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Explicit parameters of exponential stability and contractivity of globally
Lipschitz semi-linear systems

Mario Spirito1 and Daniele Astolfi1

Abstract— In this paper, we propose a change of coordinates
that brings the state matrix of an autonomous linear system into
a modified Jordan Block form. This change of coordinates and
the obtained modified Jordan Block form, allows us to obtain
exact values of the scaling factor and the convergence rate of
the exponential stability bound for linear systems. The analysis
is then applied to obtain sufficient conditions for the stability
of semilinear systems with Lipshitz nonlinearity. Numerical
examples are also provided to illustrate the effectiveness of the
proposed approach.

I. INTRODUCTION

Since the origin of Lyapunov’s direct method [1], as-
sessing the stability of an unforced system is done by
considering a nonnegative scalar function of the state vector
and checking that its value is monotonically decreasing in
time. The approach was also described and extended in [2],
[3], [4], [5], [6], see also [7] to review on the development
of the definition of stability during last century and [8] for
a historical perspective on stability concept.

It is well-known and worldwide accepted that, for linear
systems, time-(in)dependent quadratic forms are used to
study the stability property of systems. Thus, to prove the
stability of an autonomous linear system ẋ = Ax, with x(0) =
x0 ∈ Rn, one has to look for a symmetric positive definite
matrix P such that PA+A⊤P <−2αP, for some real α > 0.
However, rather than directly specifying such a matrix P, a
standard approach [9][Ch.7] involves an additional positive
definite matrix Q, and one has to look for a P solution
of PA+A⊤P = −Q, where Q is a degree of freedom, for
example, it can be taken as Q = 2qI, for some real q > 0. It
is also well-known, that such a solution P exists and is also
unique if and only if A has all negative real parts, and such
a P is given by

P =
∫

∞

0
exp(A⊤s)Qexp(As)ds, Q = Q⊤ > 0.

It is also possible to numerical compute P by exploiting
the vectorization of matrices as introduced in [10]. Other
approaches to compute the Lyapunov function for nonlinear
systems can be found in [11], or [12], [13], see [14] for a
recent review on the topic. Such a pair P,Q can be exploited
to determine the positive real constants κ and α , respectively,
the scaling factor and the convergence rate, in the standard
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definition of uniform exponential stability, [9], [11], i.e.,

|x(t)| ≤ κ exp(−αt)|x(0)|.
In particular, by considering σmin(Q) to be the minimum
singular value of Q is easy to show, by comparison lemma
[11], that we have

|x(t)| ≤ σmax(P)
σmin(P)

exp
(
−σmin(Q)

σmax(P)
t
)
|x(0)|, ∀ t ≥ 0, (1)

where κ is given by the condition number of P and the
maximum eigenvalue of P is involved in the convergence rate
α , along with the minimum eigenvalue of Q. Although very
general, the obtained constants for the norm upper bound,
thus highly depend on the choice of the matrix Q. It is not
an easy task to select Q in order to obtain the optimal values
of the exponential convergence, i.e., to estimate κ and α such
that the upper bound is as close as possible to the real norm
evolution. Usually, taking Q with a large σmin(Q) (aiming
at obtaining a large convergence rate α), makes P very ill-
conditioned, thus increasing the condition number κ in the
upper bound.

To the best of the authors’ knowledge, there is no other
general approach available in the literature to explicitly
obtain the scaling factor κ and the convergence rate α for
linear systems. The closer results we were able to find are
[15] in which the authors test the exponential convergence
rate using integral quadratic constraints, and in [16] the
author obtains the rate of decay of solutions of a class of
convolution Volterra difference equations. However, none of
the available results in the literature are suitable to explicitly
obtain the parameters of exponential convergence κ and α

in closed form, neither, with respect to the eigenvalues and
generalized eigenvectors properties in the case of linear time-
invariant systems.

The paper is structured as follows. We first collect some
preliminary results in Section II. Then in Section III we
propose a modification of the standard Jordan block normal
form of the state matrix, through which we can obtain the
explicit exponential stability parameters (the values of κ and
α) in terms of the algebraic properties of the matrix eigen-
values and the (generalized) eigenvectors. In Section IV,
we employ the obtained explicit parameters to study the
stability of semilinear systems with (regional) Lipschitz
nonlinearity. Finally, in Section V, we show the effectiveness
of the proposed bounds on an autonomous system, with large
geometric multiplicity, and an application of the stability of
semilinear systems. Some conclusions and perspectives are
then given in Section VI.
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Nomenclature

The L2-norm of matrix M is denoted by ∥M∥, and we
denote the condition number of M as

µ(M) :=

√
σmax(M⊤M)

σmin(M⊤M)
= µ(M−1) =

√
σmax(M−⊤M−1)

σmin(M−⊤M−1)
.

We consider an orthogonally diagonalizable matrix M if it
has an orthonormal set of eigenvectors. Given a complex
number µ ∈ C and a natural number n ∈ N, we denote

Dn(µ) :=
{

diag(1,µ, . . . ,µn−1), if µ ̸= 0,
In, if µ = 0. (2)

Then, the following identity

NnDn(µ) = µDn(µ)Nn (3)

holds for any µ ∈ C and n ∈ N, where Nn ∈ Rn×n is a
the matrix of zero elements, with only 1 on the first super
diagonal.

II. PRELIMINARIES

A. Norm of the Matrix exponential

We recall some properties of the matrix exponential norm.
We first consider the fact that the exponential of a skewsym-
metric (or symplectic) matrix is always orthonormal (and
hence has unitary norm), i.e., for S = −S⊤, ∥exp(S)∥2 =√

∥exp(S⊤)exp(S)∥2 =
√

∥exp(0)∥2 = 1.
The general formula of the products of the exponential of
two non-commuting matrices A and B, is given by

exp(A)exp(B) = exp(A+B)exp
(

1
2
(AB−BA)

)
.

In particular, when we consider A = B⊤, we have

exp(B⊤)exp(B) = exp(B⊤+B)exp
(

skew(B⊤B)
)
,

where sk(B⊤B) is the skew symmetric part of B⊤B. Hence,
we can always write

∥exp(B⊤)exp(B)∥ ≤ ∥exp(B⊤+B)∥∥exp
(

sk (B⊤B)
)
∥

≤ ∥exp(B⊤+B)∥.
We hence proved that

Lemma 1. Given a matrix M and its matrix exponential
exp(M), then

∥exp(M⊤)exp(M)∥ ≤ ∥exp(M⊤+M)∥.
B. Some explicit eigenvalues

From [17, Ex. 7.2.5], we have an explicit formula for the
eigenvalues of a matrix A ∈ Rn×n, with a ̸= 0 and c ̸= 0,

A =


b a
c b a

. . . . . . . . .
c b a

c b

= bI +aN + cN⊤ (4)

are explicitly given by

λi = b+2a
√

c
a

cos
(

π
i

n+1

)
, i ∈ {1, . . . ,n}. (5)

For our purposes we only deal with the case c = a, as also
exploited in [18], leading to the explicit eigenvalues form
given by

λi = b+2acos
(

π
i

n+1

)
, i ∈ {1, . . . ,n}. (6)

C. Contractive systems with constant metric

Consider the system

ẋ = f (x) (7)

where x ∈Rn and f : Rn →Rn is continuously differentiable.
Let φ(x0, t) denote the trajectory of (7) at time t originated
at x0 at time t = 0. We then have the following definition.

Definition 1. We say that system (7) defines a contraction if
there exist real positive α,κ > 0 such that

∥φ(x1, t)−φ(x2, t)∥ ≤ κ exp(−αt)∥x1 − x2∥
for all initial conditions x1,x2 ∈ X ⊆ Rn and for all t ≥ 0.

A sufficient condition to determine whether system (7)
defines a contraction is the existence of a constant metric
P for which the distance with this metric between any two
system trajectories is monotonically decreasing in time. We
thus have the following well-known result, also known as
Demidovic condition.

Lemma 2. System (7) is a contraction on X if there exists a
constant P ∈Rn×n symmetric and positive definite, such that

P
d f (x)

dx
+

d f (x)
dx

⊤
P < 0 (8)

for all x ∈ X ⊂ Rn.

This result has been proved in [19], [20], [21], [22], [23]
and extended in [24] and [25] in the more general case of
nonlinear Riemannian metrics. See also [26] for the case of
non-Euclidean L1 and L∞ metrics.

III. EXPLICIT PARAMETERS FOR CONTINOUS TIME LTI
SYSTEMS

Consider an asymptotically stable system

ẋ = Ax, x(0) = x0 ∈ Rn, (9)

i.e. A is Hurwitz with appropriate dimension. We denote with
{λ1, . . . ,λn} the eigenvalues of A, which are ordered, without
loss of generality, in decreasing order with respect to the real
part, namely

ℜ{λ1} ≥ ·· · ≥ ℜ{λn}.
Furthermore, we denote with gi the geometric multiplicity1

of λi, for i = 1, . . . ,m, where m is the number of distinct
Jordan blocks. By construction, ∑

m
i=1 gi = n. We define the

diagonal matrix of the ordered eigenvalues of A, i.e., Λ =

1i.e., the dimension of the eigenspace associated with λi.
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diag(λ1,λ2, . . . ,λn), where for some i and j, we might have
λi = λ j, according to the relative algebraic and geometric
multiplicity of each eigenvalue.

A. The case of real eigenvalues

We first suppose that all the eigenvalues of A are real.
The case of complex eigenvalues will be detailed in the next
section.

We can define the Jordan normal form J as the block
diagonal matrix composed of the Jordan blocks of the eigen-
values of A. It is possible to find such a Jordan normal form,
by means of a change of coordinates, obtained by defining
T as the matrix composed of the associated normalized
(generalized) Ti, i = 1, . . . ,n i.e.

T =

[
T1

... · · ·
... Tn

]
where for each i-th eigenvalue, λi, with i = 1, . . . ,m, we have

ATi = Tiλi, or
(A−λiI)Ti+ j = Ti+ j−1, j = 1, . . . ,gi −1

if the associated eigenvalue λi has geometric multiplicity
gi > 1. Through this matrix T we can construct a change
of coordinates and obtain the standard Jordan block form of
A, i.e. T−1AT = J, defined as

J = blckdiag(J1, . . . ,Jm), Ji = λiIgi +Ngi .

We now define, the modified Jordan normal form, J, by
defining the diagonal matrix

D= blckdiag(Dg1(λ1),Dg2(λ2) . . . ,Dgm(λm)) , (10)

and the change of coordinates T = TD where the columns
of T, Ti, i = 1, . . . ,n are the (generalized) eigenvectors in
scaled version solution of

ATi =Tiλi, or
(A−λiI)Ti+ j = λiTi+ j−1, j = 1, . . . ,gi −1

and we obtain, as a change of coordinates

T−1AT= J= Λ(In +Nn).

We hence take z = T−1x, with z(0) = T−1x(0), whose
dynamics is given by

ż =T−1ATz = Jz

and its solution is simply z(t) = exp(Jt)z(0). Hence, we
obtain the solution in the original coordinates

x(t) =Tz(t) =Texp(Jt)T−1x(0),

where T= TD and T−1 =D−1T−1. Then we can write the
evolution of x(t) passing for x(0) as

x(t) = TDexp(Jt)D−1T−1x(0). (11)

Hence, we have the following.

Theorem 1. The norm of the state evolution associated with
the state matrix A can be explicitly bound as

µ(T)exp(λ t)|x(0)| ≤ |x(t)| ≤ µ(T)exp(λ t)|x(0)| (12)

where λ = ℜ{λmax(sym(J))} and λ = ℜ{λmin(sym(J))} .

Proof: The proof comes as an application of the norm
in the z(t) coordinates and from Lemma 1. In particular, from
the norm of z(t) we have

|z|=
√

z⊤z =
√

z⊤(0)exp(J⊤t)exp(Jt)z(0)

≤ |z(0)|
√
∥exp((J⊤+J)t)∥ ≤ ∥exp(sym(J)t)∥|z(0)|.

Now, from the definition of z we have

|T−1x| ≤ ∥exp(sym(J)t)∥|T−1x(0)|
|x| ≤ ∥T∥∥T∥−1∥exp(sym(J)t)∥|x(0)|

where by the properties of the matrix 2-norm ∥T∥∥T∥−1 =
µ(T). Now, since sym(J) is symmetric and negative definite,
there exists an orthonormal change of coordinates that brings
it into diagonal form, and thus we can write

∥exp(sym(J))∥ ≤ exp(ℜ{λmax(sym(J))}).
Hence, we have the upper bound for |x|. The analogous
analysis can be carried out to obtain the lower bound. □

Remark. The eigenvalues of J⊤+J can be explicitly written
as a function of the eigenvalues of A and of the related
geometric multiplicity since each block of J⊤ +J has the
form of (6).

More explicitly, thanks to the structure of J, we have

λ = min
i∈{1,...,m}

{
ℜ{λi}

[
1− cos

(
πgi

gi +1

)]}
,

λ = max
i∈{1,...,m}

{
ℜ{λi}

[
1− cos

(
π

gi +1

)]}
.

(13)

As a consequence, we can explicitly write the system con-
vergence rate α and the scaling factor κ as

α =−λ , κ = µ(T). (14)

We want to highlight that these values are explicitly given
as properties of the eigenvalues and the eigenvectors of the
matrix A.

B. Dealing with complex conjugate eigenvalues pairs

For the sake of completeness and clarity of exposition, we
want to separately treat how to obtain a real transformation
matrix T in the case of complex conjugate eigenvalues.
In particular, note that the analysis above leads to complex
transformation T and Jordan form J matrices in case A
have some complex conjugate eigenvalues pair. Because
the (generalized) eigenvectors associated with such complex
conjugate eigenvalues pair are complex conjugate as well,
one can replace the two columns in the transformation matrix
T , say columns Ti and Ti+1 = T ⋆

i , with the real and the
imaginary part of Ti respectively, i.e. Tj = ℜ{Ti} and Tj+1 =
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ℑ{Ti}, with j = i. This new transformation T will provide a
matrix of dimension 2 replacing the complex diagonal matrix
with the complex conjugate pair on the main diagonal. When
the geometric multiplicity of the pair is larger than one, their
associated standard Jordan block form will not have a set of
1 on the super diagonal but rather have a set of identity
matrices of dimension 2 on the super diagonal.

Since we are interested in the real realization of the
transformation and in the modified Jordan normal form, we
claim that once the real transformation T for the standard
Jordan normal form is found, we can easily get the real
transformation T leading to the real modified Jordan normal
form.

Theorem 2. Assume A ∈ R2n×2n have a pair of complex
conjugate eigenvalues λ1/2 = a± ib (not in the origin, i.e.
λ1/2 ̸= 0), with geometric multiplicity g = n, and consider
T to be the (real) matrix transformation to obtain the real
Jordan normal form J, with

Dλ =

[
a b
−b a

]
on the main diagonal. Then, by defining

D= Dg−1(Dλ ) = diag(I,D1
λ
,D2

λ
, . . . ,Dg−1

λ
)

the (real) transformation that puts A into the real modified
Jordan normal form, is given by T= TD.

Proof: The objective is prove that the transformation
T= TD provides the (real) modified Jordan block associated
with Dλ , i.e. J=T−1AT looks like

J= (I +N)⊗Dλ =


Dλ Dλ 0 . . . 0
0 Dλ Dλ . . . 0

0 0
. . . . . .

...
Dλ Dλ

0 . . . 0 Dλ

 .

Indeed, this is the case because A = T JT−1, where

J = I ⊗Dλ +N ⊗ I2 =


Dλ I 0 . . . 0
0 Dλ I . . . 0

0 0
. . . . . .

...
Dλ I

0 . . . 0 Dλ

 .

So, J=T−1AT=T−1T JT−1T where T= TD and T−1 =
D−1T−1, hence by very simple manipulations we have that
J=D−1JD. □

We provided the result only for a single pair of complex
conjugate eigenvalues λ = a+ ib and λ ⋆ = a− ib, the exten-
sion to the general case is just an application of the proposed
procedure to each involved complex conjugate pair.
To obtain a real modified Jordan matrix when A has complex
conjugate eigenvalues with geometric multiplicity larger than
1, we can simply rely on a different definition of the diagonal
matrix D, that now becomes block diagonal with all real
entries, and on the real transformation matrix T used to
obtain a real Jordan block matrix.

C. A high-gain interpretation

In some sense, we construct the modified Jordan block
form from the standard one by defining the D change of
coordinates. This sort of change of coordinates is also used
in the high gain (observer/stabilizer) framework, see, e.g. [27,
Section 6] or [28, Chapter 4.7]. In this case, for i = 1, . . . ,m,
by exploiting for each eigenvalue λi the transformation
matrix Dgi(λi), we are able to obtain on the super diagonal
the value of the interested eigenvalue. More in particular, for
each Jordan block Ji, i = 1, . . . ,m

Dgi(λi)
−1(λiI +Ni)Dgi(λi) =

λiI +Dgi(λi)
−1NDgi(λi) = λiI +λiNi = λi(I +Ni).

In the general case, where we have m distinct Jordan blocks
for the matrix A,

D= diag(Dg1(λ1),Dg2(λ2), . . . ,Dgm(λm))

and, with Λ = diag(λ1, . . . ,λn),

J=D−1JD=D−1T−1ATD=T−1AT

=D−1 (Λ+N)D= Λ+D−1ND= Λ+ΛN = Λ(I +N).

IV. APPLICATION: CONTRACTIVITY OF LIPSCHITZ
SEMI-LINEAR SYSTEMS

Consider the general semi-linear system

ẋ = Ax+ϕ(x) (15)

where ϕ is Lipschitz with Lipschitz constant γ , i.e., for any
x and x′ in X ⊂ Rn

|ϕ(x′)−ϕ(x)| ≤ γ|x′− x|
or equivalently if |dϕ(x)/dx| ≤ γ for all x ∈ X . ϕ is globally
Lipschitz if X ≡ Rn.

Theorem 3. Consider the semi-linear system (15), with ϕ

being Lipschitz in X with Lipschitz constant γ . If λ +2γ < 0,
with λ being the convergence rate of A as defined in (13),
then the system is exponentially contracting on X ⊆Rn, with
constant metric P =T−⊤T−1.

Proof: Consider two solutions x1,x2 to system (15) and
set x̃ = x1 − x2. The x̃-dynamics are given by

˙̃x = Ax̃+ ϕ̃(x̃,x2), ϕ̃(x̃,x2) := ϕ(x̃+ x2)−ϕ(x2).

Consider the Lyapunov function V = x̃⊤T−⊤T−1x̃, we then
have

V̇ = 2x̃⊤T−⊤T−1 (Ax̃+ ϕ̃(x̃,x2))

By using the mean value theorem we further obtain

V̇ = 2x̃⊤T−⊤T−1
(

A+
∫ 1

0

dϕ

dx
(x̃+ sx2)ds

)
TT−1x̃

= x̃⊤T−⊤
(
J+2T−1

∫ 1

0

dϕ

dx
(x̃+ sx2)dsT

)
T−1x̃

≤ x̃⊤T−⊤
(

λ +2γ

)
T−1x̃ =−εV

for ε =−(λ +2γ)> 0 . Thus, we proved the theorem. □

4



Remark. We can moreover obtain an upper bound for the
evolution of x̃, i.e., transforming from V back to x̃ we have

|x̃| ≤ µ(T)exp
(
(λ +2γ)t

)
|x̃(0)|.

V. EXAMPLES

A. Autonomous system example

We consider the evolution of the norm of z(t) for an
eigenvalue, λ = −1, with associated geometric multiplicity
g= n= 10, i.e., we consider an autonomous system dynamics
with state matrix A =−1(I +N) ∈ R10×10.
The evolution of the components of the z(t) vector are shown
in Fig.1, starting from an initial condition

z0 = [0.01001979, 0.02185996, −0.01413963
0.08315555, −0.14693675, 0.31947075
−0.4683713, 0.59627956, −0.4827674

0.24631203]⊤.

(16)

Note here that the presence of the overshoot, associated with
the standard Jordan block form, is not present. We also

0 5 10 15 20

−0.5

0

0.5

1

t

z
(t
)

z1
z2
z3
z4
z5
z6
z7
z8
z9
z10

Fig. 1. Evolution of the components of the z(t) state, whose dynamics
is associated to the eigenvalue λ =−1 with geometric multiplicity g = 10,
initialized at z(0) = z0.

show, in Fig.2, the associated norm evolution and the natural
obtained bound with convergence rate −λ ≈ 0.0405, while
its evolution is lower bounded by the exponential function
with convergence rate −λ ≈ 1.9595, even if the eigenvalue
of the dynamics is −1.

B. An example of semilinear stability

We consider the case in which the system is already in
the z coordinates, that we have a single negative eigenvalue
λ ∈ R with geometric multiplicity g = n, and that the non-
linearity part is given by ϕ(z) with ϕi(z) = z⊤z, i = 1, . . . ,n,
i.e.

ż = λ (I +N)z+ϕ(z).

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

t

|z
|

|z(t)|
exp(λt)|z(0)|

exp(−1t)|z(0)|
exp(λt)|z(0)|

Fig. 2. Evolution of the norm of z(t), and its upper bound evolution
through the explicit value of the convergence rate −λ , orange curve.
While its evolution is lower bounded by the exponential function with
convergence rate −λ , in red. Moreover, see that the exponential function
with convergence rate given by the associated eigenvalue λ =−1 does not
give any particular information.

We analyze the gradient of ϕ(z) = z⊤z to obtain its local
Lipschitz constant γ . In particular, we have for i = 1, . . . ,n

∂ϕi(z)
∂ z

= 2z⊤ =⇒
∥∥∥∥∥∂ϕ(z)

∂ z

∥∥∥∥∥= 2n|z|.

Because we are considering the case in which z is contracting
in a certain domain we have that |z| ≤ |z(0)|, we can write
2n|z|< 2n|z(0)|= γ , thus defining the Lipschitz constant on
the hypersphere encompassing the set of initial conditions,
|z(0)| ≤ ρz, for some ρz defining the radius of this hyper-
sphere.

From Theorem 3, we have as sufficient condition for the
exponential contraction of z, λ +2γ < 0, or more explicitly

λ (1− cos(
π

n+1
))+4n∥z(0)∥< 0 =⇒

λ <− 4n∥z(0)∥
1− cos( π

n+1 )

Consider the case n = 3 and z initialized on the unitary
sphere, i.e., |z(0)| = 1, we have as sufficient condition for
exponential stability of z

λ <− 4n∥z(0)∥
1− cos( π

n+1 )
=− 24

2−
√

2
=−40.9706.

Hence, setting λ =−41 we have an exponential decrease as
shown by the simulation results reported in Fig. 3.

It is clear from the simulation results shown in Fig. 3, that
the sufficient condition on the stability of semilinear systems
is very conservative although it provides explicit values for
guaranteeing exponential convergence of the system states.
The result is conservative because our stability property only
relies upon the linear part of the dynamics, whereas the
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

t

‖z
‖

‖z‖
exp(−εt)‖z(0)‖

Fig. 3. Norm behavior of |z(t)| of semilinear system, with initial condition
z(0) = (0.26726124,−0.53452248,0.80178373).

nonlinear part could contribute to the stability of the sys-
tem, possibly increasing its convergence rate. However, the
analysis in this case would become much more complicated
and usually rely upon a not-easy-to-find metric P which
possibly depends on the system’s states. In our case, instead,
the metric is not only given but it is also constant, with all
the positive consequences that a constant metric provides.

VI. CONCLUSIONS

In this work, we present a modification of the Jordan Block
normal form of the state matrix of an autonomous linear
system. We use this analysis to obtain, in closed form, the
constant values for the scaling factor κ and the converge rate
α for the uniform exponential upper bound of stable linear
autonomous systems. This approach allows us to obtain a
constructive characterization of the convergence property of a
linear system. Moreover, we show some sufficient conditions
to describe the exponential stability of a class of semilinear
systems with Lipschitz nonlinearity. Numerical examples are
correlated to show the effectiveness of the analysis.
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