
HAL Id: hal-04282540
https://hal.science/hal-04282540v1

Submitted on 11 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smart Input Space Sampling Combined with
Kriging-Partial Least Square Regression for EMC Risk

Analysis at PCB Level with Many Variables
A. Plot, P. Besnier, B. Goral

To cite this version:
A. Plot, P. Besnier, B. Goral. Smart Input Space Sampling Combined with Kriging-Partial Least
Square Regression for EMC Risk Analysis at PCB Level with Many Variables. 2023 International
Symposium on Electromagnetic Compatibility - EMC Europe, EMC Europe 2023, Sep 2023, Krakow,
Poland. �10.1109/EMCEurope57790.2023.10274313�. �hal-04282540�

https://hal.science/hal-04282540v1
https://hal.archives-ouvertes.fr


Smart Input Space Sampling Combined with
Kriging-Partial Least Square Regression for EMC
Risk Analysis at PCB Level with Many Variables

A. Plot
Univ Rennes, INSA Rennes, CNRS, IETR

UMR 6164, F-35000 Rennes, France
Thales SIX GTS France
F-49300 Cholet, France

alexandre.plot@thalesgroup.com

P. Besnier
Univ Rennes, INSA Rennes, CNRS, IETR

UMR 6164, F-35000
Rennes, France

philippe.besnier@insa-rennes.fr

B. Goral
Thales SIX GTS France
F-49300 Cholet, France

benoit.goral@thalesgroup.com

Abstract—This article describes an advanced methodology for
training surrogate models (SMs) in order to study the sensitivity
of many geometrical parameters of printed circuit boards (PCBs)
for a quicker investigation of routing rules regarding potential
electromagnetic compatibility (EMC) or signal integrity (SI)
issues. This methodology consists in two steps. First, it retains
only the sensitive parameters of the input space that mostly
explain the several output observations. Second, it consists in
training iteratively several competing SMs, selecting the most
efficient one, regarding training time and/or accuracy. Here, the
kriging-partial least square Regression (K-PLS) is identified as a
relevant method for the considered case study, which consists of
a 17-parameter multiple outputs crosstalk scenario. An extreme
value analysis is provided as an outcome for a possible adjustment
of design rules.

Index Terms—Surrogate model, EMC risk analysis, Morris
analysis, kriging, Partial least square, K-PLS, Design rules.

I. INTRODUCTION

This paper presents a methodology for training a surrogate
model to approximate the behavior of a complex model, in the
context of EMC studies at PCBs level. Multilayer PCB design,
in an industry that aims to densify, miniaturize, and integrate
increasingly innovative functionalities, requires the creation
of routing guidelines to reduce the risk of non-compliant
electromagnetic compatibility (EMC) tests. These guidelines
can be provided using reliable numerical simulations. These
simulations, which involve solving Maxwell’s equations us-
ing 3D numerical solvers, are time-consuming and resource-
intensive, especially when performing parametric analysis with
a large number of parameters. Building a surrogate model
trained from a limited amount of runs of the initial solver
is a solution to overcome this hurdle. Surrogate models have
become very popular in different engineering field [1] because
of their ability to carry out costly operations such as problem
optimisation [2] [3], parametric analyses [4] [5] or extreme
values analyses [6]. Several types of SMs are available in the
literature such as kriging, support vector machine, decision
trees or neural networks to name a part of them.

In the EMC domain, kriging method have been successfully
applied to a variety of scenarios [7] [8] [9] [10] [11] [12].
This does not mean by any way that this is the best ML
method for EMC scenario; but it remains a good candidate
for surrogate modelling. However, like other machine learning
(ML) methods, kriging suffers from what is known as the
curse of dimensionality. Specifically, an increase in the number
of variables leads to an exponential increase in the number
of data required for surrogate model training [13]. In more
details, kriging involves calculating a covariance matrix that
becomes larger as the number of input variables increases.
This results in a longer computation time when inverting
the covariance matrix. Moreover, the resulting kriging model
becomes increasingly voluminous at the same time.

Several proposals have been made to deal with this problem.
Some of these methods, called ”dimensionality reduction”
methods [14] [15], allow to decrease the complexity of the
problem by studying the relationships between the variables
and the output of interest. The principal components anal-
ysis (PCA) allows to identify the main components of the
problem by calculating the eigenvalues and eigenvectors of
the covariance matrix, thus allowing to project the data into
a lower-dimensional space. Alternatively, the partial least
square method allows to identify the linear combination of
the predictor variables that best explains the output. It reduces
the dimensionality of the data by projecting it onto a new
set of orthogonal variables, called latent variables, which are
linear combinations of the original variables.

Recently, [16] has implemented a surrogate model that com-
bines Kriging and PLS. The idea is to reduce the number of
hyperparameters to be optimized in kriging and to define a new
covariance matrix (kernel) using the weights of PLS. Based
on analytical functions and a specific industrial scenario, the
results presented in this paper show that K-PLS can substitute
simple Kriging while significantly reducing the learning time
and error.

Another limitation in building a SM is determining the
appropriate size of the learning sample. The amount of data



needed for a precise SM is unknown beforehand. A potential
solution is to use a gradually increasing sample size design of
experiment (DOE) until a specific error criterion is reached. An
Iterative-LHS-Morris method was presented in [12] to further
reduce the required sample size.

This paper extends the concept presented in [12] in several
ways. Whereas the pre-selection of relevant variables is still
performed through a Morris analysis a more suitable error
criterion is used for the convergence of the iterative model.
Then, the K-PLS SM is used in competition with the kriging
SM. Finally, a 17-parameter multiple outputs crosstalk sce-
nario is investigated, highlighting the relevance of the K-PLS
regression. Section II provides a rapid overview of kriging
and K-PLS SMs whereas section III recalls the principle of
Morris analysis and its operation. Section IV provides both the
algorithm and the presentation of the updated error criterion,
as applied to the use case in Section V.

II. SURROGATE MODELS

A surrogate model is a black-box representation of a com-
plex model. It is used to predict the output of the model based
on a set of input parameters. The two methods used in this
paper are briefly discussed in this section.

A. Kriging

The kriging method consists in approaching the response
of a model with M inputs variables described by an input
vector X of the corresponding size. The response f(X) is
then evaluated from:

∀x ∈ DM , f(X) = µ(X) + ε(X) (1)

In this equation, µ is a deterministic function of X and
represents the mean or the trend of the process. For an ordinary
kriging, it is considered as a known constant. The term ε is
a Gaussian process of random variables which is found by
optimizing hyperparameters from known values. The Gaussian
process ε is supposed to be stationary (regarding the first
and the second moment), which means that the dependence
function between random variables ε(X1) and ε(X2) does
not depend on their local coordinates in the input space. It
is generally defined as a function of the Euclidean distance
between X1 and X2 only. Thus, the correlation function C
can be written as:

∀X1,X2 ∈ DM ×DM , C(∥X1 −X2∥θ) (2)

where θ is the vector of the M hyperparameters. A typical
parameterized correlation function must be selected. These
hyperparameters are then determined by optimization. A com-
monly used function is the exponential one:

C(h, θ) = exp(−θ|X1 −X2|) (3)

The training phase consists in optimizing the hyperparam-
eters by maximizing a likelihood function which is compu-
tationally expensive for high dimensions (high M ) of the

input space. Futhermore, the resulting model requires a large
memory space. Its combination with PLS, i.e. the K-PLS
method, provides an interesting solution.

B. Kriging - Partial Least Square

Maximizing the likelihood function of Kriging can be time
consuming when the dimension of the covariance matrix is
large. This issue can be resolved by combining the PLS
method and the kriging model.

PLS is a widely-used solution for high-dimensional prob-
lems. It is a statistical method that identifies the linear combi-
nations input variables X and output variables y that maximize
their corrrelation. This is achieved by projecting initial inputs
into a new parameter space defined by h principal components
also called latent variables, h ≪ M . In other words, PLS
aims at finding the best directions of X space that explains
the output y. More details on how the exponential kernel is
built from PLS coefficient can be found in [16].

III. SMART SAMPLING USING MORRIS ANALYSIS AS A
PREPROCESSOR

A. Concept

The Morris method is a global sensitivity analysis method
based on measuring the variations of the output corresponding
to the variation of one parameter at a time. This method is
particularly effective when the number of parameters is large
because it only requires a small number of model realizations.

The Morris method consists in calculating an elementary
effect caused by the variation of a ∆ step of a given input.
The elementary effect for the input xi of X is calculated as
follows:

Ei(X) =
f(x1, ..., xi +∆, ..., xM )− f(x1, ..., xi, ..., xM )

∆
(4)

where X = (x1, ..., xi, ..., xM ) is a given random realiza-
tion of X and ∆ is the experiment step which is equal to a
multiple of 1

p−1 where p is the number of grid levels (grid is
built from input space).

The calculation of elementary effects for all M inputs is
repeated r times to achieve r independent trajectories. Then,
the mean over all trajectories of the absolute value of the
elementary effect of the i-th input parameter and the standard
deviation are calculated such as:
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Thus, µ is the average of elementary effects over all trajec-
tories, providing the overall influence of the input Xi on the
output variations. As far as the average standard deviation σi =
is concerned, it measures the non-linear influence of the other
inputs and their interactions.



Based on the values of µi and σi, it is possible to classify
input variables into 3 categories: i)negligible effects ii) large
linear effects without interactions iii) large non linear effects.

The total cost of Morris experiment is r(M + 1) (i.e. the
number of calls to the model). This is the result of changing
one variable at a time for each trajectory once a first random
input vector is initialized. In the Morris analysis, the main
factors influencing the precision of the result are r and p. For
all analysis in this paper p = 4 and r = 10 are used, based on
the analysis in [19], where the authors demonstrated that this
choice produced satisfying results.

B. selection of influential parameters

As detailed in [12], µi is first normalized to their total
sum over the M variables. Then, the cumulative contribution
for a subset of input variables is computed by summing
their normalized contributions after sorting them in decreasing
order. The retained subset of influential parameters is defined
such as its cumulative contribution is greater of equal to 80%,
assuming that this group of variables is sufficient to predict
the output response with an acceptable approximation. Thus,
the other ones (with the lowest µ values) are discarded from
the SM construction and are fixed to their nominal values.

IV. MULTI-MODELS ITERATIVE LEARNING

A. Concept

An iterative learning algorithm of the SM was proposed
in [12]. The enrichment method is preserved and improved by
adding multi-metamodels learning. The method is summarized
in the algorithm below. It involves first building an initial
LHS-type experimental design of size Nini whose outputs are
calculated using the simulator. Several metamodel methods
(here kriging and K-PLS) are trained and their prediction
accuracy are compared. The initial sample is then enriched
with several points, also evaluated by the simulator, forming
a new experimental design of larger size. The different meta-
models are retrained. This loop is repeated until the satisfaction
criterion is met for one SM at least.

Nini sets the initial number of experiments contained in the
DOE. A rule of thumb consists of choosing Nini = 10×M .
Nstep defines the number of points added at each iteration.
It can be constant or evolving during the iterative process
to avoid a too marginal evolution of the sample size. The
algorithm is based on LHS enrichment, which consists in
adding new points to an existing DOE, preserving the LHS
nature of the complete sample.

B. Prediction error and criterion for accuracy

The presented iterative learning scheme is based on calculat-
ing a prediction error that measures the degree of confidence of
predictions. Several methods and metrics for calculating error
exist. One of them consists of isolating an independent sample
from the training on which each meta-model is evaluated and
an error is calculated. However, this method is not appropriate
since it creates a dependence between the error on the test
sample.

Algorithm 1 Iterative sampling approach
1: Input : A costly function f with M parameters
2: Output : A Kriging surrogate model f̂
3: Generate an initial DOE X = [x1, ..., xNini ]

T of size Ninit

using LHS
4: Call f to compute the output of each experiment of DOE

y = [f(x1), ..., f(xNini)]
T

5: Train the different metamodels using X and y
6: While stopping criterion is not met do
7: Add new points:
8: Generate Nstep points based on the initial DOE and using

iLHS technique X ′ = [x′
1, ..., x

′
Nstep

]T

9: Call f to compute the output of the added points y′ =
[f(x′

1), ..., f(x
′
Nstep

]T

10: Update information:
11: X = X ∪X ′ and y = y ∪ y′

12: Train the different metamodels using the new DOE with
added points

13: return The final metamodel f̂(x) with the lowest prediction
error among all the trained metamodels

A best suited method is introduced here. It uses a valida-
tion method called the k-fold cross validation. It consists in
splitting the dataset into k groups of samples of equal sizes.
Training is done using k − 1 folds, and the fold left is used
for test. The prediction error is calculated as follows:

ϵki =
|max(Ŷi, Yi)−min(Ŷi, Yi)|

min(Ŷi, Yi)
(7)

where Yi is the output of the test fold to be predicted
and Ŷi is the output predicted by the surrogate model built
up from the other k − 1 folds. ϵki is a relative error which
corresponds to the i-th error of the k-th fold. The operation is
repeated by selecting another test fold among the predefined
ones. The k-fold cross validation is more expensive in terms of
computation time as it requires to train k different metamodels.
The advantage of this method is that it offers a statistical
overview of the prediction error over the entire dataset.

A decision criterion must be fixed so that a reliable meta-
model is obtained. We choose to use the median which is a
good indicator of the global predictions of the surrogate model.
This criterion is based on the median relative error of ϵki that
is computed for all the samples of each fold and for all the
folds. A median relative error of less or equal 20% is selected.

Since a SM is built up for each frequency of analysis this
condition has to be fulfilled for all SMs.

V. APPLICATION TO A USE CASE

A. Presentation of the test case

The proposed methodology and the criterion defined for
each step are going to be tested on a 17-parameter test case
represented in Fig. 1.

The case study represents a situation of inter-track crosstalk
frequently encountered in PCBs. It consists of 3 microstrip
lines with 3 openings in the ground plane under each of them.
The scenario is configured with 17 variables, the ranges of
which are summarized in the table below.



Fig. 1. Schematic of the case study and its 17 parameters.

TABLE I
PARAMETERS DEFINITION

Parameter Description Range (mm)
L1, L2, L3 Length of traces 20 - 200
W1, W1, W1 Width of traces 0.1 - 0.6
Lf1, Lf1, Lf1 Length of openings 0.1 - 20
Wf1, Wf2, Wf3 Width of openings 0.1 - 20
h Height of dielectric 0.08 - 0.8
h2 Height of solder mask 0.04 - 0.4
dw1, dw2 Traces separation 0.5 - 15
Wp Width of ground plane 20 - 40

This scenario presents an interest in terms of EMC study as
it allows for the simultaneous study of three potential impacts
on EMC performance:

• The effect of openings on the return current associated
with each microstrip line

• The proximity effect of traces on the crosstalk level
• The impact of the ground plane width on the return

current
This analysis focuses on the different S parameters of the

lines and, in particular, on the insertion loss of microstrip line
1 (S21), the crosstalk level between microstrip lines 1 and 2
(S41), and the crosstalk level between microstrip lines 1 and
3 (S61). These three S parameters are computed using CST
MW studio (using the finite integration technique in the time
domain) in 350 MHz to 2 GHz frequency range.

B. Application of Morris analysis

The Morris analysis is computed independently for the
three outputs S21, S41 and S61. Since M = 17 and using
r = 10, N = (M + 1) × r = 180 input data are required.
Moreover, frequencies are treated independently, meaning a

Morris analysis is performed for each frequency. There are
1001 uniformly spaced frequencies from 350 MHz to 2 GHz.
The results, introduced in Fig. 2, are presented through box-
plots showing the spread of sensitivity indices over frequency.

Fig. 2. Results of Morris analysis: µ box-plots of each of the 17 parameters for
S61 (top left), S41 (top right) , S21 bottom). The spread of µ over frequencies
(whiskers), the median (orange bars) and the mean(green triangles) are
indicated.

From these boxplots, relevant parameters of the scenario
can be clearly identified. As an example, only 4 parameters
seem to be influential (L1, Lf1, Wf1 and h) to explain the
S21 output. This result was expected since these parameters
are related to intrinsic parameters of the first microstrip line
and its associated opening that influence its insertion loss
performance. Regarding S41, the most important parameter
appears to be dw1 which is the distance between the first and
second line.Wf1 and Wf2 are also important parameters, since
they indirectly set the distance between the lines. Finally, only
a few parameters seem to have marginal influence on the S61

output.
Different parameter selections are possible based on the

observed output. The adopted methodology consists of only
eliminating non-influential parameters for all outputs. It means
that the selection made have to satisfy the defined criteria for
all the three outputs.

As a result, the selection made is composed of 12 param-
eters: L1, L2, L3, Lf1, Lf2, Lf3, Wf1, Wf2, Wf3, dw1,
dw2 and h. For this group of parameters, the cumulative
contribution is computed:

µcumulated = µL1 + µL2 + ...+ µh (8)

The results, illustrated in Fig. 3, confirm that for the three
considered outputs, 12 parameters are sufficient to explain
more than 90% of the variations of outputs, i.e. well above
the required criterion of 80 %.

Some strong variations of the cumulative contribution of
µ can be observed on the S41 curve around 1.6 GHz and
1.2 GHz. These are due to outliers of some of the eliminated
parameters.

To sum up this part, we managed to identify 12 parameters
out of the initial 17 that explain over 80 % of the observed
outputs. The remaining 5 parameters are therefore considered



Fig. 3. Cumulative contribution over frequency for 12 selected parameters:
(S61 top left, S41 top right, S21 bottom).

to be non-influential and can be set to their nominal values.
Therefore, the following iterative learning process is applied
for this set of 12 parameters and the obtained SM will be
compared to the the one obtained with the whole set of 17
parameters as a reference.

C. Application of iterative learning

The metamodels corresponding to the three outputs S21, S61

and S41 are now being iteratively trained. In order to validate
the parameter selection previously carried out, a comparative
approach is being conducted. Thus, for each output, two
metamodels are iteratively trained: one with the 17 initial
variables and one with the 12 selected variables. Surrogate
models are then denominated as follows: SMY

X where SM is
either KRG or K-PLS, X is either S21, S61, S41 and Y is 17p
or 12p.

First, kriging metamodels are compared in Fig. 4 where
the median relative error evolution is plotted according to
the number of iterations for the three considered outputs and
for both 12-parameter (following Morris analysis) and 17-
parameter cases (reference).

Fig. 4. Median relative error evolution for the 12-parameter and 17-parameter
cases (reference). SM (S61 top left, S41 top right, S21 bottom).

The median relative error of the S21 metamodel is always
below 20%, whether for 12 or 17 parameters. This can be
explained by a dependency on a small number of input
parameters.

Regarding S41, the target error of the metamodel with 12
parameters is reached with 3206 training points, which is 1332
less realizations than the SM with 17 parameters.

Finally, KRG17p
S61

does not converge, and the iterative learn-
ing process was stopped due to excessive computation time.
On the contrary, the KRG12p

S61
reaches the threshold error with

4616 training points.
Reducing the number of parameters allows the target error to

be reached quicker, which reduces the number of simulations
required for learning. For comparison, the total simulation time
for the 4616 realizations and learning of KRG12p

S61
is 16 hours,

compared to 19 hours for KRG17p
S61 which didn’t reach the

error goal. This means that we obtain a metamodel with lower
error and at the same time a lower simulation and training time.

D. Application of K-PLS

This part describes the application of K-PLS with h = 3
latent components to further accelerate the computations. We
are only interested in S61 here as it is the most difficult output
to predict. The performance of K-PLS will be compared to
kriging, more specifically the training will be carried out on
the basis of the 4616 realizations obtained at the last iteration
of the iterative algorithm. The resulting errors for K-PLS and
kriging are represented in box-and-whisker plots in Fig. 5 to
visualize the dispersion (in frequency and across the different
folds).

Fig. 5. Boxplot representation of error for both KRG and K-PLS

The training times and median errors are given in table. II.
The error is slightly higher but the gain in training time is
significant (about 5 times faster).

TABLE II
PERFORMANCES OF KRIGING AGAINST K-PLS

Metamodel Median relative error (%) Training time (min)
Kriging 19.87 83
K-PLS (h=3) 21.09 18

E. Validation

In the previous sections, we saw that reducing the number
of parameters and using K-PLS significantly accelerated the
learning process.



This final section aims to compare the KPLS12p
S61

meta-
model to the KRG17p

S61
metamodel in terms of accuracy on an

extreme value analysis. This analysis is particularly useful for
defining routing rules. Indeed, it makes it possible to identify
parameter values leading to extreme situations (high values of
S61 in our case).

To illustrate this analysis, we focus on 2 particular param-
eters (h and dw1) which are the most influential according
to Morris sensitivity analysis. A Monte Carlo-type sample is
constructed and evaluated from both KRG17p

S61
and KPLS12p

S61
.

Realizations beyond the empirical 95% quantile of the output
distribution are isolated. They represent a group of configura-
tions with the highest crosstalk level between microstrip lines
1 and 3. Distributions of h and dw1 belonging to this group
of extreme values is displayed in Fig. 6 and compared to their
initial uniform distribution of the total sample.

Fig. 6. Compared extreme values analyses of h and dw1 obtain with
KRG17p

S61
on the left and KPLS12p

S61
on the right

The distributions obtained with KRG or K-PLS are similar,
which confirms that the combination of Morris analysis and K-
PLS method are useful to reduce both the simulation time and
training calculation time. K-PLS can be definitely considered
as a competitive candidate among different SMs. According
to this extreme value distribution, decisions can be taken
regarding further limitation of h or the prescription of a new
minimum distance for dw1 if necessary.

VI. CONCLUSION

In this article, we presented a new method to accelerate the
learning of metamodels, which are then used to extract PCB
design rules. This method is based on the use of MORRIS
analysis to eliminate unimportant parameters and iterative
learning for which the K-PLS was introduced to accelerate
the learning process. The application of this method to a case
study with 17 parameters demonstrated its effectiveness. Other
learning methods such as support vector machine, decision
tree or gradient boosting may be easily added to the iterative
learning to compete with kriging and K-PLS.
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