

Molecular beam epitaxy of III-V semiconductors on group-IV substrates: Formation and burying of antiphase domains.

A. <u>Gilbert¹</u>, J.-B. Rodriguez¹, M. Rio Calvo¹, M. Ramonda¹, L. Cerutti¹, C. Cornet², A. Trampert³, G. Patriarche⁴, E. Tournié¹

- ¹: IES, University of Montpellier, CNRS, F- 34000 Montpellier, France
- ²: Univ Rennes, INSA Rennes, CNRS, Institut FOTON UMR 6082, F-35000 Rennes,
- ³: Paul-Drude-Institut für Festkörperphysik, Hausvogteiplatz 5-7, 10117 Berlin, Germany
- ⁴: C2N, University of Paris Sud, CNRS, UMR 9001, Paris, France

This work is supported by the French program Equipex EXTRA (ANR11-EQPX-0016) and by the ANR- DFG project FILTER (ANR-20-CE92-0045).

Motivations

Motivations

Challenges

Material quality

Antiphase boundaries (APBs)

Zinc Blend is polar (two types of atoms)

Diamond is non-polar (one atom)

Antiphase boundaries (APBs) V-polar phase

The two phases grow and nucleate

Different incorporation rates = the domain that grows slower is buried

Zinc-blende group III-V/group IV epitaxy: Importance of the miscut, C. Cornet *et al*. Phys. Rev. Mat.4, **053401** (2020), DOI:10.1103/PhysRevMaterials.4.053401

Experimental demonstration of the model: GaSb on Si 0.5°

Crystal Phase Control during Epitaxial Hybridization of III-V Semiconductors with Silicon", Marta Rio Calvo *et al*. Adv. Electron. Mater, **8**, **2100777 (**2022), DOI: 10.1002/aelm.202100777

GaAs on 0.5° Si: growth and characterizations

Surface morphology of GaAs low temperature growths

D'ÉLECTRONIQUE ET DES SYSTÈMES

TEM confirms APD-MPD sequence and MPD overgrowth

25 nm GaAs

Si 0.5°

Regular repetition APD-MPD (dark-clear regions) MPD grows faster

Periodic repetition

GaAs periodic distribution of APD-MPD

Repetition size is determined by AFM

Average periodicity on 2µm x 2µm AFM of 25 nm GaAs

31.7 nm

Si 0.5° mono-atomic terraces width determination

Si 0.5° mono-atomic terraces width determination

1 domain width = 1 Si terrace width

Determination of period width with 0.2°miscut

Average periodicity on 2µm x 2µm AFM = 82 nm

1 domain on 1 Si terrace

Islands organization for 50 nm GaAs on 0.2° Si

Perpendicular domains 1 phase on 1 Si mono-atomic terrace

Initial 3D islands are smaller than Si terraces

Regime transition

Temperature rise = regime transition

C. Cornet *et al.,* « Zinc-blende group III-V/group IV epitaxy: Importance of the miscut », *Phys. Rev. Materials*, vol. 4, n° 5, p. 053401, mai 2020, doi: 10.1103/PhysRevMaterials.4.053401.

Growth conditions influence on stable island size

INSTITUT D'ÉLECTROI ET DES SYS1

Disorganization of surface Size of island > Si terrace width

Disorganization of surface Size of island > Si terrace width

Conclusion

Burying mechanism demonstrated for GaAs on Si

Next: Validation of APDs burying model for other III-Vs and alloys on group IV substrates

Use these APB-free samples as templates to grow devices

Thank you for your attention

