

p/q∆n(p, q).
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This implies that

Eµ⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, µ)] ≤

23p−1

n
e5/3

(
M2p(µ) +M2p(|Nσ|)

)1/2 n∑
l=1

n+ 1√
l(n− l + 1)

+

+ 2(p+q)−2Cp,q(Mq(µ) +Mq(|Nσ|))p/q∆n(p, q).

For q = 2p we have ∆n(p, q) =
logn
n , it yields

Eµ⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, µ)] ≤

23p−1

n
e5/3

(
M2p(µ) +M2p(|Nσ|)

)1/2 n∑
l=1

n+ 1√
l(n− l + 1)

+

+ 23p−2Cp(M2p(µ) +M2p(|Nσ|))1/2
log(n)

n

≤ 23p−1

n
e5/3

(
M2p(µ) +M2p(|Nσ|)

)1/2 n∑
l=1

n+ 1√
l(n− l + 1)

+

+ 23p−2Cp(M2p(µ) +M2p(|Nσ|))1/2
log(n)

n

≤ 23p−1(Cp + e5/3)(M2p(µ) +M2p(|Nσ|))1/2

×
( 1

n

n∑
l=1

n+ 1√
l(n− l + 1)

+
log(n)

n

)
.

Finally, for any q ≥ 1 the q-th moment of |Nσ| satisfies

E[|Nσ|q] =
2qΓ((q + 1)/2)

Γ(1/2)
σ2q ≤ 2q/2σ2q,

where Γ : R → R is the Gamma function expressed as Γ(v) =
∫∞
0 tv−1e−tdt. Now let us examine.

Let ⌈n/2⌉ be the upper integer part of n/2. Then, for any 1 ≤ l ≤ ⌈n/2⌉, one has l ≤ n − l + 1.
This implies

n∑
l=1

1√
l(n− l + 1)

≤ 2

⌈n/2⌉∑
l=1

1√
l(n− l + 1)

≤ 2

⌈n/2⌉∑
l=1

1

l
≤ 4 log

(n
2

)
.

Finally,

Eµ⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, µ)] ≤ 23p−1(Cp + e5/3)(M2p(µ) + 2pσ4p)1/2

(
4 log(

n

2
) +

log n

n

)
.

which is the desired result.

A.3.5 Proof of Proposition 2

Using triangle inequality, we have

Wp(ˆ̂µn, ˆ̂νn) ≤ Wp(ˆ̂µn,Ruµ ∗ Nσ) +Wp(Ruµ ∗ Nσ,Ruν ∗ Nσ) +Wp(Ruν ∗ Nσ, ˆ̂νn).
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and then

Wp
p(
ˆ̂µn, ˆ̂νn) ≤ 3p−1

{
Wp

p(
ˆ̂µn,Ruµ ∗ Nσ) +Wp

p(Ruµ ∗ Nσ,Ruν ∗ Nσ) +Wp
p(Ruν ∗ Nσ, ˆ̂νn)

}
.

This implies that

Eµ⊗n |N⊗n
σ

Eν⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, ν̂n)]

≤ 3p−1GσSW
p(µ, ν)

+ 3p−1Eµ⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, µ)] + 3p−1Eν⊗n |N⊗n

σ
[ĜσSW

p
(ν̂n, ν)].

From the proof of Proposition 1, we have

Eµ⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, µ)]

≤ 23p−1(Cp + e5/3)(M2p(µ) +M2p(|Nσ|))1/2
( 1

n

n∑
l=1

n+ 1√
l(n− l + 1)

+
log(n)

n

)
.

Similarly,

Eν⊗n |N⊗n
σ

[ĜσSW
p
(ν̂n, ν)]

≤ 23p−1(Cp + e5/3)(M2p(ν) +M2p(|Nσ|))1/2
( 1

n

n∑
l=1

n+ 1√
l(n− l + 1)

+
log(n)

n

)
.

This gives that

Eµ⊗n |N⊗n
σ

Eν⊗n |N⊗n
σ

[ĜσSW
p
(µ̂n, ν̂n)]

≤ 3p−1GσSW
p(µ, ν)

+ 3p−123p(Cp + e5/3)
{
(M2p(µ) +M2p(|Nσ|))1/2 + (M2p(ν) +M2p(|Nσ|))1/2

}
×
( 1

n

n∑
l=1

n+ 1√
l(n− l + 1)

+
log(n)

n

)
.

This ends the proof of the first statement in Proposition 2. For the second one, we also use a triangle
inequality

Wp
p(Ruµ ∗ Nσ,Ruν ∗ Nσ) ≤ 3p−1

{
Wp

p(Ruµ ∗ Nσ, ˆ̂µn) +Wp
p(
ˆ̂µn, ˆ̂νn) +Wp

p(
ˆ̂νn),Ruν ∗ Nσ

}
.

Then we control each term as we did before.

A.4 Proof of Theorem 2: projection complexity

Using Holder’s inequality, we have

Eu∼ud
[∣∣ĜσSD

p(µ, ν)−GσSD
p(µ, ν)

∣∣] ≤ (
Eu∼ud

[∣∣ĜσSD
p(µ, ν)−GσSD

p(µ, ν)
∣∣2])1/2

=
(
Vu∼ud

[∣∣ĜσSD
p(µ, ν)

∣∣])1/2

=
(
Vu∼ud

[∣∣GσSD
p(µ, ν)

∣∣])1/2

=
A(p, σ)√

L
.
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A.5 Proof of Proposition 3

For all u ∈ Sd−1 we have Ruµ,Ruν ∈ P(R). By application of the inequality of noise level
satisfied by D in one dimension we get

Dp(Ruµ ∗ Nσ2 ,Ruν ∗ Nσ2) ≤ Dp(Ruµ ∗ Nσ1 ,Ruν ∗ Nσ1).

Then, computing the expectation over the projections u since the divergence is non-negative concludes
the proof.

A.6 Relation between GσSW
p(µ, ν) under two noise levels

We provide a relation between Gaussian-smoothed sliced Wasserstein distances under two noise
levels.

Proposition 9. Let 0 ≤ σ1 ≤ σ2 be two noise levels. Then, one has

Gσ1SW
p(µ, ν) ≤ 2p−1Gσ2SW

p(µ, ν) + 2
5p
2 (σ22 − σ21)

p.

Proof of Proposition 9
The proof follows the same lines in proof of Lemma 1 in Nietert et al. (2021). First, we have that

Nσ2 = Nσ1 ∗ N√
σ2
2−σ2

1
. Setting the following random variables: Xu ∼ Ruµ, Yu ∼ Ruν, ZX ∼

Nσ1 , ZY ∼ Nσ1 , Z
′
X ∼ N√

σ2
2−σ2

1
, Z ′

Y ∼ N√
σ2
2−σ2

1
. The sliced Wasserstein distance Wp

p(Ruµ ∗
Nσ2 ,Ruν ∗Nσ2) is given as a minimization over couplings (Xu, ZX , Z

′
X) and (Yu, ZY , Z

′
Y ). Using

the inequality E[|X|p] − 2p−1E[|Y |p] ≤ 2p−1E[|X + Y |p] for any random variables X,Y ∈ Lp
integrable, we obtain,

2p−1E
[
|(Xu + ZX)− (Yu + ZY ) + (Z ′

X + Z ′
Y )|p

]
≥ E

[
|(Xu + ZX)− (Yu + ZY )|p

]
− 2p−1E

[
|(Z ′

X + Z ′
Y )|p

])
.

Hence,

2p−1Wp
p(Ruµ ∗ Nσ2 ,Ruν ∗ Nσ2) ≥ inf

(
E
[
|(Xu + ZX)− (Yu + ZY )|p

]
− 2p−1E

[
|(Z ′

X + Z ′
Y )|p

]))
≥ Wp

p(Ruµ ∗ Nσ1 ,Ruν ∗ Nσ1)− 2p−1 supE
[
|(Z ′

X + Z ′
Y )|p

]
≥ Wp

p(Ruµ ∗ Nσ1 ,Ruν ∗ Nσ1)− 22p−1 supE
[
|(Z ′

X)|p
]
.

Therefore,

2p−1Gσ2SW
p(µ, ν) ≥ Gσ1SW

p(µ, ν)− 22p−1 supE
[
|(Z ′

X)|p
]
.

Hence,

Gσ1SW
p(µ, ν) ≤ 2p−1Gσ2SW

p(µ, ν) + 22p−1 supE
[
|(Z ′

X)|p
]

then

Gσ1SW
p(µ, ν) ≤ 2p−1Gσ2SW

p(µ, ν) + 2
5p
2 (σ22 − σ21)

p,

and concludes the proof.
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A.7 Proof of Proposition 5: continuity of the smoothed Gaussian sliced Wasserstein
w.r.t. σ

From Lemma 1 in (Nietert et al., 2021), we know that the Gaussian-smoothed Wasserstein is
continuous with respect to σ, for any distribution Ruν and Ruµ. In addition, for any u, we
have Wp(Ruν ∗ Nσ,Ruµ ∗ Nσ) ≤ Wp(Ruν,Ruµ). Then by applying Lebesgue’s dominated
convergence theorem (see Appendix 4) to the above inequality with Wp(Ruν,Ruµ) as a dominating
function, that is ud-almost everywhere integrable because both measures are in Pp(Rd), we then
conclude that the Gaussian-smoothed SWD is continuous w.r.t. σ.

A.8 Proof of Proposition 6: continuity of the smoothed sliced squared-MMD w.r.t. σ

Let us first recall the definition of the MMD divergence. Let k : R × R → R be a measurable
bounded kernel on R and consider the reproducing kernel Hilbert space (RKHS) Hk associated
with k and equipped with inner product < ·, · >Hk

and norm ∥ · ∥Hk
. Let PHk

(R) be the set of
probability measures η such that

∫
R
√
k(t, t)dη(x) <∞. The kernel mean embedding is defined as

Φk(η) =
∫
R k(·, t)dη(t). The squared-maximum mean discrepancy between η, ζ ∈ P(R) denoted

as MMD : PHk
(R)× PHk

(R) → R+ is expressed as the distance between two such kernel mean
embeddings. It is defined as Gretton et al. (2012)

MMD2(η, ζ) = ∥Φk(η)− Φk(ζ)∥2Hk
= ET,T ′∼η[k(T, T

′)]− 2ET∼η,R∼ζ [k(T,R)] +ER,R′∼ζ [k(R,R
′)]

where T and T ′ are independent random variables drawn according to η, R and R′ are independent
random variables drawn according to ζ , and T is independent ofR. We define the Gaussian Smoothed
Sliced squared-MMD as follows:

GσMMD2(µ, ν) =

∫
Sd−1

∥Φk(Ruµ ∗ Nσ)− Φk(Ruν ∗ Nσ)∥2Hk
ud(u)du

=

∫
Sd−1

(
ET,T ′∼Ruµ∗Nσ [k(T, T

′)]− 2ET∼Ruµ∗Nσ ,R∼Ruν∗Nσ [k(T,R)]

+ER,R′∼Ruν∗Nσ [k(R,R
′)]
)
ud(u)du.

From the definition of the smoothed sliced squared-MMD, we have

ET,T ′∼Ruµ∗Nσ [k(T, T
′)] =

∫∫
R×R

k(t, t′)dRuµ ∗ Nσ(t)dRuµ ∗ Nσ(t
′)

=

∫∫
R×R

(∫
R
k(t+ z, t′)dRuµ(z)Nσ(t)

)
dRuµ ∗ Nσ(t

′)

=

∫∫
R×R

(∫
Rd

k(t+ u⊤x, t′)dµ(x)Nσ(t)
)

dRuµ ∗ Nσ(t
′)

=

∫∫
R×R

∫∫
Rd×Rd

k(t+ u⊤x, t′ + u⊤x′)dµ(x)dµ(x′)dNσ(t)dNσ(t
′).

Similarly,

ER,R′∼Ruν∗Nσ [k(R,R
′)] =

∫∫
R×R

∫∫
Rd×Rd

k(r + u⊤y, r′ + u⊤y′)dν(y)dν(y′)dNσ(r)dNσ(r
′)
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and

ET∼Ruµ∗Nσ ,R∼Ruν∗Nσ [k(T,R)] =

∫∫
R×R

∫∫
Rd×Rd

k(t+ u⊤x, r + u⊤y)dµ(x)dν(y)dNσ(t)dNσ(r).

Together the assumption of boundness of the kernel function k and the continuity of integrals, the
three latter terms are continuous functions w.r.t. σ ∈ (0,∞). Again by the boundness of the kernel
function k, there exists a positive finite constant Ck such that∣∣ET,T ′∼Ruµ∗Nσ [k(T, T

′)]−2ET∼Ruµ∗Nσ ,R∼Ruν∗Nσ [k(T,R)]+ER,R′∼Ruν∗Nσ [k(R,R
′)]
∣∣ ≤ 4Ck.

We conclude the continuity of σ 7→ GσMMD2(µ, ν) by an application of the continuity of integrals.

B Additional experiments

B.1 Sample complexity on CIFAR

We have also evaluated the sample complexity for the CIFAR dataset by sampling sets of increasing
size. Results reported in Figure 6 confirms the findings obtained from the toy dataset.

Figure 6: Measuring the divergence between two sets of samples drawn iid from the CIFAR10
dataset. We compare three sliced divergences and their Gaussian smoothed versions with a σ = 3.

B.2 Identity of indiscernibles

The second experiment aims at checking whether our divergences converge towards a small value
when the distributions to be compared are the same. For this, we consider samples from distributions
µ and ν chosen as normal distributions with respectively mean 2× 1d and s1d with varying s (noted
as the displacement). Results are depicted in Figure 7. We can see that all methods are able to attain
their minimum when s = 2. Interestingly, the gap between the Gaussian smoothed and non-smoothed
divergences for Wasserstein and Sinkhorn is almost indiscernible as the distance between distribution
increases.
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Figure 7: Measuring the divergence between two sets of samples in R50, one with mean 21d and
the other with mean s1d with increasing s. We compare three sliced divergences and their Gaussian
smoothed version with a σ = 3.

C Useful results for the proofs

For the sake of completeness, we provide in this section useful results from the literature of functional
analysis and probability measures that we frequently referred in the proofs of the main theoretical
findings in this work.

Theorem 4 (Lebesgue’s Dominated Convergence Theorem, see Bowers and Kalton (2014)). Let
(E, T , η) be a positive finite measure space and suppose {ψk}k∈N be a sequence of scalar-valued
measurable functions that convergences η-almost everywhere (η-a.e.) to ψ. If there exists a function
g ∈ L1(η) such that |ψk| ≤ g η-a.e. for all k, then ψ is integrable (ψ ∈ L1(η) and lim

k→∞

∫
E ψkdη =∫

E ψdη.

Theorem 5 (Bounded Convergence Theorem, see Bowers and Kalton (2014)). Let (E, T , η) be a
positive finite measure space and suppose {ψk}k∈N be a sequence of uniformly bounded scalar-
valued measurable functions, i.e. there exists K ≥ 0, |ψk| ≤ K for all k. If ψk → ψ η-a.e., then
f ∈ L1(η) and lim

k→∞

∫
E ψkdη =

∫
E ψdη.

Theorem 6 (Continuous Mapping Theorem, see Bowers and Kalton (2014)). Let (E1, d1) and
(E2, d2) be metric spaces and let ψ : E1 → E2 measurable. Denote by Dψ the set of points of
discontinuity of ψ. If η, η1, η2, . . . , are a finite measures on E1 with η(Dψ) = 0 and ηk ⇒ η, then
ηk ◦ ψ−1 ⇒ η ◦ ψ−1.

Theorem 7 (Levy’s Continuity Theorem, see Athreya and Lahiri (2006)). Let η, {ηk}k∈N, be
probability measures on (Rd,B(Rd)) with corresponding characteristic function φ and φk, k ∈ N,
respectively. Then the sequence {ηk}k∈N converges weakly to η iff lim

k→∞
φk(v) = φ(v) for all

v ∈ Rd.

Theorem 8 (Fatou’s Lemma, see Bowers and Kalton (2014)). Let (E, T , η) be a positive finite
measure space and suppose {ψk}k≥1 be a sequence of scalar-valued measurable functions, then∫
E(lim inf

k→∞
|ψk|)dη ≤ lim inf

k→∞

∫
E |ψk|dη.
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Theorem 9 (See Billingsley (1971)). A necessary and sufficient condition for ηk ⇒ η is that each
that each subsequence {ηs(k)}k contains a further subsequence {ηs(t(k))}k converging weakly to η,
where s, t : N → N are increasing applications.

Definition 5 (Lévy-Prokhorov distance). Let P be the space of probability measures on a measurable
metric space ((E, ρ), T ). The Lévy-Prokhorov distance Λ(η, ζ) between η, ζ ∈ P is defined as:

Λ(η, ζ) = inf
ε>0

{η(A) < ζ(Aε) + ε, ζ(A) < η(Aε) + ε, for all A ∈ T },

where Aε = {x ∈ E : ρ(x,A) < ε}.

Theorem 10 (see Huber (2011)). Suppose E is a complete separable metric space. Then weak
convergence is equivalent to Λ-convergence.

Proposition 10 (See Khoshnevisan (2007)). Suppose that (E, T , η) is a measure space and p ∈
[1,∞). If {ψk}k is a sequence in Lp(E) that converges in Lp to ψ, then there exists a subsequence
{ψs(k)}k that converges pointwise η-a.e. to ψ.

Proposition 11 (Cramér-Wold device, see Huber (2011)). Let Z0, Z1, . . . be random variables with
values in (Rd,B(Rd)). Then Zn ⇒ Z0 iff v⊤Zn ⇒ v⊤Z0, for every v ∈ Rd.

Theorem 11 (See proof of Theorem 1 in Fournier and Guillin (2015)). Let η ∈ P(R) and let p ≥ 1.
Assume that Mq(η) <∞ for some q > p. There exists a constant Cp,q depending only on p, q such
that, for all n ≥ 1,

E[Wp
p(η̂n, η)] ≤ Cp,qMq(η)

p/q∆n(p, q),

where

∆n(p, q) =


n−1/21q>2p,

n−1/2 log(n)1q=2p

n−(q−p)/q1p<q<2p.

.

Lemma 3 (See Lemma 4.2 in Bobkov and Ledoux (2019)). Given two collections of real numbers
X1, . . . , Xn and Y1, . . . , Yn, let α̂n = 1

n

∑n
i=1 δXi and β̂n = 1

n

∑n
i=1 δYi be the corresponding

empirical measures. Then, for any p ≥ 1, Wp
p(α̂n, β̂n) =

1
n

∑n
l=1 |X(l) − Y(l)|p.

Theorem 12 (Order statistics representation of Wp(α̂n, α), see Theorem 4.3 in Bobkov and Ledoux
(2019)). Given random vectors (X1, . . . , Xn) and (Y1, . . . , Yn) in Rn, let α̂n and β̂n be the corre-
sponding empirical measures. Then, for any p ≥ 1, E[Wp

p(α̂n, β̂n)] =
1
n

∑n
l=1E[|X(l) − Y(l)|p].

Additionnaly, if (Y1, . . . , Yn) is an independent copy of (X1, . . . , Xn) and α = 1
n

∑n
i=1 Law(Xi) is

the mean marginal distribution, then E[Wp
p(α̂n, α)] ≤ 2p

n

∑n
l=1E

[∣∣X(l) −E[X(l)]
∣∣p].

Theorem 13 (See Theorem 1 in Gribkova (2020)). Let R1, . . . , Rn be i.i.d. real valued random
variables and let R(1) ≤ R(2) ≤ · · · ≤ R(n) denote the corresponding order statistics. Let
r > 0, q > 0 be arbitrary positive numbers. Put ρ = r

q . For all n ≥ 2ρ + 1 and for all
ρ ≤ l ≤ n− ρ+ 1 the following inequality holds

E[|R(l)|r] ≤ C(ρ)
(
E[|R1|q]

(n+ 1)2

l(n− l + 1)

)ρ
,

where C(ρ) = 2
√
ρeρ+7/6.
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