
HAL Id: hal-04282728
https://hal.science/hal-04282728v1

Submitted on 13 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interferometric single-pixel imaging with a multicore
fiber

Olivier Leblanc, Matthias Hofer, Siddharth Sivankutty, Hervé Rigneault,
Laurent Jacques

To cite this version:
Olivier Leblanc, Matthias Hofer, Siddharth Sivankutty, Hervé Rigneault, Laurent Jacques. Interfer-
ometric single-pixel imaging with a multicore fiber. arXiv, 2023, �10.48550/arXiv.2307.08562�. �hal-
04282728�

https://hal.science/hal-04282728v1
https://hal.archives-ouvertes.fr


Interferometric single-pixel imaging with a multicore fiber

Olivier Leblanc1, Matthias Hofer2, Siddharth Sivankutty3, Hervé Rigneault2 and Laurent Jacques1.
1ISPGroup, ICTEAM, UCLouvain, Belgium. 2Institut Fresnel, Marseille, France. 3PhLAM, Lille, France.

Abstract— Lensless illumination single-pixel imaging with a
multicore fiber (MCF) is a computational imaging technique that
enables potential endoscopic observations of biological samples at
cellular scale. In this work, we show that this technique is tan-
tamount to collecting multiple symmetric rank-one projections
(SROP) of a Hermitian interferometric matrix—a matrix encod-
ing the spectral content of the sample image. In this model, each
SROP is induced by the complex sketching vector shaping the in-
cident light wavefront with a spatial light modulator (SLM), while
the projected interferometric matrix collects up to O(Q2) image
frequencies for a Q-core MCF. While this scheme subsumes pre-
vious sensing modalities, such as raster scanning (RS) imaging
with beamformed illumination, we demonstrate that collecting the
measurements of M random SLM configurations—and thus ac-
quiring M SROPs—allows us to estimate an image of interest if
M and Q scale linearly (up to log factors) with the image sparsity
level, hence requiring much fewer observations than RS imaging
or a complete Nyquist sampling of the Q×Q interferometric ma-
trix. This demonstration is achieved both theoretically, with a spe-
cific restricted isometry analysis of the sensing scheme, and with
extensive Monte Carlo experiments. Experimental results made
on an actual MCF system finally demonstrate the effectiveness of
this imaging procedure on a benchmark image.

1 Introduction

Recently, the imaging community became more and more in-
terested in lensless solutions, providing opportunities to de-
sign imaging systems free from the constraints imposed by tra-
ditional camera architectures. Cheaper, lighter, and enabling
compressive imaging with large field-of-view (FOV), Lensless
Imaging (LI) is convenient for medical applications such as mi-
croscopy [1, 2] and in vivo imaging [3, 4] where the extreme
miniaturization of the imaging probe (diameter ≤ 200 µm) of-
fers a minimally invasive route to image at depths unreachable
in microscopy [5]. Paving the way for deep biological tis-
sues [6] and brain imaging with the capability to produce focal
planes at various distances from the fiber tip, intensive research
effort emerged for Lensless Endoscopy (LE) using multimode
fibers [7, 8, 9, 10] or MultiCore Fibers (MCF) [11, 12, 13].

In the field of Computational Imaging (CI) to which LI be-
longs, a mathematical model is required to describe the obser-
vations as a function of the object to be imaged. Regarding
the efficiency aspects, two categories of requirement must be
considered when developping CI applications; (i) the model
must be physically reliable but also computationnally efficient
to speed up the reconstruction algorithms (ii) the acquisition
method must minimize the number of observations (also called
sample complexity) needed to accurately estimate the object of
interest while remaining fast. In single-pixel MCF-LI, Speckle
Imaging (SI) consists in randomly shaping the wavefront of the
light input to the (weakly coupled) cores entering the MCF to
illuminate the entire object with a randomly distributed inten-
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Figure 1: (top) Interferometric LI and its link with ROPs of the interfer-
ometric matrix. (bottom) left: ground truth, center: reconstruction with
(Q,M )=(110,49), right: reconstruction with (Q,M )=(110,2 · 104).

sity. The fraction of the light re-emitted (either at other wave-
lengths by fluorescence or by simple reflection) is integrated
in a single-pixel sensor, playing the role of a complete projec-
tion of the speckle on the object. Compared to Raster Scanning
(RS) the object with a translating focused spot [11], SI has been
shown to reduce the sample complexity [14].

In this work, we push a leap forward towards real-time com-
pressive LE, keeping the low sample complexity enabled by SI
and introducing light propagation physics in the forward model
of MCF imaging using a wavefront-shaping device. We point
out that inserting the physics yields an interferometric sens-
ing model similar to radio-inteferometry applications [15, 16],
where the interferences of the light emmited by the cores com-
posing the MCF give specific access to the Fourier content of
the object to be imaged. The sampling complexity of the under-
lying model is analyzed both theoretically and experimentally.

2 Sensing model

Considering an MCF with diameter D and Q fiber cores (see
Fig. 1-top) whose locations on the MCF distal end Z0 are in
Ω := {pq}

Q
q=1 ⊂ R2, and assuming a planar sample in the

plane Z at a distance z from Z0, by optically shaping the light
wavefront with an SLM, we can set to αq ∈ C the complex
amplitude of the electromagnetic field at each fiber core pq .
Writing α = (α1, . . . , αQ)

⊤ ∈ CQ and x ∈ R2 a point on
Z , under the far-field approximation z ≫ D2/λ (with λ the
laser wavelength) the illumination produced by the MCF on Z
reads [14]

S(x;α) ≈ w(x)
∣∣∑Q

q=1 αqe
2πi
λz p⊤

q x
∣∣2,

where w is a smooth vignetting function—a Gaussian enve-
lope with a diameter inversely proportional to the fiber cores
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diameter—determining the FOV. In RS mode, a focused beam
can be obtained in Z when the Q fiber core locations in Ω are
arranged in a Fermat’s golden spiral shape [17]; we will restrict
our analysis to this configuration. The LE collects a fraction
c ∈ (0, 1) of the light y globally re-emitted by the sample—
as modeled by the fluorophore density map f(x)—under the
illumination S. For short time exposure and low intensity illu-
mination, fluorescence theory provides (in a noiseless regime)

y(f ;α,Ω) = c

∫
R2

S(x;α)f(x)dx

= c

Q∑
j,k=1

α∗
jαk

∫
R2

e
2πi
λz (pk−pj)

⊤xw(x)f(x)dx ∈ R+,

with the number of collected photons y being Poisson dis-
tributed. Therefore, introducing the interferometry matrix
IΩ[g] ∈ CQ×Q such that, for a function g : R2 → R,
(IΩ[g])jk :=

∫
R2 e

2πi
λz (pk−pj)

⊤xg(x)dx with IΩ[g] Hermi-
tian, assuming c = 1 and considering the scenario where we
collect M LE observations y = (y1, . . . , yM )⊤, each associ-
ated with a specific αm for 1 ⩽ m ⩽M ,

y(f ;αm,Ω) = α∗
m IΩ[f

◦ ]αm =
〈
αmα∗

m,IΩ

[
f◦

]〉
F
,

with f◦ := wf is the image f vignetted by w. Under a
high photon counting regime, and gathering all possible noise
sources in an additive term n, we can thus compactly write the
SI sensing as
y = A ◦ IΩ

[
f◦

]
+ n, with(A[H])m := α∗

mHαm,

for H = H∗ and 1 ⩽ m ⩽M.
(1)

We thus observe that (1) is tantamount to first sampling the
Fourier transform of f◦ over frequencies selected in the dif-
ference set V := 2π

λz (Ω − Ω) = { 2π
λz (pj − pk)}

Q
j,k=1, and

next performing M symmetric rank-one projections (SROP
[18, 19]) of IΩ[f

◦ ] as determined by A and the complex
amplitude vectors {αm}Mm=1. Thus, the SI sensing corre-
sponds to a specific interferometric system: assuming we col-
lect enough SROP observations, we can potentially estimate the
interferometry matrix IΩ[f

◦ ]. The system is thus equivalent to
the radio-interferometry principles [16]—each fiber core play-
ing somehow the role of a radio telescope and each entry of
(IΩ[f

◦ ])jk probing the frequency content of f◦ on the “visi-
bility” νjk := 2π

λz (pj − pk).

3 Interferometric structural models

If one aims to image a vignetted sample that is K-sparse in the
spatial domain, i.e., it is composed of a few spikes as f◦(x) =∑K

i=1 ρiδ(x− xi) for K ≪ Q, the entry "jk" of the interfero-
metric matrix reads IΩ

[
f◦

]
jk

=
∑K

i=1 ρie
i2π(pk−pj)

⊤xi . We
can therefore write the interferometric matrix as

IΩ

[
f◦

]
=

∑
i

ρiu(xi)u
∗(xi), u(x)j := e−i2πp⊤

j x,

which shows that it is low-rank with rank K. More gener-
ally, for a sample f◦ that can be assumed sparsely represented
in a collection of functions {ψk}dk=1 (e.g., a wavelet basis
for bandlimited function supported inside Ω), i.e., f◦(x) =∑d

k=1 ρkψk(x) with ∥ρ∥0 = K ≪ d, then the interferomet-
ric matrix belongs to a subspace of dimension K and writes as
IΩ[f

◦] =
∑K

k|ρk ̸=0 ρkIΩ[ψk].

4 Image reconstruction

Assuming the sample f◦ ∈ Ω is band-limited, we are interested
in accurately estimating a discretisation f ∈ RN of f◦ We
consider a discretisation of (1) that reads

y = A ◦ ĨΩ[f ] + n,with ĨΩ[f ] = RṼFf ,

where F is the Fourier matrix and RṼ : CN 7→ CQ×Q is
the restriction to the set Ṽ obtained as a Cartesian gridding of
the (off-grid) difference set V (reached by nearest neighbors).
From the factorization of this model, we first conclude that the
set Ṽ should ideally be composed of as many distinct frequen-
cies as possible (except for the zero frequency that has mul-
tiplicity Q) to improve our knowledge of f . Interestingly, we
can show numerically that Fermat’s gold spiral arrangement en-
sures the unicity of the visibilities ν̃jk when j ̸= k, i.e., Ṽ is
composed of Q(Q − 1) + 1 distinct frequencies. In a noise-
less scenario, we have shown that there exists a combination of
M0 = O(Q2) deterministic ROP observations that exactly re-
covers ĨΩ[f

◦ ]. Therefore, in a compressive setting, we could
first leverage the low-complexity structure of ĨΩ[f

◦ ]—as in-
duced from that of f—to recover ĨΩ[f ] from M < M0 ran-
dom complex ROPs, and then infer f from its Q(Q − 1) + 1
frequencies encoded in ĨΩ[f ], this second step being similar
to the inverse problem posed in radio-interferometry [16, 15].
In a simpler case where the cores are placed at all integer po-
sitions, the interferometric matrix is shown to be circulant and
low-rank, i.e., ĨΩ[f ] = T ◦ Ff where T : CN 7→ CN×N is
the operator that turns a vector into a circulant matrix. In this
situation, the sensing operator B respects a specific RIP-ℓ2/ℓ1
property over the set of sparse images—thus extending former
approaches restricted to real sparse and low-rank matrices [18],
and the RIP of random partial Fourier sensing characterized by
Ṽ [20]. Proposition 4.1 shows that proving this RIP-ℓ2/ℓ1 for
B implies we can reliably estimate it in a single basis pursuit
denoising program (BPDN) with an ℓ1 fidelity term. This hap-
pens with high probability if the vectors {αm}Mm=1 are random
and sub-Gaussian, and both M and Q2 are large compared to
the sparsity level of f .

Proposition 4.1 (ℓ2/ℓ1 instance optimality of BPDNℓ1 ). Let
B := A ◦ T ◦ F be an operator that respects the
RIPℓ2/ℓ1(k, αk, βk) for k ∈ {K,K + K ′} with K ′ > 2K,

and 1√
2
mK+K′ − MK′

√
K√
K′ ⩾ γ > 0, for some MK′ > 0.

Then, ∀f ∈ RN , the estimate

f̂ ∈ argmin
u

∥u∥1 s.t.
∥∥B(f) + n︸ ︷︷ ︸

y

−B(u)
∥∥
1
⩽ ϵ

satisfies

∥f − f̂∥2 ⩽ C
∥f − fK∥1√

K
+D

ϵ

m

The current theoretical derivations are accompanied by nu-
merical (not shown in this abstract) and experimental recon-
struction results (see lead-in in Fig. 1-bottom) that suggest
Proposition 4.1 may also hold when relaxing the cited assump-
tions. Additionnally, this may extend to other optimisation
problems like LASSO [21] or lagrangian formulations with var-
ious regularization terms (ℓ1 in the identity or orthonormal ba-
sis, total variation).
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