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Introduction

Recently, the imaging community became more and more interested in lensless solutions, providing opportunities to design imaging systems free from the constraints imposed by traditional camera architectures. Cheaper, lighter, and enabling compressive imaging with large field-of-view (FOV), Lensless Imaging (LI) is convenient for medical applications such as microscopy [START_REF] Ozcan | Ultra wide-field lens-free monitoring of cells on-chip[END_REF][START_REF] Ozcan | Lensless imaging and sensing[END_REF] and in vivo imaging [START_REF] Kuo | On-chip fluorescence microscopy with a random microlens diffuser[END_REF][START_REF] Adams | In vivo fluorescence imaging with a flat, lensless microscope[END_REF] where the extreme miniaturization of the imaging probe (diameter ≤ 200 µm) offers a minimally invasive route to image at depths unreachable in microscopy [START_REF] Vivek Boominathan | Lensless Imaging: A computational renaissance[END_REF]. Paving the way for deep biological tissues [START_REF] Choi | Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues[END_REF] and brain imaging with the capability to produce focal planes at various distances from the fiber tip, intensive research effort emerged for Lensless Endoscopy (LE) using multimode fibers [START_REF] Septier | Label-free highly multimodal nonlinear endoscope[END_REF][START_REF] Lochocki | Epi-fluorescence imaging of the human brain through a multimode fiber[END_REF][START_REF] Psaltis | Imaging with Multimode Fibers[END_REF][START_REF] Cizmar | Exploiting multimode waveguides for pure fibre-based imaging[END_REF] or MultiCore Fibers (MCF) [START_REF] Sivankutty | Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber[END_REF][START_REF] Esben Ravn Andresen | Ultrathin endoscopes based on multicore fibers and adaptive optics: status and perspectives[END_REF][START_REF] Choudhury | Compressive optical imaging with a photonic lantern[END_REF].

In the field of Computational Imaging (CI) to which LI belongs, a mathematical model is required to describe the observations as a function of the object to be imaged. Regarding the efficiency aspects, two categories of requirement must be considered when developping CI applications; (i) the model must be physically reliable but also computationnally efficient to speed up the reconstruction algorithms (ii) the acquisition method must minimize the number of observations (also called sample complexity) needed to accurately estimate the object of interest while remaining fast. In single-pixel MCF-LI, Speckle Imaging (SI) consists in randomly shaping the wavefront of the light input to the (weakly coupled) cores entering the MCF to illuminate the entire object with a randomly distributed inten- sity. The fraction of the light re-emitted (either at other wavelengths by fluorescence or by simple reflection) is integrated in a single-pixel sensor, playing the role of a complete projection of the speckle on the object. Compared to Raster Scanning (RS) the object with a translating focused spot [START_REF] Sivankutty | Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber[END_REF], SI has been shown to reduce the sample complexity [START_REF] Guérit | Compressive imaging through optical fiber with partial speckle scanning[END_REF].

In this work, we push a leap forward towards real-time compressive LE, keeping the low sample complexity enabled by SI and introducing light propagation physics in the forward model of MCF imaging using a wavefront-shaping device. We point out that inserting the physics yields an interferometric sensing model similar to radio-inteferometry applications [START_REF] Carrillo | Sparsity Averaging Reweighted Analysis (SARA): A novel algorithm for radio-interferometric imaging[END_REF][START_REF] Wiaux | Compressed sensing imaging techniques for radio interferometry[END_REF], where the interferences of the light emmited by the cores composing the MCF give specific access to the Fourier content of the object to be imaged. The sampling complexity of the underlying model is analyzed both theoretically and experimentally.

Sensing model

Considering an MCF with diameter D and Q fiber cores (see Fig. 1-top) whose locations on the MCF distal end Z 0 are in

Ω := {p q } Q q=1 ⊂ R 2
, and assuming a planar sample in the plane Z at a distance z from Z 0 , by optically shaping the light wavefront with an SLM, we can set to α q ∈ C the complex amplitude of the electromagnetic field at each fiber core p q . Writing α = (α 1 , . . . , α Q ) ⊤ ∈ C Q and x ∈ R 2 a point on Z, under the far-field approximation z ≫ D 2 /λ (with λ the laser wavelength) the illumination produced by the MCF on Z reads [START_REF] Guérit | Compressive imaging through optical fiber with partial speckle scanning[END_REF] S(x; α) ≈ w(x)

Q q=1 α q e 2πi λz p ⊤ q x 2 ,
where w is a smooth vignetting function-a Gaussian envelope with a diameter inversely proportional to the fiber cores arXiv:2307.08562v1 [eess.SP] 17 Jul 2023 diameter-determining the FOV. In RS mode, a focused beam can be obtained in Z when the Q fiber core locations in Ω are arranged in a Fermat's golden spiral shape [START_REF] Sivankutty | Nonlinear imaging through a Fermat's golden spiral multicore fiber[END_REF]; we will restrict our analysis to this configuration. The LE collects a fraction c ∈ (0, 1) of the light y globally re-emitted by the sampleas modeled by the fluorophore density map f (x)-under the illumination S. For short time exposure and low intensity illumination, fluorescence theory provides (in a noiseless regime)

y(f ; α, Ω) = c R 2 S(x; α)f (x)dx = c Q j,k=1 α * j α k R 2 e 2πi λz (p k -p j ) ⊤ x w(x)f (x)dx ∈ R + ,
with the number of collected photons y being Poisson distributed. Therefore, introducing the interferometry matrix

I Ω [g] ∈ C Q×Q such that, for a function g : R 2 → R, (I Ω [g]) jk := R 2 e 2πi λz (p k -p j ) ⊤ x g(x)dx with I Ω [g]
Hermitian, assuming c = 1 and considering the scenario where we collect M LE observations y = (y 1 , . . . , y M ) ⊤ , each associated with a specific α m for 1 ⩽ m ⩽ M ,

y(f ; α m , Ω) = α * m I Ω [f • ] α m = α m α * m , I Ω f • F , with f • := wf is
the image f vignetted by w. Under a high photon counting regime, and gathering all possible noise sources in an additive term n, we can thus compactly write the SI sensing as

y = A • I Ω f • + n, with(A[H]) m := α * m Hα m , for H = H * and 1 ⩽ m ⩽ M. (1) 
We thus observe that ( 1) is tantamount to first sampling the Fourier transform of f • over frequencies selected in the difference set

V := 2π λz (Ω -Ω) = { 2π λz (p j -p k )} Q j,k=1
, and next performing M symmetric rank-one projections (SROP [START_REF] Chen | Exact and stable covariance estimation from quadratic sampling via convex programming[END_REF][START_REF] Cai | Rop: Matrix recovery via rank-one projections[END_REF]) of I Ω [f • ] as determined by A and the complex amplitude vectors {α m } M m=1 . Thus, the SI sensing corresponds to a specific interferometric system: assuming we collect enough SROP observations, we can potentially estimate the interferometry matrix I Ω [f • ]. The system is thus equivalent to the radio-interferometry principles [START_REF] Wiaux | Compressed sensing imaging techniques for radio interferometry[END_REF]-each fiber core playing somehow the role of a radio telescope and each entry of (I Ω [f • ]) jk probing the frequency content of f • on the "visibility" ν jk := 2π λz (p j -p k ).

Interferometric structural models

If one aims to image a vignetted sample that is K-sparse in the spatial domain, i.e., it is composed of a few spikes as

f • (x) = K i=1 ρ i δ(x -x i ) for K ≪ Q, the entry "jk" of the interfero- metric matrix reads I Ω f • jk = K i=1 ρ i e i2π(p k -p j ) ⊤ xi
. We can therefore write the interferometric matrix as

I Ω f • = i ρ i u(x i )u * (x i ), u(x) j := e -i2πp ⊤ j x ,
which shows that it is low-rank with rank K. More generally, for a sample f • that can be assumed sparsely represented in a collection of functions {ψ k } d k=1 (e.g., a wavelet basis for bandlimited function supported inside Ω), i.e., f • (x) = d k=1 ρ k ψ k (x) with ∥ρ∥ 0 = K ≪ d, then the interferometric matrix belongs to a subspace of dimension K and writes as

I Ω [f • ] = K k|ρ k ̸ =0 ρ k I Ω [ψ k ].

Image reconstruction

Assuming the sample f • ∈ Ω is band-limited, we are interested in accurately estimating a discretisation f ∈ R N of f • We consider a discretisation of (1) that reads

y = A • ĨΩ [f ] + n, with ĨΩ [f ] = R Ṽ F f ,
where F is the Fourier matrix and R Ṽ : C N → C Q×Q is the restriction to the set Ṽ obtained as a Cartesian gridding of the (off-grid) difference set V (reached by nearest neighbors). From the factorization of this model, we first conclude that the set Ṽ should ideally be composed of as many distinct frequencies as possible (except for the zero frequency that has multiplicity Q) to improve our knowledge of f . Interestingly, we can show numerically that Fermat's gold spiral arrangement ensures the unicity of the visibilities νjk when j ̸ = k, i.e., Ṽ is composed of Q(Q -1) + 1 distinct frequencies. In a noiseless scenario, we have shown that there exists a combination of

M 0 = O(Q 2 ) deterministic ROP observations that exactly re- covers ĨΩ [f • ].
Therefore, in a compressive setting, we could first leverage the low-complexity structure of ĨΩ [f • ]-as induced from that of f -to recover ĨΩ [f ] from M < M 0 random complex ROPs, and then infer f from its Q(Q -1) + 1 frequencies encoded in ĨΩ [f ], this second step being similar to the inverse problem posed in radio-interferometry [START_REF] Wiaux | Compressed sensing imaging techniques for radio interferometry[END_REF][START_REF] Carrillo | Sparsity Averaging Reweighted Analysis (SARA): A novel algorithm for radio-interferometric imaging[END_REF]. In a simpler case where the cores are placed at all integer positions, the interferometric matrix is shown to be circulant and low-rank, i.e., ĨΩ [f ] = T • F f where T : C N → C N ×N is the operator that turns a vector into a circulant matrix. In this situation, the sensing operator B respects a specific RIP-ℓ 2 /ℓ 1 property over the set of sparse images-thus extending former approaches restricted to real sparse and low-rank matrices [START_REF] Chen | Exact and stable covariance estimation from quadratic sampling via convex programming[END_REF], and the RIP of random partial Fourier sensing characterized by Ṽ [START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF]. Proposition 4.1 shows that proving this RIP-ℓ 2 /ℓ 1 for B implies we can reliably estimate it in a single basis pursuit denoising program (BPDN) with an ℓ 1 fidelity term. This happens with high probability if the vectors {α m } M m=1 are random and sub-Gaussian, and both M and Q 2 are large compared to the sparsity level of f . Proposition 4.1 (ℓ 2 /ℓ 1 instance optimality of BPDN ℓ1 ). Let B := A • T • F be an operator that respects the RIP ℓ2/ℓ1 (k, α k , β k ) for k ∈ {K, K + K ′ } with K ′ > 2K,

and 1 √ 2 m K+K ′ -M K ′ √ K √ K ′ ⩾ γ > 0, for some M K ′ > 0. Then, ∀f ∈ R N , the estimate f ∈ arg min u ∥u∥ 1 s.t. B(f ) + n y -B(u) 1 ⩽ ϵ satisfies ∥f -f ∥ 2 ⩽ C ∥f -f K ∥ 1 √ K + D ϵ m
The current theoretical derivations are accompanied by numerical (not shown in this abstract) and experimental reconstruction results (see lead-in in Fig. 1-bottom) that suggest Proposition 4.1 may also hold when relaxing the cited assumptions. Additionnally, this may extend to other optimisation problems like LASSO [START_REF] Van | Probing the pareto frontier for basis pursuit solutions[END_REF] or lagrangian formulations with various regularization terms (ℓ 1 in the identity or orthonormal basis, total variation).
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 1 Figure 1: (top) Interferometric LI and its link with ROPs of the interferometric matrix. (bottom) left: ground truth, center: reconstruction with (Q,M )=(110,49), right: reconstruction with (Q,M )=(110,2 • 10 4 ).