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Abstract:

In this paper, we propose a change of coordinates that brings the state matrix of an autonomous
linear system into a modified Jordan Block form. Such a change of coordinates allows us to obtain
exact values of the scaling factor and the convergence rate of the exponential stability bound
for linear systems. The analysis is then applied to a control design with requirements on the
evolution of the state norm. Numerical examples are also provided to illustrate the effectiveness

of the proposed approach.
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1. INTRODUCTION AND MOTIVATIONS

Since the origin of Lyapunov’s direct method (Lyapunovy
1992), assessing the stability of an unforced system is
done by considering a nonnegative scalar function of the
state vector and checking that its value is monotonically
decreasing in time. The approach was also described and
extended in (Bertram and Kalman| [1960; [Masseral, 1956}
Barbashin and Krasovskii, (1961; Hahn et al., [1967)), see
also (Martynyuk) 2002)) for a review on the development
of the definition of stability during last century and (Leine),
2010) for a historical perspective on stability concept.

For autonomous linear system & = Az, with 2(0) = z¢ €
R™, stability analysis is usually done by looking for a
time-(in)dependent quadratic Lyapunov function, i.e., one
has to look for a symmetric positive definite matrix P
solution of a particular Linear Matrix Inequality (LMI),
i.e., Lyapunov inequality

PA+ATP <0. (1)

Such a solution P can be computed via numerical tools
(i.e. otpimization solvers), but, to the best of the authors’
knowledge, it has not been solved in any direct nor closed
form. As a consequence, the standard approach to obtain
P is reverted, (Rughl [1996)[Ch.7, pg.124], i.e., rather than
directly specifying the matrix P, one has to involve an
additional positive definite matrix Q@ = QT > 0, and look
for a P solution of so-called Lyapunov Equation

PA+ATP=-Q, (2)
where Q now is a degree of freedom. For example, it can
be taken as () = 2¢ql, for some real ¢ > 0.

It is also well-known, that such a solution P to , and
thus to , exists and is also unique if and only if A has
all negative real parts, and such a P is given by

P= /OO exp(A T 5)Q exp(As)ds.
0
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It is also possible to numerically compute P by exploiting
the vectorization of matrices as introduced in (Bellman)
1957). Other approaches to compute the Lyapunov func-
tion for nonlinear systems can be found in (Khalil, 2002),
or (Davison and Kurak,|1971)), (Blanchini,|1995)), see (Giesl
and Hafstein| |2015]) for a recent review on the topic.

Such a pair P, Q) can be exploited to determine the positive
real constants k and «, respectively, the scaling factor and
the convergence rate, in the standard definition of uniform
exponential stability, (Rughl 1996} Khalil, 2002), i.e.,

|[z(t)] < rexp(—at)]z(0)]. (3)

In particular, by considering omin(Q) to be the minimum
singular value of () is easy to show, by comparison lemma,
(Khalil, 2002), that we have

()] < Tmax(P) (-"mm@)t) 2(0)], V>0,
Umin(P) Jmax(P)

(4)
where k is given by the condition number of P and the
maximum eigenvalue of P is involved in the convergence
rate a, along with the minimum eigenvalue of (). Although
very general, the obtained constants for the norm upper
bound, thus highly depend on the choice of the matrix Q.
To the best of the authors’ knowledge, it does not exist
any (constructive) approach to select @) in order to obtain
the (in some sense) optimal values of the exponential
convergence, i.e., to estimate k and « such that the
upper bound is as close as possible to the real norm
evolution. Usually, taking @ with a large omin(Q) (aiming
at obtaining a large convergence rate ), makes P very ill-
conditioned, thus increasing the condition number  in the
upper bound. Although this can be accepted by common
sense, or simply obtained by intuition, we were not able to
find any result in the literature properly describing these
facts.

One particular form of the Lyapunov inequality , that
can be used to directly obtain the parameters of the
exponential stability in is the following



PA+ATP < —2aP. (5)
where « is precisely the convergence rate of the definition,
while k is the P conditioning number. However, solving
has never been done analytically, and this problem is
usually addressed via numerical optimization algorithms.
Moreover, the value of a cannot be chosen arbitrarily.
When A is diagonalizable, one can select o = |[RAmin(A4)],
but for a non trivial geometric multiplicity of A\yin(A) one
can find a positive definite solution P to only with
a < |RAmin(A)].

To the best of the authors’ knowledge, there is no other
general approach available in the literature to explicitly
relate the scaling factor x and the convergence rate « for
linear systems to the eigenstructure of the state matrix
A. Although this might be intuitive and well-understood
by the community, to the best of our knowledge there is
no available result that properly formalizes this connec-
tion. The closer results we were able to find are (Hu and
Seiler, |2016) in which the authors test the exponential
convergence rate using integral quadratic constraints, and
(Applelby et al.,2006) the author obtains the rate of decay
of solutions of a class of convolution Volterra difference
equations. However, none of the available results in the
literature are suitable to explicitly obtain the parameters
of exponential convergence k and « in closed form, neither,
with respect to the eigenvalues and generalized eigenvec-
tors properties in the case of linear time-invariant systems.

It is well known that the exponential rate of convergence
for a linear autonomous system can be deduced from the
eigenvalues of the corresponding system’s state matrix
A. However, in this paper, we want to explicitly char-
acterize the dependence between the eigenvalues (more
properly, the eigenstructure) of the state matrix A and
the convergence rate «, and provide an explicit link of
such an eigenstructure of A with the scaling factor «, in
the definition of exponential stability . The reader can
easily check that this type of characterization is easy to
get in two particular cases, i.e., the symmetric part of
the state matrix A is negative definite (Rughl [1996)[Ch.7,
pg 114], or when the matrix A is diagonalizable. Indeed,
when A is not diagonalizable, due to the structure of its
Jordan blocks, the exponential behavior due to the system
eigenvalues is “rescaled” by a polynomial function of time
that is not immediate to upper-bound, see discussion in

Setion Bl
Thus the aim of this paper is twofold:

(1) Provide a review of the fundamental concepts related
to the stability of linear autonomous systems;

(2) Provide a characterization of the solution of the
Lyapunov inequality , or equivalently , also for
non-diagonalizable matrices A;

The rest of this article is structured as follows. We first
collect some preliminary results in Section [2] by recalling
some definitions from the Jordan block form and propose a
modification of this normal form. Based on such a transfor-
mation, we define next a Lyapunov function which allows
to obtain the explicit exponential stability parameters (the
values of k and «) in terms of the algebraic properties of
the matrix eigenvalues and the (generalized) eigenvectors,
see as shown in Section[3} In the same section, we also dis-
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cuss some properties of the proposed solution compared to
a numerical solution. In Section[4] we show an application
of the analysis in the design of closed loop system perfor-
mances. Finally, in Section [5] we show the effectiveness of
the proposed bounds on an autonomous system, with large
geometric multiplicity. Some conclusions and perspectives
are given in Section [0

Notation. R, resp. N, resp. C denotes the real, resp.
natural, resp. complex, numbers. | - | denote the standard
Euclidean norm. Given a matrix A € R"*", we denote
the spectrum of A as o(A), where \;(A) € o(A) is the
i-th eigenvalue of A, and o;(A) is its i-th singular value.
Furthermore, omax(A4) and omin(A) are respectively the
maximum and minimum singular value of A. The Ls-norm
of matrix M € R™ " is denoted by ||M]||, and we denote
the condition number of M as

Amax (M T M)

M) := | ———=
and p(M) = p(M~1). For two square matrices A, B €
R™ ™ we have

W(AB) = | AB|||(AB)|
< [ANIBINBHIIAT = p(A)p(B).

We define M € R™*"™ to be orthogonally diagonalizable if
it has an orthonormal set of eigenvectors. Given a matrix
M € R™*" sym(M) refers to the symmetric part of such
a matrix, i.e., sym(M) = (M + M ")/2. Given a complex
number p € C and a explicit number n € N, we denote

[ diag(L,A, ..., A", ifA#0,
Dn(A) = {In, if A =0, (6)

where I, is the identity matrix of dimension n. Then, the
following identity

N, D,(\) =D, (AN, (7)
holds for any A € C and n € N, where N,, € R" " is a

the matrix of zero elements, with only 1 on the first super
diagonal. Similarly, for a matrix A € R™*" we can define

blckdiag(I,, A, ..., A" b, if A #0,
Dn(A) := {Im, | ) if A i 0 &
and in this case, the following identity can be verified
Dp(A)"YN, ® I,)D,(A) = N, ® A. (9)
Finally, given any n € N, we define the following matrix
Jn =1, + Ny. (10)

2. PRELIMINARIES
2.1 Some explicit eigenvalues

From (Meyer, 2000, Ex. 7.2.5), we have an explicit formula
for the eigenvalues of a matrix M € R™*™ with a # 0 and
c#0,

b a

c b a

M= =bl+aN +cNT

(11)

> Q

are explicitly given by

(M) = b+2a\/zcos (7r !
a n+1

), ie{l,...,n}. (12)



For our purposes we only deal with the case ¢ = a, as also
exploited in (Baggio and Zampieri, 2022)), leading to the
explicit eigenvalues form given by

+1>, ie{l,...,n}. (13)

Ai(M) = b+ 2acos <7r
n

2.2 The Jordan normal form

In the next subsection, we introduce a modification of
the Jordan normal form that will be instrumental in
showing the result of the paper. We first recall and define
some quantities from the standard Jordan form, in this
subsection.

Given a matrix A of dimensions n X n we suppose, without
loss of generality, that its eigenvalues are ordered in
decreasing order with respect to the real part, namely

R} > R} > > R{)
Let m < n be the total number of linearly independent

(non-generalized) eigenvectors T} # 0 associated with an
eigenvalue \; € 0(A4), i = 1,...,m, such that
AT} = NTH Vi=1,...,m.
Definition 1. (Jordan blocks dimension). For each i €
{1,...,m}, we define the wvalues g; > 1 satisfying
Yo gi = n, such that there exist g; — 1 linearly inde-
pendent generalized eigenvectors TF # 0, fork =2,...,gi,
associated to the corresponding eigenvalue \; and satisfy-
mg -
(A= NDTF =TF ' VE=2,...,g.

The introduced notation allows us to determine in advance
the number of distinct Jordan blocks m and their relative
dimensions g;, when the matrix A is transformed into
its Jordan form J. Moreover, to all these m distinct
Jordan blocks we associated, differently from the standard
notation, m distinct eigenvalues \; € o(A),i=1,...,m.
Lemma 1. Let A be a n x n matriz, let m be the number
of distinct eigenvalues \; with associated Jordan block
dimension g;, so that 2111 g; = n. Then, there exists a
T € R™™ ™ such that

J := blckdiag (J;l, - J;\m)7

T AT = J, { -
Jf\i = )‘ilgi + NQH

i1=1,...,m.
(14)

For complex eigenvalues, one can always consider a real
Jordan form in which a Jordan block associated with a
complex pair of eigenvalues \; 1/ = a; & ib;, with g; — 1
pairs of associated generalized eigenvectors, is given by

A I, 0 ... 0
0 A I... 0O
Ji, =1y, @Ni+ Ny, @ L= | o ¢ - .
A I
0 ... 0 Al o,

where A; is defined as

A a; b;
()
and one can verify that o(A;) = {a+1ib,a — ib}. Note also
that

N+ A =2a;I, = 2R{\; 1 )2} .

2.8 The modified Jordan Form

We now introduce the modification of the Jordan normal
form. In particular, for any non-zero distinct eigenvalue
A # 0 with associate Jordan block dimension g, we can
use the matrix Dgy()) defined in (6)) to obtain

Dg_l(j‘)JXDg(j‘) = 5“]]9 (15)
with the matrix J, defined according to . Hence, by
defining the matrix

D := blckdiag (Dgl(j\l), o ng(Xm)) (16)
we introduce the modified Jordan form J defined as
J:=T AT, T :=7D, (17)

in which T satisfies . One can verify, using the property
that J as the following form

J = blckdiag (mgl, o XmJng) = A(I+N), (18)
with the matrix J,, defined as in (10)), for each i =

1,...,m, where

A =diag (A1,...,A\n)
and

N = blckdiag (Ng,, ..., Ng,,)-
As we shall see in the next section, the matrix J is now
in a more convenient form to study Lyapunov matrix
inequalities. Note that in the case of complex eigenvalues,
one has to define a slightly different change of coordinates
in order to deal with the generalized Jordan block .
In particular, by using the definition one can verify the
following identity
Jg, @ Ay = (I, + Ng,) @ Ay = D, M (M) J5, Dy, (As)

which gives

KA 0 ... 0
0 A; Ay ... 0

A &

0 ... 0 A;

In the following, we give two relevant properties of the
matrix J,,.

Lemma 2. For any n € N, the matriz J, satisfies the
following properties.

(1) The eigenvalues of J,, + .| satisfies
1 )
oi(Jn+73))=2 {1—|—cos <7Tn+1)] , i=A{1,...,n}.
(2) The matriz J,, +J satisfies
.
2 [1 + cos (’NnLH)} L, = J,+7J,

< 2 {1 + cos (”%4—1)] I1,.

Proof. The explicit formula of the eigenvalues of J + J T
follows from , showing items 1 and 2. O

Remark 1. From the first item of the Lemma right
above, one can easily check that J,, + J! is a positive
definite matrix for any n € N.

Hence, as a consequence, by defining
J =Dblckdiag (Jg4,,...,Jg,,) =1+ N
we can also say that sym(J) is a positive definite matrix.



2.4 A high-gain interpretation

In some sense, we construct the modified Jordan block
form from the standard one by defining the D change of
coordinates. This sort of change of coordinates is also used
in the high gain (observer/stabilizer) framework, see, e.g.
(Bernard et all [2022) Section 6) or (Isidori, [1995 Chapter
4.7). In this case, for ¢ = 1,...,m, by exploiting for each
distinct eigenvalue \; the transformation matrix Dy, (A;),
we obtain on the super diagonal the value of the interested
eigenvalue. More in particular, for each Jordan block J;,
t=1,....m
Dg'i (/\i)il(/\il + NZ)D% ()‘l) =

NI+ Dy, (X)) 'ND,,(\) = NI + NN = N (1 + N;).
In the general case, where we have m distinct Jordan
blocks for the matrix A,

D = diag (Dgl ()‘1)’ Dg2 (>‘2)7 R ng ()\m))

then we can write the following identity

J=D'ID=D"'T"'ATD = T 'AT

=D '(A+N)D=A+D'ND=A+AN = Al

3. EXPONENTIAL PARAMETERS FROM A
EXPLICIT LYAPUNOV FUNCTION

Given a Hurwitz matrix A, via the Jordan blocks normal
form form we can explicitly write the solution to the
system dynamics

T = Ax,
We denote with {\q, ..

are as

z(0) = xo € R", (20)
., An} the eigenvalues of A, which

gmax nrkyk
x(t) = T exp(At) Nk't
k=0
where gmax = max;ecq1, . m319:}- The solution proposed in
this paper allows us to upper bound the norm of z(t) via
an exponential convergence function

T 2(0)

9max ktk B
o] =T exp(80) 3 L 1a(0)
k=0

< exp(—at)|z(0)]

such that o dependence explicitly on the eigenstructure,
and not only on the eigenvalues, of the system. This upper
bound cannot be obtained by exploiting the normal form
coordinates z = T~ 'z and for this coordinates taking an
identity Lyapunov matrix, i.e., P = I, as solution to the
Lyapunov matrix inequality J+J " < —al for some a > 0.
In particular, by computing the eigenvalues of J + J ' for
each Jordan block form Jy, applying , we have

Grax(Tn, + JT) = 2R{A;} + 2cos (g,i 1)

which is negative only for R{\;} < —cos(7/(g;+1)) < —1,
and it is does not general.

This problem does not arise if we take into account the
modified Jordan form coordinates by defining z = Tz,
and we thus define a Lyapunov candidate
V=z"T""T 'z, (21)
that we call the explicit Lyapunov functions E One can
easily notice that T~ TT~! is a positive definite matrix,

2 We denote as Explicit Lyapunov function any Lyapunov function
that can be written directly in terms of the algebraic property of a

because T has all linearly independent columns, and so it
is full rank, hence V(z) > 0 for z # 0, with V(0) = 0, and
it is radially unbounded

Tmin(T™H|2]? <V < omax (T |2]?.
Theorem 1. Consider an asymptotically stable system
, and the transformation matriz T defined in .

Then, the norm of the system state is upper bounded by
(13), where

o= u(T), o= =R{Amax (sym(J))}. (22)

Proof. By taking the time derivative of V in we have
V=22"T"TT"¢ =22 (T"'T'A)x
=2z T (TT'AT) T e =2 T " (JT + )T '
< (R max(IT+ NP V.

Hence, V is strictly less than zero, and, in particular,
V' is exponentially decreasing. Indeed, by the comparison
Lemma (Khalil, 2002)[Lemma 3.4], we have

V(t) < exp(R{Amax (T + I))V(0)
from which

Tmax (T~
2 < 200 o (R A (17 + D) (0)
Umin(T )
and taking the square root of both terms of the inequality
proves the theorem. O

The eigenvalues of J7 + J can be explicitly written as
a function of the eigenvalues of A and of the related
geometric multiplicity since each block of JT + J has the
form of . We thus provide an explicit expression for «,
as the following

o= s, P [ ()] | e

Remark 2. The values of «,k given in Theorem [1I| are
explicitly given as properties of the eigenvalues and the
(generalized) eigenvectors of the matrix A.

Remark 3. Due to the presence of the generalized eigen-
vectors, i.e., given by the geometric multiplicity of the
associated eigenvalue \;, the columns of T, i.e., T, i =
1,...,n, are not all orthogonal one each other. Thus, they
yield a bad condition number of matrix T. Only when
A is orthogonally diagonalizable, we have D = [ and
we can always normalize the columns of T" so to get an
orthonormal matrix, i.e. 7T = I. In this case, the x state
evolution norm upper bond simplifies to the one one with
standard dominant pole convergence rate, i.e. a« = |\1],

|z < exp (—|Ax[t) [#(0)].
3.1 Comparison with a standard solution of [J]

When we solve for with a fixed convergence rate
, the obtained solution P can be always rewritten
as P = T~ TP'T~!, for some positive definite P’. We
can thus write, from the dynamics of V! = z' Pz =
zTT-TP'T~ 'z, that
2] < (T~ P'T) exp(—at)]z(0)].

However, we cannot determine a priori if u(T~TT~!) <
u(T=TP'T~1), we can only provide a conservative upper

Hurwitz A without considering the solution of a Lyapunov equation
, or inequality , and thus without the choice of positive definite
matrices P and Q.



bound of the form p(T-TP'T~') < pw(T~TT~Y)u(P).
Thus, the condition number of P could be in principle
better than the one provided by the choice T~ TT~'. How-
ever, we cannot mathematically prove that the solution of
the LMI (5)) performs better or worse than the particular
choice T~ TT~!, and as discussed above, we can only get
some conservative upper bounds. We thus report here the
results from a set of numerical tests to show that most of
the time T~ T T~ is better conditioned than the numerical
solution P of the LMI, and on average performs better, see

Sec. 52
4. APPLICATION IN CONTROLLER DESIGN

Consider the controllable linear system

&= Ax + Bu, x(0)=x (24)
with z € R® and u € R™, for which to design of a
stabilizing state feedback gain K such that A — BK is
Hurwitz, and the state norm has some desired performance
to be guaranteed for all initial conditions xy in a ball of
radius po, i.e., xp € B,,. These performances on the state
norm |x(t)| can be related to

e limiting the ‘overshoot’ with respect to the initial
condition, i.e., the evolution of the state norm must
be constrained to remain inside a certain ball of fixed
radius p > po;

e finding a ‘good’ approximation of the time ¢* after
which the state norm reaches a certain ball of radius
p, 1.e., find t* € R such that |z(t)| < p for all ¢ > t*,
when the system is initialized in B,y;

e forcing the state norm to reach a certain ball |z(t)| <
p within a prescribed fixed time ¢*.

In order to illustrate the potential of the application on
an example, let us consider, for the sake of exposition, the

case in which
01 0
a=loo]- 2=

and take as static feedback gain K = [o1aa, a1 + a9,
with a3 = v and as = 2v, as in the standard high-gain
formalism, where v > 0 plays the role of the high gain and
imposes the closed loop eigenvalues to be \; = —y and
)\2 = —2’y.

Since the closed loop matrix is in companion form, it can
be diagonalized (due to the presence of simple eigenvalues)
via the Vandermonde matrix

T — 1 1 ’ Til _ 1 —Qg -1 7
—Q1 —Q2 o1 —ag |01 1
whose conditioning number u(T), for ay = v and as = 27,
reads as

M(T):\/W”Wm
57212 /21§ 1672 1+ 4
and thus have |z(t)] < p(T)exp(—yt)|z(0)|. For this
choice of the closed loop characteristic polynomial, we
\/g ~ 0.6325, to which

corresponds a condition number u(t) =~ 6.1623.

However, we cannot prove that this solution is the best for
this set of parameters, although, to the best of the authors’
knowledge, this is the only constructive approach available

have a minimum of u(7T') at v =

1.2
— w(Prar) exp(—at)|z(0)|
1 —  w(Pr)exp(—aqt)|z(0)|
— ()]
exp(—at)[z(0)]
0.8 - — exp(—1¢)[(0)]
0.6
0.4
0.2
0 T T T T T
0 5 10 15 20 25 30

t

Fig. 1. Evolution of the norm of z(t), compared to (3]) with
different parameters, i.e., the one obtained from ,

from , and the one in .

in the literature to analytically achieve this kind of design
and that is independent of testing all initial conditions in
a compact set B, .

Other design scenarios, such as the design of observer
dynamics with prescribed convergence performances and
their application in output dynamical feedback controller
design (motivating this work at an early stage) are possible
and postponed to the journal version of this paper, due to
lack of space. See for example |Spirito et al.|(2024)) to see an
application to define the Hamiltonian structural matrices
of a stable linear system.

5. SOME NUMERICAL RESULTS
5.1 An autonomous system example

We consider the evolution of the norm of z(t) for an

eigenvalue, A = —1, with associated geometric multiplicity
g = n = 10, i.e., we consider an autonomous system dy-
namics with state matrix A = —1(1 + N) € R1°¥10 whose

corresponding convergence rate given (23)), is a &= 0.0405.
The evolution of the state norm |z(¢)|, from initial condi-
tions

zp = [0.01001979, 0.02185996, —0.01413963

0.08315555, —0.14693675, 0.31947075
—0.4683713, 0.50627956, —0.4827674 (25

0.24631203] "

is depicted in Fig[ll When compared to the numerical
solution of the LMi (f]), by fixing o as in (23), we get
a matrix Ppp; with condition number of p(Pra) =
5.0957, which is worse than the unitary condition number
of T = I. Whereas, solving , with @ = I or with
Q = «, where a in , gives solutions Pr and P, whose
maximum eigenvalues are respectively Apax(Pr) & 5.2605
and Apax(Po) =~ 0.2131. Furthermore, they share the same
condition number is pu(Pr) ~ 20.5959, and provide the
same convergence rate @g = Amin(Q)/Amax(Pr) ~ 0.1901
which is approximately 5 times larger than the closed form
solution.

In Fig we compare the proposed parameters with
the two set of parameters obtain from the solutions of
and . In particular, we can notice that during a first
transient, the proposed approach provides a better approx-



imation of norm evolution, while the one obtained from
performs better on a larger time interval. Due to the fact
the solution of can only be obtained numerically, it
provides by far the most conservative resul

5.2 Numerical tests

We consider as numerical test a matrix A with dimension
9 with 3 distinct eigenvalues A, i.e., {—0.5, -2, —4} with
associated Jordan block dimensions (g1, 92, 93) = (3,5,1).
That is, according to the value convergence rate formula

we have

a=0.5 <1 + cos (iw)) ~ 0.1464

with P = T~ TT~!, thus the condition number of P is
equivalent to the condition number of T. By comparing
the solution Py ps; of LMI solver (getlmis()) implemented
in the Robust Control Toolbox™ of Matlab version R2022a
with the given «, we get approximatively, over 5000
comparisons, 99% of the times a better condition number
of T than that of Ppp;;. The numerical testing details
are summarized in Table [T} Other testing results are also

Table 1. Numerical results

# tests ‘ success % ‘ average u(TTT) ‘ average u(Prasr)
5000 | 99% | 1.483%e+03 | 1.0417e+06

available in (Spirito and Astolfi, 2024)), in which we show
that with a free convergence rate « in , the solution
T—TT~! performance better than the numerical solution
obtain by the Matlab solver.

6. CONCLUSIONS

In this work, we present a modification of the Jordan
block normal form of the state matrix of an autonomous
linear system. We use this analysis to obtain, in closed
form, the constant values for the scaling factor x and
the converge rate « for the uniform exponential upper
bound of stable linear autonomous systems. This approach
allows us to obtain a constructive characterization of
the convergence property of a linear system. Moreover,
we apply such a characterization to enhance the closed
loop performances of a controllable system. Numerical
examples are correlated to show the effectiveness of the
analysis.

The presented result is a preliminary work that has been
extended, in the submitted paper (Spirito and Astolfi,
2024)), to the case of non-Hurwitz matrices typical of k-
contraction scenarios, see e.g. (Zoboli et al., 2023)).
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