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Abstract

In this work, we study the Wasserstein gradient flow of the Riesz energy defined on the space of
probability measures. The Riesz kernels define a quadratic functional on the space of measure which
is not in general geodesically convex in the Wasserstein geometry, therefore one cannot conclude to
global convergence of the Wasserstein gradient flow using standard arguments. Our main result is
the exponential convergence of the flow to the minimizer on a closed Riemannian manifold under the
condition that the logarithm of the source and target measures are Hölder continuous. To this goal,
we first prove that the Polyak-Lojasiewicz inequality is satisfied for sufficiently regular solutions. The
key regularity result is the global in-time existence of Hölder solutions if the initial and target data
are Hölder continuous, proven either in Euclidean space or on a closed Riemannian manifold. For
general measures, we prove using flow interchange techniques that there is no local minima other
than the global one for the Coulomb kernel. In fact, we prove that a Lagrangian critical point of the
functional for the Coulomb (or Energy distance) kernel is equal to the target everywhere except on
singular sets with empty interior. In addition, singular enough measures cannot be critical points.
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1 Introduction

In this paper, we are interested in Wasserstein gradient flow of certain quadratic functionals on the
set of probability measures on the Euclidean space or a Riemannian manifold. These quadratic
functionals are convex for the usual convex structure of probability measures. However they are
not geodesically convex for the Wassertein geometry. Therefore, the dynamic of their gradient flows
with respect to the Wasserstein geometry may obstruct global convergence properties, which are
granted in geodesically convex settings. One motivation for studying these gradient flows under an
other geometry comes from machine learning, more precisely the mean-field limit of shallow neural
networks studied in [12, 26]. This line of research explores the optimization landscape of the usual
empirical risk of a single-hidden layer neural network under gradient flow. A powerful relaxation of
the problem already proposed in [5] consists in embedding the space of parameters into the space
of probability measures. In this context, the corresponding objective functional becomes quadratic
and the gradient flow corresponds to a Wasserstein gradient flow. In fact, the quadratic function on
the space of probability measures is a particular case of quadratic functionals defined by reproducing
kernels. These functionals have also raised interest in machine learning and statistics since it gives a
discrepancy, in fact a distance squared, between probability measures. These discrepancies are called
Maximum Mean Discrepancy (MMD) and they are defined below. Let us insist on two particularly
nice properties of MMD: they have a quadratic computational cost which is better than, for instance,
optimal transport and they benefit from a parametric rate of estimation from empirical measures,
which is not the case for standard optimal transport.

Let � be a (conditionally positive) kernel (e.g. Gaussian kernel) on the Euclidean space R3, the
MMD between � and � two probability measures is

��(�) =
∬

(�(G) − �(G))�(G, H)(�(H) − �(H)) . (1)

In fact, such a functional is a nonnegative strictly convex functional on the space of probability
measures if the kernel � is conditionally positive. In our work, we are interested in a fixed target
measure � and � will be optimized upon through the action of velocity fields. More precisely, we are
interested in the Wasserstein gradient flow of the functional ��(�) with respect to �. In particular, we
want to treat the question of global convergence to the unique minimizer which is �. For instance,
if the kernel is smooth enough, empirical measures are preserved by the Wasserstein gradient flow.
Consequently, the Wasserstein gradient flow of this energy with a finite empirical measure as the
source and a density as the target does not give convergence.

This fact motivates the exploration of non-smooth kernels such as the energy distance, namely
−‖G − H‖ on the Euclidean space, which is not �1. As a consequence, one can hope for global
convergence of the Wasserstein gradient flow even when the source measure and the target measure
are mutually singular. Indeed, in one dimension, the corresponding functional is geodesically convex
in Wasserstein and it implies global convergence of the solution�C towards �. This particular kernel has
been studied in the context of Wasserstein gradient flows in [17] and [16] for applications in machine
learning and imaging. The authors explicitly leave as open the question of global convergence.

The question we address in this paper is the extension of this one-dimensional result to higher
dimensions. There are at least two different directions for possible generalizations of this result. First,
the kernel −‖G − H‖ is still conditionally positive definite on R3 for 3 ≥ 1. Second, in one dimension,
−|G− H | is the Coulomb kernel, roughly speaking (proportional to) the inverse of the Laplacian, which
is well-defined in higher-dimensions. For instance on R3, it is given by 1

‖G−H‖ . These two kernels
belong to the family of Riesz kernels, which will be our main interest in this work. One motivation for
using these kernels also comes from numerical experiments, in which the energy distance stands out.
Indeed, the energy distance kernel is easy to implement and behaves particularly well, in comparison
with other kernels such as the Gaussian kernel. More precisely, global convergence is observed. The
Coulomb kernel is more intricate to implement due to its blow-up along the diagonal and drawing
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conclusions from these numerical experiments is more delicate. Yet, from the theoretical point of
view, the Coulomb kernel has been studied intensively in the mathematical literature, in particular
due to its physical significance, see [30, 31] for a review. Recent results exposed in [19] and [13] study
large stochastic systems of interacting particles under Coulomb interaction, proving propagation of
chaos and convergence to the limit PDE results using relative entropy methods. In [13] this work is
done on the torus manifold.

For the Coulomb kernel, under smoothness assumptions on � a time-dependent density and �
a fixed density, the Wasserstein gradient flow associated with �� reads, on R3 or on a Riemannian
manifold,

%C� = −∇ ·
(
�∇!

)
, Δ! = � − � . (2)

The potential ! is a solution of the previous Poisson equation with source term �− �. The potential !
can be written, up to a positive constant ! = −� ★ (� − �), giving an example of non-linear non-local
interactions. Non-local interaction energy systems associated with a radial kernel,(G) = F(‖G‖) are
solutions of

%�

%C
= −∇ ·

(
�(∇, ★�)

)
. (3)

Confinement results for these dynamics have been proven, depending on , . In most cases, , is
supposed to be�-convex, preserving particles [9], so that mean-field techniques can be used. Attractive
potentials, e.g. F′(A) ≥ 0 everywhere are the simplest ones, and in some case total mass aggregate in
its center. Some other potentials are said to be attractive-repulsive, e.g. there exists a radius '0 > 0
such as F′(A) ≤ 0 if A < '0 and F′(A) ≥ 0 otherwise. That is the case for swarming systems models
F(A) = A�/� − A/ where � >  studied in [10], Morse potentials F(A) = −�04−A/;0 + �A 4−A/;A and
characteristic function of sets for example [4,8,9] . Different hypothesis are used to prove confinement.
In [9], , is continuous and lim

A→∞
F′(A)

√
A = +∞. In [4] the weaker condition lim

A→∞
F′(A)A = +∞ is

enough. Some discontinuous potentials at 0 have been treated, for example in [4], potential ,(G) =
�(G) +,0(G) where � is the coulomb kernel �(G) = ‖G‖−3+2 and ,0 is an attractive potential that
verifies lim

A→∞
F′
0(A)A1/3 = +∞. However these results do not apply to our subject, our functional is not

�-convex and has diffusive properties. Moreover, the confining part (depending on a target measure
�) is weaker than in previously cited papers and we were not able to prove mass confinement.

Main contributions. There are two main results in this paper, which are centered on the Coulomb
kernel. The first main result is a proof of global convergence on a closed Riemannian manifold in a
smooth setting. In the beginning of Section 2, a simple calculation shows that the Polyak-Lojasiewicz
inequality is satisfied for all time on a closed Riemannian manifold under the condition that the
solution is sufficiently smooth and that it exists for all time. Note that it implies that the question
of (exponential) global convergence is reduced to a regularity question: Do the solutions exist for
all time in sufficiently smooth functional spaces? Therefore, we first study the gradient flow of the
Coulomb discrepancy in a smooth setting, that is, the corresponding PDE under some regularity
assumptions. Under the assumption that initial and target measures are Hölder continuous, we prove
that solutions exist for all time and they are Hölder continuous. It thus proves global convergence
with an exponential rate of convergence in the case of closed Riemannian manifolds.

The second main result is found in Section 4 and it concerns the landscape of the Coulomb
discrepancy on Euclidean spaces as well as on closed Riemannian manifolds: This functional has no
local minima apart from the global one in the Wasserstein geometry. More precisely, we prove that if
the current measure is different from the target, there always exists a path of measures (starting at the
current one) which is 1/2-Hölder in Wassertein and such that the energy is strictly decreasing. This is
done using flow interchange techniques, namely the use of the Boltzmann entropy along the flow.

Among other results, we prove in Section 3 that any Lagrangian critical point for the Coulomb
and Energy Distance kernels is equal to the target measure everywhere except on singular sets with
empty interior. In a similar direction, we prove that if the difference between the current measure and
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the target has Minkowski dimension less than the ambient one then it cannot be a critical point of the
Wasserstein gradient flow.

Perspectives. Left open by our work is the question of global convergence in a closed Riemannian
manifold for every source and target measures. Although the result seems highly plausible on a closed
Riemannian manifold, a corresponding result on the Euclidean space would need to get around the
confinement issue, which we have not proven in a Euclidean setting. Indeed, there is a competition
between the repulsive behaviour of the Coulomb kernel and the attraction of the target measure. This
repulsive behaviour can cause mass spread to infinity in Euclidean space, which makes the analysis
more difficult in our opinion.

1.1 Notations

• If � is a subset of R3, �2 ≔ R3 \ � is its complementary
• If� is a measure on (R3 , T1) and) : (R3 , T1) → (R3 , T2) is a measurable map then the pushforward

measure of � by ), denoted )#� verifies, for any T2 measurable function 5

∫
5 3)#� =

∫
5 ◦ )3� .

• �⊗2 is the product measure on R3 × R3 such that, for any Borel sets �, �, we have

�⊗2(� × �) = �(�)�(�).

• �∞
2 is the space of test functions, i.e. of infinitely differentiable functions with compact support.

• The convolution is denoted by ★.
• If (", 6) is a Riemannian manifold, we denote 3" (G, H) the geodesic distance between G, H ∈ ".

1.2 Wasserstein gradient flows

Let us recall the definition of the Wasserstein distance,2, see [1, 29].

Definition 1. Let (-, 3) be a metric space. We denote P2(-) the set of probability measures on - with bounded
second moment, i.e. such that

∫
3(G, G0)23�(G) < ∞ for some G0 ∈ -. The 2-Wasserstein distance,2 between

two measures �, � ∈ P2(-) is defined by

,2
2 (�, �) ≔ min

�∈Γ(�,�)

∫
3(G, H)23�(G, H) , (4)

where, if denote �8 the projection on the i-th coordinate, Γ(�, �) = {� ∈ P2(- × -) | �1#� = �,�2#� = �} is
the space of transport plans between � and �.

In this paper, we only consider - to be the Euclidean space or a Riemannian manifold. In those
cases, the metric space (P2(-),,2) is a complete geodesic space. The following results are about some
properties of continuous curves in P2(-); see [1, 29].

Definition 2 (Continuity equation). Let �C be a time indexed family of measures on R3 and EC a time
dependent �-integrable vector field. The curves �C is said to satisfy the continuity equation associated with EC if

%C�C + ∇ · (�CEC) = 0 , (5)

in the sense of distributions.

The continuity equation above means that, along the curve �C , mass moves following the vector
field EC .
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Definition 3 (Absolutely continuous curves). A curve of measures �C defined for C ∈ [0, 1] is said to be
absolutely continuous if there exists some function < ∈ !2(R) such that for all 0 ≤ B ≤ C ≤ 1

,2(�(B), �(C)) ≤
∫ C

B

<(�)3� . (6)

Proposition 1. A curve �C satisfies a continuity equation if and only if it is absolutely continuous.

This structure allows some Riemannian-like calculus on the geodesic space (P2(-),,2) as intro-
duced by Otto [27]. Indeed, in definition 2, the vector field EC can be used to generate the tangent
space at �C , by taking the minimal norm of E reproducing %C�. In some cases however, the whole
tangent space cannot be described through the action of a single vector field, but rather, informally, a
multivalued vector field. This is why plans are used in some definitions below (see [1, 12.4] for more
details on the geometry of Wasserstein spaces). Let us introduce subdifferentials in the Wasserstein
space, see [1, Chap 10].

Definition 4 (Extended Fréchet subdifferential). Let us consider a probability measure � and a functional
ℱ : P(R3) → R. A plan � ∈ P(R3 × R3) belongs to the Fréchet subdifferential ∂ℱ (�) of ℱ at � if �1#� = �
and if for every probability measure �

ℱ (�) − ℱ (�) ≥ inf
∈Γ(�,�)

∫

-3
〈G2 , G3 − G1〉3 + >(,2

2 (�, �)). (7)

In some cases, a transport plan � ∈ ∂ℱ (�) may be concentrated on the graph of a vector field,
being of the form

� = (�3 × �)#� (8)

for a vector field � ∈ !2(�). Thus, the subdifferential %ℱ (�) is defined as follows.

Definition 5. Let ℱ be a functional on P2 and � ∈ P2. A vector field � ∈ !2(�) belongs to the subdifferential
%ℱ (�) of ℱ at � if for every probability measure �

ℱ (�) − ℱ (�) ≥ inf
�0∈Γ0(�,�)

∫
�(G) · (H − G)3�0(G, H) + >(,2

2 (�, �)) , (9)

where Γ0(�, �) is the set of optimal transport plans between � and �.

For a general functional ℱ and a general probability measure �, both %ℱ (�) and ∂ℱ (�) may be
empty.

There are several ways to approach gradient flows in the Wasserstein space. The first one is a direct
analogy of gradient flows on manifold using the previous definitions.

Definition 6 (Pointwise differential formula). Let �C be an absolutely continuous curve in P2(R3). By
Proposition 1 it is a weak solution of a continuity equation with a time-dependent vector field EC . The curve �C
is said to be a gradient flow a functional ℱ if for almost any C > 0

EC ∈ −%ℱ (�C). (10)

This definition is quite strong, and such curves may not exist at all. To build those, the idea is to use
a discrete algorithm approximation. Let ℱ be a functional defined on P. Let us fix an initial measure
�0, � > 0 and consider the following discrete recursive scheme, called Minimizing Movement or JKO
steps ( [1, 20]).

��
:+1 ∈ arg min

�∈P2

ℱ (�, �:; �) ≔ ℱ (�) + 1
2�
,2

2 (�, ��
:) . (11)
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It consists in updating �:+1 using the proximal function ℱ (�, �: ; ·). We assume that the associated
sequence (��

:
):∈N can be built and we consider the piecewise constant curves defined, if C ∈ [:�, (:+1)�[

by*�(C) = ��
:
.

Definition 7 (Minimizing movement curve). Let �0 an initial probability measure and ℱ a functional such
that the associated sequence (��

:
):∈N can be built. A curve �C is said to be a minimizing movement curve if there

exists some sequence (�:) ց 0 such that (*�: ) converges narrowly to �C .

There is a priori no uniqueness guarantee in the definition above: To a functional ℱ and an initial
probability measure �0 can correspond an infinity of minimizing movements.

Let us make the following assumptions on ℱ :

1. ℱ is proper (not everywhere +∞) and lower semi continuous for the weak topology.
2. Coercivity: there exists some �0 > 0 such that for all �0 > � > 0 and � ∈ P2, there exists some

probability measure �� minimizing the proximal function ℱ (�, �; ·).
Then using [1, 11.1.6], one has:

Theorem 1. With the above assumptions, a Minimizing Movement curve always exists.

Why are we interested in such curves ? The iterations of the discrete scheme (11) satisfy an
important regularity property, they are point of subdifferentiability of ℱ , see [1, Th 10.3.4; Remark
10.3.5].

Proposition 2. Let � be a probability measure and ℱ a functional such that we can define �� as an
iteration of (11) from �. Then %ℱ (��) is not empty.

Let �̂� ∈ Γ0(�� , �). The rescaled velocity plan �� ≔ 5�#�̂�, where 5�(G1, G2) = (G1 ,
G2−G1

� ), is in
the extended Fréchet subdifferential ∂ℱ (�). Moreover, there exists a unique optimal plan such that
its barycenter projection �̃0

� is in the subdifferential %ℱ (�). It is characterized by the strictly convex
minimum condition

‖�̃0
� ‖!2(��) = min

�̂�∈Γ0(�� ,�)
‖�̃� − �3‖!2(��) . (12)

Remark 1. The differentiation point is ��, and not directly�. This result is to be compared with the fact
that in the Euclidean space, the iteration of the implicit gradient descent scheme G:+1 = G: −�∇ 5 (G:+1)
can be obtained as

G:+1 ∈ arg min
H

5 (H) + 1
2�

‖H − G: ‖2 . (13)

Because of the result of Proposition 2, we would like to pass to the limit as � → 0, and conclude
that a Minimizing Movement curve is a gradient flow in the sense of definition 6. However, that is not
always the case, and such a curve only satisfies a relaxed gradient equation, with the time dependent
vector field −EC only belonging to the limiting subdifferential of ℱ at � (see [1, Def 11.1.5]). In the case
of a functional ℱ which is �-convex along generalized geodesics (see [1, Def 9.2.2, 9.2.4; Th 11.2.1]),
more can be said.

Theorem 2 (Gradient flow for�-convex functionals). Letℱ be a�-convex functional along generalized
geodesics and �0 ∈ P2. Then :

• There exists a unique Minimizing Movement curve starting from �0.
• This limiting curve �C is a solution of the gradient flow equation (10).
• (EVI) The curve �C satisfies the EVI inequality, for all � ∈ P2

1
2
3

3C
,2

2 (�C , �) ≤ ℱ (�) − ℱ (�C) −
�

2
,2

2 (�C , �) . (14)

• If � > 0, ℱ admits a unique minimum �∗ and both �C and ℱ (�C) converge exponentially
respectively to �∗ and ℱ (�∗).
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• If � = 0 and ℱ admits a minimum ℱ∗ then

ℱ (�C) − ℱ∗ ≤
,2(�0, �∗)

2C
. (15)

Example 1. • If ℱ is defined on measures with density with respect to the Lebesgue measure
(� = �(G)3G) by the formula ℱ (� = �(G)3G) ≔

∫
�(�)3G where � is convex, superlinear, verifies

�(0) = 0, and that the map B ↦→ B3�(B−3) is convex and non increasing, then ℱ is convex
along generalized geodesics (see [29, Th 7.28]). For example, this condition is verified for
� : G ↦→ G log(G) which gives the Boltzmann entropy ℋ , and �? : G ↦→ G? where ? > 1, defining
p-energies.

• If + : R3 → R is �-convex, the associated potential functional V : � ↦→
∫
+3� is �-convex along

geodesics.
• If, : R3 ×R3 → R is �-convex, the associated auto-interaction functional W : � ↦→

∫
,3�⊗2 is

�-convex along geodesics.
• The previous condition is not necessary. In dimension 1, let us define Δ+ ≔ {(G, H), G ≤ H}

and Δ− ≔ {(G, H), G ≥ H}. Then if , is convex when restricted to Δ+ and Δ−, the associated
energy W is convex along generalized geodesics. That is the case for the Energy Distance kernel
(G, H) ↦→ −‖G − H‖.

Corollary 1 (Convergence of the Energy Distance gradient flow in 1D). Let �0, � ∈ P2(R) with finite
first moment. Using the previous results, there exists a unique solution �C of the associated gradient
flow equation (10) for the functional �� with the energy distance kernel, obtained as a Minimizing
Movement curve from �0. Moreover

��(�C) ≤
,2(�0, �)

2C
. (16)

Proof. Let G, H ∈ R. If (G, H) ∈ Δ+, then −‖G − H‖ = G − H and the Energy distance kernel is convex on
Δ+. If (G, H) ∈ Δ−, then −‖G − H‖ = H − G and the Energy distance kernel is convex on Δ−. This proves
that ��(·) is convex along Wasserstein geodesics. The result is a direct application of theorem 2. �

However, in higher-dimensions, the energy is not convex along generalized geodesics.

1.3 Kernels, MMD and Potential theory

In this paper, we will be interested in particular functionals on probability measure spaces : MMD-
energies.

Definition 8. Let � be a conditionally positive kernel (possibly taking infinite values).

• The associated internal �-energy functional of a signed measure � is defined by

�(�) ≔ 1
2
〈�, �★�〉. (17)

• If � and � are probability measures of finite internal energy, we define the functional

��(�) ≔ �(� − �). (18)

The Maximum Mean Discrepancy of kernel � between � and � is defined as

""�(�, �) ≔
√
�(� − �). (19)

Maximum Mean Discrepancy have been studied in the context of Wasserstein gradient flows, but
mainly in smooth cases, see [2]. A particular class of singular kernels are Riesz kernels.
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Definition 9 (Riesz kernels). In the Euclidean space R3 , 3 ∈ N, the Riesz kernels are defined by

:B(G, H) =
1

B‖G − H‖B , (20)

for B ∈ [−1, 3 − 2]/{0}. If B = 0, we define the kernel :0(G, H) = − log(‖G − H‖) .
In this article, we consider mainly two kernels:

The Coulomb kernel. InR3 , the Coulomb Kernel is equal to :3−2(G, H) = 1
(3−2)‖G−H‖3−2 . It is remarkable

as a fundamental solution of the Laplace equation in R3 in the following sense.

Proposition 3 (Corresponding differential operator). Let � be the Coulomb Kernel inR3. There exists
some positive constant 23 such that � is the fundamental solution of 1

23
(−Δ) 3−B2 in R3 , which is

1
23

(−ΔG)�(G, H) = �H . (21)

Definition 10. For a kernel � and a measure �, we define the associated potential by !�� ≔ � ★� when it is
well-defined.

When there is no ambiguity on the kernel � or the measure � we will only write ! instead of !��
In the Coulomb case, this potential corresponds to the electric field generated by a distribution � of
electric charges.

Proposition 4 (Coulomb kernel and Laplace equation). Let � be the Coulomb kernel in R3 and � be
a positive measure. Then, the associated potential !� satisfies the equation

1
23

(−Δ)!� = � . (22)

This equation proves that for the Coulomb kernel, the potential !� is harmonic outside of the
support of �, and superharmonic in R3 , see [28].
The Energy Distance kernel. The Energy Kernel is independent of the dimension and equal to
:−1(G, H) = −‖G − H‖. It has the advantage that any measure with a finite first moment has finite
internal energy, where for the Coulomb kernel additional regularity is required, e.g. finite �−1 norm.

Proposition 5 (Convexity on probability measures). Let G be the Coulomb or Energy Distance kernel,
and � ∈ P(R3) with finite �-energy. Then the associated functional ��(·) = �(· − �) is a quadratic
functional (in�) which is strictly convex (for the convex structure on P(R3)) on its domain. It is positive
and equal to 0 if and only if� = �. Moreover, the application (�, �) ↦→ ""�(�, �) ≔

√
�(� − �)defines

a distance on probability measures with finite �-energy

1.4 Extension to Riemannian manifolds

We are interested in compact manifolds without boundaries since this case avoids possible loss of
mass at infinity in the gradient flow. Coulomb-like interactions between probability measures can be
defined by fundamental solution of the Laplace equation on some Riemannian manifolds. We will
use the formalism developed in [14] and [32] and results from [3].

Let (", 6) be a compact oriented n-dimensional Riemannian manifold without boundary where
6 is the Riemannian metric. We denote � its volume form, assuming �(") = 1 and Δ" : C∞(") →
�∞(") is the associated Laplace-Beltrami operator.

Definition 11 (Green’s function on a manifold). A kernel � : " ×" →] −∞,+∞] is said to be a Green
function if it is symmetric, if �G : H ∈ " ↦→ �(G, H) is integrable for all G ∈ " and if it satisfies the Laplacian
equation

− Δ"�G = −�G + 1 , (23)
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in a distributional sense.

We have the following existence result, given in [3, Chapter 4].

Proposition 6. Let (", 6) as defined previously. Then, equation (23) admits a unique solution, up to
an additive constant.

In particular, if � is a measure on ", we can define the potential !�(�)(G) ≔
∫
�(G, H)3�(H),

then in the sense of distributions Δ"!� = −� + �(")�. In particular, � is bounded from below
and

∫
�(G, H)3�(H) does not depend on G. We denote by � the unique Green function such as∫

�(G, H)3�(H) = 0. The Green’s function � is lower semicontinuous, so that the functional defined
by

W(�) =
∬

"×"
�(G, H)3�(G)3�(H) (24)

is lower semi-continuous for the weak topology. Moreover, the kernel � is C∞ outside of the diagonal
D ≔ {(G, G) | G ∈ "}. Now, let � be a density probability measure on ". The energy functional is
defined similarly

��(�) ≔
1
2

∬

"×"
�(G, H)3(�− �)⊗2(G, H) . (25)

This energy is lower semi-continuous, positive and equal to 0 if and only if � = �. As in the Euclidean
case, the square root is a distance between � and �, see [11, 14].

2 Polyak-Lojasiewicz Inequality and exponential convergence

Our goal is to prove that a Wasserstein gradient flow curve �C converges to the target �. In finite
dimension, a standard condition is the Polyak-Lojasiewicz inequality.

Definition 12. Let 5 : R3 → R be a differentiable function. It is said to satisfy the Polyak-Lojasiewicz with
parameter � > 0 if

1
2
‖∇ 5 ‖2

2 ≥ �( 5 (G) − 5 ∗) . (26)

This condition is actually weaker than a lot of other classical conditions, such as strong convexity,
weak strong convexity, or the restricted secant inequality (see [21] for a review). With this condition,
an exponential convergence rate to the global minimum can be shown.

For our purpose, the key point of the Polyak-Lojasiewicz inequality is that it applies to more general
settings such as Riemannian manifolds. Importantly, it can also be applied to the space of probability
measures endowed with the Wasserstein metric. Let us give an example: As is well-known, the log-
Sobolev inequality can be interpreted as a Polyak-Lojasiewicz inequality and exponential convergence
of the solution of the Fokker-Planck equation to the equilibrium measure can be formulated in this
language.

Proposition 7. Let 5 : R3 → R with L-Lipschitz continuous gradient. We suppose the optimisation
problem

5 ∗ = min
G∈R3

5 (G) (27)

has non-empty solution set Ω and that 5 satisfies the Polyak-Lojasiewicz inequality with parameter
�. Then both implicit and explicit gradient methods with step size � ≤ 1/! have global exponential
convergence rate to the global minimum. Moreover, the corresponding equation ¤H = −∇ 5 (H) has
exponential convergence rate to a global minimizer.

Note that the important point here is the assumption of !-smoothness of the function.
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2.1 Polyak-Lojasiewicz inequality for Wasserstein gradient flows

To define a analog inequality in Wasserstein spaces we need the following chain rule, see [1, Prop
10.3.18].

Proposition 8. Let ℱ be a proper lower semicontinuous and �C be an absolutely continuous curve
with tangent velocity EC . We suppose ℱ ◦� is approximately differentiable in time almost everywhere
and that for all t the set %ℱ (�C) of vector field subdifferentials � ∈ !2(�C) (see def 4) is non-empty.
Then for any �C ∈ %ℱ (�C)

3

3C
ℱ (�C) =

∫
EC · �C3�C . (28)

For regular enough functionals, for example if ℱ is a �-convex functionals and �C a Wasserstein
gradient flow of ℱ , we have EC = −∇ �ℱ

�� (�C) and ∇ �ℱ
�� (�C) ∈ %ℱ (�C) so that

3

3C
ℱ (�C) = −

∇
�ℱ
��

(�C)


2

!2(�C )
. (29)

This motivates our definition of the Polyak-Lojasiewicz in Wasserstein spaces.

Definition 13. Let ℱ be a function with the same conditions than proposition 8. We suppose its global
minimum is equal to 0. Let �C be an absolutely continuous curve. The functional ℱ is said to satisfy a
Polyak-Lojasiewicz with parameter � > 0 along the curve �C if

∇
�ℱ
��

(�C)


2

!2(�C )
≥ �ℱ (�C) (30)

If this inequality is verified, it leads thanks to equation (29) and Gronwall’s lemma

ℱ (�C) ≤ ℱ (�0)4−�C , (31)

proving global exponential convergence.

2.2 Regularity and Polyak-Lojasiewicz inequality for the Energy functional

In this section, we will show how regularity of the solution of the Wasserstein gradient flow is linked
to the Polyak-Lojasiewicz inequality in the setting of compact riemannian manifolds.

When the subdifferential of �� is non-empty, we can characterize it, using the same ideas than
in [7, Prop 4.3.1] . The proof is essentially the same for both Energy Distance in the Euclidean space
and Coulomb kernels both in the Euclidean space and on Riemannian manifolds, but crucial parts
about avoiding the singularity rely on different arguments (see Appendix).

Lemma 1. Let � be a probability measure such that %��(�) is non-empty. Then the vector field
∇ ���

�� (�) = (∇�)★ (� − �) verifies

∇
���

��
(�)


!2(�)

≤ |%�� |(�) . (32)

Then we need a regularity result about our functional, which is proved in the Appendix.

Lemma 2. Let �, � ∈ PA
2 be density measures regarding the Lebesgue measure or the volume measure

on a manifold. Then the functional �� has non-empty subdifferential, in the sense of definition 5.
Moreover, ∇ ���

�� (�) ∈ %��(�).

Now, combining these lemmas, the element of minimal norm of %ℱ (�C) is exactly the time depen-
dent vector field EC = ∇!C , which drives mass transfer along time for the curve �C . In other words, the
following property is true.
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Proposition 9. Let �C be a solution of equation (2) in a weak sense. We suppose �C ∈ PA
2 at all times.

Then it is a gradient flow of the functional �� starting from �0, according to definition 6.

We are able to formulate a condition that implies a Polyak-Lojasiewicz inequality in a compact
manifold.

Proposition 10 (Polyak-Lojasiewicz inequality). Let (", 6) be a closed Riemannian manifold and �, �
be two measures with density w.r.t. volume measure on ", such that log(�) is bounded below. Then,
it holds

��(�) ≤
1
�

∇
���

��
(�)


2

!2(�)
, (33)

where � is a lower bound for � on ".

Proof. The proof is straightforward since the inequality is exactly the following
∫

"

|∇!�−�(G)|2 3vol(G) ≤ 1
�

∫

"

|∇!�−�(G)|2 3�(G) , (34)

where vol is the volume measure on ". The inequality follows from �3vol ≤ �. �

However, in a non compact setting, a probability measure such that log(�) is bounded from below
does not exist. The question of formulating a condition implying a Polyak-Lojasiewicz inequality in
the euclidean space remains an open question.

2.3 Exponential convergence for globally regular data

First we start with a stability result, where regularity of the density implies a global Polyak-Lojasiewicz
inequallity.

Proposition 11 (Stability of Polyak-Lojasiewicz condition). Let �0 , � be two C1 densities on " such
that log(�0) and log(�) are bounded in !∞. Then if the associated equation (2) admits a continuous
density, it verifies

min(min�0,min �) ≤ �C(G) ≤ max(max�0,max �) (35)

Sketch of proof. We use the regularity and an optimality argument. Let us define G(C) ≔ arg min �C(G)
and G(C) ≔ arg max �C(G). As the manifold is closed and �C is C1 we get

∇�C(G(C)) = ∇�C(G(C)) = 0 . (36)

Moreover, using the regularity we have

%C�C = −∇ · (�CEC) (37)

= −EC · ∇�C − �C∇ · EC (38)

%C�C = −EC · ∇�C − �C(�C − �) (39)

(40)

Instantiating the previous inequality at G(C) for example we get

%C�C(G(C)) = (min�C)�(G(C)) − (min�C)2 . (41)

After a brief study of the phase diagram (see the proof of lemma 3) we get our result. A similar
argument applies to G(C). �

We will later prove a stronger result independently: we show in the proof of lemma 3 that Hölder
continuity is actually enough to guaranty the stability of the condition. Under this regularity assump-
tion, it is direct to prove that both exponential convergences under the ¤�−1-norm and Wasserstein !2

distance hold.
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Theorem 3 (Exponential convergence). Let �, � be two measures with continuous densities with
bounded logarithm on a closed Riemannian manifold. If the density of the curve �C generated by the
gradient flow of �� is �1

C,G in both time and space, then exponential convergence of � to � holds in the
two following ways {

��(�C) ≤ ��(�0)4−�C
,2

2 (�C , �) ≤
4
���(�0)4−�C ,

(42)

where � = min(�0, �).

Proof. The proof is a straightforward application of the Polyak-Lojasiewicz inequality. �

We just reduced this global convergence problem to a regularity problem. In the next section, we
prove global existence of Hölder continuous solutions if the initial and target densities are Hölder
continuous.

2.4 Well Posedness in Hölder spaces

In this section we consider solutions of the PDE
{
%C�C + ∇ · (�CEC) = 0
EC ≔ −∇�★ (�C − �) .

(43)

The velocity vector field EC verifies ∇ · EC = �C − � . Let us consider a solution �C of equation (43) on
an open interval ]0, )[. According to definition 2, it is an absolutely continuous curve associated with
the time dependent vector field EC := ∇!, where Δ!C = �C − �. If �0 has a density, �C also ha a density
at least for small times.

2.4.1 In the Euclidean space. This subsection is devoted to the proof of the following theorem

Theorem 4. Let �0 and � be Hölder continuous densities with a compact support. Then equation (2)
admits a unique global solution �C that is Hölder continuous at all time.

We use techniques from [6] and adapt them to our case. The standard technique is to rewrite the
problem in Lagrangian coordinates, following the particle flow and using ODE results. However, long
time existence follows from the fact that one can write an explicit evolution equation for a quantity
that involves the jacobian of the map, and this equation resembles to

Let us fix notations. We denote � the Coulomb kernel, which is repulsive and a solution of
Δ� = −�. We consider the particle flow #C defined by #0 = Id and

3

3C
#C = EC ◦ #C . (44)

We consider the evolution of the time dependent function 5C ≔ �C ◦ #C . As �C = 5C ◦ #−1
C , the

existence of �C is linked to the existence of 5C and #C Hölder solutions to the system. This dependance
will be made precise in lemma 4.

We can rewrite the particle flow equation (44), for  ∈ R3

3

3C
#C() = EC ◦ #C() = −

∫
∇�(#C() − H)(�C − �)(H)3H

3

3C
#C() = −

∫
∇�(#C() − #C(′))det(3#C(′))�C(#C(′))3′ +

∫
∇�(#C() − H)�(H)3H .

Let us note �C() := det(3#C()) and remark
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3

3C
�C() = �C()(�C − �) ◦ #C() , (45)

so that
3

3C
[C ↦→ �C()�C(#C())] = 0 , (46)

and as �0() = 1 we get �C()�C(#C()) = �0() . We end up with the Lagrangian formulation of the
flow

3

3C
#C() = −

∫
∇�(#C() − #C(′))�0()3 +

∫
∇�(#C() − H)�(H)3H = �(#C()) . (47)

We solve this equation in the Banach space ℬ defined by ℬ ≔
{
# : R3 → R3 | ‖#‖1,� < ∞

}
, where

‖#‖1,� := |#(0)| + ‖3#‖∞+ |3# |� with | · |� the Hölder semi-norm. We can state our first local existence
result.

Proposition 12. Let �0 and � be density measures in ℬ with compact support. Then equation (47)
with initial condition #0 = �3 admits a unique solution on a maximal time interval [0, )[. Either ) is
infinite either the Banach norm ‖#C ‖1,� blows up as C → ).

Proof. As � is Lipschitz (see [6] and [24, Chap 4]) we can use the Picard theorem in Banach space to
prove the result. �

Now let us prove theorem 4, that is ) = +∞ in the preceding proposition. To show that ) = ∞ we
will suppose ) < ∞ in the whole following discussion and show that ‖#C ‖1,� is bounded uniformly
in time on the interval [0, )[. In [6], an explicit formula is found for 5C , which can not be done in our
case. However we are able to control the evolution of 5C .

Lemma 3. The quantity ‖ 5C ‖∞ is uniformly bounded on [0, )[.

Proof. We can write

∇ · (EC�C) = �C∇ · EC + EC · ∇�C = �2
C − �C� + EC · ∇�C , (48)

so that we get

3

3C
5C() = %C�C(#C()) + ∇�C(#C()) · EC(#C()) (49)

= −∇ · (EC�C)(#C()) + ∇�C(#C()) · EC(#C()) (50)

3

3C
5C() = 5C()�(#C()) − 5 2

C () . (51)

Even if �◦#C is of course not constant, this equation, that looks like a logistic equation, is well behaved.
We can study its phase diagram. First, if 50 is a positive function then 5C will be positive too. Moreover,
if 5C() > ‖�‖∞ then 3

3C 5C() is negative, so C ↦→ 5C() is locally decreasing. This shows for all  ∈ R3

min(min 50 ,min �) ≤ 5C() ≤ max(‖ 50‖∞ , ‖�‖∞) . (52)

�

This control allows us to bound the Holder norm by a quantity that depends on #C .

Lemma 4. Let �C be a solution defined as in proposition 12, where � ∈ !∞ verifies |�|� < ∞. Then

|�C |� ≤ �‖3#C ‖�∞
(∫ C

0
(1 + ‖3#−1

B ‖�∞)3B
)

(53)

for some positive constants � > 0.
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Proof. As �C = 5C ◦ #−1
C , using that | 5 ◦ 6 |� ≤ | 5 |� ‖36‖�∞ for general functions 5 , 6, we get the first

estimate
|�C |� ≤ | 5C |� ‖3#−1

C ‖�∞ . (54)

Now, to control | 5C |� , we can take the Holder semi norm of equation (51), using the fact that � is bounded
and Holder continuous, that ‖ 5C ‖∞ is bounded, and the property | 5 6 |� ≤ | 5 |� ‖6‖∞ + ‖ 5 ‖∞ |6 |� to get

3

3C
| 5C |� ≤ | 5C · � ◦ #C | + | 5 2

C |� (55)

≤ | 5C |� ‖� ◦ #C ‖∞ + ‖ 5C ‖∞ |� ◦ #C |� + 2‖ 5C ‖∞ | 5C |� (56)

≤ (‖�‖∞ + 2‖ 5C ‖∞)| 5C |� + ‖ 5C ‖∞ |�|� ‖3#C ‖�∞ (57)

3

3C
| 5C |� ≤ �1 | 5C |� + �2‖3#C ‖�∞ , (58)

for some positive constants �1, �2. Next we are able to apply Gronwall’s lemma with time dependent
terms, stating that if H is differentiable and 0, 1 are continuous functions such that ¤H ≤ 0H + 1, then

H(C) ≤ H(0)4
∫ C
0
0(B)3B +

∫ C

0
1(B)4

∫ C

0
0(D)3D−

∫ B
0
0(D)3D3B. This provides, as C < ) < ∞

| 5C |� ≤ | 50 |� exp(�1C) +
∫ C

0
�2‖3#B ‖�∞ exp(�1(C − B))3B ≤ �

(
1 +

∫ C

0
‖3#B‖�∞3B

)
, (59)

ending the proof. �

Differentiating the particle equation (44) and taking the !∞ norm we get

3

3C
‖3#C ‖∞ ≤ ‖3EC ‖∞‖3#C ‖∞ , (60)

which gives by Gronwall’s lemma

‖3#C ‖∞ ≤ � exp
∫ C

0
‖3EB‖∞3B . (61)

Let us remark that #−1
C admits a similar bound.

Lemma 5. Let #−1
C be defined as the inverse flow of !C . Then the majoration above is true for #−1

C , i.e.
for some constant � > 0

‖3#−1
C ‖∞ ≤ � exp

∫ C

0
‖3EB ‖∞3B . (62)

Proof. Let  := #B(H) for some H ∈ R3 and B > 0. Then if 0 ≤ C < B, we get that  ∈ #C(R3), as
 = #C ◦ #B−C(H) by semi-group property. We get #−1

C () = #B−C(H) = #B−C ◦ #−1
B (). Differentiating

both sides of the equation in time we get

%C#
−1
C () = %C#B−C ◦ #−1

B () = −EB−C ◦ #B−C ◦ #−1
B () = −EB−C ◦ #−1

C () . (63)

We get the inequality
3

3C
‖3#−1

C ‖∞ ≤ ‖3EB−C‖∞‖3#−1
C ‖∞ , (64)

so that by Grönwall lemma

‖3#−1
C ‖∞ ≤ � exp

(∫ C

0
‖3EB−D‖∞3D

)
. (65)
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We can choose B = C in the previous inequality to get

‖3#−1
C ‖∞ ≤ � exp

(∫ C

0
‖3ED‖∞3D

)
. (66)

�

With this result, we managed to bound from above all of our quantities by functions of 3EC .
On the derivative of our velocity field. The following arguments are found in [24, Sections 2.4.2,3].
The kernel �2 ≔ 3G∇� is homogeneous of degree -N. Because of this, the singularity at the diagonal
cannot be integrated. However it has mean-value zero and defines a singular integral operator through
the convolution

�2 ★ 5 (G) = %+

∫
�2(G, H) 5 (H)3H ≔ lim

�→0

∫

3(G,H)>�
�2(G, H) 5 (H)3H . (67)

Using the same arguments than in [24, Prop 2.20] we prove that we actually have for a velocity field
defined by ∇� ★ 5 with � the Coulomb kernel and 5 ∈ C�(R3;R3)

3EC(G) = %+
∫

�2(G, H) 5 (H)3H . (68)

The following lemma, found in [24, Lemma 4.5 and 4.6] and [6, Lemma 2.2], is written in terms of
principal value integral in [6] but used in the following form.

Lemma 6. Let 5 ∈ C�(R3;R3) be a compactly supported function in a ball of radius '. We define
E ≔ ∇�★ 5 . Then, for some positive constant � independent of 5 and ' we have

‖3E‖∞ ≤ �

[
| 5 |��� + max

(
1; log

(
'

�

) )
‖ 5 ‖∞

]
;∀� > 0 , (69)

|3E |� ≤ � | 5 |� . (70)

To use it we need to confine the support of �C . First we are able to bound the velocity field EC .

Lemma 7. Let �C be a solution defined as in proposition 12 and EC the associated velocity field. Then
for some constant � > 0 only depending on the dimension

‖EC ‖∞ ≤ �(‖�C − �‖∞ + ‖�C − �‖1) . (71)

Proof. We write for G ∈ R3, knowing |∇�(G)| is proportional to G3−1

|EC (G)| ≤
[∫

�(0,1)
+

∫

�(0,1)2

]
|∇�(G − H)(�C − �)(H)|3H (72)

≤ ‖�C − �‖∞
∫

�(0,1)
|∇�(G − H)|3H +

∫

�(0,1)2
|�C − �|(H)3H (73)

|EC (G)| = �(‖�C − �‖∞ + ‖�C − �‖1) . (74)

�

Lemma 8. Let �C be a solution defined as in proposition 12. Let us suppose that the support of �0 is
contained in the ball of center 0 and radius '0 > 0. Then there exists a positive constant � > 0 such
that the support of �C is contained in '(C) := '0 + �C.

Proof. We use the inequality from lemma 7. As ‖�C ‖∞ = ‖ 5C ‖∞ ≤ � by lemma 3, the first term is
uniformly bounded in [0, )[. As �C and � are probability densities, so is the second term. This shows
the result. �
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As we proved that �C has bounded support, we can use the first estimate from lemma 6 with

� =
[
‖�C − �‖∞/|�C − �|�

]1/�
to get the existence of � independent of C such as

‖3EC ‖∞ ≤ �

[
‖�C − �‖∞ + max

(
1, log

(
'(C)|�C − �|1/��

‖�C − �‖1/�
∞

)
‖�C − �‖∞

)]
. (75)

We know thanks to lemma 3 that ‖�C − �‖∞ is bounded, and by lemma 8, as) < ∞ we get the existence
of �1 , �2 > 0 such that

‖3EC ‖∞ ≤ �1 + �2 log(|�C − �|�). (76)

Now we are ready to prove our first real boundedness result.

Proposition 13. The quantity ‖3EC ‖∞ is uniformly bounded on the time interval [0, )[.

Proof. Injecting the inequality from lemma 4 into (76), we get the existence of constants such that

‖3EC ‖∞ ≤ � + � log(‖3#C ‖∞) + � log

(∫ C

0
(1 + ‖3#−1

B ‖�∞)3B
)
. (77)

We write, using inequality (62), the fact that B ≤ C in the integrals and that ‖3EC ‖∞ is a positive function

log

(∫ C

0
‖3#−1

B ‖�∞3B
)
≤ � log

(∫ C

0
� exp

(∫ B

0
‖3ED‖∞3D

)
3B

)
(78)

≤ � log

(∫ C

0
� exp

(∫ C

0
‖3ED‖∞3D

)
3B

)
(79)

≤ � log

(
�C exp

(∫ C

0
‖3ED‖∞3D

))
(80)

log

(∫ C

0
‖3#−1

B ‖�∞3B
)
≤ �

(
log C +

∫ C

0
‖3ED‖∞3D

)
, (81)

and we get the final differential inequality

‖3EC ‖∞ ≤ �

(
1 +

∫ C

0
‖3EB ‖∞3B + log(C)

)
. (82)

Once again, Gronwall’s lemma applies to C ↦→ ‖3EC ‖∞ and we obtain the existence of some constants
�1, �2 such that ‖3EC ‖∞ ≤ �1 exp(�2C) , showing the result as C < ) < +∞. �

This immediately implies

Proposition 14. The quantities ‖3#C ‖∞, ‖3#−1
C ‖∞ and |�C |� are uniformly bounded in time on [0, )[.

Proof. Using the fact that ‖3EC ‖∞ is uniformly bounded in [0, )[, inequalities (61), (62) and lemma 4
show the result. �

Finally, we can control our last term

Proposition 15. The quantity |3#C |� is uniformly bounded in [0, )[.

Proof. Differentiating the particle equation (44), taking the Hölder | · |� semi-norm and using the
preceding proposition with the second potential theory estimate from lemma 6 we get

3

3C
|3#C |� ≤ |3(EC ◦ #C)|� ‖3#C‖∞ + ‖3(EC ◦ #C)‖∞ |3#C |� (83)
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≤ |3EC |� ‖3#C ‖1+�
∞ + ‖3EC ‖∞‖3#C ‖∞ |3#C |� (84)

≤ �1 |�C |� exp

(
(1 + �)

∫ C

0
‖3EB‖∞3B

)
+ �2 |3#C |� (85)

3

3C
|3#C |� ≤ �1 + �2 |3#C |� . (86)

One last application of Gronwall’s lemma end the proof.
�

We just proved that if ) < ∞ and that a solution of problem (47) in the Banach space ℬ exists in
[0, )[, then the Banach norm ‖#C ‖1,� is uniformly bounded on [0, )[. If the maximal time of existence
) verifies ) < ∞, we get a contradiction with the existence result 12, which states that if ) < ∞ a finite
time blowup of ‖#C ‖1,� occurs. This proves theorem 4.

2.4.2 In a compact Riemannian manifold. This Lagrangian formulation allows to directly extend
our result on a complete closed Riemannian manifold (", 6). Indeed, if we take � to be the Coulomb
kernel on ", then the Lagrangian formulation (47) still holds. As Hölder regularity is a local property,
the functionnal � is still locally Lipschitz on the Banach space

ℬ" :=
{
# : " → )" | ‖#‖1,� < ∞

}
, (87)

where |#(0)| + ‖3#‖∞ + |3# |� with ‖ · ‖C0,�
"

the Hölder semi-norm on the manifold ", defined by

‖ 5 ‖C0,�
"

≔ sup
G,H∈"

| 5 (G) − 5 (H)|
3"(G, H)� . (88)

for scalar functions, and through parallel transport for tensors.
We get the existence of a flow #C , at least locally. The rest of the proof is similar, the main difference

being the equivalent of lemma 6 on closed manifolds.

Lemma 9. Let D ∈ C�(") on a closed manifold ". We consider the equation

Δ"! = D . (89)

where D is Hölder continuous. Then, for some positive constant �, � (independent of D) and all � > 0
we have the Schauder estimates

‖!‖2,∞ ≤ �

(
‖D‖C0,�

"

�� + log

(
�

�

)
‖D‖∞

)
, (90)

‖!‖C2,�
"

≤ �
(
‖D‖C0,�

"

+ ‖!‖∞
)
. (91)

Proof of the first inequality. The proof of the first inequality is almost the same as in the Euclidean space.
We denote �2 the differential (in coordinates) of the gradient of �, i.e. �2 ≔ 3G∇�. Its singularity on
the diagonal behaves like the Coulomb kernel, meaning we have (see [3, Theorem 4.13.c])

�2(G, H) = $(1/3"(G, H)3) . (92)

Moreover, in Riemannian manifolds
∫

3" (G,H)>�
3"(G, H)−33H = $(− log �) , (93)

and if  < 3 ∫

3" (G,H)<�
3"(G, H)−3H = $(�3−) . (94)
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We write

‖!‖2,∞ =

(
%+

∫

3(G,H)≤�
+

∫

3(G,H)>�

)
�2(G, H) 5 (H)3H = �1(G) + �2(G) . (95)

As
∫
�
�2(G, H)3H = 0 on metric balls, we get

|�1(G)| =
�����

∫

3(G,H)≤�
�2(G, H)( 5 (H) − 5 (G))3H

����� (96)

≤
∫

3(G,H)≤�
‖�2(G, H)‖| 5 ‖C0,�

"

3(G, H)�3H (97)

≤ � | 5 ‖C0,�
"

∫

3(G,H)≤�
3"(G, H)−3+�3H (98)

|�1(G)| ≤ � | 5 ‖C0,�
"

�� . (99)

For the second term

|�2(G)| =
∫

3(G,H)>�
�2(G, H) 5 (H)3H (100)

≤ �‖ 5 ‖∞
∫

3(G,H)>�
3(G, H)−33H (101)

|�2(G)| ≤ �‖ 5 ‖∞ log

(
�

�

)
. (102)

This proves the first estimate. �

Sketch of proof for the second inequality. The second estimate is proven, for a manifold embedded in the
Euclidean space , with standard Schauder theory inR3 (see [3, 3.61]). We use local normal coordinates
for the Laplace-Beltrami operator. The bound can be used thanks to the following metric control of
the Hölder norm. We refer to the lemma below. �

Lemma 10. There exists A > 0 and � > 0 such that, if Ω ⊂ " has diameter less than A, then if D ∈ C2,�

1
�
‖D‖C:,�,Ω

�D2;

≤ ‖D‖C:,�
"

≤ �‖D‖C:,�,Ω
�D2;

. (103)

In this inequality, ‖D‖C:,�,Ω

�D2;

denotes the Euclidean Hölder norm in Ω when considered as a subset of

R
3.

We now use these estimates to conclude the proof of global existence. In our case ‖#C ‖2,∞ =

‖3EC ‖0,∞ and ‖#C ‖C2,�
"

= ‖3EC ‖C0,�
"

. Note that in the second inequality, as the manifold " is closed we

have ‖#‖∞ ≤ � for some positive constant since ∇# is bounded in !∞. We can use the first estimate

from lemma 9 with, once again, � =
[
‖�C − �‖∞/|�C − �|�

]1/�
to get formula (76) on the manifold ".

This allows to bound ‖3EC ‖∞ in the same way as in the Euclidean space. To bound |3EC |� , we use
the second inequality of the lemma. The principle of the proof is the same as in the Euclidean space,
equation (83) becomes

3

3C
|3#C |� ≤ |3(EC ◦ #C)|� ‖3#C ‖∞ + ‖3(EC ◦ #C)‖∞ |3#C |� (104)

≤ |3EC |� ‖3#C ‖1+�
∞ + ‖3EC ‖∞‖3#C ‖∞ |3#C |� (105)

≤ �1
(
|�C |� + ‖EC ‖∞

)
exp

(
(1 + �)

∫ C

0
‖3EB ‖∞3B

)
+ �2 |3#C |� (106)
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3

3C
|3#C |� ≤ �1 + �2 |3#C |� . (107)

The rest of the proof is the same as in the Euclidean space. This proves the following theorem.

Theorem 5 (Global convergence for Hölder initial and target data). Let�0 and �0 be Hölder continuous
probability densities on a closed manifold (", 6). We consider the curve�C global solution of equation
(43). We just proved it is defined and Hölder continuous at all time. Then

{
��(�C) ≤ ��(�0)4−�C
,2

2 (�C , �) ≤
4
���(�0)4−�C .

(108)

Proof. As log(�C) is globally bounded from below thanks to lemma 3, it verifies a global Polyak-
Lojasiewisz at all time. The rest of the proof is a simple application of this inequality. �

3 Critical points for the Wasserstein flow.

In the previous section, we studied some solutions of Wasserstein gradient flows, with regular initial
data. Our proofs heavily relied on regularity results that we were able to get thanks to regular initial
and target data. In this section we consider a given probability measure � which is, depending on
the context, of finite energy for the Coulomb kernel or the Energy Distance kernel. We do not make
any other assumptions on � and �0. Our goal is to study critical points for the Wasserstein flow of the
MMD energy ��.

3.1 Critical points and lagrangian critical points for MMD Wasserstein gradient
flows

For an arbitrary function ℱ , we define critical points of the associated Wasserstein gradient flows.
Intuitively, they correspond to measures where the discrete JKO steps get stuck, in direct analogy with
gradient flows in finite dimensions.

Definition 14 (Wasserstein critical point). Let � be a probability measure such that ℱ (�) < +∞. we say
that � is a Wasserstein critical point of ℱ if there exists �0 > 0 such that for all � ≤ �0 we have

� ∈ arg min
�∈P(R3)

ℱ (�) + 1
2�
,2

2 (�, �) . (109)

We study a sub-class of critical points, that we call Lagrangian critical points or displacement
critical points.

Definition 15 (Lagrangian Wasserstein critical point). A probability measure � is said to be a Lagrangian
critical point for a functional ℱ if, on supp(�) we have

∇ �ℱ
��

(�) = 0 . (110)

For �-convex functionnals, see [29], the two definitions are equivalent. In general settings, we
cannot deduce one from the other, as the quantity above may not even belong to %ℱ (�). However, in
our cases, we can prove a partial result. Indeed, using the general differentiation result on JKO steps
given by proposition 2 we see that

Proposition 16. Let � be a critical point as defined in 3.1. Then 0 ∈ %ℱ (�) (where 0 is seen as an
element of !2(�)).
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Combining this result and lemma 1, we see that if � is a critical point of the �-energy from � �� ,
then the gradients of the potentials �★� and �★ � are equal � almost everywhere. This observation
is the principal argument allowing us to prove the results of this section.

3.2 Characterization of lagrangian critical points for MMD Wasserstein gradient
flows

The main result of this section is the following theorem.

Theorem 6. Let � be a Lagrangian critical point for the MMD functional ��� . Then

�|Int(supp(�)) = �|Int(supp(�)) , (111)

in the two cases

1. if G is the Coulomb kernel,
2. if G is the Energy Distance kernel and 3 is odd.

This formulation may seem surprising. We only get results in the interior of the support of our
measure, however it may be empty, or � may be composite, being the sum of a density measure and a
singular measure for example. As the proof for the Energy Distance kernel is more involved, we will
focus on the first statement for now.

In both cases, the first variation of the �� is given by ���
�� (�) = !� − !� . For measures � et �

with finite G-energy, that is for measures such as
∫
�3�⊗2,

∫
�3�⊗2 < +∞, this function is locally

integrable, and verifies in a distributional sense

∇ ���

��
(�) = ∇!� − ∇!� . (112)

If � is a Lagrangian critical point for the Coulomb kernel, this quantity is constant equal to 0, and
differentiating once again in a distributional sense we get that in the interior of the domain supp(�),
3� = 3� by proposition 3, proving the first part of the theorem. The proof in the Energy Distance case
requires iterating Laplacians.

Proposition 17. Let � be a probability measure on R3 . We consider the associated potential !�(G) ≔∫
−‖G − H‖3�(H). Then, its distributional Laplacian exists almost everywhere and is given by

Δ!�(G) ≔
∫

− 3 − 1
‖G − H‖ 3�(H) . (113)

Proof. Let 6 ∈ C∞
2 , and let us write %�(G) ≔

∫
− 3−1

‖G−H‖ 3�(H). We wish to prove 〈!� ,Δ6〉 = 〈%�, 6〉. The
main issue is that the function ‖ · −H‖ admits a singularity in H. We circumvent this by integrating on
a small ball of radius � > 0 near H, and by controlling the error term. The inversion of integrals in the
second equality comes from the Fubini theorem

〈!� , ∇6〉 ≔
∫

!�(G)Δ6(G)3G (114)

=

∫ (∫
−‖G − H‖Δ6(G)3G

)
3�(H) (115)

=

∫ [(∫

�(H,�)
−‖G − H‖Δ6(G)3G

)
+

(∫

R3\�(H,�)
−‖G − H‖Δ6(G)3G

)]
3�(H) (116)

〈!� , ∇6〉 =
∫

[��(H) + ��(H)] 3�(H) , (117)
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where the quantities �� and �� are defined by the formulas just above. Firstly, as 6 ∈ C∞
2 , we get

|��(H)| ≤ 2‖Δ6‖∞� . (118)

For ��(H), we are able to use Green’s Formula, as all our quantities are in C∞
2 on the open set

Ω ≔ R3 \ �(H, �). If we take �(G) to be the unit vector at G ∈ %Ω(H) pointing toward the exterior of
Ω(H), we get �(G) = − G−H

‖G−H‖ . For G ∈ %Ω(H), the directional derivative of a function 5 at x is defined by
% 5
%�
(G) ≔ 〈∇ 5 (G), �(G)〉. We denote 3( the usual area measure on �(H, �). By Green’s Formula

��(H) =
∫

Ω(H)
Δ − 3H(G)6(G)3G +

∫

%Ω(H)

%3H

%�
(G)6(G)3((G) −

∫

%Ω(H)
3H(G)

%6

%�
(G)3((G). (119)

First, we know : Δ3H(G) = 3−1
‖G−H‖ . Second, as ∇3H(G) = G−H

‖G−H‖ , we get :
%3H
%�

(G) = −1. This gives

�����

∫

%Ω(H)

%3H

%�
(G)6(G)3((G)

����� ≤ ‖6‖∞A(((H, �)) . (120)

Finally, as 6 vanishes at infinity, there exists a constant � independent from H such that
�����

∫

%Ω(H)
3H(G)

%6

%�
(G)3((G)

����� ≤ �A(((H, �)) . (121)

All these quantities vanish when � → 0+, independently from H, this gives 〈!� ,Δ6〉 = 〈%�, 6〉,
that is Δ!�(G) =

∫
− 3−1

‖G−H‖ 3�(H). �

Now, we will prove the following property, which will allow us to prove the second statement in
theorem 6.

Lemma 11. Let � be a lagrangian critical point for the Energy Distance Wasserstein gradient flow
towards �. Then, on the open set Int(supp(�)) !�� = !�� where � is the Coulomb kernel.

Proof. We will note %�

:
(G) ≔

∫
1

‖G−H‖: 3�(H) and prove the following result by finite induction

∀: < (3 − 1)/2, %�

2:+1 = %�
2:+1 . (122)

We already saw the result is true for : = 1. Now let us take : < (3−3)/2, and suppose %�

2:+1 = %�
2:+1.

We now that if E : R+ → R and D(G) ≔ E(‖G‖), then its distributional Laplacian is given by

ΔD(G) = 3 − 1
‖G‖ E

′(‖G‖) + E′′(‖G‖) . (123)

We get, if E(A) ≔ 1
A2:+1 , that ΔD(G) = (2:+1)(2:+3−3)

‖G‖−(2:+3) . If we denote  H(G) ≔ 1
‖G−H‖2:+1 , we have Δ H(G) =

(2:+1)(2:+3−3)
‖G−H‖2:+3 . Again, let us take 6 ∈ C∞

2 , and prove 〈%�

2:+1,Δ6〉 = (2: + 1)(2: + 3− 3)〈%�

2:+3, 6〉. We use

Fubini’s theorem, and avoid the singularity around small balls of radius � > 0

〈%�

2:+1, 6〉 ≔
∫

%
�

2:+1(G)Δ6(G)3G

=

∫ (∫
 H(G)Δ6(G)3G

)
3�(H)

=

∫ [(∫

�(H,�)
 H(G)Δ6(G)3G

)
+

(∫

R3\�(H,�)
 H(G)Δ6(G)3G

)]
3�(H)
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〈%�

2:+1, 6〉 =
∫

[��(H) + ��(H)] 3�(H) .

Now, again, we need to control the growth of ��(H) and ��(H). As 2: + 1 < 3 we get
∫

�(H,�)
 H(G)Δ6(G)3G ≤ ‖Δ6(G)‖∞

∫

�(0,�)
 0(G)3G , (124)

and this quantity tends to 0 uniformly as � tends to 0. Now, as done previously, we use Green’s
Formula to express ��(H)

��(H) =
∫

Ω(H)
Δ H (G)6(G)3G −

∫

%Ω(H)

% H

%�
(G)6(G)3((G) +

∫

%Ω(H)
 H (G)

%6

%�
(G)3((G) .

We have
% H

%�
(G) = 〈−(2: + 1) G − H

‖G − H‖2:+3
,− G − H

‖G − H‖ 〉 =
1

‖G − H‖2:+2
,

which gives
�����

∫

%Ω(H)

% H

%�
(G)6(G)3((G)

����� ≤ ‖6‖∞
∫

1
‖G − H‖2:+2

3((G) = ‖6‖∞�3�3−1−(2:+2) , (125)

and again the right term tends to 0 uniformly in H as � tends to 0, as 2: + 2 < 3 − 1. Finally

∫

%Ω(H)
 H(G)

%6

%�
(G)3((G) ≤ ‖ %6

%�
‖∞

∫

%Ω(H)
 H(G)3((G) = ‖ %6

%�
‖∞�3�3−1−(2:+1),

which tends to 0 uniformly in H as � tends to 0. This proves

Δ%
�

2:+1 = (2: + 1)(2: + 3 − 3)%�

2:+3 (126)

Now, back to our hypothesis %�

2:+1 = %
�
2:+1. By taking the distributional Laplacian from both sides,

we get : (2: + 1)(2: + 3 − 3)%�

2:+3 = (2: + 1)(2: + 3 − 3)%�
2:+3, and as 2: < 3 − 3, we get %�

2:+3 = %�
2:+3.

This proves our result. Now, to obtain the conclusion, if 3 is odd, by taking : = (3 − 3)/2 < (3 − 1)/2,
we finally get in the interior of supp(�) the equality !�� = !�� . �

The potentials !�� and !�� are superharmonic on the interior of supp(�), and taking their distribu-
tional Laplacian yields �|Int(supp(�)) = �|Int(supp(�)) , which is exactly the second statement of Theorem
6.

In this section, we were able to characterize a particular class of critical points. However, our
result does not capture the singular parts of our measures. In the next section we study how singular
measures behave under the Wasserstein gradient flow of ��, proving in theorem 18 that singular
enough measures cannot be critical points.

4 No local minima in the Wasserstein geometry

In this section, we denote by � the Coulomb kernel in R3 and we only study this kernel. The
last section was dedicated to Lagrangian critical points, who describe one kind of evolution for our
curve: cases where the current measure is push forwarded through a map. For functionals defined
only on absolutely continuous functions (entropy, p-energy for Porous Medium Equations...) or for



24 S. BOUFADÈNE AND F.-X. VIALARD

functionals convex along Wasserstein geodesics (potentials V : � ↦→
∫
+(G)3�(G) where + is convex,

internal non-local energies W : � ↦→
∬
,(G, H)3�(G)3�(H) where , : R3 × R3 → R is convex [29]),

both notions are the same.
However, push forwarded measures do not describe all possible dynamics in our case. For non-

convex functionals, diffusion phenomena can happen. Using Wasserstein geometry terms, it means,
heuristically, that a descent direction has to be found in the space of velocity plans (see section 12.4
in [1]), instead of !2 velocity maps. To do this, we use concepts inspired from flow interchange
techniques developed in [22,25]. Instead of studying the gradient flow of �, we study how � behaves
along a certain auxiliary flow. Here, this flow is associated the Boltzmann entropy functional.

We are able to show, as the main result of this section, the following theorem.

Theorem 7 (No local minima and only global). Let � be a probability measure. Then, if � ≠ �, there
exists a curve �C which is 1/2-Hölder for the Wasserstein distance, such that C ↦→ ��(�C) is strictly
decreasing for C small enough.

We start with the remark that the MMD energy only depends on the difference of the measures.
Indeed, since (�, �) ↦→ ��(�) is a function of � − �, we can use the Hahn-Jordan decomposition of the
signed measure � − �.

Lemma 12 (Hahn-Jordan decomposition). Let � and � be two probability measures. Then there exists
a unique decomposition � − � = �+ − �−, where �+ and �− are mutually singulars measures. In
addition, �+ ≪ � and �− ≪ �.

A heat diffusion process can be applied to �+, which allows to prove the main theorem of this
section, stating that even though our functional is non-convex in the Wasserstein geometry, it does
not admit any local minima for the Wasserstein geometry that is not global (meaning � = � or in an
equivalent way �+ = �− = 0).

4.1 Heat diffusion perturbation.

Let �0 be a measure dominated by �. We write � = � − � + � and consider the curve �C defined
as the solution of the heat equation %C�C = Δ�C with initial condition �0 = �. As is well-known,
the heat equation is the Wasserstein gradient flow of the Boltzmann entropy functional defined by
ℋ(�) ≔

∫
� log(�)3G if the measure has a density � (with an abuse of notation) with respect to the

Lebesgue measure and +∞ otherwise. Furthermore, the solution �C is explicit �C =  C ★ �, where  C
is the heat kernel in R3 defined by

 C(G) ≔
1

(4�C)3/2
exp(−‖G‖2/4C) . (127)

Remark 2. Here, � is not necessarily a probability measure. However, we can write the whole
Wasserstein formalism for any space of measures ℳ< ≔ {� ∈ ℳ+(R3), �(R3) = <}. We will abuse
notations, and denote,2(, �) the Wasserstein distance on ℳ< if , � ∈ ℳ< .

Lemma 13. Consider the curve defined by �C ≔ � + �C − � , where �C is the heat flow at time C of �+.
Then, the curve �C is absolutely continuous. More precisely, there exists a constant � > 0 such as, for
any B, C > 0

,2(�C , �B) ≤
√
|C − B |� . (128)

Proof. Standard results exposed in [1, Theorem 11.2.8] show that  C ★ � is absolutely continuous for
the Wasserstein metric. We fix some B, C > 0, and write the EVI equation associated to the heat flow,
that states that for all  density measure with the same mass as � and for almost every C > 0

1
2
3

3C
,2

2 (�C , ) ≤ ℋ() − ℋ(�C) . (129)



RIESZ KERNEL WASSERSTEIN GRADIENT FLOWS 25

This implies that there exists a constant � > 0 such as,for any B, C > 0,2(�C , �B) ≤
√
|C − B |�. Let � be

an optimal transport plan � between  C ★ � and  B ★ �, for B, C > 0. The plan �̃ ≔ � + (� − �)⊗2 is a
transport plan between �C and �B . Thus

,2(�C , �B) ≤,2( C ★�,  B ★�) , (130)

which proves the lemma. �

Now, we need some estimates on �� along the flow defined above. It is possible thanks to the next
lemma.

Lemma 14. The function C ↦→ ��(�C) is differentiable for every C > 0, and its derivative is given by

1
23

3

3C
��(�C) = − 〈�,  2C ★� +  C ★ (� − �) −  C ★ �〉 . (131)

4.2 Estimates of mass transfers in the diffusion process.

In this paragraph, we show that for a well-chosen positive measure � and for C small enough, the
quantity in Formula (131) is strictly negative. An essential property is the following lemma (see [34]).

Lemma 15 (Heat kernel estimates, [34]). Let  and � be two positive mutually singular measures.
Then, as C → 0

 C ★ �(G) = >( C ★ (G)) ,
for � almost every G.

We use this lemma to derive the following estimate.

Lemma 16. Let  and � be two positive mutually singular measures. Then, as C → 0

 C ★ �(G) = >( 2C ★ (G)) ,

for � almost every G.

Proof. From the expression of  C we have  C (G)
 2C (G) = 23/2 exp(−‖G‖2/8C) ≤ 23/2, from which we deduce

 C ★ (G) ≤ 23/2 2C ★ (G) and

 C ★ �(G)
 2C ★ (G) =

 C ★ (G)
 2C ★ (G)

 C ★ �(G)
 C ★ (G) ≤ 23/2  C ★ �(G)

 C ★ (G) .

This quantity tends to 0 from the preceding lemma. �

4.3 Proof of theorem 7

We now prove the main theorem of this section, which is implied by the following proposition.

Proposition 18. Let � be a probability measure. We suppose � ≠ �, and write � − � = �+ − �−
the unique associated Hahn-Jordan decomposition. Then there exists a �+ measurable set � such as
�+(�) ≥ �+(R3)/2 and C0 > 0 such as, for the curve �C = � +  C ★�+|� − �+|�, then for all C < C0 we get
3
3C��(�C) < 0.

Proof. The preceding lemma gives the following result: for �+ almost every G, there exists CG > 0 such
as, for all C < CG :  C ★ �−(G) < 1

2 2C ★�+(G). Let us consider the set sequence defined for # > 0 by

-# ≔ {G ∈ supp(�+)|CG ≥ 1/#} .
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This is a growing sequence for inclusion, and it verifies supp(�+) =
⋃
#∈N∗ -# . Now if we write

-̃1 ≔ -1 �-#+1 ≔ -#+1 \-# , we get a countable sequence of disjoint sets whose union is of total mass
for �+. This implies, by �-additivity, that there exists an integer #0 such that

�+

(
#0⋃

#=1

-#

)
≥ �+(R3)/2 .

Now, we take � ≔
⋃#0
#=1 -# and C0 = 1/#0, which gives, for C < C0

3

3C
��(�C) = −23

〈
�+|� ,  2C ★�+|� −  C ★ �−

〉
(132)

≤ −1
2
23

〈
�+|� ,  2C ★�+|�

〉
. (133)

In particular, we get the conclusion 3
3C��(�C) < 0. �

4.4 Dimension of measure and critical points

In theorem 7, we saw that for any measure � distinct from the target measure � we could find an
absolutely continuous curve for the Wasserstein distance �C such as C ↦→ ��(�C) was strictly decreasing
near 0. However, it is not enough to guarantee that the JKO steps (13) do not stay stationnary at �.
Our theorem 6 states that if � is a critical point then on the interior of its support � is equal to �. We
will prove that if the part of � singular to � is supported on sets singular enough, then it can not be a
critical point as in definition 3.1. In analogy to the finite dimension and regular case, it corresponds
to the fact that it cannot be a second order critical point.

To quantify the singularity of the support of a measure, we use geometric measure theory proper-
ties, mainly the growth of �(�(G, A)). If it grows faster than A3 then we prove that the heat diffusion
makes the energy �� decrease fast enough to compensate the growth of,2

2 (�,  C ★�), so that � is not
a point where JKO steps stay stationnary. To do this, we can use a more precise version of 15, see [34]:

Lemma 17. Let � be a positive measure in R3 and @ ∈ [0, =]. Then, there exists a universal constant
23,@ only dependent on 3 and @ such as, for all G ∈ R3

lim inf
A→0

A−@�(�(G, A)) ≤ 23,@ lim inf
C→0

C(3−@)/2 C ★�(G)

≤ 23,@ lim sup
C→0

C(3−@)/2 C ★�(G) ≤ lim sup
A→0

A−@�(�(G, A)) .

How to interpret this result? This result allows, in some cases, to get precise estimates on the decay
of  C ★�. For example, if � has a density function 5 with respect to the Lebesgue measure, then, with
@ = 3, we get that lim

A→0
A−3�(�(G, A)) = 5 (G) , which gives

lim
C→0

 C ★�(G) = 5 (G)/23,@ . (134)

If � charges more singular sets than open sets, for example if there exists some � > 0 such as, for all
G ∈ �, where �(�) > 0 lim

A→0
A−(3−�)�(�(G, A)) = 5 (G), then, for all G ∈ � one has lim

C→0
C�/2 C ★ �(G) =

5 (G)/23,@ . That is, when C → 0

 C ★�(G) ∼ 5 (G)
23,@

1

C�/2
. (135)

Let � and � be two probability measures with finite Coulomb energy. We write, once again, the
Hahn-Jordan decomposition � − � = �+ − �−. From the result of Section 3, we know that at a critical
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point which is not the global minimum, �+ cannot have a density w.r.t. the Lebesgue measure. We
study what happens if �− is singular, in a precise sense. The point of interest, to be able to use Lemma
17, will be the growth of �+(�(G, A)) on the support of �+ as A tends to 0. We prove the following
lemma:

Lemma 18. If there exists a set � ⊂ R3 such that �+(�) > 0, some positive number 0 < � < 2, a
constant � > 0 and A0 > 0 such that, for all 0 ≤ A ≤ A0 and �+ almost every G ∈ �

�+(�(G, A)) ≥ �A3−� ,

then � is not a critical point as in Definition 3.1.

Proof. In this proof, we denote by � any strictly positive constant which does not depend on C or �.
Once again, we consider the Wasserstein curve defined by �0 = � and �C = �+ C ★�+|� −�+|�. Using
Lemma 17, we get the existence C0 > 0 such that, for all 0 < C < C0 and �+ almost every G ∈ �

 2C ★�+(G) ≥
�

C�/2
. (136)

Moreover, by the same reasoning as in the proof of Theorem 18, we can suppose, if we take a subset
of �, that there exists C1 > 0 such as, for any 0 < C < C1

3

3C
��(�C) ≤ −�

〈
�+|� ,  2C ★�+|�

〉
. (137)

Now, using Formula (136), this gives along �C , 3
3C��(�C) ≤ −�C−�/2. From the EVI inequality associated

with the entropy gradient flow, we get the existence of a constant � such that 3
3C,

2
2 (�0, �C) ≤ �.

Combining these inequalities, we get an estimate on the derivative of our proximal functional ��,�
� ≔

�� + 1
2�,

2
2 (�0, ·)

3

3C
�
�,�
� (�C) ≤ �

(
−C−�/2 + 1

2�

)
, (138)

which provides, integrating from 0 to C, as �/2 < 1

�
�,�
� (�C) − ��,�

� (�0) ≤ �

(
−2C−�/2+1

2 − �
+ C

2�

)
. (139)

Optimizing this quantity over C > 0, we get an optimal C� ≔ (2�)2/�, smaller than C0, C1 if � is small
enough, so that all our inequalities are true for C�. Injecting C� in equation (139) we get

�
�,�
� (�C�) − �

�,�
� (�0) ≤ −�� 2−�

� , (140)

concluding the proof since

min
�∈P2(R3)

�
�,�
� (�) − ��,�

� (�0) ≤ min
C>0

�
�,�
� (�C) − ��,�

� (�0) ≤ −�� 2−�
� . (141)

�

This lemma is used to prove the main result of this subsection.

Theorem 8. Let us suppose there exists a set � such that �+(�) > 0 and such that �+|� has Minkowski
dimension less than 3 − � (see [18]) for some 0 < � ≤ 1. Then � is not a critical point as in Definition
3.1.
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Proof. The local Minkowski dimension of a measure at G is defined, if the limit exists, as

dimG
ℳ(�) ≔ lim

A→0

log(�(�(G, A)))
log(A) . (142)

If �+ charges some set � such as, for all G ∈ �, dimG
ℳ(�) exists and is inferior to 3 − �, we get that

for every � > 0 there exists a radius AG such that for any A < AG , �(�(G, A)) ≥ A3−�+�. Using the same
�-additivity arguments than in the proof of proposition 18, we prove we can choose a uniform A0 by
considering a subset of � of non-zero measure for �+. This is exactly the hypothesis of lemma 18,
ending the proof. �

Remark 3. The condition on the Minkowski dimension is satisfied if, for example, �+ is absolutely
continuous with respect to the volume measure on some manifold of dimension 3 − 1.
Note that the result is stated only for � ≤ 1 instead of � < 2 (as assumed in the lemma) can be explained
by the fact that for � > 1, the energy functional is infinite. In such a case, it is direct to prove from the
very definition that such a measure (of infinite energy) cannot be a critical point.

4.5 Extension to Riemannian manifolds

Recall that the heat kernel is defined on a general Riemannian manifold.

Proposition 19 (Heat kernel on a manifold). Let (", 6) be a Riemannian manifold (it doesn’t need
to be compact). Then we can define its heat kernel  : (0,∞) ×" ×" → R as the smallest positive
fundamental solution of the heat equation, meaning that for any H ∈ "

{
%C = ΔG 
 (C , ·, H) →

C→0
�H . (143)

In order to generalize the conclusions of section 4, we need estimates resembling to the one in the
proof of Lemma 16, mainly that there is some constant � > 0 such that

 C ≤ � 2C . (144)

In the Euclidean case " = R3 , we got � = 23/2. We do not detail the conditions for this to hold,
but it is true if " is a nilpotent Lie group equipped with a left invariant metric ( [33]), if (", 6) is a
geodesically complete non-compact Riemannian manifold of nonnegative Ricci curvature ( [15]), or if
(", 6) is compact ( [23]). For example, on the flat 1-dimensional torus T := S1 which we represent as
[0, 1]/{0 ∼ 1} = R/Z, the heat kernel is given by the periodisation of the euclidean heat kernel, that is

 T(C , G, H) :=
∑

=∈Z
 R(C , G + :, H) . (145)

As the flat d-dimensional torus T3 := (S1)3 is a product, its heat kernel is the product, defined for
G = (G1 , ..., G3) and H = (H1, ..., H3) by

 T3 (C , G, H) =
∏

1≤:≤3
 T(C , G: , H:) , (146)

so that the desired estimate in Formula (144) holds for some � > 0. An example of manifold where it
does not hold is the hyperbolic space.
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A Appendix

Proof of lemma 1. Let us fix a vector field E ∈ C∞
2 , and prove the following equality in both cases

lim
C→0

��((83 + CE)#�) − ��(�)
C

=

∫
(∇�)★ (� − �) · E3� . (147)

First case: If � = −‖.‖.
First let us remark that if G = H, �(G − H + C(E(G) − E(H))) = �(G − H) = 0. Then

lim
C→0

1
2

∫
�(G − H + C(E(G) − E(H))) − �(G − H)

C
3�(G)3�(H)

= lim
C→0

1
2

∫

G≠H

�(G − H + C(E(G) − E(H))) − �(G − H)
C

3�(G)3�(H)

=
1
2

∫

G≠H

∇�(G − H) · (E(G) − E(H))3�(G)3�(H)

=

∫

G≠H

∇�(G − H) · E(G)3�(G)3�(H) .

Same for the other term of the MMD energy

lim
C→0

1
2

∫
�(G − H + CE(G)) − �(G − H)

C
3�(G)3�(H)

= lim
C→0

∫

G≠H

�(G − H + C(E(G) − E(H))) − �(G − H)
C

3�(G)3�(H)

=

∫

G≠H

∇�(G − H) · E(G)3�(G)3�(H)

=

∫

G≠H

∇�(G − H) · E(G)3�(G)3�(H) .

We conclude that Formula (147) holds for the Energy Distance kernel.

Second case: If � =
1

‖.‖3−2 . Here, we need to use the result that if a positive measure has finite
Coulomb energy, then it cannot be too singular, i.e. if we define the diagonal D ≔ {G = H} ⊂ - × -
then �⊗2(D) = 0. Indeed,

∫
D �3�⊗2 ≤

∫
�3�⊗2 < ∞, and � = +∞ on D, which proves �⊗2(D) = 0.

This means that for any measure � with finite energy
∫

�3�⊗2
=

∫

D2

�3�⊗2 . (148)

Thus we can conclude that Formula (147) holds for the Coulomb kernel with similar computations,
as � is C∞ on D2 . We write

��((83 + CE)#�) − ��(�)
C

=
��((83 + CE)#�) − ��(�)
,2((83 + CE)#�, �)

,2((83 + CE)#�, �)
C

.

By definition of the slope, we get

lim sup
C→0

��((83 + CE)#�) − ��(�)
,2((83 + CE)#�, �)

≤ |%�� |(�) . (149)
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In addition,

lim sup
C→0

,2((83 + CE)#�, �)
C

≤ ‖E‖!2(�) , (150)

so that, taking the limit for C → 0 we get
∫

G≠H

(∇�)★ (� − �) · E3� ≤ |%�� |(�)‖E‖!2(�) . (151)

Similarly, using −E instead of E, we have
�����

∫

G≠H

(∇�)★ (� − �) · E3�
����� ≤ |%�� |(�)‖E‖!2(�) . (152)

As the vector field E chosen is arbitrary, we get

‖(∇�)★ (� − �)‖!2(�) ≤ |%�� |(�) , (153)

which proves the result. �

Proof of Lemma 2. Let � be a measure, and 83 + E an optimal transport between � and � (so that
� = (83 + E)#�) which exists as � ∈ PA

2 . We note � := ∇�★ (� − �), which is a well defined vector field
everywhere. Using the same computations than in the proof of (147), we get :

��(�) − ��(�) =
∫

� · E3� + >(‖E‖2
!2(�)). (154)

However, as E is an arbitrary optimal transport plan between � and � and � is regular, we get :

��(�) − ��(�) ≥ inf
�0∈Γ0(�,�)

∫
� · (H − G)3�0 + >(,2

2 (�, �)) , (155)

which concludes the proof by definition 5. �


