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Abstract
In this work, we study the Wasserstein gradient flow of the Riesz energy defined on the space of

probability measures. The Riesz kernels define a quadratic functional on the space of measure which

is not in general geodesically convex in the Wasserstein geometry, therefore one cannot conclude to

global convergence of the Wasserstein gradient flow using standard arguments. Our main result is

the exponential convergence of the flow to the minimizer on a closed Riemannian manifold under the

condition that the logarithm of the source and target measures are Hölder continuous. To this goal,

we first prove that the Polyak-Lojasiewicz inequality is satisfied for sufficiently regular solutions. The

key regularity result is the global in-time existence of Hölder solutions if the initial and target data

are Hölder continuous, proven either in Euclidean space or on a closed Riemannian manifold. For

general measures, we prove using flow interchange techniques that there is no local minima other

than the global one for the Coulomb kernel. In fact, we prove that a Lagrangian critical point of the

functional for the Coulomb (or Energy distance) kernel is equal to the target everywhere except on

singular sets with empty interior. In addition, singular enough measures cannot be critical points.
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1 Introduction
In this paper, we are interested in Wasserstein gradient flow of certain quadratic functionals on the

set of probability measures on the Euclidean space or a Riemannian manifold. These quadratic

functionals are convex for the usual convex structure of probability measures. However they are

not geodesically convex for the Wassertein geometry. Therefore, the dynamic of their gradient flows

with respect to the Wasserstein geometry may obstruct global convergence properties, which are

granted in geodesically convex settings. One motivation for studying these gradient flows under an

other geometry comes from machine learning, more precisely the mean-field limit of shallow neural

networks studied in [12, 26]. This line of research explores the optimization landscape of the usual

empirical risk of a single-hidden layer neural network under gradient flow. A powerful relaxation of

the problem already proposed in [5] consists in embedding the space of parameters into the space

of probability measures. In this context, the corresponding objective functional becomes quadratic

and the gradient flow corresponds to a Wasserstein gradient flow. In fact, the quadratic function on

the space of probability measures is a particular case of quadratic functionals defined by reproducing

kernels. These functionals have also raised interest in machine learning and statistics since it gives a

discrepancy, in fact a distance squared, between probability measures. These discrepancies are called

Maximum Mean Discrepancy (MMD) and they are defined below. Let us insist on two particularly

nice properties of MMD: they have a quadratic computational cost which is better than, for instance,

optimal transport and they benefit from a parametric rate of estimation from empirical measures,

which is not the case for standard optimal transport.

Let 𝐺 be a (conditionally positive) kernel (e.g. Gaussian kernel) on the Euclidean space R𝑑, the

MMD between 𝜇 and 𝜈 two probability measures is

𝐸𝜈(𝜇) =
∬

(𝜇(𝑥) − 𝜈(𝑥))𝐺(𝑥, 𝑦)(𝜇(𝑦) − 𝜈(𝑦)) . (1)

In fact, such a functional is a nonnegative strictly convex functional on the space of probability

measures if the kernel 𝐺 is conditionally positive. In our work, we are interested in a fixed target

measure 𝜈 and 𝜇 will be optimized upon through the action of velocity fields. More precisely, we are

interested in the Wasserstein gradient flow of the functional 𝐸𝜈(𝜇) with respect to 𝜇. In particular, we

want to treat the question of global convergence to the unique minimizer which is 𝜈. For instance,

if the kernel is smooth enough, empirical measures are preserved by the Wasserstein gradient flow.

Consequently, the Wasserstein gradient flow of this energy with a finite empirical measure as the

source and a density as the target does not give convergence.

This fact motivates the exploration of non-smooth kernels such as the energy distance, namely

−∥𝑥 − 𝑦∥ on the Euclidean space, which is not 𝐶1
. As a consequence, one can hope for global

convergence of the Wasserstein gradient flow even when the source measure and the target measure

are mutually singular. Indeed, in one dimension, the corresponding functional is geodesically convex

in Wasserstein and it implies global convergence of the solution𝜇𝑡 towards 𝜈. This particular kernel has

been studied in the context of Wasserstein gradient flows in [17] and [16] for applications in machine

learning and imaging. The authors explicitly leave as open the question of global convergence.

The question we address in this paper is the extension of this one-dimensional result to higher

dimensions. There are at least two different directions for possible generalizations of this result. First,

the kernel −∥𝑥 − 𝑦∥ is still conditionally positive definite on R𝑑 for 𝑑 ≥ 1. Second, in one dimension,

−|𝑥− 𝑦 | is the Coulomb kernel, roughly speaking (proportional to) the inverse of the Laplacian, which

is well-defined in higher-dimensions. For instance on R3
, it is given by

1

∥𝑥−𝑦∥ . These two kernels

belong to the family of Riesz kernels, which will be our main interest in this work. One motivation for

using these kernels also comes from numerical experiments, in which the energy distance stands out.

Indeed, the energy distance kernel is easy to implement and behaves particularly well, in comparison

with other kernels such as the Gaussian kernel. More precisely, global convergence is observed. The

Coulomb kernel is more intricate to implement due to its blow-up along the diagonal and drawing
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conclusions from these numerical experiments is more delicate. Yet, from the theoretical point of

view, the Coulomb kernel has been studied intensively in the mathematical literature, in particular

due to its physical significance, see [30,31] for a review. Recent results exposed in [19] and [13] study

large stochastic systems of interacting particles under Coulomb interaction, proving propagation of

chaos and convergence to the limit PDE results using relative entropy methods. In [13] this work is

done on the torus manifold.

For the Coulomb kernel, under smoothness assumptions on 𝜇 a time-dependent density and 𝜈
a fixed density, the Wasserstein gradient flow associated with 𝐸𝜈 reads, on R𝑑 or on a Riemannian

manifold,

𝜕𝑡𝜇 = −∇ ·
(
𝜇∇𝜑

)
, Δ𝜑 = 𝜇 − 𝜈 . (2)

The potential 𝜑 is a solution of the previous Poisson equation with source term 𝜇− 𝜈. The potential 𝜑
can be written, up to a positive constant 𝜑 = −𝐺 ★ (𝜇 − 𝜈), giving an example of non-linear non-local

interactions. Non-local interaction energy systems associated with a radial kernel𝑊(𝑥) = 𝑤(∥𝑥∥) are

solutions of

𝜕𝜇

𝜕𝑡
= −∇ ·

(
𝜇(∇𝑊 ★𝜇)

)
. (3)

Confinement results for these dynamics have been proven, depending on 𝑊 . In most cases, 𝑊 is

supposed to be𝜆-convex, preserving particles [9], so that mean-field techniques can be used. Attractive

potentials, e.g. 𝑤′(𝑟) ≥ 0 everywhere are the simplest ones, and in some case total mass aggregate in

its center. Some other potentials are said to be attractive-repulsive, e.g. there exists a radius 𝑅𝑎 > 0

such as 𝑤′(𝑟) ≤ 0 if 𝑟 < 𝑅𝑎 and 𝑤′(𝑟) ≥ 0 otherwise. That is the case for swarming systems models

𝑤(𝑟) = 𝑟𝛾/𝛾 − 𝑟𝛼/𝛼 where 𝛾 > 𝛼 studied in [10], Morse potentials 𝑤(𝑟) = −𝐶𝑎𝑒−𝑟/𝑙𝑎 + 𝐶𝑟 𝑒−𝑟/𝑙𝑟 and

characteristic function of sets for example [4,8,9] . Different hypothesis are used to prove confinement.

In [9], 𝑊 is continuous and lim

𝑟→∞
𝑤′(𝑟)

√
𝑟 = +∞. In [4] the weaker condition lim

𝑟→∞
𝑤′(𝑟)𝑟 = +∞ is

enough. Some discontinuous potentials at 0 have been treated, for example in [4], potential 𝑊(𝑥) =
𝐺(𝑥) +𝑊𝑎(𝑥) where 𝐺 is the coulomb kernel 𝐺(𝑥) = ∥𝑥∥−𝑑+2

and 𝑊𝑎 is an attractive potential that

verifies lim

𝑟→∞
𝑤′
𝑎(𝑟)𝑟1/𝑑 = +∞. However these results do not apply to our subject, our functional is not

𝜆-convex and has diffusive properties. Moreover, the confining part (depending on a target measure

𝜈) is weaker than in previously cited papers and we were not able to prove mass confinement.

Main contributions. There are two main results in this paper, which are centered on the Coulomb

kernel. The first main result is a proof of global convergence on a closed Riemannian manifold in a

smooth setting. In the beginning of Section 2, a simple calculation shows that the Polyak-Lojasiewicz

inequality is satisfied for all time on a closed Riemannian manifold under the condition that the

solution is sufficiently smooth and that it exists for all time. Note that it implies that the question

of (exponential) global convergence is reduced to a regularity question: Do the solutions exist for

all time in sufficiently smooth functional spaces? Therefore, we first study the gradient flow of the

Coulomb discrepancy in a smooth setting, that is, the corresponding PDE under some regularity

assumptions. Under the assumption that initial and target measures are Hölder continuous, we prove

that solutions exist for all time and they are Hölder continuous. It thus proves global convergence

with an exponential rate of convergence in the case of closed Riemannian manifolds.

The second main result is found in Section 4 and it concerns the landscape of the Coulomb

discrepancy on Euclidean spaces as well as on closed Riemannian manifolds: This functional has no

local minima apart from the global one in the Wasserstein geometry. More precisely, we prove that if

the current measure is different from the target, there always exists a path of measures (starting at the

current one) which is 1/2-Hölder in Wassertein and such that the energy is strictly decreasing. This is

done using flow interchange techniques, namely the use of the Boltzmann entropy along the flow.

Among other results, we prove in Section 3 that any Lagrangian critical point for the Coulomb

and Energy Distance kernels is equal to the target measure everywhere except on singular sets with

empty interior. In a similar direction, we prove that if the difference between the current measure and
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the target has Minkowski dimension less than the ambient one then it cannot be a critical point of the

Wasserstein gradient flow.

Perspectives. Left open by our work is the question of global convergence in a closed Riemannian

manifold for every source and target measures. Although the result seems highly plausible on a closed

Riemannian manifold, a corresponding result on the Euclidean space would need to get around the

confinement issue, which we have not proven in a Euclidean setting. Indeed, there is a competition

between the repulsive behaviour of the Coulomb kernel and the attraction of the target measure. This

repulsive behaviour can cause mass spread to infinity in Euclidean space, which makes the analysis

more difficult in our opinion.

1.1 Notations

• If 𝐴 is a subset of R𝑑, 𝐴𝑐 B R𝑑 \ 𝐴 is its complementary

• If𝜇 is a measure on (R𝑑 ,𝒯1) and𝑇 : (R𝑑 ,𝒯1) → (R𝑑 ,𝒯2) is a measurable map then the pushforward

measure of 𝜇 by 𝑇, denoted 𝑇#𝜇 verifies, for any 𝒯2 measurable function 𝑓∫
𝑓 𝑑𝑇#𝜇 =

∫
𝑓 ◦ 𝑇𝑑𝜇 .

• 𝜇⊗2
is the product measure on R𝑑 × R𝑑 such that, for any Borel sets 𝐴, 𝐵, we have

𝜇⊗2(𝐴 × 𝐵) = 𝜇(𝐴)𝜇(𝐵).

• 𝐶∞
𝑐 is the space of test functions, i.e. of infinitely differentiable functions with compact support.

• The convolution is denoted by ★.

• If (𝑀, 𝑔) is a Riemannian manifold, we denote 𝑑𝑀(𝑥, 𝑦) the geodesic distance between 𝑥, 𝑦 ∈ 𝑀.

1.2 Wasserstein gradient flows
Let us recall the definition of the Wasserstein distance𝑊2, see [1, 29].

Definition 1. Let (𝑋, 𝑑) be a metric space. We denote 𝒫2(𝑋) the set of probability measures on 𝑋 with bounded
second moment, i.e. such that

∫
𝑑(𝑥, 𝑥0)2𝑑𝜇(𝑥) < ∞ for some 𝑥0 ∈ 𝑋. The 2-Wasserstein distance𝑊2 between

two measures 𝜇, 𝜈 ∈ 𝒫2(𝑋) is defined by

𝑊2

2
(𝜇, 𝜈) B min

𝛾∈Γ(𝜇,𝜈)

∫
𝑑(𝑥, 𝑦)2𝑑𝛾(𝑥, 𝑦) , (4)

where, if denote 𝜋𝑖 the projection on the i-th coordinate, Γ(𝜇, 𝜈) = {𝛾 ∈ 𝒫2(𝑋 × 𝑋) | 𝜋1#𝛾 = 𝜇,𝜋2#𝛾 = 𝜈} is
the space of transport plans between 𝜇 and 𝜈.

In this paper, we only consider 𝑋 to be the Euclidean space or a Riemannian manifold. In those

cases, the metric space (𝒫2(𝑋),𝑊2) is a complete geodesic space. The following results are about some

properties of continuous curves in 𝒫2(𝑋); see [1, 29].

Definition 2 (Continuity equation). Let𝜇𝑡 be a time indexed family of measures onR𝑑 and 𝑣𝑡 a time dependent
𝜇-integrable vector field. The curves 𝜇𝑡 is said to satisfy the continuity equation associated with 𝑣𝑡 if

𝜕𝑡𝜇𝑡 + ∇ · (𝜇𝑡𝑣𝑡) = 0 , (5)

in the sense of distributions.
The continuity equation above means that, along the curve 𝜇𝑡 , mass moves following the vector

field 𝑣𝑡 .
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Definition 3 (Absolutely continuous curves). A curve of measures 𝜇𝑡 defined for 𝑡 ∈ [𝑎, 𝑏] is said to be
absolutely continuous if there exists some function 𝑚 ∈ 𝐿2(R) such that for all 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏

𝑊2(𝜇(𝑠), 𝜇(𝑡)) ≤
∫ 𝑡

𝑠

𝑚(𝜏)𝑑𝜏 . (6)

Proposition 1. A curve 𝜇𝑡 satisfies a continuity equation if and only if it is absolutely continuous.

This structure allows some Riemannian-like calculus on the geodesic space (𝒫2(𝑋),𝑊2) as intro-

duced by Otto [27]. Indeed, in definition 2, the vector field 𝑣𝑡 can be used to generate the tangent

space at 𝜇𝑡 , by taking the minimal norm of 𝑣 reproducing 𝜕𝑡𝜇. In some cases however, the whole

tangent space cannot be described through the action of a single vector field, but rather, informally, a

multivalued vector field. This is why plans are used in some definitions below (see [1, 12.4] for more

details on the geometry of Wasserstein spaces). Let us introduce subdifferentials in the Wasserstein

space, see [1, Chap 10].

Definition 4 (Extended Fréchet subdifferential). Let us consider a probability measure 𝜇 and a functional
ℱ : 𝒫(R𝑑) → R. A plan 𝛾 ∈ 𝒫(R𝑑 × R𝑑) belongs to the Fréchet subdifferential ∂ℱ (𝜇) of ℱ at 𝜇 if 𝜋1#𝛾 = 𝜇
and if for every probability measure 𝜌

ℱ (𝜌) − ℱ (𝜇) ≥ inf

𝛼∈Γ(𝛾,𝜌)

∫
𝑋3

⟨𝑥2 , 𝑥3 − 𝑥1⟩𝑑𝛼 + 𝑜(𝑊2

2
(𝜇, 𝜌)). (7)

In some cases, a transport plan 𝛾 ∈ ∂ℱ (𝜇) may be concentrated on the graph of a vector field,

being of the form

𝛾 = (𝐼𝑑 × 𝜉)#𝜇 (8)

for a vector field 𝜉 ∈ 𝐿2(𝜇). Thus, the subdifferential 𝜕ℱ (𝜇) is defined as follows.

Definition 5. Let ℱ be a functional on 𝒫2 and 𝜇 ∈ 𝒫2. A vector field 𝜉 ∈ 𝐿2(𝜇) belongs to the subdifferential
𝜕ℱ (𝜇) of ℱ at 𝜇 if for every probability measure 𝜌

ℱ (𝜌) − ℱ (𝜇) ≥ inf

𝛾0∈Γ0(𝜇,𝜌)

∫
𝜉(𝑥) · (𝑦 − 𝑥)𝑑𝛾0(𝑥, 𝑦) + 𝑜(𝑊2

2
(𝜇, 𝜌)) , (9)

where Γ0(𝜇, 𝜌) is the set of optimal transport plans between 𝜇 and 𝜌.

For a general functional ℱ and a general probability measure 𝜇, both 𝜕ℱ (𝜇) and ∂ℱ (𝜇) may be

empty.

There are several ways to approach gradient flows in the Wasserstein space. The first one is a direct

analogy of gradient flows on manifold using the previous definitions.

Definition 6 (Pointwise differential formula). Let 𝜇𝑡 be an absolutely continuous curve in 𝒫2(R𝑑). By
Proposition 1 it is a weak solution of a continuity equation with a time-dependent vector field 𝑣𝑡 . The curve 𝜇𝑡
is said to be a gradient flow a functional ℱ if for almost any 𝑡 > 0

𝑣𝑡 ∈ −𝜕ℱ (𝜇𝑡). (10)

This definition is quite strong, and such curves may not exist at all. To build those, the idea is to use

a discrete algorithm approximation. Let ℱ be a functional defined on 𝒫. Let us fix an initial measure

𝜇0, 𝜏 > 0 and consider the following discrete recursive scheme, called Minimizing Movement or JKO

steps ( [1, 20]).

𝜇𝜏
𝑘+1

∈ arg min

𝜌∈𝒫2

ℱ (𝜏, 𝜇𝑘 ; 𝜌) B ℱ (𝜌) + 1

2𝜏
𝑊2

2
(𝜌, 𝜇𝜏

𝑘
) . (11)
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It consists in updating 𝜇𝑘+1 using the proximal function ℱ (𝜏, 𝜇𝑘 ; ·). We assume that the associated

sequence (𝜇𝜏
𝑘
)𝑘∈N can be built and we consider the piecewise constant curves defined, if 𝑡 ∈ [𝑘𝜏, (𝑘+1)𝜏[

by𝑈𝜏(𝑡) = 𝜇𝜏
𝑘
.

Definition 7 (Minimizing movement curve). Let 𝜇0 an initial probability measure and ℱ a functional such
that the associated sequence (𝜇𝜏

𝑘
)𝑘∈N can be built. A curve 𝜇𝑡 is said to be a minimizing movement curve if there

exists some sequence (𝜏𝑘) ↘ 0 such that (𝑈𝜏𝑘 ) converges narrowly to 𝜇𝑡 .

There is a priori no uniqueness guarantee in the definition above: To a functional ℱ and an initial

probability measure 𝜇0 can correspond an infinity of minimizing movements.

Let us make the following assumptions on ℱ :

1. ℱ is proper (not everywhere +∞) and lower semi continuous for the weak topology.

2. Coercivity: there exists some 𝜏0 > 0 such that for all 𝜏0 > 𝜏 > 0 and 𝜇 ∈ 𝒫2, there exists some

probability measure 𝜇𝜏 minimizing the proximal function ℱ (𝜏, 𝜇; ·).

Then using [1, 11.1.6], one has:

Theorem 1. With the above assumptions, a Minimizing Movement curve always exists.

Why are we interested in such curves ? The iterations of the discrete scheme (11) satisfy an

important regularity property, they are point of subdifferentiability of ℱ , see [1, Th 10.3.4; Remark

10.3.5].

Proposition 2. Let 𝜇 be a probability measure and ℱ a functional such that we can define 𝜇𝜏 as an

iteration of (11) from 𝜇. Then 𝜕ℱ (𝜇𝜏) is not empty.

Let 𝛾̂𝜏 ∈ Γ0(𝜇𝜏 , 𝜇). The rescaled velocity plan 𝛾𝜏 B 𝑓𝜏#𝛾̂𝜏, where 𝑓𝜏(𝑥1 , 𝑥2) = (𝑥1 ,
𝑥2−𝑥1

𝜏 ), is in

the extended Fréchet subdifferential ∂ℱ (𝜇). Moreover, there exists a unique optimal plan such that

its barycenter projection 𝛾̃0

𝜏 is in the subdifferential 𝜕ℱ (𝜇). It is characterized by the strictly convex

minimum condition

∥𝛾̃0

𝜏 ∥𝐿2(𝜇𝜏) = min

𝛾̂𝜏∈Γ0(𝜇𝜏 ,𝜇)
∥𝛾̃𝜏 − 𝐼𝑑∥𝐿2(𝜇𝜏) . (12)

Remark 1. The differentiation point is 𝜇𝜏, and not directly 𝜇. This result is to be compared with the fact

that in the Euclidean space, the iteration of the implicit gradient descent scheme 𝑥𝑘+1 = 𝑥𝑘 −𝜏∇ 𝑓 (𝑥𝑘+1)
can be obtained as

𝑥𝑘+1 ∈ arg min

𝑦

𝑓 (𝑦) + 1

2𝜏
∥𝑦 − 𝑥𝑘 ∥2 . (13)

Because of the result of Proposition 2, we would like to pass to the limit as 𝜏 → 0, and conclude

that a Minimizing Movement curve is a gradient flow in the sense of definition 6. However, that is not

always the case, and such a curve only satisfies a relaxed gradient equation, with the time dependent

vector field −𝑣𝑡 only belonging to the limiting subdifferential of ℱ at 𝜇 (see [1, Def 11.1.5]). In the case

of a functional ℱ which is 𝜆-convex along generalized geodesics (see [1, Def 9.2.2, 9.2.4; Th 11.2.1]),

more can be said.

Theorem 2 (Gradient flow for𝜆-convex functionals). Let ℱ be a𝜆-convex functional along generalized

geodesics and 𝜇0 ∈ 𝒫2. Then :

• There exists a unique Minimizing Movement curve starting from 𝜇0.

• This limiting curve 𝜇𝑡 is a solution of the gradient flow equation (10).

• (EVI) The curve 𝜇𝑡 satisfies the EVI inequality, for all 𝜈 ∈ 𝒫2

1

2

𝑑

𝑑𝑡
𝑊2

2
(𝜇𝑡 , 𝜈) ≤ ℱ (𝜈) − ℱ (𝜇𝑡) −

𝜆
2

𝑊2

2
(𝜇𝑡 , 𝜈) . (14)

• If 𝜆 > 0, ℱ admits a unique minimum 𝜇∗ and both 𝜇𝑡 and ℱ (𝜇𝑡) converge exponentially

respectively to 𝜇∗ and ℱ (𝜇∗).



8 S. BOUFADÈNE AND F.-X. VIALARD

• If 𝜆 = 0 and ℱ admits a minimum ℱ∗ then

ℱ (𝜇𝑡) − ℱ∗ ≤
𝑊2(𝜇0 , 𝜇∗)

2𝑡
. (15)

Example 1. • If ℱ is defined on measures with density with respect to the Lebesgue measure

(𝜇 = 𝜌(𝑥)𝑑𝑥) by the formula ℱ (𝜇 = 𝜌(𝑥)𝑑𝑥) B
∫
𝐹(𝜌)𝑑𝑥 where 𝐹 is convex, superlinear, verifies

𝐹(0) = 0, and that the map 𝑠 ↦→ 𝑠𝑑𝐹(𝑠−𝑑) is convex and non increasing, then ℱ is convex

along generalized geodesics (see [29, Th 7.28]). For example, this condition is verified for

𝐻 : 𝑥 ↦→ 𝑥 log(𝑥) which gives the Boltzmann entropy ℋ , and 𝐹𝑝 : 𝑥 ↦→ 𝑥𝑝 where 𝑝 > 1, defining

p-energies.

• If 𝑉 : R𝑑 → R is 𝜆-convex, the associated potential functional 𝒱 : 𝜇 ↦→
∫
𝑉𝑑𝜇 is 𝜆-convex along

geodesics.

• If𝑊 : R𝑑 ×R𝑑 → R is 𝜆-convex, the associated auto-interaction functional 𝒲 : 𝜇 ↦→
∫
𝑊𝑑𝜇⊗2

is

𝜆-convex along geodesics.

• The previous condition is not necessary. In dimension 1, let us define Δ+ B {(𝑥, 𝑦), 𝑥 ≤ 𝑦}
and Δ− B {(𝑥, 𝑦), 𝑥 ≥ 𝑦}. Then if 𝑊 is convex when restricted to Δ+ and Δ−, the associated

energy 𝒲 is convex along generalized geodesics. That is the case for the Energy Distance kernel

(𝑥, 𝑦) ↦→ −∥𝑥 − 𝑦∥.
Corollary 1 (Convergence of the Energy Distance gradient flow in 1D). Let 𝜇0 , 𝜈 ∈ 𝒫2(R) with finite

first moment. Using the previous results, there exists a unique solution 𝜇𝑡 of the associated gradient

flow equation (10) for the functional 𝐸𝜈 with the energy distance kernel, obtained as a Minimizing

Movement curve from 𝜇0. Moreover

𝐸𝜈(𝜇𝑡) ≤
𝑊2(𝜇0 , 𝜈)

2𝑡
. (16)

Proof. Let 𝑥, 𝑦 ∈ R. If (𝑥, 𝑦) ∈ Δ+, then −∥𝑥 − 𝑦∥ = 𝑥 − 𝑦 and the Energy distance kernel is convex on

Δ+. If (𝑥, 𝑦) ∈ Δ−, then −∥𝑥 − 𝑦∥ = 𝑦 − 𝑥 and the Energy distance kernel is convex on Δ−. This proves

that 𝐸𝜈(·) is convex along Wasserstein geodesics. The result is a direct application of theorem 2. □

However, in higher-dimensions, the energy is not convex along generalized geodesics.

1.3 Kernels, MMD and Potential theory
In this paper, we will be interested in particular functionals on probability measure spaces : MMD-

energies.

Definition 8. Let 𝐺 be a conditionally positive kernel (possibly taking infinite values).

• The associated internal 𝐺-energy functional of a signed measure 𝜌 is defined by

𝐸(𝜌) B 1

2

⟨𝜌, 𝐺 ★ 𝜌⟩. (17)

• If 𝜇 and 𝜈 are probability measures of finite internal energy, we define the functional

𝐸𝜈(𝜇) B 𝐸(𝜇 − 𝜈). (18)

The Maximum Mean Discrepancy of kernel 𝐺 between 𝜇 and 𝜈 is defined as

𝑀𝑀𝐷(𝜇, 𝜈) B
√
𝐸(𝜇 − 𝜈). (19)

Maximum Mean Discrepancy have been studied in the context of Wasserstein gradient flows, but

mainly in smooth cases, see [2]. A particular class of singular kernels are Riesz kernels.
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Definition 9 (Riesz kernels). In the Euclidean space R𝑑, 𝑑 ∈ N, the Riesz kernels are defined by

𝑘𝑠(𝑥, 𝑦) =
1

𝑠∥𝑥 − 𝑦∥𝑠 , (20)

for 𝑠 ∈ [−1, 𝑑 − 2]/{0}. If 𝑠 = 0, we define the kernel 𝑘0(𝑥, 𝑦) = − log(∥𝑥 − 𝑦∥) .
In this article, we consider mainly two kernels:

The Coulomb kernel. InR𝑑, the Coulomb Kernel is equal to 𝑘𝑑−2(𝑥, 𝑦) = 1

(𝑑−2)∥𝑥−𝑦∥𝑑−2
. It is remarkable

as a fundamental solution of the Laplace equation in R𝑑 in the following sense.

Proposition 3 (Corresponding differential operator). Let 𝐺 be the Coulomb Kernel in R𝑑. There exists

some positive constant 𝑐𝑑 such that 𝐺 is the fundamental solution of
1

𝑐𝑑
(−Δ) 𝑑−𝑠2 in R𝑑, which is

1

𝑐𝑑
(−Δ𝑥)𝐺(𝑥, 𝑦) = 𝛿𝑦 . (21)

Definition 10. For a kernel 𝐺 and a measure 𝜌, we define the associated potential by 𝜑𝐺𝜌 B 𝐺 ★𝜇 when it is
well-defined.

When there is no ambiguity on the kernel 𝐺 or the measure 𝜌 we will only write 𝜑 instead of 𝜑𝐺𝜌
In the Coulomb case, this potential corresponds to the electric field generated by a distribution 𝜇 of

electric charges.

Proposition 4 (Coulomb kernel and Laplace equation). Let 𝐺 be the Coulomb kernel in R𝑑 and 𝜇 be a

positive measure. Then, the associated potential 𝜑𝜇 satisfies the equation

1

𝑐𝑑
(−Δ)𝜑𝜇 = 𝜇 . (22)

This equation proves that for the Coulomb kernel, the potential 𝜑𝜇 is harmonic outside of the

support of 𝜇, and superharmonic in R𝑑, see [28].

The Energy Distance kernel. The Energy Kernel is independent of the dimension and equal to

𝑘−1(𝑥, 𝑦) = −∥𝑥 − 𝑦∥. It has the advantage that any measure with a finite first moment has finite

internal energy, where for the Coulomb kernel additional regularity is required, e.g. finite 𝐻−1 norm.

Proposition 5 (Convexity on probability measures). Let G be the Coulomb or Energy Distance kernel,

and 𝜈 ∈ 𝒫(R𝑑) with finite 𝐺-energy. Then the associated functional 𝐸𝜈(·) = 𝐸(· − 𝜈) is a quadratic

functional (in𝜇) which is strictly convex (for the convex structure on 𝒫(R𝑑)) on its domain. It is positive

and equal to 0 if and only if𝜇 = 𝜈. Moreover, the application (𝜇, 𝜈) ↦→ 𝑀𝑀𝐷(𝜇, 𝜈) B
√
𝐸(𝜇 − 𝜈)defines

a distance on probability measures with finite 𝐺-energy

1.4 Extension to Riemannian manifolds
We are interested in compact manifolds without boundaries since this case avoids possible loss of

mass at infinity in the gradient flow. Coulomb-like interactions between probability measures can be

defined by fundamental solution of the Laplace equation on some Riemannian manifolds. We will

use the formalism developed in [14] and [32] and results from [3].

Let (𝑀, 𝑔) be a compact oriented n-dimensional Riemannian manifold without boundary where

𝑔 is the Riemannian metric. We denote 𝜋 its volume form, assuming 𝜋(𝑀) = 1 and Δ𝑀 : 𝒞∞(𝑀) →
𝐶∞(𝑀) is the associated Laplace-Beltrami operator.

Definition 11 (Green’s function on a manifold). A kernel 𝐺 : 𝑀 ×𝑀 →] −∞,+∞] is said to be a Green
function if it is symmetric, if 𝐺𝑥 : 𝑦 ∈ 𝑀 ↦→ 𝐺(𝑥, 𝑦) is integrable for all 𝑥 ∈ 𝑀 and if it satisfies the Laplacian
equation

−Δ𝑀𝐺𝑥 = −𝛿𝑥 + 1 , (23)
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in a distributional sense.
We have the following existence result, given in [3, Chapter 4].

Proposition 6. Let (𝑀, 𝑔) as defined previously. Then, equation (23) admits a unique solution, up to

an additive constant.

In particular, if 𝜇 is a measure on 𝑀, we can define the potential 𝜑𝜇(𝜇)(𝑥) B
∫
𝐺(𝑥, 𝑦)𝑑𝜇(𝑦),

then in the sense of distributions Δ𝑀𝜑𝜇 = −𝜇 + 𝜇(𝑀)𝜋. In particular, 𝐺 is bounded from below

and

∫
𝐺(𝑥, 𝑦)𝑑𝜋(𝑦) does not depend on 𝑥. We denote by 𝐺 the unique Green function such as∫

𝐺(𝑥, 𝑦)𝑑𝜋(𝑦) = 0. The Green’s function 𝐺 is lower semicontinuous, so that the functional defined

by

𝒲(𝜇) =
∬

𝑀×𝑀
𝐺(𝑥, 𝑦)𝑑𝜇(𝑥)𝑑𝜇(𝑦) (24)

is lower semi-continuous for the weak topology. Moreover, the kernel 𝐺 is 𝒞∞
outside of the diagonal

𝒟 B {(𝑥, 𝑥) | 𝑥 ∈ 𝑀}. Now, let 𝜈 be a density probability measure on 𝑀. The energy functional is

defined similarly

𝐸𝜈(𝜇) B
1

2

∬
𝑀×𝑀

𝐺(𝑥, 𝑦)𝑑(𝜇 − 𝜈)⊗2(𝑥, 𝑦) . (25)

This energy is lower semi-continuous, positive and equal to 0 if and only if 𝜇 = 𝜈. As in the Euclidean

case, the square root is a distance between 𝜇 and 𝜈, see [11, 14].

2 Polyak-Lojasiewicz Inequality and exponential convergence

Our goal is to prove that a Wasserstein gradient flow curve 𝜇𝑡 converges to the target 𝜈. In finite

dimension, a standard condition is the Polyak-Lojasiewicz inequality.

Definition 12. Let 𝑓 : R𝑑 → R be a differentiable function. It is said to satisfy the Polyak-Lojasiewicz with
parameter 𝜆 > 0 if

1

2

∥∇ 𝑓 ∥2

2
≥ 𝜆( 𝑓 (𝑥) − 𝑓 ∗) . (26)

This condition is actually weaker than a lot of other classical conditions, such as strong convexity,

weak strong convexity, or the restricted secant inequality (see [21] for a review). With this condition,

an exponential convergence rate to the global minimum can be shown.

For our purpose, the key point of the Polyak-Lojasiewicz inequality is that it applies to more general

settings such as Riemannian manifolds. Importantly, it can also be applied to the space of probability

measures endowed with the Wasserstein metric. Let us give an example: As is well-known, the log-

Sobolev inequality can be interpreted as a Polyak-Lojasiewicz inequality and exponential convergence

of the solution of the Fokker-Planck equation to the equilibrium measure can be formulated in this

language.

Proposition 7. Let 𝑓 : R𝑑 → R with L-Lipschitz continuous gradient. We suppose the optimisation

problem

𝑓 ∗ = min

𝑥∈R𝑑
𝑓 (𝑥) (27)

has non-empty solution set Ω and that 𝑓 satisfies the Polyak-Lojasiewicz inequality with parameter

𝜆. Then both implicit and explicit gradient methods with step size 𝜏 ≤ 1/𝐿 have global exponential

convergence rate to the global minimum. Moreover, the corresponding equation ¤𝑦 = −∇ 𝑓 (𝑦) has

exponential convergence rate to a global minimizer.

Note that the important point here is the assumption of 𝐿-smoothness of the function.
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2.1 Polyak-Lojasiewicz inequality for Wasserstein gradient flows
To define a analog inequality in Wasserstein spaces we need the following chain rule, see [1, Prop

10.3.18].

Proposition 8. Let ℱ be a proper lower semicontinuous and 𝜇𝑡 be an absolutely continuous curve

with tangent velocity 𝑣𝑡 . We suppose ℱ ◦𝜇 is approximately differentiable in time almost everywhere

and that for all t the set 𝜕ℱ (𝜇𝑡) of vector field subdifferentials 𝜉 ∈ 𝐿2(𝜇𝑡) (see def 4) is non-empty.

Then for any 𝜉𝑡 ∈ 𝜕ℱ (𝜇𝑡)
𝑑

𝑑𝑡
ℱ (𝜇𝑡) =

∫
𝑣𝑡 · 𝜉𝑡𝑑𝜇𝑡 . (28)

For regular enough functionals, for example if ℱ is a 𝜆-convex functionals and 𝜇𝑡 a Wasserstein

gradient flow of ℱ , we have 𝑣𝑡 = −∇ 𝛿ℱ
𝛿𝜇 (𝜇𝑡) and ∇ 𝛿ℱ

𝛿𝜇 (𝜇𝑡) ∈ 𝜕ℱ (𝜇𝑡) so that

𝑑

𝑑𝑡
ℱ (𝜇𝑡) = −





∇ 𝛿ℱ
𝛿𝜇

(𝜇𝑡)




2

𝐿2(𝜇𝑡 )
. (29)

This motivates our definition of the Polyak-Lojasiewicz in Wasserstein spaces.

Definition 13. Let ℱ be a function with the same conditions than proposition 8. We suppose its global minimum
is equal to 0. Let 𝜇𝑡 be an absolutely continuous curve. The functional ℱ is said to satisfy a Polyak-Lojasiewicz
with parameter 𝜆 > 0 along the curve 𝜇𝑡 if



∇ 𝛿ℱ

𝛿𝜇
(𝜇𝑡)





2

𝐿2(𝜇𝑡 )
≥ 𝜆ℱ (𝜇𝑡) (30)

If this inequality is verified, it leads thanks to equation (29) and Gronwall’s lemma

ℱ (𝜇𝑡) ≤ ℱ (𝜇0)𝑒−𝜆𝑡 , (31)

proving global exponential convergence.

2.2 Regularity and Polyak-Lojasiewicz inequality for the Energy functional
In this section, we will show how regularity of the solution of the Wasserstein gradient flow is linked

to the Polyak-Lojasiewicz inequality in the setting of compact riemannian manifolds.

When the subdifferential of 𝐸𝜈 is non-empty, we can characterize it, using the same ideas than

in [7, Prop 4.3.1] . The proof is essentially the same for both Energy Distance in the Euclidean space

and Coulomb kernels both in the Euclidean space and on Riemannian manifolds, but crucial parts

about avoiding the singularity rely on different arguments (see Appendix).

Lemma 1. Let 𝜇 be a probability measure such that 𝜕𝐸𝜈(𝜇) is non-empty. Then the vector field

∇ 𝛿𝐸𝜈
𝛿𝜇 (𝜇) = (∇𝐺)★ (𝜇 − 𝜈) verifies 



∇ 𝛿𝐸𝜈

𝛿𝜇
(𝜇)






𝐿2(𝜇)

≤ |𝜕𝐸𝜈 |(𝜇) . (32)

Then we need a regularity result about our functional, which is proved in the Appendix.

Lemma 2. Let 𝜇, 𝜈 ∈ 𝒫𝑟
2

be density measures regarding the Lebesgue measure or the volume measure

on a manifold. Then the functional 𝐸𝜈 has non-empty subdifferential, in the sense of definition 5.

Moreover, ∇ 𝛿𝐸𝜈
𝛿𝜇 (𝜇) ∈ 𝜕𝐸𝜈(𝜇).

Now, combining these lemmas, the element of minimal norm of 𝜕ℱ (𝜇𝑡) is exactly the time depen-

dent vector field 𝑣𝑡 = ∇𝜑𝑡 , which drives mass transfer along time for the curve 𝜇𝑡 . In other words, the

following property is true.
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Proposition 9. Let 𝜇𝑡 be a solution of equation (2) in a weak sense. We suppose 𝜇𝑡 ∈ 𝒫𝑟
2

at all times.

Then it is a gradient flow of the functional 𝐸𝜈 starting from 𝜇0, according to definition 6.

We are able to formulate a condition that implies a Polyak-Lojasiewicz inequality in a compact

manifold.

Proposition 10 (Polyak-Lojasiewicz inequality). Let (𝑀, 𝑔) be a closed Riemannian manifold and 𝜇, 𝜈
be two measures with density w.r.t. volume measure on 𝑀, such that log(𝜇) is bounded below. Then,

it holds

𝐸𝜈(𝜇) ≤
1

𝜇





∇ 𝛿𝐸𝜈

𝛿𝜇
(𝜇)





2

𝐿2(𝜇)
, (33)

where 𝜇 is a lower bound for 𝜇 on 𝑀.

Proof. The proof is straightforward since the inequality is exactly the following∫
𝑀

|∇𝜑𝜇−𝜈(𝑥)|2 𝑑vol(𝑥) ≤ 1

𝜇

∫
𝑀

|∇𝜑𝜇−𝜈(𝑥)|2 𝑑𝜇(𝑥) , (34)

where vol is the volume measure on 𝑀. The inequality follows from 𝜇𝑑vol ≤ 𝜇. □

However, in a non compact setting, a probability measure such that log(𝜇) is bounded from below

does not exist. The question of formulating a condition implying a Polyak-Lojasiewicz inequality in

the euclidean space remains an open question.

2.3 Exponential convergence for globally regular data
First we start with a stability result, where regularity of the density implies a global Polyak-Lojasiewicz

inequallity.

Proposition 11 (Stability of Polyak-Lojasiewicz condition). Let 𝜇0 , 𝜈 be two 𝒞1
densities on 𝑀 such

that log(𝜇0) and log(𝜈) are bounded in 𝐿∞. Then if the associated equation (2) admits a continuous

density, it verifies

min(min𝜇0 ,min 𝜈) ≤ 𝜇𝑡(𝑥) ≤ max(max𝜇0 ,max 𝜈) (35)

Sketch of proof. We use the regularity and an optimality argument. Let us define 𝑥(𝑡) B arg min 𝜇𝑡(𝑥)
and 𝑥(𝑡) B arg max 𝜇𝑡(𝑥). As the manifold is closed and 𝜇𝑡 is 𝒞1

we get

∇𝜇𝑡(𝑥(𝑡)) = ∇𝜇𝑡(𝑥(𝑡)) = 0 . (36)

Moreover, using the regularity we have

𝜕𝑡𝜇𝑡 = −∇ · (𝜇𝑡𝑣𝑡) (37)

= −𝑣𝑡 · ∇𝜇𝑡 − 𝜇𝑡∇ · 𝑣𝑡 (38)

𝜕𝑡𝜇𝑡 = −𝑣𝑡 · ∇𝜇𝑡 − 𝜇𝑡(𝜇𝑡 − 𝜈) (39)

(40)

Instantiating the previous inequality at 𝑥(𝑡) for example we get

𝜕𝑡𝜇𝑡(𝑥(𝑡)) = (min𝜇𝑡)𝜈(𝑥(𝑡)) − (min𝜇𝑡)2 . (41)

After a brief study of the phase diagram (see the proof of lemma 3) we get our result. A similar

argument applies to 𝑥(𝑡). □

We will later prove a stronger result independently: we show in the proof of lemma 3 that Hölder

continuity is actually enough to guaranty the stability of the condition. Under this regularity assump-

tion, it is direct to prove that both exponential convergences under the
¤𝐻−1

-norm and Wasserstein 𝐿2

distance hold.
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Theorem 3 (Exponential convergence). Let 𝜇, 𝜈 be two measures with continuous densities with

bounded logarithm on a closed Riemannian manifold. If the density of the curve 𝜇𝑡 generated

by the gradient flow of 𝐸𝜈 is 𝐶1

𝑡 ,𝑥 in both time and space, then exponential convergence of 𝜇 to 𝜈 holds

in the two following ways {
𝐸𝜈(𝜇𝑡) ≤ 𝐸𝜈(𝜇0)𝑒−𝜆𝑡
𝑊2

2
(𝜇𝑡 , 𝜈) ≤ 4

𝜆𝐸𝜈(𝜇0)𝑒−𝜆𝑡 ,
(42)

where 𝜆 = min(𝜇0 , 𝜈).

Proof. The proof is a straightforward application of the Polyak-Lojasiewicz inequality. □

We just reduced this global convergence problem to a regularity problem. In the next section, we

prove global existence of Hölder continuous solutions if the initial and target densities are Hölder

continuous.

2.4 Well Posedness in Hölder spaces
In this section we consider solutions of the PDE{

𝜕𝑡𝜇𝑡 + ∇ · (𝜇𝑡𝑣𝑡) = 0

𝑣𝑡 B −∇𝐺 ★ (𝜇𝑡 − 𝜈) .
(43)

The velocity vector field 𝑣𝑡 verifies ∇ · 𝑣𝑡 = 𝜇𝑡 − 𝜈 . Let us consider a solution 𝜇𝑡 of equation (43) on

an open interval ]0, 𝑇[. According to definition 2, it is an absolutely continuous curve associated with

the time dependent vector field 𝑣𝑡 := ∇𝜑, where Δ𝜑𝑡 = 𝜇𝑡 − 𝜈. If 𝜇0 has a density, 𝜇𝑡 also ha a density

at least for small times.

2.4.1 In the Euclidean space. This subsection is devoted to the proof of the following theorem

Theorem 4. Let 𝜇0 and 𝜈 be Hölder continuous densities with a compact support. Then equation (2)

admits a unique global solution 𝜇𝑡 that is Hölder continuous at all time.

We use techniques from [6] and adapt them to our case. The standard technique is to rewrite the

problem in Lagrangian coordinates, following the particle flow and using ODE results. However, long

time existence follows from the fact that one can write an explicit evolution equation for a quantity

that involves the jacobian of the map, and this equation resembles to

Let us fix notations. We denote 𝐺 the Coulomb kernel, which is repulsive and a solution of

Δ𝐺 = −𝛿. We consider the particle flow 𝜓𝑡 defined by 𝜓0 = Id and

𝑑

𝑑𝑡
𝜓𝑡 = 𝑣𝑡 ◦ 𝜓𝑡 . (44)

We consider the evolution of the time dependent function 𝑓𝑡 B 𝜇𝑡 ◦ 𝜓𝑡 . As 𝜇𝑡 = 𝑓𝑡 ◦ 𝜓−1

𝑡 , the

existence of 𝜇𝑡 is linked to the existence of 𝑓𝑡 and 𝜓𝑡 Hölder solutions to the system. This dependance

will be made precise in lemma 4.

We can rewrite the particle flow equation (44), for 𝛼 ∈ R𝑑

𝑑

𝑑𝑡
𝜓𝑡(𝛼) = 𝑣𝑡 ◦ 𝜓𝑡(𝛼) = −

∫
∇𝐺(𝜓𝑡(𝛼) − 𝑦)(𝜇𝑡 − 𝜈)(𝑦)𝑑𝑦

𝑑

𝑑𝑡
𝜓𝑡(𝛼) = −

∫
∇𝐺(𝜓𝑡(𝛼) − 𝜓𝑡(𝛼′))det(𝑑𝜓𝑡(𝛼′))𝜇𝑡(𝜓𝑡(𝛼′))𝑑𝛼′ +

∫
∇𝐺(𝜓𝑡(𝛼) − 𝑦)𝜈(𝑦)𝑑𝑦 .

Let us note 𝐽𝑡(𝛼) := det(𝑑𝜓𝑡(𝛼)) and remark
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𝑑

𝑑𝑡
𝐽𝑡(𝛼) = 𝐽𝑡(𝛼)(𝜇𝑡 − 𝜈) ◦ 𝜓𝑡(𝛼) , (45)

so that

𝑑

𝑑𝑡
[𝑡 ↦→ 𝐽𝑡(𝛼)𝜇𝑡(𝜓𝑡(𝛼))] = 0 , (46)

and as 𝐽0(𝛼) = 1 we get 𝐽𝑡(𝛼)𝜇𝑡(𝜓𝑡(𝛼)) = 𝜇0(𝛼) . We end up with the Lagrangian formulation of the

flow

𝑑

𝑑𝑡
𝜓𝑡(𝛼) = −

∫
∇𝐺(𝜓𝑡(𝛼) − 𝜓𝑡(𝛼′))𝜇0(𝛼)𝑑𝛼 +

∫
∇𝐺(𝜓𝑡(𝛼) − 𝑦)𝜈(𝑦)𝑑𝑦 = 𝐹(𝜓𝑡(𝛼)) . (47)

We solve this equation in the Banach space ℬ defined by ℬ B
{
𝜓 : R𝑑 → R𝑑 | ∥𝜓∥1,𝛾 < ∞

}
, where

∥𝜓∥1,𝛾 := |𝜓(0)| + ∥𝑑𝜓∥∞+ |𝑑𝜓 |𝛾 with | · |𝛾 the Hölder semi-norm. We can state our first local existence

result.

Proposition 12. Let 𝜇0 and 𝜈 be density measures in ℬ with compact support. Then equation (47)

with initial condition 𝜓0 = 𝐼𝑑 admits a unique solution on a maximal time interval [0, 𝑇[. Either 𝑇 is

infinite either the Banach norm ∥𝜓𝑡 ∥1,𝛾 blows up as 𝑡 → 𝑇.

Proof. As 𝐹 is Lipschitz (see [6] and [24, Chap 4]) we can use the Picard theorem in Banach space to

prove the result. □

Now let us prove theorem 4, that is 𝑇 = +∞ in the preceding proposition. To show that 𝑇 = ∞ we

will suppose 𝑇 < ∞ in the whole following discussion and show that ∥𝜓𝑡 ∥1,𝛾 is bounded uniformly

in time on the interval [0, 𝑇[. In [6], an explicit formula is found for 𝑓𝑡 , which can not be done in our

case. However we are able to control the evolution of 𝑓𝑡 .

Lemma 3. The quantity ∥ 𝑓𝑡 ∥∞ is uniformly bounded on [0, 𝑇[.

Proof. We can write

∇ · (𝑣𝑡𝜇𝑡) = 𝜇𝑡∇ · 𝑣𝑡 + 𝑣𝑡 · ∇𝜇𝑡 = 𝜇2

𝑡 − 𝜇𝑡𝜈 + 𝑣𝑡 · ∇𝜇𝑡 , (48)

so that we get

𝑑

𝑑𝑡
𝑓𝑡(𝛼) = 𝜕𝑡𝜇𝑡(𝜓𝑡(𝛼)) + ∇𝜇𝑡(𝜓𝑡(𝛼)) · 𝑣𝑡(𝜓𝑡(𝛼)) (49)

= −∇ · (𝑣𝑡𝜇𝑡)(𝜓𝑡(𝛼)) + ∇𝜇𝑡(𝜓𝑡(𝛼)) · 𝑣𝑡(𝜓𝑡(𝛼)) (50)

𝑑

𝑑𝑡
𝑓𝑡(𝛼) = 𝑓𝑡(𝛼)𝜈(𝜓𝑡(𝛼)) − 𝑓 2

𝑡 (𝛼) . (51)

Even if 𝜈◦𝜓𝑡 is of course not constant, this equation, that looks like a logistic equation, is well behaved.

We can study its phase diagram. First, if 𝑓0 is a positive function then 𝑓𝑡 will be positive too. Moreover,

if 𝑓𝑡(𝛼) > ∥𝜈∥∞ then
𝑑
𝑑𝑡
𝑓𝑡(𝛼) is negative, so 𝑡 ↦→ 𝑓𝑡(𝛼) is locally decreasing. This shows for all 𝛼 ∈ R𝑑

min(min 𝑓0 ,min 𝜈) ≤ 𝑓𝑡(𝛼) ≤ max(∥ 𝑓0∥∞ , ∥𝜈∥∞) . (52)

□

This control allows us to bound the Holder norm by a quantity that depends on 𝜓𝑡 .

Lemma 4. Let 𝜇𝑡 be a solution defined as in proposition 12, where 𝜈 ∈ 𝐿∞ verifies |𝜈 |𝛾 < ∞. Then

|𝜇𝑡 |𝛾 ≤ 𝐶∥𝑑𝜓𝑡 ∥𝛾∞
(∫ 𝑡

0

(1 + ∥𝑑𝜓−1

𝑠 ∥𝛾∞)𝑑𝑠
)

(53)

for some positive constants 𝐶 > 0.
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Proof. As 𝜇𝑡 = 𝑓𝑡 ◦ 𝜓−1

𝑡 , using that | 𝑓 ◦ 𝑔 |𝛾 ≤ | 𝑓 |𝛾∥𝑑𝑔∥𝛾∞ for general functions 𝑓 , 𝑔, we get the first

estimate

|𝜇𝑡 |𝛾 ≤ | 𝑓𝑡 |𝛾∥𝑑𝜓−1

𝑡 ∥𝛾∞ . (54)

Now, to control | 𝑓𝑡 |𝛾, we can take the Holder semi norm of equation (51), using the fact that 𝜈 is bounded

and Holder continuous, that ∥ 𝑓𝑡 ∥∞ is bounded, and the property | 𝑓 𝑔 |𝛾 ≤ | 𝑓 |𝛾∥𝑔∥∞ + ∥ 𝑓 ∥∞ |𝑔 |𝛾 to get

𝑑

𝑑𝑡
| 𝑓𝑡 |𝛾 ≤ | 𝑓𝑡 · 𝜈 ◦ 𝜓𝑡 | + | 𝑓 2

𝑡 |𝛾 (55)

≤ | 𝑓𝑡 |𝛾∥𝜈 ◦ 𝜓𝑡 ∥∞ + ∥ 𝑓𝑡 ∥∞ |𝜈 ◦ 𝜓𝑡 |𝛾 + 2∥ 𝑓𝑡 ∥∞ | 𝑓𝑡 |𝛾 (56)

≤ (∥𝜈∥∞ + 2∥ 𝑓𝑡 ∥∞)| 𝑓𝑡 |𝛾 + ∥ 𝑓𝑡 ∥∞ |𝜈 |𝛾∥𝑑𝜓𝑡 ∥𝛾∞ (57)

𝑑

𝑑𝑡
| 𝑓𝑡 |𝛾 ≤ 𝐶1 | 𝑓𝑡 |𝛾 + 𝐶2∥𝑑𝜓𝑡 ∥𝛾∞ , (58)

for some positive constants 𝐶1 , 𝐶2. Next we are able to apply Gronwall’s lemma with time dependent

terms, stating that if 𝑦 is differentiable and 𝑎, 𝑏 are continuous functions such that ¤𝑦 ≤ 𝑎𝑦 + 𝑏, then

𝑦(𝑡) ≤ 𝑦(0)𝑒
∫ 𝑡

0

𝑎(𝑠)𝑑𝑠 +
∫ 𝑡

0

𝑏(𝑠)𝑒
∫ 𝑡

0

𝑎(𝑢)𝑑𝑢−
∫ 𝑠

0

𝑎(𝑢)𝑑𝑢𝑑𝑠. This provides, as 𝑡 < 𝑇 < ∞

| 𝑓𝑡 |𝛾 ≤ | 𝑓0 |𝛾 exp(𝐶1𝑡) +
∫ 𝑡

0

𝐶2∥𝑑𝜓𝑠 ∥𝛾∞ exp(𝐶1(𝑡 − 𝑠))𝑑𝑠 ≤ 𝐶

(
1 +

∫ 𝑡

0

∥𝑑𝜓𝑠 ∥𝛾∞𝑑𝑠
)
, (59)

ending the proof. □

Differentiating the particle equation (44) and taking the 𝐿∞ norm we get

𝑑

𝑑𝑡
∥𝑑𝜓𝑡 ∥∞ ≤ ∥𝑑𝑣𝑡 ∥∞∥𝑑𝜓𝑡 ∥∞ , (60)

which gives by Gronwall’s lemma

∥𝑑𝜓𝑡 ∥∞ ≤ 𝐶 exp

∫ 𝑡

0

∥𝑑𝑣𝑠 ∥∞𝑑𝑠 . (61)

Let us remark that 𝜓−1

𝑡 admits a similar bound.

Lemma 5. Let 𝜓−1

𝑡 be defined as the inverse flow of 𝜑𝑡 . Then the majoration above is true for 𝜓−1

𝑡 , i.e.

for some constant 𝐶 > 0

∥𝑑𝜓−1

𝑡 ∥∞ ≤ 𝐶 exp

∫ 𝑡

0

∥𝑑𝑣𝑠 ∥∞𝑑𝑠 . (62)

Proof. Let 𝛼 := 𝜓𝑠(𝑦) for some 𝑦 ∈ R𝑑 and 𝑠 > 0. Then if 0 ≤ 𝑡 < 𝑠, we get that 𝛼 ∈ 𝜓𝑡(R𝑑), as

𝛼 = 𝜓𝑡 ◦ 𝜓𝑠−𝑡(𝑦) by semi-group property. We get 𝜓−1

𝑡 (𝛼) = 𝜓𝑠−𝑡(𝑦) = 𝜓𝑠−𝑡 ◦ 𝜓−1

𝑠 (𝛼). Differentiating

both sides of the equation in time we get

𝜕𝑡𝜓
−1

𝑡 (𝛼) = 𝜕𝑡𝜓𝑠−𝑡 ◦ 𝜓−1

𝑠 (𝛼) = −𝑣𝑠−𝑡 ◦ 𝜓𝑠−𝑡 ◦ 𝜓−1

𝑠 (𝛼) = −𝑣𝑠−𝑡 ◦ 𝜓−1

𝑡 (𝛼) . (63)

We get the inequality

𝑑

𝑑𝑡
∥𝑑𝜓−1

𝑡 ∥∞ ≤ ∥𝑑𝑣𝑠−𝑡 ∥∞∥𝑑𝜓−1

𝑡 ∥∞ , (64)

so that by Grönwall lemma

∥𝑑𝜓−1

𝑡 ∥∞ ≤ 𝐶 exp

(∫ 𝑡

0

∥𝑑𝑣𝑠−𝑢 ∥∞𝑑𝑢
)
. (65)
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We can choose 𝑠 = 𝑡 in the previous inequality to get

∥𝑑𝜓−1

𝑡 ∥∞ ≤ 𝐶 exp

(∫ 𝑡

0

∥𝑑𝑣𝑢 ∥∞𝑑𝑢
)
. (66)

□

With this result, we managed to bound from above all of our quantities by functions of 𝑑𝑣𝑡 .
On the derivative of our velocity field. The following arguments are found in [24, Sections 2.4.2,3].

The kernel 𝐺2 B 𝑑𝑥∇𝐺 is homogeneous of degree -N. Because of this, the singularity at the diagonal

cannot be integrated. However it has mean-value zero and defines a singular integral operator through

the convolution

𝐺2 ★ 𝑓 (𝑥) = 𝑃𝑉
∫

𝐺2(𝑥, 𝑦) 𝑓 (𝑦)𝑑𝑦 B lim

𝜀→0

∫
𝑑(𝑥,𝑦)>𝜀

𝐺2(𝑥, 𝑦) 𝑓 (𝑦)𝑑𝑦 . (67)

Using the same arguments than in [24, Prop 2.20] we prove that we actually have for a velocity field

defined by ∇𝐺 ★ 𝑓 with 𝐺 the Coulomb kernel and 𝑓 ∈ 𝒞𝛾(R𝑑;R𝑑)

𝑑𝑣𝑡(𝑥) = 𝑃𝑉
∫

𝐺2(𝑥, 𝑦) 𝑓 (𝑦)𝑑𝑦 . (68)

The following lemma, found in [24, Lemma 4.5 and 4.6] and [6, Lemma 2.2], is written in terms of

principal value integral in [6] but used in the following form.

Lemma 6. Let 𝑓 ∈ 𝒞𝛾(R𝑑;R𝑑) be a compactly supported function in a ball of radius 𝑅. We define

𝑣 B ∇𝐺 ★ 𝑓 . Then, for some positive constant 𝐶 independent of 𝑓 and 𝑅 we have

∥𝑑𝑣∥∞ ≤ 𝐶

[
| 𝑓 |𝛾𝜀𝛾 + max

(
1; log

(
𝑅

𝜀

))
∥ 𝑓 ∥∞

]
;∀𝜀 > 0 , (69)

|𝑑𝑣 |𝛾 ≤ 𝐶 | 𝑓 |𝛾 . (70)

To use it we need to confine the support of 𝜇𝑡 . First we are able to bound the velocity field 𝑣𝑡 .

Lemma 7. Let 𝜇𝑡 be a solution defined as in proposition 12 and 𝑣𝑡 the associated velocity field. Then

for some constant 𝐶 > 0 only depending on the dimension

∥𝑣𝑡 ∥∞ ≤ 𝐶(∥𝜇𝑡 − 𝜈∥∞ + ∥𝜇𝑡 − 𝜈∥1) . (71)

Proof. We write for 𝑥 ∈ R𝑑, knowing |∇𝐺(𝑥)| is proportional to 𝑥𝑑−1

|𝑣𝑡(𝑥)| ≤
[∫

𝐵(0,1)
+

∫
𝐵(0,1)𝑐

]
|∇𝐺(𝑥 − 𝑦)(𝜇𝑡 − 𝜈)(𝑦)|𝑑𝑦 (72)

≤ ∥𝜇𝑡 − 𝜈∥∞
∫
𝐵(0,1)

|∇𝐺(𝑥 − 𝑦)|𝑑𝑦 +
∫
𝐵(0,1)𝑐

|𝜇𝑡 − 𝜈 |(𝑦)𝑑𝑦 (73)

|𝑣𝑡(𝑥)| = 𝐶(∥𝜇𝑡 − 𝜈∥∞ + ∥𝜇𝑡 − 𝜈∥1) . (74)

□

Lemma 8. Let 𝜇𝑡 be a solution defined as in proposition 12. Let us suppose that the support of 𝜇0 is

contained in the ball of center 0 and radius 𝑅0 > 0. Then there exists a positive constant 𝐶 > 0 such

that the support of 𝜇𝑡 is contained in 𝑅(𝑡) := 𝑅0 + 𝐶𝑡.

Proof. We use the inequality from lemma 7. As ∥𝜇𝑡 ∥∞ = ∥ 𝑓𝑡 ∥∞ ≤ 𝐶 by lemma 3, the first term is

uniformly bounded in [0, 𝑇[. As 𝜇𝑡 and 𝜈 are probability densities, so is the second term. This shows

the result. □
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As we proved that 𝜇𝑡 has bounded support, we can use the first estimate from lemma 6 with

𝜀 =
[
∥𝜇𝑡 − 𝜈∥∞/|𝜇𝑡 − 𝜈 |𝛾

]
1/𝛾

to get the existence of 𝐶 independent of 𝑡 such as

∥𝑑𝑣𝑡 ∥∞ ≤ 𝐶

[
∥𝜇𝑡 − 𝜈∥∞ + max

(
1, log

(
𝑅(𝑡)|𝜇𝑡 − 𝜈 |1/𝛾𝛾

∥𝜇𝑡 − 𝜈∥1/𝛾
∞

)
∥𝜇𝑡 − 𝜈∥∞

)]
. (75)

We know thanks to lemma 3 that ∥𝜇𝑡 −𝜈∥∞ is bounded, and by lemma 8, as𝑇 < ∞ we get the existence

of 𝐶1 , 𝐶2 > 0 such that

∥𝑑𝑣𝑡 ∥∞ ≤ 𝐶1 + 𝐶2 log(|𝜇𝑡 − 𝜈 |𝛾). (76)

Now we are ready to prove our first real boundedness result.

Proposition 13. The quantity ∥𝑑𝑣𝑡 ∥∞ is uniformly bounded on the time interval [0, 𝑇[.

Proof. Injecting the inequality from lemma 4 into (76), we get the existence of constants such that

∥𝑑𝑣𝑡 ∥∞ ≤ 𝐴 + 𝐵 log(∥𝑑𝜓𝑡 ∥∞) + 𝐶 log

(∫ 𝑡

0

(1 + ∥𝑑𝜓−1

𝑠 ∥𝛾∞)𝑑𝑠
)
. (77)

We write, using inequality (62), the fact that 𝑠 ≤ 𝑡 in the integrals and that ∥𝑑𝑣𝑡 ∥∞ is a positive function

log

(∫ 𝑡

0

∥𝑑𝜓−1

𝑠 ∥𝛾∞𝑑𝑠
)
≤ 𝐶 log

(∫ 𝑡

0

𝛾 exp

(∫ 𝑠

0

∥𝑑𝑣𝑢 ∥∞𝑑𝑢
)
𝑑𝑠

)
(78)

≤ 𝐶 log

(∫ 𝑡

0

𝛾 exp

(∫ 𝑡

0

∥𝑑𝑣𝑢 ∥∞𝑑𝑢
)
𝑑𝑠

)
(79)

≤ 𝐶 log

(
𝛾𝑡 exp

(∫ 𝑡

0

∥𝑑𝑣𝑢 ∥∞𝑑𝑢
))

(80)

log

(∫ 𝑡

0

∥𝑑𝜓−1

𝑠 ∥𝛾∞𝑑𝑠
)
≤ 𝐶

(
log 𝑡 +

∫ 𝑡

0

∥𝑑𝑣𝑢 ∥∞𝑑𝑢
)
, (81)

and we get the final differential inequality

∥𝑑𝑣𝑡 ∥∞ ≤ 𝐶

(
1 +

∫ 𝑡

0

∥𝑑𝑣𝑠 ∥∞𝑑𝑠 + log(𝑡)
)
. (82)

Once again, Gronwall’s lemma applies to 𝑡 ↦→ ∥𝑑𝑣𝑡 ∥∞ and we obtain the existence of some constants

𝐶1 , 𝐶2 such that ∥𝑑𝑣𝑡 ∥∞ ≤ 𝐶1 exp(𝐶2𝑡) , showing the result as 𝑡 < 𝑇 < +∞. □

This immediately implies

Proposition 14. The quantities ∥𝑑𝜓𝑡 ∥∞, ∥𝑑𝜓−1

𝑡 ∥∞ and |𝜇𝑡 |𝛾 are uniformly bounded in time on [0, 𝑇[.

Proof. Using the fact that ∥𝑑𝑣𝑡 ∥∞ is uniformly bounded in [0, 𝑇[, inequalities (61), (62) and lemma 4

show the result. □

Finally, we can control our last term

Proposition 15. The quantity |𝑑𝜓𝑡 |𝛾 is uniformly bounded in [0, 𝑇[.

Proof. Differentiating the particle equation (44), taking the Hölder | · |𝛾 semi-norm and using the

preceding proposition with the second potential theory estimate from lemma 6 we get

𝑑

𝑑𝑡
|𝑑𝜓𝑡 |𝛾 ≤ |𝑑(𝑣𝑡 ◦ 𝜓𝑡)|𝛾∥𝑑𝜓𝑡 ∥∞ + ∥𝑑(𝑣𝑡 ◦ 𝜓𝑡)∥∞ |𝑑𝜓𝑡 |𝛾 (83)
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≤ |𝑑𝑣𝑡 |𝛾∥𝑑𝜓𝑡 ∥1+𝛾
∞ + ∥𝑑𝑣𝑡 ∥∞∥𝑑𝜓𝑡 ∥∞ |𝑑𝜓𝑡 |𝛾 (84)

≤ 𝐶1 |𝜇𝑡 |𝛾 exp

(
(1 + 𝛾)

∫ 𝑡

0

∥𝑑𝑣𝑠 ∥∞𝑑𝑠
)
+ 𝐶2 |𝑑𝜓𝑡 |𝛾 (85)

𝑑

𝑑𝑡
|𝑑𝜓𝑡 |𝛾 ≤ 𝐶1 + 𝐶2 |𝑑𝜓𝑡 |𝛾 . (86)

One last application of Gronwall’s lemma end the proof.

□

We just proved that if 𝑇 < ∞ and that a solution of problem (47) in the Banach space ℬ exists in

[0, 𝑇[, then the Banach norm ∥𝜓𝑡 ∥1,𝛾 is uniformly bounded on [0, 𝑇[. If the maximal time of existence

𝑇 verifies 𝑇 < ∞, we get a contradiction with the existence result 12, which states that if 𝑇 < ∞ a finite

time blowup of ∥𝜓𝑡 ∥1,𝛾 occurs. This proves theorem 4.

2.4.2 In a compact Riemannian manifold. This Lagrangian formulation allows to directly extend

our result on a complete closed Riemannian manifold (𝑀, 𝑔). Indeed, if we take 𝐺 to be the Coulomb

kernel on 𝑀, then the Lagrangian formulation (47) still holds. As Hölder regularity is a local property,

the functionnal 𝐹 is still locally Lipschitz on the Banach space

ℬ𝑀 :=
{
𝜓 : 𝑀 → 𝑇𝑀 | ∥𝜓∥1,𝛾 < ∞

}
, (87)

where |𝜓(0)| + ∥𝑑𝜓∥∞ + |𝑑𝜓 |𝛾 with ∥ · ∥𝒞0,𝛾
𝑀

the Hölder semi-norm on the manifold 𝑀, defined by

∥ 𝑓 ∥𝒞0,𝛾
𝑀

B sup

𝑥,𝑦∈𝑀

| 𝑓 (𝑥) − 𝑓 (𝑦)|
𝑑𝑀(𝑥, 𝑦)𝛾 . (88)

for scalar functions, and through parallel transport for tensors.

We get the existence of a flow 𝜓𝑡 , at least locally. The rest of the proof is similar, the main difference

being the equivalent of lemma 6 on closed manifolds.

Lemma 9. Let 𝑢 ∈ 𝒞𝛾(𝑀) on a closed manifold 𝑀. We consider the equation

Δ𝑀𝜑 = 𝑢 . (89)

where 𝑢 is Hölder continuous. Then, for some positive constant 𝐴, 𝐶 (independent of 𝑢) and all 𝜀 > 0

we have the Schauder estimates

∥𝜑∥2,∞ ≤ 𝐶

(
∥𝑢∥𝒞0,𝛾

𝑀

𝜀𝛾 + log

(
𝐴

𝜀

)
∥𝑢∥∞

)
, (90)

∥𝜑∥𝒞2,𝛾
𝑀

≤ 𝐶
(
∥𝑢∥𝒞0,𝛾

𝑀

+ ∥𝜑∥∞
)
. (91)

Proof of the first inequality. The proof of the first inequality is almost the same as in the Euclidean space.

We denote 𝐺2 the differential (in coordinates) of the gradient of 𝐺, i.e. 𝐺2 B 𝑑𝑥∇𝐺. Its singularity on

the diagonal behaves like the Coulomb kernel, meaning we have (see [3, Theorem 4.13.c])

𝐺2(𝑥, 𝑦) = 𝑂(1/𝑑𝑀(𝑥, 𝑦)𝑑) . (92)

Moreover, in Riemannian manifolds∫
𝑑𝑀 (𝑥,𝑦)>𝜀

𝑑𝑀(𝑥, 𝑦)−𝑑𝑑𝑦 = 𝑂(− log 𝜀) , (93)

and if 𝛼 < 𝑑 ∫
𝑑𝑀 (𝑥,𝑦)<𝜀

𝑑𝑀(𝑥, 𝑦)−𝛼𝑑𝑦 = 𝑂(𝜀𝑑−𝛼) . (94)
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We write

∥𝜑∥2,∞ =

(
𝑃𝑉

∫
𝑑(𝑥,𝑦)≤𝜀

+
∫
𝑑(𝑥,𝑦)>𝜀

)
𝐺2(𝑥, 𝑦) 𝑓 (𝑦)𝑑𝑦 = 𝐼1(𝑥) + 𝐼2(𝑥) . (95)

As

∫
𝐵
𝐺2(𝑥, 𝑦)𝑑𝑦 = 0 on metric balls, we get

|𝐼1(𝑥)| =
�����∫𝑑(𝑥,𝑦)≤𝜀 𝐺2(𝑥, 𝑦)( 𝑓 (𝑦) − 𝑓 (𝑥))𝑑𝑦

����� (96)

≤
∫
𝑑(𝑥,𝑦)≤𝜀

∥𝐺2(𝑥, 𝑦)∥ | 𝑓 ∥𝒞0,𝛾
𝑀

𝑑(𝑥, 𝑦)𝛾𝑑𝑦 (97)

≤ 𝐶 | 𝑓 ∥𝒞0,𝛾
𝑀

∫
𝑑(𝑥,𝑦)≤𝜀

𝑑𝑀(𝑥, 𝑦)−𝑑+𝛾𝑑𝑦 (98)

|𝐼1(𝑥)| ≤ 𝐶 | 𝑓 ∥𝒞0,𝛾
𝑀

𝜀𝛾 . (99)

For the second term

|𝐼2(𝑥)| =
∫
𝑑(𝑥,𝑦)>𝜀

𝐺2(𝑥, 𝑦) 𝑓 (𝑦)𝑑𝑦 (100)

≤ 𝐶∥ 𝑓 ∥∞
∫
𝑑(𝑥,𝑦)>𝜀

𝑑(𝑥, 𝑦)−𝑑𝑑𝑦 (101)

|𝐼2(𝑥)| ≤ 𝐶∥ 𝑓 ∥∞ log

(
𝐴

𝜀

)
. (102)

This proves the first estimate. □

Sketch of proof for the second inequality. The second estimate is proven, for a manifold embedded in the

Euclidean space , with standard Schauder theory inR𝑑 (see [3, 3.61]). We use local normal coordinates

for the Laplace-Beltrami operator. The bound can be used thanks to the following metric control of

the Hölder norm. We refer to the lemma below. □

Lemma 10. There exists 𝑟 > 0 and 𝐶 > 0 such that, if Ω ⊂ 𝑀 has diameter less than 𝑟, then if 𝑢 ∈ 𝒞2,𝛾

1

𝐶
∥𝑢∥𝒞𝑘,𝛾,Ω

𝐸𝑢𝑐𝑙

≤ ∥𝑢∥𝒞𝑘,𝛾
𝑀

≤ 𝐶∥𝑢∥𝒞𝑘,𝛾,Ω
𝐸𝑢𝑐𝑙

. (103)

In this inequality, ∥𝑢∥𝒞𝑘,𝛾,Ω
𝐸𝑢𝑐𝑙

denotes the Euclidean Hölder norm in Ω when considered as a subset of

R𝑑.

We now use these estimates to conclude the proof of global existence. In our case ∥𝜓𝑡 ∥2,∞ =

∥𝑑𝑣𝑡 ∥0,∞ and ∥𝜓𝑡 ∥𝒞2,𝛾
𝑀

= ∥𝑑𝑣𝑡 ∥𝒞0,𝛾
𝑀

. Note that in the second inequality, as the manifold 𝑀 is closed we

have ∥𝜓∥∞ ≤ 𝐶 for some positive constant since ∇𝜓 is bounded in 𝐿∞. We can use the first estimate

from lemma 9 with, once again, 𝜀 =
[
∥𝜇𝑡 − 𝜈∥∞/|𝜇𝑡 − 𝜈 |𝛾

]
1/𝛾

to get formula (76) on the manifold 𝑀.

This allows to bound ∥𝑑𝑣𝑡 ∥∞ in the same way as in the Euclidean space. To bound |𝑑𝑣𝑡 |𝛾, we use

the second inequality of the lemma. The principle of the proof is the same as in the Euclidean space,

equation (83) becomes

𝑑

𝑑𝑡
|𝑑𝜓𝑡 |𝛾 ≤ |𝑑(𝑣𝑡 ◦ 𝜓𝑡)|𝛾∥𝑑𝜓𝑡 ∥∞ + ∥𝑑(𝑣𝑡 ◦ 𝜓𝑡)∥∞ |𝑑𝜓𝑡 |𝛾 (104)

≤ |𝑑𝑣𝑡 |𝛾∥𝑑𝜓𝑡 ∥1+𝛾
∞ + ∥𝑑𝑣𝑡 ∥∞∥𝑑𝜓𝑡 ∥∞ |𝑑𝜓𝑡 |𝛾 (105)

≤ 𝐶1

(
|𝜇𝑡 |𝛾 + ∥𝑣𝑡 ∥∞

)
exp

(
(1 + 𝛾)

∫ 𝑡

0

∥𝑑𝑣𝑠 ∥∞𝑑𝑠
)
+ 𝐶2 |𝑑𝜓𝑡 |𝛾 (106)
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𝑑

𝑑𝑡
|𝑑𝜓𝑡 |𝛾 ≤ 𝐶1 + 𝐶2 |𝑑𝜓𝑡 |𝛾 . (107)

The rest of the proof is the same as in the Euclidean space. This proves the following theorem.

Theorem 5 (Global convergence for Hölder initial and target data). Let𝜇0 and 𝜈0 be Hölder continuous

probability densities on a closed manifold (𝑀, 𝑔). We consider the curve𝜇𝑡 global solution of equation

(43). We just proved it is defined and Hölder continuous at all time. Then{
𝐸𝜈(𝜇𝑡) ≤ 𝐸𝜈(𝜇0)𝑒−𝜆𝑡
𝑊2

2
(𝜇𝑡 , 𝜈) ≤ 4

𝜆𝐸𝜈(𝜇0)𝑒−𝜆𝑡 .
(108)

Proof. As log(𝜇𝑡) is globally bounded from below thanks to lemma 3, it verifies a global Polyak-

Lojasiewisz at all time. The rest of the proof is a simple application of this inequality. □

3 Critical points for the Wasserstein flow.

In the previous section, we studied some solutions of Wasserstein gradient flows, with regular initial

data. Our proofs heavily relied on regularity results that we were able to get thanks to regular initial

and target data. In this section we consider a given probability measure 𝜈 which is, depending on

the context, of finite energy for the Coulomb kernel or the Energy Distance kernel. We do not make

any other assumptions on 𝜈 and 𝜇0. Our goal is to study critical points for the Wasserstein flow of the

MMD energy 𝐸𝜈.

3.1 Critical points and lagrangian critical points for MMD Wasserstein gradient
flows

For an arbitrary function ℱ , we define critical points of the associated Wasserstein gradient flows.

Intuitively, they correspond to measures where the discrete JKO steps get stuck, in direct analogy with

gradient flows in finite dimensions.

Definition 14 (Wasserstein critical point). Let 𝜇 be a probability measure such that ℱ (𝜇) < +∞. we say
that 𝜇 is a Wasserstein critical point of ℱ if there exists 𝜏0 > 0 such that for all 𝜏 ≤ 𝜏0 we have

𝜇 ∈ arg min

𝜌∈𝒫(R𝑑)
ℱ (𝜌) + 1

2𝜏
𝑊2

2
(𝜇, 𝜌) . (109)

We study a sub-class of critical points, that we call Lagrangian critical points or displacement

critical points.

Definition 15 (Lagrangian Wasserstein critical point). A probability measure 𝜇 is said to be a Lagrangian
critical point for a functional ℱ if, on supp(𝜇) we have

∇ 𝛿ℱ
𝛿𝜇

(𝜇) = 0 . (110)

For 𝜆-convex functionnals, see [29], the two definitions are equivalent. In general settings, we

cannot deduce one from the other, as the quantity above may not even belong to 𝜕ℱ (𝜇). However, in

our cases, we can prove a partial result. Indeed, using the general differentiation result on JKO steps

given by proposition 2 we see that

Proposition 16. Let 𝜇 be a critical point as defined in 3.1. Then 0 ∈ 𝜕ℱ (𝜇) (where 0 is seen as an

element of 𝐿2(𝜇)).
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Combining this result and lemma 1, we see that if 𝜇 is a critical point of the 𝐺-energy from 𝜈 𝐸𝜈,

then the gradients of the potentials 𝐺★𝜇 and 𝐺★ 𝜈 are equal 𝜇 almost everywhere. This observation

is the principal argument allowing us to prove the results of this section.

3.2 Characterization of lagrangian critical points for MMD Wasserstein gradient
flows

The main result of this section is the following theorem.

Theorem 6. Let 𝜇 be a Lagrangian critical point for the MMD functional 𝐸𝐺𝜈 . Then

𝜇|Int(supp(𝜇)) = 𝜈|Int(supp(𝜇)) , (111)

in the two cases

1. if G is the Coulomb kernel,

2. if G is the Energy Distance kernel and 𝑑 is odd.

This formulation may seem surprising. We only get results in the interior of the support of our

measure, however it may be empty, or 𝜇 may be composite, being the sum of a density measure and a

singular measure for example. As the proof for the Energy Distance kernel is more involved, we will

focus on the first statement for now.

In both cases, the first variation of the 𝐸𝜈 is given by
𝛿𝐸𝜈
𝛿𝜇 (𝜇) = 𝜑𝜇 − 𝜑𝜈. For measures 𝜇 et 𝜈

with finite G-energy, that is for measures such as

∫
𝐺𝑑𝜇⊗2 ,

∫
𝐺𝑑𝜈⊗2 < +∞, this function is locally

integrable, and verifies in a distributional sense

∇ 𝛿𝐸𝜈

𝛿𝜇
(𝜇) = ∇𝜑𝜇 − ∇𝜑𝜈 . (112)

If 𝜇 is a Lagrangian critical point for the Coulomb kernel, this quantity is constant equal to 0, and

differentiating once again in a distributional sense we get that in the interior of the domain supp(𝜇),
𝑑𝜇 = 𝑑𝜈 by proposition 3, proving the first part of the theorem. The proof in the Energy Distance case

requires iterating Laplacians.

Proposition 17. Let 𝜇 be a probability measure on R𝑑. We consider the associated potential 𝜑𝜇(𝑥) B∫
−∥𝑥 − 𝑦∥𝑑𝜇(𝑦). Then, its distributional Laplacian exists almost everywhere and is given by

Δ𝜑𝜇(𝑥) B
∫

− 𝑑 − 1

∥𝑥 − 𝑦∥ 𝑑𝜇(𝑦) . (113)

Proof. Let 𝑔 ∈ 𝒞∞
𝑐 , and let us write 𝑃𝜇(𝑥) B

∫
− 𝑑−1

∥𝑥−𝑦∥ 𝑑𝜇(𝑦). We wish to prove ⟨𝜑𝜇 ,Δ𝑔⟩ = ⟨𝑃𝜇 , 𝑔⟩. The

main issue is that the function ∥ · −𝑦∥ admits a singularity in 𝑦. We circumvent this by integrating on

a small ball of radius 𝜀 > 0 near 𝑦, and by controlling the error term. The inversion of integrals in the

second equality comes from the Fubini theorem

⟨𝜑𝜇 ,∇𝑔⟩ B
∫

𝜑𝜇(𝑥)Δ𝑔(𝑥)𝑑𝑥 (114)

=

∫ (∫
−∥𝑥 − 𝑦∥Δ𝑔(𝑥)𝑑𝑥

)
𝑑𝜇(𝑦) (115)

=

∫ [(∫
𝐵(𝑦,𝜀)

−∥𝑥 − 𝑦∥Δ𝑔(𝑥)𝑑𝑥
)
+

(∫
R𝑑\𝐵(𝑦,𝜀)

−∥𝑥 − 𝑦∥Δ𝑔(𝑥)𝑑𝑥
)]
𝑑𝜇(𝑦) (116)

⟨𝜑𝜇 ,∇𝑔⟩ =
∫

[𝐼𝜀(𝑦) + 𝐽𝜀(𝑦)] 𝑑𝜇(𝑦) , (117)



22 S. BOUFADÈNE AND F.-X. VIALARD

where the quantities 𝐼𝜀 and 𝐽𝜀 are defined by the formulas just above. Firstly, as 𝑔 ∈ 𝒞∞
𝑐 , we get

|𝐼𝜀(𝑦)| ≤ 2∥Δ𝑔∥∞𝜀 . (118)

For 𝐽𝜀(𝑦), we are able to use Green’s Formula, as all our quantities are in 𝒞∞
𝑐 on the open set

Ω B R𝑑 \ 𝐵(𝑦, 𝜀). If we take 𝜂(𝑥) to be the unit vector at 𝑥 ∈ 𝜕Ω(𝑦) pointing toward the exterior of

Ω(𝑦), we get 𝜂(𝑥) = − 𝑥−𝑦
∥𝑥−𝑦∥ . For 𝑥 ∈ 𝜕Ω(𝑦), the directional derivative of a function 𝑓 at x is defined by

𝜕 𝑓
𝜕𝜂 (𝑥) B ⟨∇ 𝑓 (𝑥), 𝜂(𝑥)⟩. We denote 𝑑𝑆 the usual area measure on 𝐵(𝑦, 𝜀). By Green’s Formula

𝐽𝜀(𝑦) =
∫
Ω(𝑦)

Δ − 𝑑𝑦(𝑥)𝑔(𝑥)𝑑𝑥 +
∫
𝜕Ω(𝑦)

𝜕𝑑𝑦

𝜕𝜂
(𝑥)𝑔(𝑥)𝑑𝑆(𝑥) −

∫
𝜕Ω(𝑦)

𝑑𝑦(𝑥)
𝜕𝑔

𝜕𝜂
(𝑥)𝑑𝑆(𝑥). (119)

First, we know : Δ𝑑𝑦(𝑥) = 𝑑−1

∥𝑥−𝑦∥ . Second, as ∇𝑑𝑦(𝑥) = 𝑥−𝑦
∥𝑥−𝑦∥ , we get :

𝜕𝑑𝑦
𝜕𝜂 (𝑥) = −1. This gives�����∫𝜕Ω(𝑦)

𝜕𝑑𝑦

𝜕𝜂
(𝑥)𝑔(𝑥)𝑑𝑆(𝑥)

����� ≤ ∥𝑔∥∞𝒜(𝑆(𝑦, 𝜀)) . (120)

Finally, as 𝑔 vanishes at infinity, there exists a constant 𝐶 independent from 𝑦 such that�����∫𝜕Ω(𝑦)
𝑑𝑦(𝑥)

𝜕𝑔

𝜕𝜂
(𝑥)𝑑𝑆(𝑥)

����� ≤ 𝐶𝒜(𝑆(𝑦, 𝜀)) . (121)

All these quantities vanish when 𝜀 → 0
+
, independently from 𝑦, this gives ⟨𝜑𝜇 ,Δ𝑔⟩ = ⟨𝑃𝜇 , 𝑔⟩,

that is Δ𝜑𝜇(𝑥) =
∫
− 𝑑−1

∥𝑥−𝑦∥ 𝑑𝜇(𝑦). □

Now, we will prove the following property, which will allow us to prove the second statement in

theorem 6.

Lemma 11. Let 𝜇 be a lagrangian critical point for the Energy Distance Wasserstein gradient flow

towards 𝜈. Then, on the open set Int(supp(𝜇)) 𝜑𝐺𝜇 = 𝜑𝐺𝜈 where 𝐺 is the Coulomb kernel.

Proof. We will note 𝑃
𝜇
𝑘
(𝑥) B

∫
1

∥𝑥−𝑦∥𝑘 𝑑𝜇(𝑦) and prove the following result by finite induction

∀𝑘 < (𝑑 − 1)/2, 𝑃
𝜇
2𝑘+1

= 𝑃𝜈
2𝑘+1

. (122)

We already saw the result is true for 𝑘 = 1. Now let us take 𝑘 < (𝑑−3)/2, and suppose 𝑃
𝜇
2𝑘+1

= 𝑃𝜈
2𝑘+1

.

We now that if 𝑣 : R+ → R and 𝑢(𝑥) B 𝑣(∥𝑥∥), then its distributional Laplacian is given by

Δ𝑢(𝑥) = 𝑑 − 1

∥𝑥∥ 𝑣
′(∥𝑥∥) + 𝑣′′(∥𝑥∥) . (123)

We get, if 𝑣(𝑟) B 1

𝑟2𝑘+1
, that Δ𝑢(𝑥) = (2𝑘+1)(2𝑘+3−𝑑)

∥𝑥∥−(2𝑘+3) . If we denote 𝐾𝑦(𝑥) B 1

∥𝑥−𝑦∥2𝑘+1
, we have Δ𝐾𝑦(𝑥) =

(2𝑘+1)(2𝑘+3−𝑑)
∥𝑥−𝑦∥2𝑘+3

. Again, let us take 𝑔 ∈ 𝒞∞
𝑐 , and prove ⟨𝑃𝜇

2𝑘+1
,Δ𝑔⟩ = (2𝑘 + 1)(2𝑘 + 3− 𝑑)⟨𝑃𝜇

2𝑘+3
, 𝑔⟩. We use

Fubini’s theorem, and avoid the singularity around small balls of radius 𝜀 > 0

⟨𝑃𝜇
2𝑘+1

, 𝑔⟩ B
∫

𝑃
𝜇
2𝑘+1

(𝑥)Δ𝑔(𝑥)𝑑𝑥

=

∫ (∫
𝐾𝑦(𝑥)Δ𝑔(𝑥)𝑑𝑥

)
𝑑𝜇(𝑦)

=

∫ [(∫
𝐵(𝑦,𝜀)

𝐾𝑦(𝑥)Δ𝑔(𝑥)𝑑𝑥
)
+

(∫
R𝑑\𝐵(𝑦,𝜀)

𝐾𝑦(𝑥)Δ𝑔(𝑥)𝑑𝑥
)]
𝑑𝜇(𝑦)
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⟨𝑃𝜇
2𝑘+1

, 𝑔⟩ =
∫

[𝐼𝜀(𝑦) + 𝐽𝜀(𝑦)] 𝑑𝜇(𝑦) .

Now, again, we need to control the growth of 𝐼𝜀(𝑦) and 𝐽𝜀(𝑦). As 2𝑘 + 1 < 𝑑 we get∫
𝐵(𝑦,𝜀)

𝐾𝑦(𝑥)Δ𝑔(𝑥)𝑑𝑥 ≤ ∥Δ𝑔(𝑥)∥∞
∫
𝐵(0,𝜀)

𝐾0(𝑥)𝑑𝑥 , (124)

and this quantity tends to 0 uniformly as 𝜀 tends to 0. Now, as done previously, we use Green’s

Formula to express 𝐽𝜀(𝑦)

𝐽𝜀(𝑦) =
∫
Ω(𝑦)

Δ𝐾𝑦(𝑥)𝑔(𝑥)𝑑𝑥 −
∫
𝜕Ω(𝑦)

𝜕𝐾𝑦

𝜕𝜂
(𝑥)𝑔(𝑥)𝑑𝑆(𝑥) +

∫
𝜕Ω(𝑦)

𝐾𝑦(𝑥)
𝜕𝑔

𝜕𝜂
(𝑥)𝑑𝑆(𝑥) .

We have

𝜕𝐾𝑦

𝜕𝜂
(𝑥) = ⟨−(2𝑘 + 1)

𝑥 − 𝑦
∥𝑥 − 𝑦∥2𝑘+3

,−
𝑥 − 𝑦

∥𝑥 − 𝑦∥ ⟩ =
1

∥𝑥 − 𝑦∥2𝑘+2

,

which gives �����∫𝜕Ω(𝑦)

𝜕𝐾𝑦

𝜕𝜂
(𝑥)𝑔(𝑥)𝑑𝑆(𝑥)

����� ≤ ∥𝑔∥∞
∫

1

∥𝑥 − 𝑦∥2𝑘+2

𝑑𝑆(𝑥) = ∥𝑔∥∞𝐶𝑑𝜀𝑑−1−(2𝑘+2) , (125)

and again the right term tends to 0 uniformly in 𝑦 as 𝜀 tends to 0, as 2𝑘 + 2 < 𝑑 − 1. Finally∫
𝜕Ω(𝑦)

𝐾𝑦(𝑥)
𝜕𝑔

𝜕𝜂
(𝑥)𝑑𝑆(𝑥) ≤ ∥ 𝜕𝑔

𝜕𝜂
∥∞

∫
𝜕Ω(𝑦)

𝐾𝑦(𝑥)𝑑𝑆(𝑥) = ∥ 𝜕𝑔
𝜕𝜂

∥∞𝐶𝑑𝜀𝑑−1−(2𝑘+1) ,

which tends to 0 uniformly in 𝑦 as 𝜀 tends to 0. This proves

Δ𝑃
𝜇
2𝑘+1

= (2𝑘 + 1)(2𝑘 + 3 − 𝑑)𝑃𝜇
2𝑘+3

(126)

Now, back to our hypothesis 𝑃
𝜇
2𝑘+1

= 𝑃𝜈
2𝑘+1

. By taking the distributional Laplacian from both sides,

we get : (2𝑘 + 1)(2𝑘 + 3 − 𝑑)𝑃𝜇
2𝑘+3

= (2𝑘 + 1)(2𝑘 + 3 − 𝑑)𝑃𝜈
2𝑘+3

, and as 2𝑘 < 𝑑 − 3, we get 𝑃
𝜇
2𝑘+3

= 𝑃𝜈
2𝑘+3

.

This proves our result. Now, to obtain the conclusion, if 𝑑 is odd, by taking 𝑘 = (𝑑 − 3)/2 < (𝑑 − 1)/2,

we finally get in the interior of supp(𝜇) the equality 𝜑𝐺𝜇 = 𝜑𝐺𝜈 . □

The potentials 𝜑𝐺𝜇 and 𝜑𝐺𝜈 are superharmonic on the interior of supp(𝜇), and taking their distribu-

tional Laplacian yields 𝜇|Int(supp(𝜇)) = 𝜈|Int(supp(𝜇)) , which is exactly the second statement of Theorem

6.

In this section, we were able to characterize a particular class of critical points. However, our

result does not capture the singular parts of our measures. In the next section we study how singular

measures behave under the Wasserstein gradient flow of 𝐸𝜈, proving in theorem 18 that singular

enough measures cannot be critical points.

4 No local minima in the Wasserstein geometry

In this section, we denote by 𝐺 the Coulomb kernel in R𝑑 and we only study this kernel. The

last section was dedicated to Lagrangian critical points, who describe one kind of evolution for our

curve: cases where the current measure is push forwarded through a map. For functionals defined

only on absolutely continuous functions (entropy, p-energy for Porous Medium Equations...) or for
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functionals convex along Wasserstein geodesics (potentials 𝒱 : 𝜇 ↦→
∫
𝑉(𝑥)𝑑𝜇(𝑥) where 𝑉 is convex,

internal non-local energies 𝒲 : 𝜇 ↦→
∬
𝑊(𝑥, 𝑦)𝑑𝜇(𝑥)𝑑𝜇(𝑦) where 𝑊 : R𝑑 × R𝑑 → R is convex [29]),

both notions are the same.

However, push forwarded measures do not describe all possible dynamics in our case. For non-

convex functionals, diffusion phenomena can happen. Using Wasserstein geometry terms, it means,

heuristically, that a descent direction has to be found in the space of velocity plans (see section 12.4

in [1]), instead of 𝐿2 velocity maps. To do this, we use concepts inspired from flow interchange

techniques developed in [22,25]. Instead of studying the gradient flow of 𝐸, we study how 𝐸 behaves

along a certain auxiliary flow. Here, this flow is associated the Boltzmann entropy functional.

We are able to show, as the main result of this section, the following theorem.

Theorem 7 (No local minima and only global). Let 𝜇 be a probability measure. Then, if 𝜇 ≠ 𝜈, there

exists a curve 𝜇𝑡 which is 1/2-Hölder for the Wasserstein distance, such that 𝑡 ↦→ 𝐸𝜈(𝜇𝑡) is strictly

decreasing for 𝑡 small enough.

We start with the remark that the MMD energy only depends on the difference of the measures.

Indeed, since (𝜇, 𝜈) ↦→ 𝐸𝜈(𝜇) is a function of 𝜇 − 𝜈, we can use the Hahn-Jordan decomposition of the

signed measure 𝜇 − 𝜈.

Lemma 12 (Hahn-Jordan decomposition). Let 𝜇 and 𝜈 be two probability measures. Then there exists

a unique decomposition 𝜇 − 𝜈 = 𝜇+ − 𝜈−, where 𝜇+ and 𝜈− are mutually singulars measures. In

addition, 𝜇+ ≪ 𝜇 and 𝜈− ≪ 𝜈.

A heat diffusion process can be applied to 𝜇+, which allows to prove the main theorem of this

section, stating that even though our functional is non-convex in the Wasserstein geometry, it does

not admit any local minima for the Wasserstein geometry that is not global (meaning 𝜇 = 𝜈 or in an

equivalent way 𝜇+ = 𝜈− = 0).

4.1 Heat diffusion perturbation.
Let 𝜌0 be a measure dominated by 𝜇. We write 𝜇 = 𝜇 − 𝜌 + 𝜌 and consider the curve 𝜌𝑡 defined

as the solution of the heat equation 𝜕𝑡𝜌𝑡 = Δ𝜌𝑡 with initial condition 𝜌0 = 𝜌. As is well-known,

the heat equation is the Wasserstein gradient flow of the Boltzmann entropy functional defined by

ℋ(𝜌) B
∫
𝜌 log(𝜌)𝑑𝑥 if the measure has a density 𝜌 (with an abuse of notation) with respect to the

Lebesgue measure and +∞ otherwise. Furthermore, the solution 𝜌𝑡 is explicit 𝜌𝑡 = 𝐾𝑡 ★ 𝜌, where 𝐾𝑡
is the heat kernel in R𝑑 defined by

𝐾𝑡(𝑥) B
1

(4𝜋𝑡)𝑑/2

exp(−∥𝑥∥2/4𝑡) . (127)

Remark 2. Here, 𝜌 is not necessarily a probability measure. However, we can write the whole

Wasserstein formalism for any space of measures ℳ𝑚 B {𝜇 ∈ ℳ+(R𝑑), 𝜇(R𝑑) = 𝑚}. We will abuse

notations, and denote𝑊2(𝛼, 𝛽) the Wasserstein distance on ℳ𝑚 if 𝛼, 𝛽 ∈ ℳ𝑚 .

Lemma 13. Consider the curve defined by 𝜇𝑡 B 𝜇 + 𝜌𝑡 − 𝜌 , where 𝜌𝑡 is the heat flow at time 𝑡 of 𝜌+.

Then, the curve 𝜇𝑡 is absolutely continuous. More precisely, there exists a constant 𝐶 > 0 such as, for

any 𝑠, 𝑡 > 0

𝑊2(𝜇𝑡 , 𝜇𝑠) ≤
√
|𝑡 − 𝑠 |𝐶 . (128)

Proof. Standard results exposed in [1, Theorem 11.2.8] show that 𝐾𝑡 ★ 𝜌 is absolutely continuous for

the Wasserstein metric. We fix some 𝑠, 𝑡 > 0, and write the EVI equation associated to the heat flow,

that states that for all 𝛼 density measure with the same mass as 𝜌 and for almost every 𝑡 > 0

1

2

𝑑

𝑑𝑡
𝑊2

2
(𝜌𝑡 , 𝛼) ≤ ℋ(𝛼) − ℋ(𝜌𝑡) . (129)
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This implies that there exists a constant 𝐶 > 0 such as,for any 𝑠, 𝑡 > 0𝑊2(𝜇𝑡 , 𝜇𝑠) ≤
√
|𝑡 − 𝑠 |𝐶. Let 𝛾 be

an optimal transport plan 𝛾 between 𝐾𝑡 ★ 𝜌 and 𝐾𝑠 ★ 𝜌, for 𝑠, 𝑡 > 0. The plan 𝛾̃ B 𝛾 + (𝜇 − 𝜌)⊗2
is a

transport plan between 𝜇𝑡 and 𝜇𝑠 . Thus

𝑊2(𝜇𝑡 , 𝜇𝑠) ≤ 𝑊2(𝐾𝑡 ★ 𝜌, 𝐾𝑠 ★ 𝜌) , (130)

which proves the lemma. □

Now, we need some estimates on 𝐸𝜈 along the flow defined above. It is possible thanks to the next

lemma.

Lemma 14. The function 𝑡 ↦→ 𝐸𝜈(𝜇𝑡) is differentiable for every 𝑡 > 0, and its derivative is given by

1

𝑐𝑑

𝑑

𝑑𝑡
𝐸𝜈(𝜇𝑡) = − ⟨𝜌, 𝐾2𝑡 ★ 𝜌 + 𝐾𝑡 ★ (𝜇 − 𝜌) − 𝐾𝑡 ★ 𝜈⟩ . (131)

4.2 Estimates of mass transfers in the diffusion process.
In this paragraph, we show that for a well-chosen positive measure 𝜌 and for 𝑡 small enough, the

quantity in Formula (131) is strictly negative. An essential property is the following lemma (see [34]).

Lemma 15 (Heat kernel estimates, [34]). Let 𝛼 and 𝛽 be two positive mutually singular measures.

Then, as 𝑡 → 0

𝐾𝑡 ★ 𝛽(𝑥) = 𝑜(𝐾𝑡 ★ 𝛼(𝑥)) ,
for 𝜇 almost every 𝑥.

We use this lemma to derive the following estimate.

Lemma 16. Let 𝛼 and 𝛽 be two positive mutually singular measures. Then, as 𝑡 → 0

𝐾𝑡 ★ 𝛽(𝑥) = 𝑜(𝐾2𝑡 ★ 𝛼(𝑥)) ,

for 𝜇 almost every 𝑥.

Proof. From the expression of 𝐾𝑡 we have
𝐾𝑡 (𝑥)
𝐾2𝑡 (𝑥) = 2

𝑑/2
exp(−∥𝑥∥2/8𝑡) ≤ 2

𝑑/2
, from which we deduce

𝐾𝑡 ★ 𝛼(𝑥) ≤ 2
𝑑/2𝐾2𝑡 ★ 𝛼(𝑥) and

𝐾𝑡 ★ 𝛽(𝑥)
𝐾2𝑡 ★ 𝛼(𝑥) =

𝐾𝑡 ★ 𝛼(𝑥)
𝐾2𝑡 ★ 𝛼(𝑥)

𝐾𝑡 ★ 𝛽(𝑥)
𝐾𝑡 ★ 𝛼(𝑥) ≤ 2

𝑑/2
𝐾𝑡 ★ 𝛽(𝑥)
𝐾𝑡 ★ 𝛼(𝑥) .

This quantity tends to 0 from the preceding lemma. □

4.3 Proof of theorem 7
We now prove the main theorem of this section, which is implied by the following proposition.

Proposition 18. Let 𝜇 be a probability measure. We suppose 𝜇 ≠ 𝜈, and write 𝜇 − 𝜈 = 𝜇+ − 𝜈− the

unique associated Hahn-Jordan decomposition. Then there exists a 𝜇+ measurable set 𝐴 such as

𝜇+(𝐴) ≥ 𝜇+(R𝑑)/2 and 𝑡0 > 0 such as, for the curve 𝜇𝑡 = 𝜇 + 𝐾𝑡 ★𝜇+|𝐴 − 𝜇+|𝐴, then for all 𝑡 < 𝑡0 we get

𝑑
𝑑𝑡
𝐸𝜈(𝜇𝑡) < 0.

Proof. The preceding lemma gives the following result: for 𝜇+ almost every 𝑥, there exists 𝑡𝑥 > 0 such

as, for all 𝑡 < 𝑡𝑥 : 𝐾𝑡 ★ 𝜈−(𝑥) < 1

2
𝐾2𝑡 ★𝜇+(𝑥). Let us consider the set sequence defined for 𝑁 > 0 by

𝑋𝑁 B
{
𝑥 ∈ supp(𝜇+)|𝑡𝑥 ≥ 1/𝑁

}
.
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This is a growing sequence for inclusion, and it verifies supp(𝜇+) =
⋃
𝑁∈N∗ 𝑋𝑁 . Now if we write

𝑋1 B 𝑋1
�𝑋𝑁+1 B 𝑋𝑁+1 \𝑋𝑁 , we get a countable sequence of disjoint sets whose union is of total mass

for 𝜇+. This implies, by 𝜎-additivity, that there exists an integer 𝑁0 such that

𝜇+

(
𝑁0⋃
𝑁=1

𝑋𝑁

)
≥ 𝜇+(R𝑑)/2 .

Now, we take 𝐴 B
⋃𝑁0

𝑁=1
𝑋𝑁 and 𝑡0 = 1/𝑁0, which gives, for 𝑡 < 𝑡0

𝑑

𝑑𝑡
𝐸𝜈(𝜇𝑡) = −𝑐𝑑

〈
𝜇+|𝐴 , 𝐾2𝑡 ★𝜇+|𝐴 − 𝐾𝑡 ★ 𝜈−

〉
(132)

≤ −1

2

𝑐𝑑
〈
𝜇+|𝐴 , 𝐾2𝑡 ★𝜇+|𝐴

〉
. (133)

In particular, we get the conclusion
𝑑
𝑑𝑡
𝐸𝜈(𝜇𝑡) < 0. □

4.4 Dimension of measure and critical points
In theorem 7, we saw that for any measure 𝜇 distinct from the target measure 𝜈 we could find an

absolutely continuous curve for the Wasserstein distance 𝜇𝑡 such as 𝑡 ↦→ 𝐸𝜈(𝜇𝑡) was strictly decreasing

near 0. However, it is not enough to guarantee that the JKO steps (13) do not stay stationnary at 𝜇.

Our theorem 6 states that if 𝜇 is a critical point then on the interior of its support 𝜇 is equal to 𝜈. We

will prove that if the part of 𝜇 singular to 𝜈 is supported on sets singular enough, then it can not be a

critical point as in definition 3.1. In analogy to the finite dimension and regular case, it corresponds

to the fact that it cannot be a second order critical point.

To quantify the singularity of the support of a measure, we use geometric measure theory proper-

ties, mainly the growth of 𝜇(𝐵(𝑥, 𝑟)). If it grows faster than 𝑟𝑑 then we prove that the heat diffusion

makes the energy 𝐸𝜈 decrease fast enough to compensate the growth of𝑊2

2
(𝜇, 𝐾𝑡 ★𝜇), so that 𝜇 is not

a point where JKO steps stay stationnary. To do this, we can use a more precise version of 15, see [34]:

Lemma 17. Let 𝜇 be a positive measure in R𝑑 and 𝑞 ∈ [0, 𝑛]. Then, there exists a universal constant

𝑐𝑑,𝑞 only dependent on 𝑑 and 𝑞 such as, for all 𝑥 ∈ R𝑑

lim inf

𝑟→0

𝑟−𝑞𝜇(𝐵(𝑥, 𝑟)) ≤ 𝑐𝑑,𝑞lim inf

𝑡→0

𝑡(𝑑−𝑞)/2𝐾𝑡 ★𝜇(𝑥)

≤ 𝑐𝑑,𝑞lim sup

𝑡→0

𝑡(𝑑−𝑞)/2𝐾𝑡 ★𝜇(𝑥) ≤ lim sup

𝑟→0

𝑟−𝑞𝜇(𝐵(𝑥, 𝑟)) .

How to interpret this result? This result allows, in some cases, to get precise estimates on the decay

of 𝐾𝑡 ★𝜇. For example, if 𝜇 has a density function 𝑓 with respect to the Lebesgue measure, then, with

𝑞 = 𝑑, we get that lim

𝑟→0

𝑟−𝑑𝜇(𝐵(𝑥, 𝑟)) = 𝑓 (𝑥) , which gives

lim

𝑡→0

𝐾𝑡 ★𝜇(𝑥) = 𝑓 (𝑥)/𝑐𝑑,𝑞 . (134)

If 𝜇 charges more singular sets than open sets, for example if there exists some 𝛿 > 0 such as, for all

𝑥 ∈ 𝐴, where 𝜇(𝐴) > 0 lim

𝑟→0

𝑟−(𝑑−𝛿)𝜇(𝐵(𝑥, 𝑟)) = 𝑓 (𝑥), then, for all 𝑥 ∈ 𝐴 one has lim

𝑡→0

𝑡𝛿/2𝐾𝑡 ★ 𝜇(𝑥) =
𝑓 (𝑥)/𝑐𝑑,𝑞 . That is, when 𝑡 → 0

𝐾𝑡 ★𝜇(𝑥) ∼ 𝑓 (𝑥)
𝑐𝑑,𝑞

1

𝑡𝛿/2

. (135)

Let 𝜇 and 𝜈 be two probability measures with finite Coulomb energy. We write, once again, the

Hahn-Jordan decomposition 𝜇 − 𝜈 = 𝜇+ − 𝜈−. From the result of Section 3, we know that at a critical
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point which is not the global minimum, 𝜇+ cannot have a density w.r.t. the Lebesgue measure. We

study what happens if 𝜇− is singular, in a precise sense. The point of interest, to be able to use Lemma

17, will be the growth of 𝜇+(𝐵(𝑥, 𝑟)) on the support of 𝜇+ as 𝑟 tends to 0. We prove the following

lemma:

Lemma 18. If there exists a set 𝐴 ⊂ R𝑑 such that 𝜇+(𝐵) > 0, some positive number 0 < 𝛿 < 2, a constant

𝐶 > 0 and 𝑟0 > 0 such that, for all 0 ≤ 𝑟 ≤ 𝑟0 and 𝜇+ almost every 𝑥 ∈ 𝐴

𝜇+(𝐵(𝑥, 𝑟)) ≥ 𝐶𝑟𝑑−𝛿 ,

then 𝜇 is not a critical point as in Definition 3.1.

Proof. In this proof, we denote by 𝐶 any strictly positive constant which does not depend on 𝑡 or 𝜏.

Once again, we consider the Wasserstein curve defined by 𝜇0 = 𝜇 and 𝜇𝑡 = 𝜇+𝐾𝑡 ★𝜇+|𝐴 −𝜇+|𝐴. Using

Lemma 17, we get the existence 𝑡0 > 0 such that, for all 0 < 𝑡 < 𝑡0 and 𝜇+ almost every 𝑥 ∈ 𝐴

𝐾2𝑡 ★𝜇+(𝑥) ≥
𝐶

𝑡𝛿/2

. (136)

Moreover, by the same reasoning as in the proof of Theorem 18, we can suppose, if we take a subset

of 𝐴, that there exists 𝑡1 > 0 such as, for any 0 < 𝑡 < 𝑡1

𝑑

𝑑𝑡
𝐸𝜈(𝜇𝑡) ≤ −𝐶

〈
𝜇+|𝐴 , 𝐾2𝑡 ★𝜇+|𝐴

〉
. (137)

Now, using Formula (136), this gives along 𝜇𝑡 , 𝑑
𝑑𝑡
𝐸𝜈(𝜇𝑡) ≤ −𝐶𝑡−𝛿/2

. From the EVI inequality associated

with the entropy gradient flow, we get the existence of a constant 𝐶 such that
𝑑
𝑑𝑡
𝑊2

2
(𝜇0 , 𝜇𝑡) ≤ 𝐶.

Combining these inequalities, we get an estimate on the derivative of our proximal functional 𝐸
𝜏,𝜇
𝜈 B

𝐸𝜈 + 1

2𝜏𝑊
2

2
(𝜇0 , ·)

𝑑

𝑑𝑡
𝐸
𝜏,𝜇
𝜈 (𝜇𝑡) ≤ 𝐶

(
−𝑡−𝛿/2 + 1

2𝜏

)
, (138)

which provides, integrating from 0 to 𝑡, as 𝛿/2 < 1

𝐸
𝜏,𝜇
𝜈 (𝜇𝑡) − 𝐸𝜏,𝜇

𝜈 (𝜇0) ≤ 𝐶

(
−2𝑡−𝛿/2+1

2 − 𝛿
+ 𝑡

2𝜏

)
. (139)

Optimizing this quantity over 𝑡 > 0, we get an optimal 𝑡𝜏 B (2𝜏)2/𝛿, smaller than 𝑡0 , 𝑡1 if 𝜏 is small

enough, so that all our inequalities are true for 𝑡𝜏. Injecting 𝑡𝜏 in equation (139) we get

𝐸
𝜏,𝜇
𝜈 (𝜇𝑡𝜏 ) − 𝐸

𝜏,𝜇
𝜈 (𝜇0) ≤ −𝐶𝜏 2−𝛿

𝛿 , (140)

concluding the proof since

min

𝜌∈𝒫2(R𝑑)
𝐸
𝜏,𝜇
𝜈 (𝜌) − 𝐸𝜏,𝜇

𝜈 (𝜇0) ≤ min

𝑡>0

𝐸
𝜏,𝜇
𝜈 (𝜇𝑡) − 𝐸𝜏,𝜇

𝜈 (𝜇0) ≤ −𝐶𝜏 2−𝛿
𝛿 . (141)

□

This lemma is used to prove the main result of this subsection.

Theorem 8. Let us suppose there exists a set 𝐴 such that 𝜇+(𝐴) > 0 and such that 𝜇+|𝐴 has Minkowski

dimension less than 𝑑 − 𝛿 (see [18]) for some 0 < 𝛿 ≤ 1. Then 𝜇 is not a critical point as in Definition

3.1.
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Proof. The local Minkowski dimension of a measure at 𝑥 is defined, if the limit exists, as

dim
𝑥
ℳ(𝜇) B lim

𝑟→0

log(𝜇(𝐵(𝑥, 𝑟)))
log(𝑟) . (142)

If 𝜇+ charges some set 𝐴 such as, for all 𝑥 ∈ 𝐴, dim
𝑥
ℳ(𝜇) exists and is inferior to 𝑑 − 𝛿, we get that

for every 𝜀 > 0 there exists a radius 𝑟𝑥 such that for any 𝑟 < 𝑟𝑥 , 𝜇(𝐵(𝑥, 𝑟)) ≥ 𝑟𝑑−𝛿+𝜀. Using the same

𝜎-additivity arguments than in the proof of proposition 18, we prove we can choose a uniform 𝑟0 by

considering a subset of 𝐴 of non-zero measure for 𝜇+. This is exactly the hypothesis of lemma 18,

ending the proof. □

Remark 3. The condition on the Minkowski dimension is satisfied if, for example, 𝜇+ is absolutely

continuous with respect to the volume measure on some manifold of dimension 𝑑 − 1.

Note that the result is stated only for 𝛿 ≤ 1 instead of 𝛿 < 2 (as assumed in the lemma) can be explained

by the fact that for 𝛿 > 1, the energy functional is infinite. In such a case, it is direct to prove from the

very definition that such a measure (of infinite energy) cannot be a critical point.

4.5 Extension to Riemannian manifolds
Recall that the heat kernel is defined on a general Riemannian manifold.

Proposition 19 (Heat kernel on a manifold). Let (𝑀, 𝑔) be a Riemannian manifold (it doesn’t need to

be compact). Then we can define its heat kernel 𝐾 : (0,∞) × 𝑀 × 𝑀 → R as the smallest positive

fundamental solution of the heat equation, meaning that for any 𝑦 ∈ 𝑀{
𝜕𝑡𝐾 = Δ𝑥𝐾
𝐾(𝑡 , ·, 𝑦) →

𝑡→0

𝛿𝑦 . (143)

In order to generalize the conclusions of section 4, we need estimates resembling to the one in the

proof of Lemma 16, mainly that there is some constant 𝐶 > 0 such that

𝐾𝑡 ≤ 𝐶𝐾2𝑡 . (144)

In the Euclidean case 𝑀 = R𝑑, we got 𝐶 = 2
𝑑/2

. We do not detail the conditions for this to hold,

but it is true if 𝑀 is a nilpotent Lie group equipped with a left invariant metric ( [33]), if (𝑀, 𝑔) is a

geodesically complete non-compact Riemannian manifold of nonnegative Ricci curvature ( [15]), or if

(𝑀, 𝑔) is compact ( [23]). For example, on the flat 1-dimensional torus T := 𝒮1
which we represent as

[0, 1]/{0 ∼ 1} = R/Z, the heat kernel is given by the periodisation of the euclidean heat kernel, that is

𝐾T(𝑡 , 𝑥, 𝑦) :=
∑
𝑛∈Z

𝐾R(𝑡 , 𝑥 + 𝑘, 𝑦) . (145)

As the flat d-dimensional torus T𝑑 := (𝒮1)𝑑 is a product, its heat kernel is the product, defined for

𝑥 = (𝑥1 , ..., 𝑥𝑑) and 𝑦 = (𝑦1 , ..., 𝑦𝑑) by

𝐾T𝑑 (𝑡 , 𝑥, 𝑦) =
∏

1≤𝑘≤𝑑
𝐾T(𝑡 , 𝑥𝑘 , 𝑦𝑘) , (146)

so that the desired estimate in Formula (144) holds for some 𝐶 > 0. An example of manifold where it

does not hold is the hyperbolic space.
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A Appendix
Proof of lemma 1. Let us fix a vector field 𝑣 ∈ 𝒞∞

𝑐 , and prove the following equality in both cases

lim

𝑡→0

𝐸𝜈((𝑖𝑑 + 𝑡𝑣)#𝜇) − 𝐸𝜈(𝜇)
𝑡

=

∫
(∇𝐺)★ (𝜇 − 𝜈) · 𝑣𝑑𝜇 . (147)

First case: If 𝐺 = −∥.∥.
First let us remark that if 𝑥 = 𝑦, 𝐺(𝑥 − 𝑦 + 𝑡(𝑣(𝑥) − 𝑣(𝑦))) = 𝐺(𝑥 − 𝑦) = 0. Then

lim

𝑡→0

1

2

∫
𝐺(𝑥 − 𝑦 + 𝑡(𝑣(𝑥) − 𝑣(𝑦))) − 𝐺(𝑥 − 𝑦)

𝑡
𝑑𝜇(𝑥)𝑑𝜇(𝑦)

= lim

𝑡→0

1

2

∫
𝑥≠𝑦

𝐺(𝑥 − 𝑦 + 𝑡(𝑣(𝑥) − 𝑣(𝑦))) − 𝐺(𝑥 − 𝑦)
𝑡

𝑑𝜇(𝑥)𝑑𝜇(𝑦)

=
1

2

∫
𝑥≠𝑦

∇𝐺(𝑥 − 𝑦) · (𝑣(𝑥) − 𝑣(𝑦))𝑑𝜇(𝑥)𝑑𝜇(𝑦)

=

∫
𝑥≠𝑦

∇𝐺(𝑥 − 𝑦) · 𝑣(𝑥)𝑑𝜇(𝑥)𝑑𝜇(𝑦) .

Same for the other term of the MMD energy

lim

𝑡→0

1

2

∫
𝐺(𝑥 − 𝑦 + 𝑡𝑣(𝑥)) − 𝐺(𝑥 − 𝑦)

𝑡
𝑑𝜇(𝑥)𝑑𝜈(𝑦)

= lim

𝑡→0

∫
𝑥≠𝑦

𝐺(𝑥 − 𝑦 + 𝑡(𝑣(𝑥) − 𝑣(𝑦))) − 𝐺(𝑥 − 𝑦)
𝑡

𝑑𝜇(𝑥)𝑑𝜇(𝑦)

=

∫
𝑥≠𝑦

∇𝐺(𝑥 − 𝑦) · 𝑣(𝑥)𝑑𝜇(𝑥)𝑑𝜈(𝑦)

=

∫
𝑥≠𝑦

∇𝐺(𝑥 − 𝑦) · 𝑣(𝑥)𝑑𝜇(𝑥)𝑑𝜈(𝑦) .

We conclude that Formula (147) holds for the Energy Distance kernel.

Second case: If 𝐺 = 1

∥.∥𝑑−2
. Here, we need to use the result that if a positive measure has finite

Coulomb energy, then it cannot be too singular, i.e. if we define the diagonal 𝒟 B {𝑥 = 𝑦} ⊂ 𝑋 × 𝑋
then 𝜇⊗2(𝒟) = 0. Indeed,

∫
𝒟 𝐺𝑑𝜇⊗2 ≤

∫
𝐺𝑑𝜇⊗2 < ∞, and 𝐺 = +∞ on 𝒟, which proves 𝜇⊗2(𝒟) = 0.

This means that for any measure 𝜇 with finite energy∫
𝐺𝑑𝜇⊗2 =

∫
𝒟𝑐

𝐺𝑑𝜇⊗2 . (148)

Thus we can conclude that Formula (147) holds for the Coulomb kernel with similar computations,

as 𝐺 is 𝒞∞
on 𝒟𝑐

. We write

𝐸𝜈((𝑖𝑑 + 𝑡𝑣)#𝜇) − 𝐸𝜈(𝜇)
𝑡

=
𝐸𝜈((𝑖𝑑 + 𝑡𝑣)#𝜇) − 𝐸𝜈(𝜇)
𝑊2((𝑖𝑑 + 𝑡𝑣)#𝜇, 𝜇)

𝑊2((𝑖𝑑 + 𝑡𝑣)#𝜇, 𝜇)
𝑡

.

By definition of the slope, we get

lim sup

𝑡→0

𝐸𝜈((𝑖𝑑 + 𝑡𝑣)#𝜇) − 𝐸𝜈(𝜇)
𝑊2((𝑖𝑑 + 𝑡𝑣)#𝜇, 𝜇)

≤ |𝜕𝐸𝜈 |(𝜇) . (149)
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In addition,

lim sup

𝑡→0

𝑊2((𝑖𝑑 + 𝑡𝑣)#𝜇, 𝜇)
𝑡

≤ ∥𝑣∥𝐿2(𝜇) , (150)

so that, taking the limit for 𝑡 → 0 we get∫
𝑥≠𝑦

(∇𝐺)★ (𝜇 − 𝜈) · 𝑣𝑑𝜇 ≤ |𝜕𝐸𝜈 |(𝜇)∥𝑣∥𝐿2(𝜇) . (151)

Similarly, using −𝑣 instead of 𝑣, we have�����∫𝑥≠𝑦(∇𝐺)★ (𝜇 − 𝜈) · 𝑣𝑑𝜇
����� ≤ |𝜕𝐸𝜈 |(𝜇)∥𝑣∥𝐿2(𝜇) . (152)

As the vector field 𝑣 chosen is arbitrary, we get

∥(∇𝐺)★ (𝜇 − 𝜈)∥𝐿2(𝜇) ≤ |𝜕𝐸𝜈 |(𝜇) , (153)

which proves the result. □

Proof of Lemma 2. Let 𝜌 be a measure, and 𝑖𝑑 + 𝑣 an optimal transport between 𝜇 and 𝜈 (so that

𝜌 = (𝑖𝑑 + 𝑣)#𝜇) which exists as 𝜇 ∈ 𝒫𝑟
2
. We note 𝜉 := ∇𝐺★ (𝜇 − 𝜈), which is a well defined vector field

everywhere. Using the same computations than in the proof of (147), we get :

𝐸𝜈(𝜌) − 𝐸𝜈(𝜇) =
∫

𝜉 · 𝑣𝑑𝜇 + 𝑜(∥𝑣∥2

𝐿2(𝜇)). (154)

However, as 𝑣 is an arbitrary optimal transport plan between 𝜇 and 𝜌 and 𝜇 is regular, we get :

𝐸𝜈(𝜌) − 𝐸𝜈(𝜇) ≥ inf

𝛾0∈Γ0(𝜇,𝜌)

∫
𝜉 · (𝑦 − 𝑥)𝑑𝛾0 + 𝑜(𝑊2

2
(𝜇, 𝜌)) , (155)

which concludes the proof by definition 5. □


