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Skeleton Disk-Graph Roadmap: A Sparse
Deterministic Roadmap For Safe 2D Navigation and

Exploration
Thibault Noël1,2, Antoine Lehuger2, Eric Marchand3, François Chaumette1

Abstract—In this letter, we describe a novel roadmap con-
struction method in unknown environments, which relies on the
extraction of the Hamilton-Jacobi skeleton of the free space.
This skeleton is used to construct a graph of free-space bubbles,
effectively compressing the skeleton information in a sparse data
structure but retaining its topology. The bubbles also enforce
safety directly in the roadmap structure. We first demonstrate
the relevance of this approach for standard path-planning tasks.
We also propose a frontiers-based exploration strategy able
to autonomously and safely build a complete 2D map of the
environment.

Index Terms—Motion and Path Planning; Autonomous Agents;
Reactive and Sensor-Based Planning

I. INTRODUCTION

EXPLORATION of unknown environments in mobile
robotics has applications in search and rescue, industrial

inspection and prospection, active SLAM, etc. However, it
remains a complex task for a robot to execute autonomously.
The main challenges are to tackle the high uncertainties
associated to the environment model and to derive an efficient
planning strategy that can accommodate the growing size
and complexity of the environment, while providing high-
quality navigation paths. The crucial components needed for
a complete exploration strategy are thus:

• the mapping module, generally handled by a SLAM
algorithm, which provides an accurate representation of
the environment and manages localization.

• the planning module, which uses the map information to
compute the trajectory of the robot; planning can often be
divided into a global planning method providing feasible
collision-free paths followed by a local post-processing
method which optimizes the path for desirable properties
(length, clearance).

• the navigation module executing the planned paths
Exploration-specific planners are generally difficult to reuse

for generic navigation tasks, while generic-purpose navigation
planners often remain too computationnally expensive to be
used for autonomous exploration unless they are coupled with
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Fig. 1: An example of roadmap obtained using our method. The left figure shows the final
roadmap, and the right figure shows the paths planned to each vertex from an arbitrary
starting configuration, colored by path length.

a tailored search strategy.
To address this trade-off, we propose a novel roadmap planner
operating directly on the 2D occupancy grid map (OGM) pro-
duced by a standard SLAM algorithm. We first describe how to
extract the Hamilton-Jacobi skeleton of the free space; we then
use it to sample free-space bubbles forming the roadmap ver-
tices and propose a simple edges construction process, before
describing how the roadmap graph can be partially updated
as the environment changes. We also detail the associated
path post-processing method. We finally propose a frontiers-
driven exploration strategy directly derived from the proposed
roadmap. An evaluation of the planner is conducted against
two state-of-the-art methods and the exploration strategy is
demonstrated in various environments. The main contributions
proposed in this work can be summarized as:

• a deterministic method to construct a sparse roadmap,
which relies on the map skeleton and on free-space
bubbles to obtain a high-coverage, sparse roadmap that
naturally enforces safety constraints;

• a frontiers-based exploration strategy derived from the
proposed roadmap, demonstrated in simulated and real
environments.

• a statistical evaluation of the proposed roadmap quality
against state-of-the-art approaches, in terms of coverage,
sparsity, computational performance and path quality;

This letter is complemented by a companion video and an
open-source implementation of the proposed method1.

II. RELATED WORK

Recent exploration works rely on two main types of
strategies to maximize the discovery of unknown space:

1https://github.com/thibnoel/skel disk graph roadmap

https://youtu.be/T-aOIx6_-ts
https://github.com/thibnoel/skel_disk_graph_roadmap
https://github.com/thibnoel/skel_disk_graph_roadmap
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information-driven exploration relies on a continuous rep-
resentation of the environment, such as continuous occupancy
maps [1], [2] or signed distance fields (SDF) [3], [4], to
estimate the mutual information (MI) between the current map
and future measurements; the optimal exploration path can
then directly be obtained as the result of a gradient descent in
the robot’s trajectory space. However, the MI estimation often
remains too computationally costly for real-time usage in large
environments. On the other hand, frontiers-driven strategies
rely on the assumption that information is maximized at
the boundaries between free and unknown space. Frontiers-
driven methods can thus generally be applied directly to
binary occupancy data. The frontiers can either be extracted
geometrically [5], [6] or obtained locally by searching the map
representation, for example with sampling-based methods [7].
The problem can then be regarded as making the optimal
choice in a discrete frontiers set. However, the optimality
criteria here only applies to the target frontier and not the full
path, requiring an additional planning step to provide the path
towards the frontier. Sampling-based planners are the most
common choice found in the literature to achieve this task, as
they are well-suited to uncertain environments and combine
well with frontiers-driven exploration, providing a reduced
search space and a natural way to plan towards multiple
frontiers. Tree-based approaches, mostly derived from the RRT
[8], are fast to compute but do not exploit the information
of previous planning calls. Roadmap approaches, inspired by
the PRM [9], rather construct a graph representation of free
space, which can then be queried using standard graph-search
algorithms. They are thus more versatile as paths can be
queried independently of the robot location, and a roadmap
can be reused for other navigation tasks. Specifically for
frontiers-driven exploration, the most critical features of the
roadmap are sparsity, to avoid computational explosion as
the environment (and thus the roadmap graph) grows in size
and complexity, and high coverage to ensure that any frontier
can be navigated to; in particular, finding and exploring
narrow passages is a challenging task for pure sampling-based
planners. This can impose a trade-off between query efficiency
and path quality, often requiring to post-process the paths
planned by the roadmap. It is also necessary for the roadmap
to be constructed or updated in real-time as the robot updates
the map.
In [10], a generic-purpose sparse roadmap is constructed by
allowing degradation of the path length. Sparsity is thus
improved in a controlled way without compromising coverage,
but induces a direct path-quality trade-off. Other methods
rather try to extract higher-level features from the environment
to obtain a sparser roadmap: in [11], the obstacles are used
to define a tensor field with an underlying graph structure,
which is then used directly for guidance towards unexplored
areas. Other approaches rather extract the Voronoi diagram
associated to the obstacles or similar triangulations [12]–[16]
to obtain a sparse representation of the map which also encap-
sulates distance information. However, those methods either
operate on simplified map representations (typically on meshes
or primitive sets such as segments, arcs) or are difficult to scale
to large unstructured environments in terms of computational

Fig. 2: Occupancy preprocessing - left: binary obstacles map, right: filtered obstacles
obtained for various values of the 𝑑𝑒𝑑 parameter (obstacles dilation and erosion distance).
Note: All units on the figures representing 2D maps are in meters.

cost. Another representation with strong links with the Voronoi
diagram is the Hamilton-Jacobi skeleton, used as a sparse
environment representation in [17] and partially extended to
frontiers-driven exploration in [18]. The skeleton allows to
encapsulate maximal safety information but still needs to be
postprocessed to extract the roadmap graph. Finally, we can
also cite approaches relying on bubbles of free-space, where
the environment gets covered with a collection of convex,
collision-free graph vertices. In [19], the authors plan safety-
aware trajectories for UAVs using 3D spheres, sampled around
the robot location. We proposed a similar idea for 2D navi-
gation in [20], using a biased sampling method to extend the
current bubbles graph. Free-space bubbles have the advantage
of providing a direct method to postprocess the paths [21],
and can be extended to burs of free-space as shown in [22];
however, those methods remain sampling-based, making them
more susceptible to failure in large environments with features
of varied spatial scale. Our method also relies on free-space
bubble but we show how they can be sampled deterministically
on the free-space skeleton.

III. HAMILTON-JACOBI SKELETON EXTRACTION

In this section, we show how to obtain a high-level represen-
tation of the environment, namely its Hamilton-Jacobi skeleton
[23], from the occupancy map. We first detail the occupancy
preprocessing step used to smooth the map noise, then derive
the Euclidean signed distance field (ESDF) associated to the
environment, before using its gradient to extract the skeleton.

A. Occupancy Map Preprocessing

We rely on a standard OGM as the main input, as it is
the most common representation for the environment in many
SLAM systems (in the case of a 3D environment, often rather
represented as an occupancy octree, an OGM can be obtained
simply by projecting the octree on the ground plane). In an
OGM, each grid cell represents the occupancy probability 𝑝𝑜𝑐𝑐
that the cell is occupied by an obstacle.
In a real scenario, the OGM data is affected by noise; this can
induce undesirable variability in the signed distance field and
spurious branches in the final skeleton. To reduce the impact
of this noise, we first binarize the occupancy map using a
threshold 𝑝𝑜𝑏𝑠𝑡 . We then apply successively a dilation and
an erosion operations, using the same kernel size for both.
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Fig. 3: Signed distance field - left: signed distance field (zero level set in blue), right:
SDF gradient (red and green colors indicate the values of the 𝑥 and 𝑦 components)

This kernel size is determined using a distance parameter 𝑑𝑒𝑑 ,
converted to grid-cell size. We thus obtain a binary map with
smoother obstacle edges and devoid of small-scale (below 𝑑𝑒𝑑)
spatial features. Fig. 2 illustrates the effect of the dilation-
erosion process for various values of 𝑑𝑒𝑑 .
Remark: We chose the occupancy threshold 𝑝𝑜𝑏𝑠𝑡 so that
unknown space is considered a priori free; this is necessary
for the frontiers-based strategy detailed in Sec. V.

B. Signed Distance Fields

A SDF is defined over the workspace W as the minimal
distance between a given configuration 𝑞 ∈W and an obstacles
subspace, often characterized by its oriented surface or as
a set of configurations. When using the standard Euclidean
distance 𝑑 (𝑢, 𝑣) = | |𝑢 − 𝑣 | |2, the corresponding SDF is often
referred to as the exact Euclidean SDF (ESDF). Methods
exist in the literature to approximate the ESDF directly from
sensor measurements, such as the truncated SDF (TSDF) [24];
however, those methods are often not integrated in standard
SLAM systems, on which we rely for the occupancy mapping.
Thus, we rather compute the ESDF from an obstacles set
S = {𝑞 ∈ W | 𝑝𝑜𝑐𝑐 (𝑞) > 𝑝𝑜𝑏𝑠𝑡 }. Its formal definition over
W is the following:

𝑑S (𝑞) =
{

min𝑠∈S | |𝑞− 𝑠 | |2 if 𝑞 ∉ S
−min𝑞0∈W\S | |𝑞− 𝑞0 | |2 if 𝑞 ∈ S

(1)

Computing the full ESDF directly from occupancy is more
computationnally expensive than TSDF estimation but can be
achieved in linear time with respect to the map size [25].
We additionally define the witness configuration 𝑤S (𝑞)
associated to configuration 𝑞 as the closest configuration on
the obstacles surface 𝑑S = 0 so that | |𝑞−𝑤S (𝑞) | | = |𝑑S (𝑞) |.

C. ESDF Gradient

Coming back to the definition of the ESDF, its gradient can
be expressed using the witness configuration as:

𝐽𝑑S (𝑞) =
𝜕𝑑S
𝜕𝑞

=
2(𝑞−𝑤S (𝑞))

2
√︁
(𝑞−𝑤S (𝑞))𝑇 (𝑞−𝑤S (𝑞))

=
𝑞−𝑤S (𝑞)
𝑑S (𝑞)

(2)
The ESDF gradient thus corresponds, in free space (resp.
occupied space), to the unit direction from (resp. towards) the
corresponding witness configuration on the obstacles surface.
Since computing the witness configuration is necessary to

Fig. 4: Summary of the bubbles extraction from the SDF, demonstrated in a sub-part
of the Intel research lab environment: from the SDF and its gradient, we compute the
gradient flux and threshold it to obtain the Hamilton-Jacobi skeleton; the skeleton is
thinned and its joints are extracted; we then extract the free-space bubbles in 2 passes
and in radius-descending order.

obtain the complete ESDF, this expression also shows that
the gradient is obtained ”for free” when computing the ESDF.
We can also remark that shifting the obstacles surface by
a constant offset 𝑑0 only moves the witness configuration
along the normal to the obstacles surface, leaving the gradient
unchanged. The ESDF can thus be parameterized with such
an offset to enforce safety constraints (typically, 𝑑0 is chosen
as the characteristic radius of the robot model, which ensures
that all regions with 𝑑S − 𝑑0 > 0 are safe for navigation). An
example of ESDF and its gradient are shown on Fig. 3.

D. Hamilton-Jacobi Skeleton

We finally extract the Hamilton-Jacobi skeleton which will
be sampled to construct the final roadmap. The Hamilton-
Jacobi skeleton is strongly linked to the notion of medial-
axis transform (MAT): for a closed set 𝐴 ⊂ R2, it is formally
defined as the set of centers of maximal open disks contained
in the set complement. In our case, it can equivalently be seen
as the set of free-space configurations that are equidistant to
strictly more than one obstacle configurations. This definition
allows to derive a computation method from the ESDF: the
skeleton corresponds to the ridges of the ESDF gradient flux.
Thus, to extract the skeleton, we compute an estimation of the
gradient flux using a local 8-neighborhood; this estimation is
thresholded to obtain the initial skeleton map, on which we
apply a final thinning step. This process is illustrated on Fig. 4-
(𝑏, 𝑐, 𝑑, 𝑒).
However, this approach suffers from drawbacks which make it
unsuited to direct use in a planning method: in particular, the
thresholding step is tuning-sensitive due to the approximation
made when computing the ESDF gradient flux. Choosing
the threshold too high will lead to a skeleton containing
spurious edges, while choosing it too low increases the risk
of obtaining a disconnected skeleton. Moreover, the skeleton
is still represented as a 2D map, which does not reflect its
inherent graph structure and is impractical to query. In the
next section, we show how using free-space bubbles allows to
overcome tuning sensitivity and obtain a graph representation
of the skeleton.

IV. SKELETON DISK-GRAPH ROADMAP

In this section, we describe how the Hamilton-Jacobi
skeleton map obtained in the previous section is exploited
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to construct a sparse roadmap, which we refer to as the
skeleton disk-graph roadmap (SDGRM). Relying on similar
definitions as in [20], we use the skeleton to sample the centers
of free space bubbles, ensuring maximal safety distance with
respect to the obstacles. The idea behind using bubbles is to
automatically adapt the nodes density of the roadmap to the
local SDF. We also detail the post-processing steps applied to
the paths planned with our roadmap, which produce smoother
paths while retaining safety.

A. Disk-Graph Roadmap Construction
Let us first recall the definition of free-space bubbles: a

bubble is defined for a configuration 𝑞0 ∈ W as a convex
subset 𝐵 in which all configurations are closer to 𝑞0 than the
closest obstacle. Formally, this reads as:

𝐵(𝑞0) = {𝑞 ∈W | 𝑑S (𝑞0) > | |𝑞0 − 𝑞 | |2} (3)

In the case of a 2D workspace, a bubble is a disk centered on
𝑞0; we also denote the radius of the bubble by 𝜌𝐵 (𝑞0). The
roadmap we construct uses such bubbles as vertices, leading
to a disk-graph structure.
The disk-graph construction consists in two main steps: we
first extract the bubbles of free-space associated to the skele-
ton, ensuring the skeleton is entirely covered by bubbles. We
then use an edge validity criterion inspired from the ones used
in [20] to construct the edges by checking all pairs of bubbles.
Let us now detail each of those steps.
Extraction of free-space bubbles. To compute the bubbles
constituting the graph nodes, we treat the skeleton map as a
pool of samples and pick bubbles in descending radius order
to be added to the graph nodes. Each time a new bubble is
added, the samples are filtered to eliminate those which are
inside the new bubble. This process continues until no more
skeleton samples can be chosen so that 𝜌𝐵 (𝑞) > 𝜌𝑚𝑖𝑛, where
𝜌𝑚𝑖𝑛 is a parameter that sets the minimal radius of a free-
space bubble. Moreover, this step is actually handled in two
separate passes; using the thinness of the skeleton, we can
extract the skeleton joints, i.e., the pixels in the skeleton map
that have strictly more than two neighbors in the sense of
8-neighborhood. The first pass only considers those skeleton
joints, as they represent branching configurations and should
be prioritized to be part of the final roadmap. The second pass
handles the remaining skeleton configurations. The bubbles
extraction process is illustrated on Fig. 4-( 𝑓 , 𝑔, ℎ, 𝑖).
Edges construction. Having obtained the graph nodes as free-
space bubbles, we can now compute the graph edges to obtain
our roadmap. Using bubbles provides a convenient way to
check for edges, simply by checking overlaps between pairs
of bubbles; however, it could occur that two bubbles overlap
but the obstacles distance along the segment formed by their
two centers passes below the minimal safety distance 𝜌𝑚𝑖𝑛.
To avoid this case, we include an additional step and compute
the geometrical barycenter of the overlap area, which is given
by:

𝑞𝑐 = 𝑞0 +
1+ (𝑟0 − 𝑟1) (𝑟0 + 𝑟1)

2
· 𝑞1 − 𝑞0

| |𝑞1 − 𝑞0 | |2
(4)

where 𝑞0, 𝑞1 (resp. 𝑟0, 𝑟1) are the centers (resp. radii) of the
bubbles considered. The distance map is queried at 𝑞𝑐 to verify

the safety condition. An edge is added only if 𝜌𝐵 (𝑞𝑐) > 𝜌𝑚𝑖𝑛.
Overall, this graph construction process greatly reduces the
sensitivity of the method to the threshold chosen at the previ-
ous skeleton extraction step; if the skeleton has spurious edges,
they will be eliminated as candidates when contained inside
a larger bubble, and if the skeleton misses valid connections,
bubbles can overlap over the gaps, allowing for edges in the
final graph when relevant.
Planner update. When using the roadmap for exploration,
the environment is inherently dynamic, but we can actually
avoid recomputing the whole graph for each new SDF; by
caching the previous SDF and using a brute force search over
existing nodes, we can detect the bubbles whose radius must
be modified and they get discarded from the current roadmap.
We then extract the skeleton as usual, and mask it with the
unchanged bubbles before applying the graph construction
process; new bubbles are only sampled in the modified zones
and the graph is kept in its current state where applicable.

B. Planning Using the Disk-Graph Roadmap

Once the disk-graph is constructed, standard graph-search
approaches allow to plan between any two graph nodes
(assuming connectivity). In our case, we use the Dijkstra
algorithm. To extend the planning capabilities of the graph to
any reachable configurations in the environment, we propose
an idea of the proof of completeness in the following.
Planner completeness. Here, we show how for all pairs of
configurations for which a feasible path exists in the distance
map (under safety constraints), a path can be computed using
the proposed disk-graph. Let us first assume connectivity of the
graph: disconnected components correspond, by construction,
to areas which are isolated in the distance map. We also
consider the problem from the point of view of only one of the
path ends (start or goal configuration) because it is symmetric,
and assume they both satisfy the safety distance constraints.
We have two possible cases :

• if the goal configuration lies inside one of the graph
bubbles, we can plan directly to the corresponding center
configuration; we can then add a final path segment to
the goal, which is guaranteed to be free.

• if the goal configuration satisfies the safety constraints
but lies outside of the graph bubbles, we can not directly
plan towards one of the graph vertices. However, starting
from the goal configuration, we can iteratively follow the
distance gradient direction towards the skeleton. Since
by construction, the skeleton is entirely covered by free-
space bubbles, we are guaranteed to enter a free-space
bubble at some point along the gradient walk. We can then
apply the same argument as before and thus guarantee that
a feasible path exists.

In practice, the second case rarely happens, because the robot
navigation is guided by paths remaining inside the bubbles.

C. Path Post-Processing

The path obtained is a list of waypoints corresponding to
the positions of the roadmap nodes, and is thus a succession
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Fig. 5: Frontiers extraction at 2 different planning steps during the exploration of the
CMU indoors environment. The roadmap is in dark red, the current agent position in
brighter red, and each frontier and the path towards it are colored by path length. The
maximum path length 𝑑𝑠𝑒𝑎𝑟𝑐ℎ is set to 20𝑚.

of segments linked by zero-radius turns. However, since the
nodes are overlapping bubbles, we can use the path-smoothing
technique proposed for the Elastic-Bands local planner [21],
[26]. Doing so, the path is approximated using a B-spline,
for which the control points are directly computed from the
bubbles positions and radii. This spline is guaranteed to remain
inside the bubbles, maintaining safety. We note that for robots
with non-zero turning radius, there is a priori no guarantee
on the feasibility of the post-processed path. However, the B-
spline expression allows to compute the curvature in closed
form at any point on the path, already giving a verification
method for a given path. Modifying the control points asso-
ciated to each bubble or the B-spline expression could help
constraining the minimal curvature of the path, but we did not
investigate this aspect further here.

V. EXPLORATION STRATEGY

In this section, we adopt the standard frontiers-driven
paradigm for exploration, showing how our roadmap can be
used to extract and order environment frontiers for efficient
exploration. We also detail the navigation aspect to provide a
complete exploration pipeline.

A. Frontiers Extraction

Frontiers are classically defined in an occupancy map as
the free cells neighboring unknown cells; however, extracting
those frontiers can become costly when the OGM grows in
size. However, we can rely directly on the roadmap nodes to
define frontiers more efficiently. To do so, we define candidate
frontier nodes as the bubbles for which the known surface
they cover is below a threshold 𝑠𝑡ℎ𝑟𝑒𝑠ℎ . We then check the
neighbor nodes of those candidates; if at least one is centered
on a known free space cell, we know that the edge linking
them crosses the environment frontiers, and thus append the
candidate to the final frontiers set. This process is illustrated
on Fig. 5. We can note that some of the identified frontiers
are located far into unknown space; this can occur when a
small free bubble and a large unknown one are linked by a
frontier-crossing edge, since we actually use the center of the
unknown bubble as the frontier candidate.
Additionally, the frontiers search is limited to a local subgraph:
denoting 𝐿 (𝑞0, 𝑞𝑔𝑜𝑎𝑙) the length of a path between the current

robot position 𝑞0 and a given goal, this subgraph is defined
as 𝐺𝑠𝑒𝑎𝑟𝑐ℎ = {𝑣 ∈ 𝐺 | 𝐿 (𝑞0, 𝑣) < 𝑑𝑠𝑒𝑎𝑟𝑐ℎ}, 𝑑𝑠𝑒𝑎𝑟𝑐ℎ being a
parameter of the strategy. In case no frontier is found in
𝐺𝑠𝑒𝑎𝑟𝑐ℎ , we linearly increment 𝑑𝑠𝑒𝑎𝑟𝑐ℎ with the number
of failed planning attempts (i.e., 𝑑𝑠𝑒𝑎𝑟𝑐ℎ (𝑛) = 𝑛 · 𝑑𝑠𝑒𝑎𝑟𝑐ℎ (0)
where 𝑛 is the index of the current attempt, assuming all
previous ones failed). We thus obtain a list of 𝑘 frontier
configurations denoted by 𝑓1, . . . , 𝑓𝑘 .

B. Best Frontier Selection

To select the best frontier among those available, we start
by using the roadmap to plan the corresponding paths towards
each frontier 𝑓𝑖 , which we denote by Γ1, . . . ,Γ𝑘 . We then
compare those paths on two simple criteria:

• energy cost 𝑐𝐸 : frontiers that are costly to reach are
penalized. In practice, for 2D navigation, we use the path
length as a direct proxy for the energy cost.

• expected reward 𝑟: we also evaluate the expected reward
along the path using the occupancy map. To do so, we
use the bubbles that are part of the path to mask the
occupancy map and compute the total unknown area
inside this mask.

Both get normalized and we use a weighted linear combination
𝑐𝑡𝑜𝑡 (Γ𝑖) = 𝛼𝐸 ·𝑐𝐸 (Γ𝑖) +𝛼𝑟 ·𝑟 (Γ𝑖) to select the lowest-cost path
as the new exploration path. In practice, we generally set 𝛼𝐸 =

1, 𝛼𝑟 ∈ [0.1,0.5] to always favor the path length criterion and
avoid excessive backtracking.

C. Navigation

The navigation is handled by a standard non-linear path-
following controller [27]; we enforce two interruption condi-
tions, when the path no longer satisfies the distance safety
threshold or when the bubble centered on the current path end
𝑞𝑔𝑜𝑎𝑙 becomes entirely known.
Additionally, since the robot we use is capable of zero-radius
turns, a safety condition limits the turning radius: if the robot
gets closer to the obstacles than a threshold 𝑑𝑠𝑎 𝑓 𝑒, the linear
velocity command is reduced to achieve a turning radius below
0.5 · 𝑑S (𝑞), based on the current angular velocity.

VI. EXPERIMENTAL RESULTS

In this section, we first evaluate our method on a standard
roadmap construction task, in a fixed environment. We then
consider a more realistic exploration task, where the environ-
ment is initially unknown, and apply the strategy presented in
Section V, both in simulated and real environments.

A. Roadmap Quality

Quality metrics. To evaluate the quality of the roadmap
obtained with our method, we focus on two main aspects:
roadmap graph quality, which reflects the desirable proper-
ties of the roadmap graph, and path quality, which reflects
the quality of the paths obtained when planning using the
roadmap. The graph metrics we consider are the following:
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Fig. 6: Roadmap quality is evaluated in environments of varying complexity: (a) successive bugtraps (800× 800px), (b) Freiburg building (368× 911px), (c) Intel research lab
(581×579px), (d) CMU indoors (670×516px), (e) CMU tunnels (1611×1367px), (f) large-scale maze (1204×1204px)

Fig. 7: Aspect comparison of the evaluated roadmaps - detail of the Intel research lab
environment, with the total number of vertices equivalent between SDGRM and uniform
sampling approaches. Note that the samples used are the same for PRM* and the two
versions of IRS.

• reachability: we compute reachability as the proportion
of valid paths planned using the roadmap graph for a
uniformly sampled set of start-goal pairs in free-space.

• sparsity: as a proxy for the sparsity of the roadmap graph,
we use the ratio of the number of edges and number of
nodes.

We also evaluate the construction time for each roadmap.
For the path quality evaluation, we standardly consider the
length of the obtained path as the main performance indicator;
moreover, using the distance skeleton that is extracted to
construct the roadmap, we introduce a safety metric computed
as the integrated distance to the skeleton along the path.
Formally, for a path Γ : [0,1] →W and defining 𝑤𝑠𝑘 (𝑞) the
witness configuration on the skeleton associated to 𝑞 ∈W, the
safety metric reads as:

𝑆(Γ) = −
∫ 1

0
| |𝑤𝑠𝑘 (Γ(𝑡)) −Γ(𝑡) | | 𝑑𝑡 (5)

In practice, we compute it by discretizing the path with a fixed
step size.
Evaluation baselines. To show how our method improves
the sparsity and safety of the final roadmap while retaining
very good coverage and close to optimal path lengths, we
compare it against two standard roadmap approaches: the
PRM* [28], an asymptotically-optimal version of the PRM,
which provides close-to-optimal paths but a very dense final
roadmap; and the Incremental Roadmap Spanner (IRS) [29], a
sparse roadmap approach which aims at reducing the density
of the PRM* roadmap while controlling the path optimality
compromise with a stretch factor guiding the sparsification.
In our evaluation experiments, we used two IRS roadmaps
with stretch factors of 2 and 10, to better illustrate the trade-
off between sparsity and path quality. A visual comparison of
those baselines with our method is displayed in Fig. 7.
Experimental setup. The test environments used for the
roadmap quality evaluation are displayed in Fig. 6. The PRM*
and IRS roadmaps were constructed 10 times for each maximal
number of vertices; for the SDGRM, only one construction is

evaluated since the result is deterministic. Reachability is eval-
uated for each roadmap using 1000 start-goal pairs selected
randomly in free-space. The results are presented in Fig. 8-a :
for all six environments, our method achieves close to optimal
reachability; moreover, for equivalent performance, it contains
far less vertices than any of the proposed baselines. The
performance gain of SDGRM is particularly clear in the two
largest environment (CMU Tunnels, Large Maze): the reason
for it seems to be the narrowness of the passages in those,
making PRM* and IRS more susceptible to disconnections
due to the uniform sampling approach they build on.
The sparsity results are presented in Fig. 8-b, aggregated
in all environments as a function of the reachability. We
observe that the proposed baselines are mostly consistent over
all environments; PRM* always presents the highest relative
number of edges to achieve high reachability results, while
IRS-2 and IRS-10 achieve much better sparsity scores; in
particular, for IRS-10, the sparsity of the roadamp seems
to be mostly constant (slightly above 1), independently of
the reachability performance. For SDGRM, the sparsity score
outperforms PRM* and IRS-2 while also being consistently
below 2, independently of the environment.
Fig. 9 presents the construction time evaluation in the same
conditions as the reachability and sparsity evaluation; we first
observe that in all environments, our method achieves faster
construction times than the proposed baselines. PRM* seems
to have linear time complexity with respect to the number of
vertices, which makes sense as this simply scales the number
of pairwise checks to add the edges; on the other hand, the
performance of IRS is much more degraded as the roadmap
grows in size. This is due to the fact that IRS achieves sparsity
by querying the partial roadmap during construction to check if
new vertices should be added; in large environnments such as
the maze, this leads to computational explosion and makes IRS
practically unusable. Fig. 9 also shows a detailed breakdown
of the computational cost for our method, showing that the
radius-descending sampling of the skeleton and the pairwise
overlaps checks for the edges have a similar time cost. Overall,
the results presented in Fig. 8 and 9 show that our method
surpasses the proposed baselines in terms of reachability and
sparsity, also achieving these better properties within a shorter
construction time. Taking into account that higher sparsity also
makes subsequent queries of the roadmap faster, our method
presents a real interest in terms of execution time.
For the path quality evaluation, the baselines are evaluated as
before on 1000 random start-goal pairs, taking into account
only the pairs for which all planners return a valid path.
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Fig. 8: Roadmap graph quality evaluation: (a): reachability as a function of number of
vertices in each of the test environments, (b): graph sparsity results, as a function of
reachability, aggregated over all environments.

Fig. 9: Roadmap construction time: (Left) Duration of the roadmap construction as a
function of number of vertices in the same conditions as for the reachability evaluation,
(Right) Detailed breakdown of the execution time for SDGRM in each environment

For each valid task, the results are normalized by the best
score achieved for this task. For SDGRM, we distinguish
the results between the raw paths returned by the roadmap
and the paths after smoothing. Results are summarized in
Table I: as expected, PRM* consistently plans the paths with
optimal length; however, the results for SDGRM and SDGRM-
S remain close to optimal, especially when considering the
smooth paths. In terms of safety on the other hand, SDGRM
clearly outperforms the proposed baselines: using the skeleton
to construct the roadmap reflects its optimal safety properties
in the paths it produces. Overall, the results of Fig. 8 and
Table I show that SDGRM covers most of the workspace,
producing paths with greatly improved safety while remaining
close to optimal in terms of length.

B. Exploration Results

Finally, we present the results obtained with the exploration
strategy proposed in Section V. The full system is ROS-based
and consists in a Pioneer mobile robot equipped with a 2D
LiDAR and an RGB-D camera. To construct the environment
map, we use a standard 3D SLAM system (namely, RTAB-
Map SLAM [30]). In this work, we only use the 2D floor
projection of the 3D octomap as an input to the roadmap;
however, using the RGB-D data in combination with the
2D laser data helps obtaining an overall better estimation of
the map. In addition to the real robot, we use a simulator
developed in Unity that provides realistic 3D environments

TABLE I: Normalized path length and safety on 1000 start-goal pairs: for each start-goal
task, both metrics are computed and normalized by the best result obtained across all 5
roadmaps. The table presents the averages and standard deviations of those normalized
metrics for each planner. The SDGRM-S entries in the table correspond to the same
roadmap as for SDGRM, but including the post-processing step on the obtained paths.

Env. Roadmap Norm. Length Norm. Safety

Multi Bugtrap

PRM* 1.000±0.003 4.81±2.12
IRS-2 1.11±0.03 5.10±2.20

IRS-10 1.42±0.11 7.35±2.93
SDGRM 1.24±0.12 1.01±0.09

SDGRM-S 1.10±0.06 1.47±0.46

Intel Lab

PRM* 1.0±0 2.43±0.61
IRS-2 1.04±0.05 2.45±0.50

IRS-10 1.20±0.05 2.97±0.61
SDGRM 1.10±0.04 1.03±0.06

SDGRM-S 1.06±0.03 1.04±0.05

CMU Indoors

PRM* 1.0±0 4.58±0.66
IRS-2 1.04±0.01 4.85±0.75

IRS-10 1.16±0.03 5.20±0.79
SDGRM 1.09±0.02 1.00±0.01

SDGRM-S 1.06±0.01 1.32±0.15

and sensor data. Five experimental setups are demonstrated:
two large-scale environments in simulation and three more
”corridor-like” real environments. The exploration trajectories
are presented in Fig. 10. They are complemented by additional
metrics provided in Table II, consisting in total travel distance
𝐿, total explored surface A, average efficiency 𝜀, i.e., the
ratio of explored surface and travel distance, and number of
planning calls 𝑛𝑃 .
We first observe a desirable tendency to produce non-
overlapping trajectories, except when reaching dead ends and
backtracking in known space. A side effect of this property
though, is to produce few opportunities for loop closures for
the SLAM algorithm. This in turn reduces the overall map
quality when sensor noise is present. An option to mitigate
this might be to encourage loop closures with an additional
path selection criteria.
Overall, the exploration trajectories produced by our method
are mostly smooth thanks to the path-smoothing step applied
after planning, and always remain close to the skeleton. More-
over, the proposed strategy tends to favor the current direction
of progress, in the sense that the robot will significantly alter
its current goal only when reaching dead ends or intersections
with multiple unexplored frontiers.

VII. DISCUSSION AND FUTURE WORK

In this letter, we presented a novel method to construct a
sparse, high-coverage roadmap, capable of providing high-
quality navigation paths. We also showed how it can be
directly exploited for frontiers-driven exploration in various
scenarios. Currently, our approach remains limited to 2D
navigation. Even though generic motion-planning for high-
dimensional robots is out of scope of this work, we believe an

TABLE II: Exploration metrics

Env. 𝐿 (𝑚) A (𝑚2) 𝜀 (𝑚2/𝑚) 𝑛𝑃

CMU Indoors 1121 3066 2.8 173
CMU Tunnels 5808 15144 2.6 898
Lab. Corridor 132 244 1.83 -
Parking Lot 101 1107 11.6 18
Lab. Patio 157 230 1.5 99
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Fig. 10: Exploration trajectories obtained with our method in two simulation (CMU Indoors, CMU Tunnels) and three real (Lab. Corridor, Parking Lot, Lab. Patio) environments.
Each is displayed in the final best estimate of the map.

extension to 3D navigation of our method would be feasible,
especially in regard of the recent works done on SDF by
the computer graphics community. The main difficulty is to
adapt the skeleton extraction process in 3D, but the rest of the
method remains the same. Another limitation is the usability of
the 3D data obtained with our exploration method; currently,
our approach produces a complete occupancy map, but this
does not translate to the pointcloud which is only partial at
the end of exploration. In future works, we plan to focus
on 3D-informed camera control to also maximize 3D data
acquisition, opening possibilities for more complex tasks such
as autonomous 3D reconstruction.
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