HAL
open science

Potential impacts of the restoration of coastal and estuarine nurseries on the stock dynamics of fisheries species

Maël Gernez, Juliette Champagnat, Etienne Rivot, Olivier Le Pape

- To cite this version:

Maël Gernez, Juliette Champagnat, Etienne Rivot, Olivier Le Pape. Potential impacts of the restoration of coastal and estuarine nurseries on the stock dynamics of fisheries species. Estuarine, Coastal and Shelf Science, 2023, 295, pp.108557. 10.1016/j.ecss.2023.108557 . hal-04282535

HAL Id: hal-04282535

https://hal.science/hal-04282535

Submitted on 13 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Journal Pre-proof

Potential impacts of the restoration of coastal and estuarine nurseries on the stock dynamics of fisheries species
M. Gernez, J. Champagnat, E. Rivot, O. Le Pape

PII: S0272-7714(23)00347-5
DOI: https://doi.org/10.1016/j.ecss.2023.108557
Reference: YECSS 108557

To appear in: Estuarine, Coastal and Shelf Science

Received Date: 27 January 2023
Revised Date: 30 October 2023
Accepted Date: 3 November 2023

Please cite this article as: Gernez, M., Champagnat, J., Rivot, E., Le Pape, O., Potential impacts of the restoration of coastal and estuarine nurseries on the stock dynamics of fisheries species, Estuarine, Coastal and Shelf Science (2023), doi: https://doi.org/10.1016/j.ecss.2023.108557.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2023 Published by Elsevier Ltd.

Potential impacts of the restoration of coastal and estuarine nurseries on the stock dynamics of fisheries species

Gernez M..*, Champagnat J. ${ }^{1}$, Rivot E. ${ }^{1}$, Le Pape O. ${ }^{1}$
${ }^{1}$ DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, 35000, Rennes, France

* Corresponding author: mael.gernez@ifremer.fr

Highlights

- The effects of nursery habitat restoration were assessed for four species of main fisheries of interest in the Eastern English Channel.
- Potential restoration gains in terms of biomass and catches were substantial, up to more than 50% of spawning biomass at maximal sustainable yield for the most shallow nursery-dependent species.
- Species with higher concentrations in shallow nurseries were the most sensitive to habitat restoration.
- Contrasts in life history traits lead to species-specific responses: a lower resilience to fishing pressure induces a stronger response to habitat restoration.

Abstract

Coastal and estuarine (CE) areas are essential fish habitats; they act as nurseries for a large proportion of species of fisheries interest but face high levels of cumulative anthropogenic pressures. A comprehensive analysis of the impacts of CE nursery habitat degradation at the population scale for exploited fish species is still lacking. Our study aims to assess the effects of CE nursery habitat

restoration for four species of main fisheries of interest in the Eastern English Channel (EEC): sole (Solea solea), plaice (Pleuronectes platessa), whiting (Merlangius merlangus) and seabass (Dicentrarchus labrax). A generic age- and stage-based population model representing the dynamics of exploited populations and integrating the dependence of recruitment on juvenile habitats was used. This model allowed us to evaluate the combined effect of nursery degradation and fishing pressure on stock dynamics. The model was parameterized for each of the four species based on stock assessment outputs in the EEC and literature and then used to simulate equilibrium states under different habitat restoration scenarios. These scenarios were built using previous estimates of both surface area loss and decrease in marine juvenile fish density in CE habitats facing anthropogenic pressures in the EEC. Surface area and quality restoration enhanced both biomass and sustainable catch levels for the four species in the EEC. The species with higher concentrations in shallow nursery areas were the most sensitive to habitat restoration. The response also depended on life history traits, i.e., species with lower resilience to fishing pressure (i.e., steepness) exhibited a stronger response to habitat quality scenarios.

Keywords: Coastal degradation; Nursery; Population dynamics; Maximum Sustainable Yield; Eastern English Channel.

1. Introduction

Coastal and estuarine (CE) areas are essential habitats for many fish species (Seitz et al., 2014). CE ecosystems act as nurseries for a large proportion of fish resources (Miller et al., 1984; Minello, 1999; Beck et al., 2001) and play a major role in the renewal of nursery-dependent species (Rijnsdorp et al., 1992; Gibson, 1994); thus, they are of great importance to fisheries. For instance, two-thirds of commercial landings in the North-East Atlantic come from species using CE systems as nursery habitats (Brown et al., 2018).

However, the concentration of juveniles in CE areas renders them particularly vulnerable to human activities (Lotze et al., 2006; Airoldi and Beck, 2007). These pressures can impact both the surface extent and suitability of these nursery habitats (Johnson et al., 1998; Peterson et al., 2000). Surface area losses in the CE zone led to a dramatic decrease in nursery habitat capacity (Rochette et al., 2010). The toxic effects of exposure to pollutants at the juvenile stage impact growth and survival (Davoodi and Claireaux, 2007; Foekema et al., 2008; Wessel et al., 2010) as well as future reproductive success (Fonds et al., 1995; Daouk et al., 2011; Horri et al., 2018). Ninety-two percent of species that use coastal habitats are impacted by human pressures, which can be related to pollutants, eutrophication, anoxia, invasive species and physical development of the coastline (Brown et al., 2018).

Although the impacts of local anthropogenic disturbance on juveniles of nearshore nursery-dependent species are well documented (Brown et al., 2018), their consequences for population renewal remain poorly quantified (Lotze et al., 2006; Sundblad and Bergström, 2014; Vasconcelos et al., 2014) and even largely unknown (Rose et al., 2003; Hamilton et al., 2016; Boyd et al., 2018). Few studies have quantified the impact of nursery habitat degradation at the population scale with age- and stage-based models (Rose et al., 2018; Ono et al., 2019; Camp et al., 2020; Champagnat et al., 2021). These models are very case-specific, especially regarding the large amount of data and knowledge needed for parameterization (Lipcius et al., 2019). Consequently, their application to numerous other case
studies is difficult or not realistic, although such approaches are needed for management purposes (Hayes et al., 2009; Kraufvelin et al., 2018).

In this work, we used a generic age- and stage-structured population model for nursery-dependent exploited species (Champagnat et al., in rev.) to quantify the importance of nursery restoration to population dynamics and productivity. This model describes density-dependent survival in nursery areas (hereafter called the stock-recruitment relationship) with a Beverton and Holt (1957) relationship parameterized in terms of steepness (Mace and Doonan, 1988; Punt and Dorn, 2014) and carrying capacity. Parameterization of a specific stock-recruitment relationship between the spawning biomass and the number of recruits is spurious (Myers et al., 1999; Rose et al., 2001; Zhou, 2007). Steepness is a dimensionless proxy of the resilience of a stock to fishing pressure (Myers et al., 1999; Mangel et al., 2013; Munyandorero, 2020). Hierarchical meta-analyses have been conducted to identify relationships between steepness and life history traits that can be used to provide reliable estimates of steepness for a wide range of species (Myers and Mertz, 1998; Myers et al., 1999; Hilborn, 2003; Thorson, 2019). Formulating our model in terms of steepness thus provides a sensible way to parametrize stock-recruitment relationships for different species of fisheries interest. In addition, following Champagnat et al. (in rev.), the steepness-based parameterization of the stockrecruitment relationship is extended, directly depends upon the habitat quality and surface area of nursery habitats, and allows for simulating juvenile habitat restoration scenarios.

The model was applied to nursery-dependent species of fisheries of interest on a fishery management unit in the Eastern English Channel (EEC). The EEC (ICES division 7.d; Figure 1) is a fishery unit of main interest (Ulrich et al., 2002). CE areas of the EEC face high levels of anthropogenic pressures (Le Pape et al., 2007). They have experienced important morphological changes from land reclamation, channel dredging, and the building of dikes and harbours (Ducrotoy and Dauvin, 2008, Stamp et al., 2022), resulting in a substantial reduction in the extent of suitable nursery areas (Rochette et al., 2010, Champagnat et al., 2021). In addition, land-sea interfaces have faced high levels of chemical contamination for decades in the EEC (Meybeck et al., 2007; Tappin and Millward,

2015; Barjhoux et al., 2018), causing reductions in habitat quality for marine juvenile fish (Gilliers et al., 2006; Amara et al., 2007; Courrat et al., 2009).

Four species of high fisheries interest were considered in this analysis: sole (Solea solea), plaice (Pleuronectes platessa), whiting (Merlangius merlangus) and seabass (Dicentrarchus labrax). These species have similar life cycles, with juveniles concentrated in CE habitats while adults show a wider distribution (Riou et al., 2001; Leakey et al., 2008; Day et al., 2021).

The study aims to quantify the effects of human disturbance on nurseries in the EEC and assess their consequences on the four populations of interest. We first parameterized the generic stage-based population model of Champagnat et al. (in rev.) for the four populations of interest. Then, the model was used to simulate the response of populations to nursery habitat restoration scenarios. For this purpose, the loss of nursery habitat area extent in the EEC since 1870 was quantified, and the effects of quality degradation on marine juvenile density were also estimated. Then, the potential effects of the restoration of both the surface area and quality of these habitats on population dynamics and fishery productivity were assessed and compared between the species.

Figure 1. Location of the Eastern English Channel (Fishery management unit, ICES division 7.d), highlighted in grey. The Bay of Veys, Seine and Somme-Canche estuaries are three major CE nursery areas. Inset in the lower right corner: general location in Western Europe.

2. Materials and Methods

A diagram of the framework summarizing the articulation of modelling steps, parameterization, and construction of habitat scenarios is shown in Figure 2.

Figure 2. Diagram of the framework summarizing the articulation of the modelling steps: parameterization of the population model, construction of habitat scenarios, and simulation. 1. Recruitment age ($a_{r e c}$), maximum age $\left(a_{m a x}\right)$, natural mortality (M) and maturity (mat) were extracted from stock assessments, whereas steepness (h, e.g., resilience to fishing pressure), larval mortality (Mlarvae) and fecundity (fec; except for plaice, extracted from stock assessment) were collected from the literature. Carrying capacity (K) was calibrated by minimizing the difference between the spawning stock biomass (SSB) and catch (C) simulated by our model with those of the stock assessment outputs. 2 . The surface area scenario was based on an estimation of area loss since 1870 in three coastal sectors of the French EEC coastline. Surface scenario was only applied to the proportion of juveniles present in habitats above 5 m (Prop). Quality scenarios relied on Courrat et al. (2009), with restoration applied to all juveniles (Quality all) or only to juveniles located above 5 m bathymetry (Quality band). 3. Finally, the gains in SSB and C at maximum sustainable yield (MSY) are estimated for each habitat restoration scenarios.

2.1. Population dynamics model

The impact of the degradation of nursery areas on stock productivity was simulated with a deterministic life cycle model structured by stage and age (Champagnat et al., in rev.). This model considers a single closed population and a unique nursery and homogeneous area. After recruitment age ($a_{r e c}$), fish undergo both natural and fishing mortality. Population abundance ($N_{a, y}$) at age a for year y is described by classical population dynamics (Equation 1):
(1) $\quad N_{a+1, y+1}=N_{a, y} \times e^{-\left(M_{a, y}+F_{a, y}\right)}$
where M and F are the natural and fishing mortality rates, respectively.
For the last age group $a_{\max }$, the population abundance is described as (Equation 2):

$$
\begin{equation*}
N_{a_{\max }, y+1}=N_{a_{\max }, y} \times e^{-\left(M_{a_{\max }, y}+F_{a_{\max }, y}\right)}+N_{a_{\max }-1, y} \times e^{-\left(M_{a_{\max }-1, y}+F_{\left.a_{\max }-1, y\right)}\right.} \tag{2}
\end{equation*}
$$

Recruitment, defined as the number of juveniles produced in nurseries, accounts for habitat-mediated mortalities during the juvenile stage and is the critical component of this model.

The recruitment $N_{a_{r e c}, y}$ is computed from egg numbers produced in a year, ω_{y} (Equation 3):

$$
\begin{equation*}
\omega_{y}=\sum_{a=a_{r e c}}^{a_{\max }} N_{a, y} \times M a t_{a} \times p f_{a} \times F e c_{a} \tag{3}
\end{equation*}
$$

where $M a t_{a}$ is the probability of being mature at age $a, p f_{a}$ is the proportion of females at age a, and $F e c_{a}$ is the fecundity at age a, all considered constant in time.

The mortality from eggs to recruited juveniles follows a compensatory density-dependent mortality process resulting from intra-cohort competition for trophic resources and/or space (Beverton and Holt, 1957). Recruitment ($N_{a_{r e c}, y}$) is modelled by a Beverton-Holt relationship parameterized in terms of its asymptote, K, interpreted as the carrying capacity of the nursery, and steepness (h) (Equation 4):

$$
\begin{equation*}
N_{a_{r e c}, y}=\frac{4 \times h \times \omega_{y-1}}{\bar{W} \times(1-h)+\frac{4 \times h \times \omega_{y-1}}{K}} \tag{4}
\end{equation*}
$$

where h is the steepness, defined as the proportion of unfished equilibrium recruitment produced when the spawning stock biomass is reduced to 20% of its unfished level (Mace and Doonan, 1988). It characterizes the drop-off in recruitment when the reproductive potential is reduced. It varies in theory from 0.2 for a linear stock-recruitment relationship to 1 for a constant recruitment above 20% of pristine biomass (Myers et al., 1999; Mangel et al., 2013; Rindorf et al., 2022). K is the carrying capacity (Daily and Ehrlich, 1992), defined as the maximal number of juveniles that a nursery area (here considered unique for the population) can produce. \bar{W} is the average number of eggs produced by a recruit during its lifetime in the absence of fishing (equation in Appendix A).

Once parameterized for each species (see next section), this simulation model is used to simulate equilibrium states under a range of fishing mortality rates (F , from 0 to 1) to empirically construct equilibrium curves for catch (C) and spawning stock biomass (SSB), enabling the estimation of management reference points such as SSBmsy, $^{\text {CMSY }}$ and FMSY (MSY, Maximum Sustainable Yield). Equations for computation C and SSB are available in Appendix A. $F_{M S Y}$ and the $\frac{S S B_{M S Y}}{S S B_{0}}$ ratio will be used as indicators to be compared with stock assessment outputs and with the empirical results of Froese et al. (2016), respectively.

2.2. Parameterization of the case studies

For each of the four case studies, all stock-specific parameters were extracted from both stock assessment outputs and the literature (Table 1), except for the carrying capacity (K), which was calibrated.

Parameters from stock assessments and literature

Recruitment age, maximum age, weights at ages, maturity ogive and natural mortality were taken from the assessment reports for the four studied stocks (ICES, 2021ab). Fecundity equations, larval mortality, and lengths at ages were collated from the literature (Appendix B).

The FishLife package (Thorson, 2019) was used to parameterize steepness for the baseline scenarios. This package analysed stock-recruitment series from the RAM database (Myers et al., 1995) in relation to life-history data extracted from FishBase (Froese and Pauly, 2022) using a multivariate hierarchical Bayesian model with taxonomic structure. Steepness values were extracted at the taxonomic level of order to obtain a robust estimate (Thorson, 2019).

Calibration of carrying capacity for the baseline habitat scenario

Only the parameter K, the carrying capacity of the nursery area (considered a unique entity), which ultimately determines the population size, requires calibration. For each of the four case studies, the carrying capacity K representative of the current state (baseline habitat scenario) was estimated by minimizing the difference between the SSB and catches simulated by our model with those of the stock assessment outputs (i.e., by minimizing the objective function in Equation 5):

$$
\begin{equation*}
\sum_{y=y_{\min }}^{y_{\max }}\left(\log \left(S S B_{\text {pred }, y}\right)-\log \left(S S B_{I C E S, y}\right)\right)^{2}+\left(\log \left(C_{\text {pred }, y}\right)-\log \left(C_{I C E S, y}\right)\right)^{2} \tag{5}
\end{equation*}
$$

where $y_{\min }$ and $y_{\max }$ are the first and last year of the stock assessments, respectively, $S S B_{\text {pred }}$ is the model predictions of $\mathrm{SSB}, S S B_{I C E S}$ is the SSB provided by the stock-specific assessment (ICES 2021ab), $C_{\text {pred }}$ is the model predictions of catches and $C_{I C E S}$ is the catches (ICES, 2021ab). For sole and plaice, SSB and catches were taken directly from stock assessments (ICES, 2021a). For whiting (ICES, 2021a) and seabass (ICES, 2021b), SSB and catches were derived from stock assessments covering a wider area. They were scaled to the EEC proportionally to the average proportion of landings in division 7.d with respect to total landings (Appendix C).

	Recruitment age ($a_{r e c}$)	Maximum age $\left(a_{\max }\right)$	$\begin{aligned} & \text { Steepness (h) } \\ & \text { (Thorson, 2019) } \end{aligned}$	Natural mortality rate (M)	Larval survival rate $\left(e^{-M_{\text {larvae }} \times \Delta_{l}}\right)$ (Le Pape and Bonhommeau, 2015)	Carrying capacity (K) (calibrated)
Sole	1 (ICES, 2021a)	$\begin{gathered} 11 \\ \text { (ICES, } \\ \text { 2021a) } \end{gathered}$	0.771	$\mathbf{0 . 1}$ (ICES, 2021a)	10^{-3}	4.0×10^{7}
Plaice	$\begin{gathered} \mathbf{1} \\ (\mathrm{ICES}, 2021 \mathrm{a}) \end{gathered}$	$\begin{gathered} 7 \\ \text { (ICES, } \\ \text { 2021a) } \end{gathered}$	0.771	Age 1: 0.3531; Age 2: 0.3132; Age 3: 0.292; Age 4: 0.2749; Age 5: 0.2594; Age 6: 0.2474; Age 7: $\mathbf{0 . 2 3 2 9}$ (ICES, 2021a)	10^{-3}	7.1×10^{7}
Whiting	0 (ICES, 2021a)	8 (ICES, 2021a)	0.626	Age 0: 2.0057; Age 1: 1.1510; Age 2: 0.6560; Age 3: 0.5107; Age 4: 0.4690; Age 5: 0.4477; Age 6: 0.3387; Age 7: 0.2797; Age 8: $\mathbf{0 . 2 6 1 0}$ (ICES, 2021a)	10^{-3}	5.3×10^{9}
Seabass	$\begin{gathered} \mathbf{0} \\ \text { (ICES, 2021b) } \end{gathered}$	$\begin{gathered} 16 \\ \text { (ICES, } \\ \text { 2021b) } \end{gathered}$	0.736	$\mathbf{0 . 2 4}$ (ICES, 2021b)	10^{-3}	1.1×10^{7}

Table 1. Species-specific model parameterization for the baseline habitat scenario.

2.3. Parameterization of scenarios for CE nursery habitat

Habitat restoration scenarios were parameterized by modifying both the surface area and the quality of nursery habitat (Champagnat et al., in rev.), which will impact the two key parameters h and K in the stock-recruitment relationship in Equation (4).

Modelling scenarios of surface area modification are straightforward. The carrying capacity K depends directly on the surface area S of the nursery habitats (Equation 6). Writing the carrying
capacity K as the product of a carrying capacity per unit of surface area K^{*} and the surface area $S_{\text {baseline }}$, we parameterized surface area scenarios using a multiplier $\left(\lambda_{\text {surface_area }}\right)$ as:
(6) $\quad K=K_{\text {baseline }}^{*} \times \frac{S_{\text {baseline }}}{\lambda_{\text {surface_area }}}$
so that $\lambda_{\text {surface_area }}=1$ corresponds to the baseline situation and a value of $\lambda_{\text {surface_area }}<1$ denotes an increase in surface area.

To model scenarios of habitat quality alteration/restoration, we relied on Champagnat et al. (in rev.), with a parameterization of the stock-recruitment relationship (Equation 4) in terms of instantaneous density-independent $\left(M^{d i}\right)$ and density-dependent $\left(M^{d d}\right)$ mortality rates between larvae and juveniles (Quinn and Deriso, 1999). Relationships between classical (h, K) and new ($M^{d i}, M^{d d}$) parameters can be written as (Equations $7 \& 8$; see Champagnat et al. in rev. and Appendix A for more details):

$$
h=\frac{e^{-M^{d i^{x}} \times a_{r e c} \times e^{-M_{l a r v a e} \times \Delta_{l}} \times \bar{W}}}{4+e^{-M^{d i_{\times}} a_{r e c} \times e^{-M_{l a r v a e} \times l_{l}} \times \bar{W}}}
$$

$$
\text { (8) } \quad K=\frac{M^{d i}}{M^{d d}} \times \frac{1}{e^{M^{d i_{i}} \times a_{r e c}-1}} \times S
$$

where $e^{-M_{\text {larvae }} \times \Delta_{l}}$ is the resulting survival from density-independent mortality occurring during larval drift of duration Δ_{l} and S is the surface area of the nursery. Hence, looking at Equation (6), the carrying capacity per unit of surface area is written as a function of $M^{d i}$ and $M^{d d}\left(K^{*}=\right.$ $\left.\frac{M^{d i}}{M^{d d}} \times \frac{1}{e^{M^{d i^{*}} \times a_{r e c}-1}}\right)$.

This alternative formulation allows us to parameterize the restoration (resp. alteration) of the quality of juvenile habitats in terms of a decrease (resp. increase) in both density-independent and densitydependent mortality rates, $M^{d i}$ and $M^{d d}$ (Champagnat et al., in rev). A common multiplier ($\lambda_{\text {quality }}$) is applied to $M^{d d}$ and $M^{d i}$, which in turn modifies the values of h and K^{*}.

Finally, the combination of scenarios of surface area alteration/restoration (varying $\lambda_{\text {surface_area }}$) and quality alteration/restoration (varying $\lambda_{\text {quality }}$) modifies stock-recruitment parameters (h, K) as (Equations 9 \& 10):
(9) $\quad h\left(\lambda_{\text {quality }}\right)=\frac{e^{-\lambda_{\text {quality }} \times M^{d i_{\times a_{r e c}}} \times e^{-M_{\text {larvae } \times \bar{W}}}} 44 e^{-\lambda_{\text {quality }} \times M^{d i_{\times}} \times a_{r e c}} \times e^{-M_{\text {larvae }} \times \bar{W}}}{\text {. }}$
(10) $\quad K\left(\lambda_{\text {quality }}, \lambda_{\text {surface_area }}\right)=\frac{M^{d i}}{M^{d d}} \times \frac{1}{e^{\lambda_{\text {quality }} \times M^{d i} \times a_{r e c}-1}} \times \frac{S_{\text {baseline }}}{\lambda_{\text {surface_area }}}$

2.3.1. Parameterization of surface area losses

The habitat surface area scenarios were based on estimation of surface area losses since 1870, derived from bathymetry data in three coastal sectors of the French EEC coastline in 1870 (Bay of Veys, Seine Estuary, Somme and Canche) available on the EMODnet website. The maps from 1870 were compared with the 2020 bathymetry map (Appendix D). The loss of habitats above a bathymetry of 5 m , including the intertidal area, was estimated in each sector. This limit was chosen because it integrates almost all surface area loss in CE nursery areas (Rochette et al., 2010; Stamp et al., 2022). The proportion of habitat loss $\left(S_{\text {loss }}\right)$ was estimated as the surface areas lost in each French sector between 1870 and 2020 for the total habitats above 5 m of the EEC French coast: $S_{\text {loss }}=26.9 \%$ (Appendix D).

In the scenarios, $S_{\text {loss }}$ was considered a proxy of the surface area loss at the EEC scale. Indeed, (i) these sectors represent major nursery areas for the four studied species (Riou et al., 2001; Carpentier et al., 2009); (ii) to the best of our knowledge, no similar data were available for the English coast. However, English intertidal habitats have lost surface area during the same period with similar levels of loss (Stamp et al., 2022). Thus, a global surface area restoration multiplier ($\lambda_{\text {surface_arealglobal }}$) was calculated as (Equation 11):
(11) $\quad \lambda_{\text {surface_area|global }}=\frac{1}{1-S_{\text {loss }}}$

2.3.2. Species-specific bathymetric distribution of juveniles

The juveniles of the four studied species have different bathymetric distributions (Riou et al., 2001; Carpentier et al., 2009; Ellis et al., 2012) and hence different concentrations in shallow areas ($<5 \mathrm{~m}$).

These different concentrations determine the proportion of juveniles impacted by surface area loss in these shallow areas. The species-specific proportion of juveniles present in habitats above 5 m $\left(\right.$ Prop $\left._{\text {species }}\right)$ was estimated from both bathymetric and nursery maps $($ Appendix E; Prop species $=$ 49.7, 16.7, 4.1 and 80.2 for sole, plaice, whiting and seabass, respectively).

The nursery surface area loss factor was only applied to the proportion of juveniles present in this shallow area. Consequently, a species-specific surface area restoration factor ($\lambda_{\text {surface_area|species }}$) was calculated to simulate the restoration of the nursery area extent to the 1870 level (Equation 12; Table 2):
(12) $\quad \lambda_{\text {surface_area|species }}=\frac{1}{1+\left(\text { Prop }_{\text {species }} \times \lambda_{\text {surface_area|global }}\right)-\text { Prop }}$ species

2.3.3. Parameterization of quality effects

We relied on Courrat et al. (2009), who quantified the impact of the chemical quality of French estuaries on the density of marine juvenile fish, to estimate the ecological status of estuarine waters for the European water framework directive (Delpech et al., 2010). Courrat et al. (2009) found that estuaries with a medium ecological status had densities of juveniles 20% lower than estuaries of good quality. We assumed that this loss of density directly reflected a loss in carrying capacity per unit of surface area $\left(K^{*}\right)$ due to degradation of habitat quality only (without loss of surface area). We denote $K_{\text {scenario }}^{*}$ as the new carrying capacity under the habitat restoration scenario.

Based on Equation (10) (but see also details in Appendix F), we back-calculated the habitat quality multiplier $\lambda_{\text {quality }}$ to be applied to $M^{d i}$ and $M^{d d}$ that corresponds to the change from the baseline carrying capacity K^{*} to $K_{\text {scenario }}^{*}($ Equation 13):
(13) $\lambda_{\text {quality }}=\frac{\log \left(\frac{\frac{M^{d i}}{M^{d d}}}{K_{\text {scenario }}}+1\right)}{M^{d i}}$

The quality scenarios have been constructed by considering a homogeneous quality status of the nursery areas for all the nursery sectors (i.e., a single parameter $\lambda_{\text {quality }}$ for the whole EEC). Then, an additional assumption of the ecological status of CE areas in the EEC was made: on average, all estuaries were considered of average quality, and our scenarios simulated the restoration of these estuaries to a good ecological status (Courrat et al., 2009; Delpech et al., 2010).

The sensitivity of juveniles to changes in habitat quality likely depends upon their concentration in shallow habitats ($<5 \mathrm{~m}$), which varies greatly among species (Table 2; parameter Prop). Logically, the higher the concentration of juveniles in shallow areas, the higher their sensitivity to changes in habitat quality. To assess the sensitivity of the response to habitat quality to the concentration in shallow areas, we tested two different scenarios for habitat quality restoration.

- The first scenario (quality all) considers the restoration applied to all juveniles. This restoration scenario was based on a new carrying capacity ($K_{\text {scenario all }}^{*}$) calculated to simulate a restoration of the 20% loss (Equation 14):
(14) $\quad K_{\text {scenario all }}^{*}=K^{*} \times 1.25$
- The second scenario (quality band) considers the restoration applied only to the proportion of juveniles located above the 5 m bathymetry (Prop). This assumption was made to differentiate juveniles present in very shallow coastal areas, sensitive to high levels of contamination, from those located in deeper waters, considered not impacted ($K_{\text {scenario band }}^{*}$; Equation 15)

$$
\begin{equation*}
K_{\text {scenario band }}^{*}=\left(K^{*} \times \operatorname{Prop} \times 1.25\right)+\left(K^{*} \times(1-\text { Prop })\right) \tag{15}
\end{equation*}
$$

2.3.4. Summary of scenarios

The estimates of surface area losses and quality effects (Table 2) were used to simulate four speciesspecific scenarios: (i) surface area restoration, (ii) quality restoration applied to all juveniles (quality all), (iii) quality restoration applied to the most coastal juveniles (quality band) and finally (iv) a scenario that combines surface area and "quality band" restoration.

Table 2. Percentage of juveniles present in habitats above 5 m and associated restoration factors.

	Sole	Plaice	Whiting	Seabass
Percentage of juveniles in shallow nurseries $($ Prop species $)$	49.71	16.72	4.10	80.23
Surface area restoration factor $\left(\lambda_{\text {surface_arealspecies })}\right.$	0.8446	0.9417	0.9850	0.7711
Quality restoration factor Quality all $\left(\lambda_{\text {quality }}\right)$	0.9453	0.9330	0.8574	0.9367
Quality restoration factor Quality band $\left(\lambda_{\text {quality }}\right)$	0.9712	0.9877	0.9932	0.9481

In the first step, the results will be illustrated only with the second quality scenario (impact on inshore juveniles, quality band). Then, a sensitivity analysis will compare the two quality scenarios.

3. Results

A detailed interpretation of both the calibration and results of the habitat scenarios is presented for seabass before interspecific comparisons.

3.1. Seabass case study

The results are expressed as a percentage of seabass SSB or catch reallocated to fishery unit 7.d (Figure 1; Appendix C) and not in relation to the actual management unit (ICES, 2021b).

Calibration of the carrying capacity to stock assessment outputs

K is estimated at 1.1×10^{7} juveniles. The results highlight discrepancies between model predictions and catches and SSB reported by ICES (Appendix G). However, the average SSB values estimated by ICES and the average SSB values predicted by our model are quite similar (5.8×10^{6} and $5.6 \times 10^{6} \mathrm{~kg}$, respectively). The same conclusion holds for catches (average ICES values at
$1.4 \times 10^{6} \mathrm{~kg}$ and model predictions at 1.2×10^{6}, Appendix H). Model behaviour at equilibrium is realistic: an FMSY of 0.15 without habitat restoration scenario (Figure 3), while the FMSY from ICES (2021b) was 0.17 , and a $\frac{S S B_{M S Y}}{S S B_{0}}$ of 0.28 .

Figure 3. Production curves according to habitat scenarios as function of SSB (A) or fishing mortality (B) for seabass in ICES division 7.d. Quality and combined effect based on the quality band hypothesis.

Equilibrium production curves under habitat restoration scenarios

Restoring the surface area of juvenile habitat only impacts K (Equation 10) and hence the scale of the productivity curve, with increased catches and increased levels of biomass at MSY (Figure 3A), while Fmsy remains unchanged (Figure 3B). In contrast, restoring habitat quality (quality band scenario) affects both the K and h parameters (Equations 9 and 10), hence increasing catches, SSBMSY and $\mathrm{F}_{\mathrm{MSY}}$ (Figure 3B).

3.2. Comparison between species

Population model fit

For all four species, as shown for seabass, the calibration of the model led to predictions of catches and SSB that did not match perfectly with annual ICES data (Appendix G). However, the average SSB and catches estimated by ICES and predicted by our model were similar. Overall, the model outputs at equilibrium, $\mathrm{F}_{M S Y}$ and $\frac{S S B_{M S Y}}{S S B_{0}}$ ratio fit within the expected range (0.2 to 0.34 ; Horbowy and Hommik, 2022) (Appendix H).

Maximum sustainable yield indicators under habitat restoration scenarios

The impacts of habitat restoration scenarios were compared across species by estimating relative gains in SSB and catches at MSY equilibrium states (Figure 4). The surface area scenario has the largest impact on SSB, with gains ranging from 1.5% for whiting to 29.6% for seabass (Figure 4A). This interspecific pattern also concerned the gains linked to the restoration of quality, with an increase in SSB ranging from 0.4% for plaice to 17.1% for seabass. When combining the surface area and quality restoration scenarios, the effects are multiplicative (i.e., greater than the sum of both effects), and two groups of species emerge: whiting and plaice, for which the combined restoration has the lowest effect, with gains of 2.9% and 6.6%, respectively, whereas sole and seabass had gains of 27.4% and 51.8% in SSB, respectively. The catch increase at MSY almost followed that of SSB (Figure 4B). In volume, the restoration of both habitat surface area and quality represents an increase in catches of 327, 957,1990 and 810 tons for whiting, plaice, sole and seabass, respectively.

Figure 4. Effects of habitat scenarios on SSB (A) and Catch (B) gain at MSY by species. The quality and combined scenarios are based on the quality band hypothesis.

Sensitivity to the quality scenario hypothesis

Large differences emerged between the two scenarios for quality restoration (quality band = impacts only the juveniles located in shallow ($<5 \mathrm{~m}$) habitat; quality all = impacts all juveniles). The restoration of quality for all juveniles in the EEC leads to a greater homogeneity in the gains than when the restoration is carried out according to the bathymetric distribution of juveniles (Figure 5). Under the quality all scenario, interspecific patterns depended on demographic parameters only, especially steepness and fecundity, which differed between species. The results show that the sensitivity to quality restoration is higher for species with lower steepness (whiting; Figure 5). Moreover, all species have greater catch gains in this "global" restoration scenario due to a larger
quantity of juveniles impacted by the restoration (an increase of $32 \%, 26 \%, 15 \%$ and 7%, compared to the "partial" scenario, for whiting, plaice, sole and seabass, respectively; Figure 5).

Figure 5. Difference in catch gains per species according to the assumption made for quality scenarios. Quality band is the restoration scenario applied only to the juveniles in shallow habitats ($<5 \mathrm{~m}$) and quality all is the restoration scenario applied to all the juveniles.

4. Discussion

4.1 Main findings

We assessed the consequences of CE nursery restoration through a generic age- and stage-structured model with a stock-recruitment relationship that directly depends upon the quality and surface area of the nursery habitat (Champagnat et al., in rev). The model was applied to four nursery-dependent species, i.e., sole, plaice, whiting and seabass, characterized by different life history traits and various degrees of concentration in EC nursery habitats in the EEC. For the four species, models were parameterized from the literature and stock assessment outputs (ICES, 2021a,b), except for the
carrying capacity, which was calibrated to stock assessment outputs to achieve realistic population sizes.

The model was used to simulate equilibrium catch curves obtained under different scenarios of nursery quality and surface area restoration for the four species. Surface area restoration increased the catches and biomass at MSY. The restoration of quality led to an increase in catches and biomass at MSY but also in fishing mortality at MSY. Overall, the species with higher levels of concentration in shallow nursery areas were the most sensitive to the habitat restoration scenarios. Thus, seabass was the species for which habitat restoration had the greatest positive impact, while whiting was the least affected species. However, the response also depended upon species-specific life history traits: lower steepness led to a stronger response to habitat quality scenarios.

4.2 Limitations in model assumptions and scenarios

Generic model to simulate population dynamics without stochastic recruitment variability

In this generic model, only one parameter, the carrying capacity (K), needed to be calibrated to stock assessment outputs. This makes it easy to apply for several case studies, i.e., four stocks herein, as needed parameters and data were available from the literature and stock assessments. Indeed, the model used requires age-based stock assessment outputs to be implemented, and this is the main limitation to its use. However, the calibration of K implies two ecological assumptions, the first being that the carrying capacity of the nursery habitat limits recruitment (Beverton and Iles, 1992; Le Pape and Bonhommeau, 2015). The second is that this carrying capacity does not vary over time, which is a strong assumption. Indeed, fluctuations were previously evidenced (Luo et al., 2001; Le Pape et al., 2003), for instance, as a response to the supply of nutrients and organic matter that support food provisioning (Kostecki et al., 2010; Day et al., 2021). Considering a deterministic population dynamic is another limitation of the model. Indeed, environmental variability dramatically impacts population dynamics, especially regarding the recruitment process (Pfister and Stevens, 2003). This has led to poor predictions of annual variations
in SSB and catches. However, the objective was not to reproduce these annual fluctuations but to simulate realistic average population dynamics. The calibration led to an average estimate of SSB and catches close to the average estimate of the ICES over the same period for the four studied species. In addition, population indicators (FMSY and $\frac{S S B_{M S Y}}{S S B_{0}}$ ratio) confirmed the realism of the dynamics.

Finally, the model structure does not take into account the ecosystem relationships between different life stages within a species or among species (Day et al., 2021). Such interactions may also impact the carrying capacity, thus SSB and catches.

Model without spatial population structure

The model considered juvenile habitat as a single homogeneous block, whereas CE areas are composed of a multitude of habitats with high heterogeneity that can vary over time ("shifting habitat mosaic", Peterson, 2003; Wimberly, 2006; Nagelkerken et al., 2015). Considering the nursery areas as a single block is limiting, especially for the construction of quality restoration scenarios. However, considering spatial heterogeneity would require parameterizing specific Beverton-Holt relationships for each nursery area (Rochette et al., 2013), which is inaccessible. Moreover, considering different nursery sectors in the EEC would greatly complicate our model and the elaboration of restoration scenarios by raising questions about steepness estimation for the different nursery sectors (White, 2010) and population connectivity (Archambault et al., 2016).

Diffusion of the outcomes of local nursery restoration at a metapopulation scale highly depends on the level of connectivity at different stages of the life cycle (Archambault et al., 2018; Randon et al., 2021; Ma et al., 2022). The results therefore provide global estimates at the stock scale, with caution regarding the interpretations of both internal and external spatial structures, especially when based on estimates at MSY (Ying et al., 2011).

Realistic but simplified scenarios

The estimation of surface area losses was based on historical data available on three CE nursery areas on the French side of the EEC in 1870. Accounting for surface area losses in these three CE areas was an innovative step forward, as previous studies in the EEC have focused on the single Seine Estuary (Rochette et al., 2010, Archambault et al., 2018; Champagnat et al., 2021). However, no similar data were available for the English coasts, where nurseries have experienced surface area losses over the same period (Stamp et al., 2022). This proxy of French surface area loss was considered the best available knowledge for the EEC.

To fit with available information on CE surface area loss, the concentration of juveniles in the shallow nursery habitat was considered dependent on depth only. Depth is a main driver of juvenile fish distribution for the studied species in the EEC (Riou et al., 2001; Carpentier et al., 2009; Ellis et al., 2012), but defining an ecological niche by a single variable is a very simplifying assumption (Grinnell, 1917; Hutchinson, 1957). CE nursery areas can be defined by other parameters, e.g., salinity and hydrodynamics (Kennedy and Fitzmaurice, 1972; Kelley, 1988; Le Pape et al., 2003), sediment structure (Riou et al., 2001; Rochette et al., 2010), and coastal shelter (Trimoreau et al., 2013). The estimation of species-specific surface area losses was therefore oversimplified. Moreover, the proportion of juveniles above 5 m was calculated on maps representing present habitats. When shallow habitats were of larger surface extent, as in 1870, the proportion of juveniles present in this shallow fringe was likely greater, which could have led to underestimation of species-specific consequences of surface area loss.

The scenarios of quality degradation were based on a global estimate of juvenile density drop in nursery areas (Courrat et al., 2009). This proxy was used due to the lack of knowledge on the speciesspecific impact of nursery habitat quality degradation on the demographic parameters of juvenile fish. Indeed, despite the well-documented impacts of local anthropogenic disturbances on juveniles of CE nursery-dependent species (Brown et al., 2018), the consequences of these impacts on demographic
rates are still poorly understood and need to be quantified to infer impacts at the population scale (Vasconcelos et al., 2014; Lipcius et al., 2019; Schneeweiss et al., 2022).

Given this lack of knowledge, two strong hypotheses were put forward. First, the parameterization of the quality scenario assumed a common multiplier on density-dependent and density-independent mortality rates. This is a strong assumption, as different processes are associated with these mortality rates (Jonhson, 2007; Juanes, 2007). Density-dependent mortality refers to interactions among juveniles of the same cohort, mostly competition for food or space (Gibson, 1994; Craig et al., 2007; Le Pape and Bonhommeau, 2015). Density-independent mortality involves other mortality processes linked to a large panel of stressors (e.g., pollutants, Rose et al., 2003; oxygen, Gibson, 1994) and/or predation (Gibson, 1994; Hilborn and Walters, 2021). Second, the simulation results were very sensitive to the two assumptions made on which fraction of the nursery habitat is affected by quality restoration/degradation (i.e., the whole nursery area or the $<5 \mathrm{~m}$ band only). The lack of knowledge on the gradient of land-sea impacts on marine juvenile fish in CE nurseries prevents selecting between scenarios or developing more accurate scenarios.

Because survival rates are very low at young stages, the sensitivity of population dynamics to minor changes in the mortality rate is high (Levin and Stunz, 2005; Hilborn and Walters, 2021) and would require attention in future studies to design more accurate scenarios.

4.3 Effects of nursery restoration and comparison between species

To the best of our knowledge, our study is the first to assess the effect of restoration of CE nursery areas for a group of species at the scale of a management unit.

Surface area restoration, which leads to an increase in the carrying capacity of the nursery, enhances the catches and biomass at MSY. The restoration of quality increases both the carrying capacity and the steepness, thus increasing catches, biomass and fishing mortality at MSY (Champagnat et al., in rev.). For a combined restoration, the effects are multiplicative, i.e., higher than the simple sum of the marginal restoration effects.

The difference in gains between species due to surface area restoration is mainly due to a different degree of concentration of juveniles in the shallow nursery habitat. The differences in quality restoration are also highly sensitive to assumptions regarding the proportion of juveniles impacted by restoration. However, the impacts of quality restoration are also related to species-specific demographic parameters (Champagnat et al., in rev.). Thus, an interesting result of this study is that life history traits, especially steepness, not only drive the sensitivity of marine fish to fishing pressure (Froese et al., 2016; Miller and Brooks, 2021; Horbowy and Hommik, 2022) but also their response to essential fish habitat degradation.

Previous studies focusing on sole examined the effect of surface area and/or habitat quality scenarios in the EEC with more complex and species-specific life cycle models. Archambault et al. (2018) and Champagnat et al. (2021) demonstrated the effects of quality degradation and surface area loss in CE nursery areas in the EEC, considering the restoration of the surface area and the quality of the Seine estuary only. The present model provided outputs consistent with these species-specific approaches, but the main focus was its generic formulation, allowing us to consider four species. This generic steepness-based approach requires limited tuning (i.e., only of the carrying capacity parameter) to parametrize the stock-specific population dynamics as long as an age-structured stock assessment is available. Such a tool to infer the consequences of habitat degradation at the population and fisheries scale is highly needed (Rabalais, 2015; Lipcius et al., 2019; Schneeweiss et al., 2022), and this model could easily be applied for other study areas and fish species in the future.

However, the accuracy of the scenarios relies on the existing knowledge on both the fraction of juveniles concentrated in impacted CE nurseries and the level of impact (surface area loss and drop in demographic rates or density in response to lower quality). The sensitivity to these uncertain levels of change (Levin and Stunz, 2005; Hilborn and Walters, 2021; Zimmerman et al., 2021) could be high. However, both the use of simulation at equilibrium states and the lack of data allowing model predictions to be directly compared to habitat scenarios related to field records on a long-term (i.e., since 1870 for surface area loss) temporal basis prevent further validation.

4.4 Management implications

The present approach shows that the gains from fisheries management could be greatly increased if nursery areas were restored in the EEC. This restoration could lead to annual catch gains of 2.9%, $11.6 \%, 35.3 \%$ and 65.2% for whiting, plaice, sole and seabass, respectively, representing gains of 327, 957, 1990 and 810 tons, respectively. In addition to catch gains, the spawning stock biomass would also be enhanced, which could have beneficial consequences for the whole ecosystem (Froese et al., 2008; Froese et al., 2016). However, the lack of time series to compare model predictions and habitat status prevents us from validating the simulation outputs. Nevertheless, ongoing management measures to restore the surface area (in the Seine estuary, Ducrotoy and Dauvin, 2008) and quality of CE habitats (decreases in pollutant levels; Meybeck et al., 2007; Tappin and Millward, 2015) in the EEC should therefore be continued to enhance fish and fisheries production (Katara et al., 2021). This study supports the need to consider essential fish habitat in the management of fishing resources (Brown et al., 2018; Kraufvelin et al., 2018; Brown et al., 2019). The high level of surface area loss and anthropogenic disturbances to the remaining CE ecosystems (Halpern et al., 2008) impact their nursery function (Jokinen et al., 2015) worldwide (Barbier et al., 2011). Substantial recovery of the function of habitats essential to marine life could be achieved (Duarte et al., 2020). Restoring coastal nurseries (Buelow et al., 2022; Troast et al., 2022) may be even more beneficial than regulating fishing pressure (Levin and Stunz, 2005; van de Wolfshaar et al., 2011).

Authors contributions

Gernez Maël: Conceptualization, Methodology, Software, Investigation, Writing - Original Draft, Editing.

Champagnat Juliette: Conceptualization, Methodology, Software, Investigation, Writing - Original Draft.

Rivot Etienne: Conceptualization, Methodology, Writing - Original Draft.

Le Pape Olivier : Conceptualization, Methodology, Writing - Original Draft, Funding acquisition.

Declaration of Competing Interest

None.

Acknowledgements

The authors would like to thanks Youen Vermard(UMR DECOD, IFREMER) for his very useful expertise and inputs regarding ICES stock assessment (data an outputs). The authors also thank the editor and the anonymous reviewer for their constructive reviews that improved the manuscript

Funding

This work was funded by the projects Hapomax (Office Français de la Biovidersité, France) and Seawise (This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101000318).

References

Airoldi, L. and Beck, M.W., 2007. Loss, Status and Trends for Coastal Marine Habitats of Europe. Oceanography and Marine Biology: An Annual Review, 45, 345-405.
Amara, R., Meziane, T., Gilliers, C., Hermel, G., Laffargue, P., 2007. Growth and condition indices in juvenile sole Solea solea measured to assess the quality of essential fish habitat. Mar. Ecol. Prog. Ser. 351, 201-208. https://doi.org/10.3354/meps07154
Archambault, B., Le Pape, O., Baulier, L., Vermard, Y., Véron, M., Rivot, E., 2016. Adult-mediated connectivity affects inferences on population dynamics and stock assessment of nurserydependent fish populations. Fisheries Research 181, 198-213. https://doi.org/10.1016/j.fishres.2016.03.023
Archambault, B., Rivot, E., Savina, M., Le Pape, O., 2018. Using a spatially structured life cycle model to assess the influence of multiple stressors on an exploited coastal-nursery-dependent population. Estuarine, Coastal and Shelf Science 201, 95-104. https://doi.org/10.1016/j.ecss.2015.12.009
Barbier, E.B., Hacker, S.D., Kennedy, C., Koch, E.W., Stier, A.C., Silliman, B.R., 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81, 169-193. https://doi.org/10.1890/10-1510.1
Barjhoux, I., Fechner, L.C., Lebrun, J.D., Anzil, A., Ayrault, S., Budzinski, H., Cachot, J., Charron, L., Chaumot, A., Clérandeau, C., Dedourge-Geffard, O., Faburé, J., François, A., Geffard, O., George, I., Labadie, P., Lévi, Y., Munoz, G., Noury, P., Oziol, L., Quéau, H., Servais, P., Uher, E., Urien, N., Geffard, A., 2018. Application of a multidisciplinary and integrative weight-of-evidence approach to a 1 -year monitoring survey of the Seine River. Environ Sci Pollut Res 25, 23404-23429. https://doi.org/10.1007/s11356-016-6993-6
Beck, M.W., Heck, K.L., Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., Halpern, B., Hays, C.G., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.F., Weinstein, M.P., 2001. The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates. BioScience 51, 633. https://doi.org/10.1641/00063568(2001)051[0633:TICAMO]2.0.CO;2
Beverton, R.J.H. and Holt, S.J., 1957. The Dynamics of Exploited Fish Populations. Chapman and Hall, London.
Beverton, R.J.H., Iles, T.C., 1992. Mortality rates of 0 -group plaice (Platessa platessa L.), dab (Limanda limanda L.) and turbot (Scophthalmus maximus L.) in European waters. Netherlands Journal of Sea Research 29, 61-79. https://doi.org/10.1016/0077-7579(92)90008-3
Boyd, P.W., Collins, S., Dupont, S., Fabricius, K., Gattuso, J.-P., Havenhand, J., Hutchins, D.A., Riebesell, U., Rintoul, M.S., Vichi, M., Biswas, H., Ciotti, A., Gao, K., Gehlen, M., Hurd, C.L., Kurihara, H., McGraw, C.M., Navarro, J.M., Nilsson, G.E., Passow, U., Pörtner, H.-O., 2018. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-A review. Glob Change Biol 24, 2239-2261. https://doi.org/10.1111/gcb. 14102
Brown, C.J., Broadley, A., Adame, M.F., Branch, T.A., Turschwell, M.P., Connolly, R.M., 2019. The assessment of fishery status depends on fish habitats. Fish Fish 20, 1-14. https://doi.org/10.1111/faf. 12318
Brown, E.J., Vasconcelos, R.P., Wennhage, H., Bergström, U., Støttrup, J.G., van de Wolfshaar, K., Millisenda, G., Colloca, F., Le Pape, O., 2018. Conflicts in the coastal zone: human impacts on commercially important fish species utilizing coastal habitat. ICES Journal of Marine Science 75, 1203-1213. https://doi.org/10.1093/icesjms/fsx 237
Buelow, C.A., Connolly, R.M., Turschwell, M.P., Adame, M.F., Ahmadia, G.N., Andradi-Brown, D.A., Bunting, P., Canty, S.W.J., Dunic, J.C., Friess, D.A., Lee, S.Y., Lovelock, C.E., McClure, E.C., Pearson, R.M., Sievers, M., Sousa, A.I., Worthington, T.A., Brown, C.J., 2022. Ambitious global targets for mangrove and seagrass recovery. Current Biology 32,

1641-1649.e3. https://doi.org/10.1016/j.cub.2022.02.013
Camp, E.V., Lorenzen, K., Taylor, M.D., 2020. Impacts of habitat repair on a spatially complex fishery. Estuarine, Coastal and Shelf Science 244, 106102. https://doi.org/10.1016/j.ecss.2019.02.007
Carpentier, A., Martin, C.S., Vaz, S., 2009. Channel Habitat Atlas for marine Resource Management, final report / Atlas des habitats des ressources marines de la Manche orientale, rapport final (CHARM phase II). INTERREG 3a Programme, IFREMER, Boulogne-sur-mer, France. 626 pp.
Champagnat, J., Lecomte, J., Rivot, E., Douchet, L., Martin, N., Grasso, F., Mounier, F., Labadie, P., Loizeau, V., Bacq, N., Le Pape, O., 2021. Multidisciplinary assessment of nearshore nursery habitat restoration for an exploited population of marine fish. Mar. Ecol. Prog. Ser. 680, 97109. https://doi.org/10.3354/meps 13881

Champagnat, J., Le Pape, O., Rivot, E., in revision. Response of marine fish populations productivity to juvenile habitat modifications depend upon life histories. Fish and Fisheries.
Courrat, A., Lobry, J., Nicolas, D., Laffargue, P., Amara, R., Lepage, M., Girardin, M., Le Pape, O., 2009. Anthropogenic disturbance on nursery function of estuarine areas for marine species. Estuarine, Coastal and Shelf Science 81, 179-190. https://doi.org/10.1016/j.ecss.2008.10.017
Craig, J., Rice, J., Crowder, L., Nadeau, D., 2007. Density-dependent growth and mortality in an estuary-dependent fish: an experimental approach with juvenile spot Leiostomus xanthurus. Mar. Ecol. Prog. Ser. 343, 251-262. https://doi.org/10.3354/meps06864
Daily, G.C., Ehrlich, P.R., 1992. Population, Sustainability, and Earth's Carrying Capacity. BioScience 42, 761-771. https://doi.org/10.2307/1311995
Daouk, T., Larcher, T., Roupsard, F., Lyphout, L., Rigaud, C., Ledevin, M., Loizeau, V., Cousin, X., 2011. Long-term food-exposure of zebrafish to PCB mixtures mimicking some environmental situations induces ovary pathology and impairs reproduction ability. Aquatic Toxicology 105, 270-278. https://doi.org/10.1016/j.aquatox.2011.06.021
Davoodi, F., Claireaux, G., 2007. Effects of exposure to petroleum hydrocarbons upon the metabolism of the common sole Solea solea. Marine Pollution Bulletin 54, 928-934. https://doi.org/10.1016/j.marpolbul.2007.03.004
Day, L., Brind’Amour, A., Cresson, P., Chouquet, B., Le Bris, H., 2021. Contribution of Estuarine and Coastal Habitats Within Nursery to the Diets of Juvenile Fish in Spring and Autumn. Estuaries and Coasts 44, 1100-1117. https://doi.org/10.1007/s12237-020-00823-z
Delpech, C., Courrat, A., Pasquaud, S., Lobry, J., Le Pape, O., Nicolas, D., Boët, P., Girardin, M., Lepage, M., 2010. Development of a fish-based index to assess the ecological quality of transitional waters: The case of French estuaries. Marine Pollution Bulletin 60, 908-918. https://doi.org/10.1016/j.marpolbul.2010.01.001
Duarte, C.M., Agusti, S., Barbier, E., Britten, G.L., Castilla, J.C., Gattuso, J.-P., Fulweiler, R.W., Hughes, T.P., Knowlton, N., Lovelock, C.E., Lotze, H.K., Predragovic, M., Poloczanska, E., Roberts, C., Worm, B., 2020. Rebuilding marine life. Nature 580, 39-51. https://doi.org/10.1038/s41586-020-2146-7
Ducrotoy, J.-P., Dauvin, J.-C., 2008. Estuarine conservation and restoration: The Somme and the Seine case studies (English Channel, France). Marine Pollution Bulletin 57, 208-218. https://doi.org/10.1016/j.marpolbul.2008.04.031
Ellis, J.R., Milligan, S.P., Readdy, L., Taylor, N., Brown, M.J., 2012. Spawning and nursery grounds of selected fish species in UK waters. Sci. Ser. Tech. Rep., Cefas, Lowestoft, UK 2012; 147: 56 pp .
EMODnet Bathymetry Consortium, 2020. EMODnet Digital Bathymetry (DTM 2020). Last access: 01/2023. https://sextant.ifremer.fr/record/bb6a87dd-e579-4036-abe1-e649cea9881a/ https://doi.org/10.12770/BB6A87DD-E579-4036-ABE1-E649CEA9881A
Foekema, E.M., Deerenberg, C.M., Murk, A.J., 2008. Prolonged ELS test with the marine flatfish sole (Solea solea) shows delayed toxic effects of previous exposure to PCB 126. Aquatic Toxicology 90, 197-203. https://doi.org/10.1016/j.aquatox.2008.08.015

Fonds, M., Casal, E., Schweizer, D., Boon, J.P., Van der Veer, H.W., 1995. Effects of PCB contamination on the reproduction of the DAB Limanda limanda L. under laboratory conditions. Netherlands Journal of Sea Research 34, 71-79. https://doi.org/10.1016/0077-7579(95)90015-2
Froese, R., Stern-Pirlot, A., Winker, H., Gascuel, D., 2008. Size matters: How single-species management can contribute to ecosystem-based fisheries management. Fisheries Research 92, 231-241. https://doi.org/10.1016/j.fishres.2008.01.005
Froese, R., Winker, H., Gascuel, D., Sumaila, U.R., Pauly, D., 2016. Minimizing the impact of fishing. Fish Fish 17, 785-802. https://doi.org/10.1111/faf. 12146
Froese, R., Pauly, D., 2022. FishBase. World Wide Web Electron. Publ.
Gibson, R.N., 1994. Impact of habitat quality and quantity on the recruitment of juvenile flatfishes. Netherlands Journal of Sea Research 32, 191-206. https://doi.org/10.1016/0077-7579(94)90040-X
Gilliers, C., Le Pape, O., Désaunay, Y., Morin, J., Guérault, D., Amara, R., 2006. Are growth and density quantitative indicators of essential fish habitat quality? An application to the common sole Solea solea nursery grounds. Estuarine, Coastal and Shelf Science 69, 96-106. https://doi.org/10.1016/j.ecss.2006.02.006
Grinnell, J., 1917. The niche-relationships of the California Thrasher. The Auk, 34(4), 427-433.
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R., 2008. A Global Map of Human Impact on Marine Ecosystems. Science 319, 948-952. https://doi.org/10.1126/science. 1149345
Hamilton, P.B., Cowx, I.G., Oleksiak, M.F., Griffiths, A.M., Grahn, M., Stevens, J.R., Carvalho, G.R., Nicol, E., Tyler, C.R., 2016. Population-level consequences for wild fish exposed to sublethal concentrations of chemicals - a critical review. Fish Fish 17, 545-566. https://doi.org/10.1111/faf. 12125
Hayes, D., Jones, M., Lester, N., Chu, C., Doka, S., Netto, J., Stockwell, J., Thompson, B., Minns, C.K., Shuter, B., Collins, N., 2009. Linking fish population dynamics to habitat conditions: insights from the application of a process-oriented approach to several Great Lakes species. Rev Fish Biol Fisheries 19, 295-312. https://doi.org/10.1007/s11160-009-9103-8
Hilborn, R., 2003. The state of the art in stock assessment: where we are and where we are going. Sci. Mar. 67, 15-20. https://doi.org/10.3989/scimar.2003.67s115
Hilborn, R., Walters, C.J., 2021. Steep recruitment relationships result from modest changes in egg to recruit mortality rates. Fisheries Research 237, 105872. https://doi.org/10.1016/j.fishres.2020.105872
Horbowy, J., Hommik, K., 2022. Analysis of F msy in light of life-history traits—Effects on its proxies and length - based indicators. Fish and Fisheries 23, 663-679. https://doi.org/10.1111/faf. 12640
Horri, K., Alfonso, S., Cousin, X., Munschy, C., Loizeau, V., Aroua, S., Bégout, M.-L., Ernande, B., 2018. Fish life-history traits are affected after chronic dietary exposure to an environmentally realistic marine mixture of PCBs and PBDEs. Science of The Total Environment 610-611, 531-545. https://doi.org/10.1016/j.scitotenv.2017.08.083
Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22 : 415-457.
ICES, 2021a. Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK), Full report. https://doi.org/10.17895/ICES.PUB. 8211
ICES, 2021b. Working Group for the Celtic Seas Ecoregion (WGCSE). https://doi.org/10.17895/ICES.PUB. 8139
Johnson, D.W., 2007. Habitat complexity modifies post-settlement mortality and recruitment dynamics of a marine fish. Ecology 88, 1716-1725. https://doi.org/10.1890/06-0591.1

Johnson, L.L., Landahl, J.T., Kubin, L.A., Horness, B.H., Myers, M.S., Collier, T.K., Stein, J.E., 1998. Assessing the effects of anthropogenic stressors on Puget Sound flatfish populations. J Sea Res. 39: 125-137.
Jokinen, H., Wennhage, H., Ollus, V., Aro, E., Norkko, A., 2015. Juvenile flatfish in the northern Baltic Sea - long-term decline and potential links to habitat characteristics. Journal of Sea Research 107, 67-75. https://doi.org/10.1016/j.seares.2015.06.002
Juanes, F., 2007. Role of habitat in mediating mortality during the post-settlement transition phase of temperate marine fishes. J Fish Biology 70, 661-677. https://doi.org/10.1111/j.10958649.2007.01394.x

Katara, I., Peden, W.J., Bannister, H., Ribeiro, J., Fronkova, L., Scougal, C., Martinez, R., Downie, A.-L., Sweeting, C.J., 2021. Conservation hotspots for fish habitats: A case study from English and Welsh waters. Regional Studies in Marine Science 44, 101745. https://doi.org/10.1016/j.rsma.2021.101745
Kelley, D.F., 1988. The importance of estuaries for sea-bass, Dicentrarchus labrax (L.). J Fish Biology 33, 25-33. https://doi.org/10.1111/j.1095-8649.1988.tb05555.x
Kennedy, M., Fitzmaurice, P., 1972. The Biology of the Bass, Dicentrarchus Labrax, in Irish Waters. J. Mar. Biol. Ass. 52, 557-597. https://doi.org/10.1017/S0025315400021597

Kostecki, C., Le Loc'h, F., Roussel, J.-M., Desroy, N., Huteau, D., Riera, P., Le Bris, H., Le Pape, O., 2010. Dynamics of an estuarine nursery ground: the spatio-temporal relationship between the river flow and the food web of the juvenile common sole (Solea solea, L.) as revealed by stable isotopes analysis. Journal of Sea Research 64, 54-60. https://doi.org/10.1016/j.seares.2009.07.006
Kraufvelin, P., Pekcan-Hekim, Z., Bergström, U., Florin, A.-B., Lehikoinen, A., Mattila, J., Arula, T., Briekmane, L., Brown, E.J., Celmer, Z., Dainys, J., Jokinen, H., Kääriä, P., Kallasvuo, M., Lappalainen, A., Lozys, L., Möller, P., Orio, A., Rohtla, M., Saks, L., Snickars, M., Støttrup, J., Sundblad, G., Taal, I., Ustups, D., Verliin, A., Vetemaa, M., Winkler, H., Wozniczka, A., Olsson, J., 2018. Essential coastal habitats for fish in the Baltic Sea. Estuarine, Coastal and Shelf Science 204, 14-30. https://doi.org/10.1016/j.ecss.2018.02.014
Le Pape, O., Chauvet, F., Désaunay, Y., Guérault, D., 2003. Relationship between interannual variations of the river plume and the extent of nursery grounds for the common sole (Solea solea, L.) in Vilaine Bay. Effects on recruitment variability. Journal of Sea Research 50, 177185. https://doi.org/10.1016/S1385-1101(03)00061-3

Le Pape, O., Gilliers, C., Riou, P., Morin, J., Amara, R., Désaunay, Y., 2007. Convergent signs of degradation in both the capacity and the quality of an essential fish habitat: state of the Seine estuary (France) flatfish nurseries. Hydrobiologia 588, 225-229. https://doi.org/10.1007/s10750-007-0665-y
Le Pape, O., Bonhommeau, S., 2015. The food limitation hypothesis for juvenile marine fish. Fish Fish 16, 373-398. https://doi.org/10.1111/faf. 12063
Leakey, C.D.B., Attrill, M.J., Jennings, S., Fitzsimons, M.F., 2008. Stable isotopes in juvenile marine fishes and their invertebrate prey from the Thames Estuary, UK, and adjacent coastal regions. Estuarine, Coastal and Shelf Science 77, 513-522. https://doi.org/10.1016/j.ecss.2007.10.007
Levin, P.S., Stunz, G.W., 2005. Habitat triage for exploited fishes: Can we identify essential "Essential Fish Habitat?" Estuarine, Coastal and Shelf Science 64, 70-78. https://doi.org/10.1016/j.ecss.2005.02.007
Lipcius, R.N., Eggleston, D.B., Fodrie, F.J., van der Meer, J., Rose, K.A., Vasconcelos, R.P., van de Wolfshaar, K.E., 2019. Modeling Quantitative Value of Habitats for Marine and Estuarine Populations. Front. Mar. Sci. 6, 280. https://doi.org/10.3389/fmars.2019.00280
Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., Kidwell, S.M., Kirby, M.X., Peterson, C.H., Jackson, J.B.C., 2006. Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science 312, 1806-1809. https://doi.org/10.1126/science. 1128035
Luo, J., Hartman, K.J., Brandt, S.B., Cerco, C.F., Rippetoe, T.H., 2001. A Spatially-Explicit

Approach for Estimating Carrying Capacity: An Application for the Atlantic Menhaden (Brevoortia tyrannus) in Chesapeake Bay. Estuaries 24, 545. https://doi.org/10.2307/1353256
Ma, D., Rhodes, J.R., Maron, M., 2022. The consequences of coastal offsets for fisheries. Journal of Applied Ecology 59, 1157-1167. https://doi.org/10.1111/1365-2664.14129
Mace, P.M., Doonan, I.J., 1988. A generalised bioeconomic simulation model for fish population dynamics. (New Zealand Fishery Assessment Research Document No. 88/4). Fishery Research Center, MAFFish, POB 297, Wellington NZ.
Mangel, M., MacCall, A.D., Brodziak, J., Dick, E.J., Forrest, R.E., Pourzand, R., Ralston, S., 2013. A perspective on steepness, reference points, and stock assessment. Can. J. Fish. Aquat. Sci. 70, 930-940. https://doi.org/10.1139/cjfas-2012-0372
Meybeck, M., Lestel, L., Bonté, P., Moilleron, R., Colin, J.L., Rousselot, O., Hervé, D., de Pontevès, C., Grosbois, C., Thévenot, D.R., 2007. Historical perspective of heavy metals contamination $(\mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Hg}, \mathrm{Pb}, \mathrm{Zn})$ in the Seine River basin (France) following a DPSIR approach (1950-2005). Science of The Total Environment 375, 204-231. https://doi.org/10.1016/j.scitotenv.2006.12.017
Miller, J.M., Reed, J.P., Pietrafesa, L.J., 1984. Patterns, mechanisms and approaches to the study of migrations of estuarine dependent fish larvae and juveniles. In Mechanisms of migration in fishes (eds McCleave, J.D., Arnold, G.P., Dodson J.J., Neill, W.H.). Plenum 23 Press, New York. pp 209-225
Miller, T.J., Brooks, E.N., 2021. Steepness is a slippery slope. Fish Fish 22, 634-645. https://doi.org/10.1111/faf. 12534
Minello, T.J., 1999. Nekton densities in shallow estuarine habitats of Texas and Louisiana and the identification of essential fish habitat. In American Fisheries Society Symposium. Vol. 22, pp. 43-75.
Munyandorero, J., 2020. Inferring prior distributions of recruitment compensation metrics from lifehistory parameters and allometries. Can. J. Fish. Aquat. Sci. 77, 295-313. https://doi.org/10.1139/cjfas-2018-0463
Myers, R.A., Bridson, J., Barrowman, N.J., 1995. Summary of wordlwide spawner and recruitment data. St. Johns, Newfoundland: Department of Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre.
Myers, R.A., Mertz, G., 1998. Reducing uncertainty in the biological basis of fisheries management by meta-analysis of data from many populations: a synthesis. Fisheries Research 37, 51-60. https://doi.org/10.1016/S0165-7836(98)00126-X
Myers, R.A., Bowen, K.G., Barrowman, N.J., 1999. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 56, 2404-2419. https://doi.org/10.1139/f99-201
Nagelkerken, I., Sheaves, M., Baker, R., Connolly, R.M., 2015. The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish 16, 362-371. https://doi.org/10.1111/faf. 12057
Ono, K., Knutsen, H., Olsen, E.M., Ruus, A., Hjermann, D.Ø., Chr. Stenseth, N., 2019. Possible adverse impact of contaminants on Atlantic cod population dynamics in coastal ecosystems. Proc. R. Soc. B. 286, 20191167. https://doi.org/10.1098/rspb.2019.1167
Peterson, C.H., Summerson, H.C., Thomson, E., Lenihan, H.S., Grabowski, J., Manning, L., Micheli, F., Johnson, G., 2000. Synthesis of linkages between benthic and fish communities as key to protecting essential fish habitat. Bull Marine Sci 66: 759-774.
Peterson, M.S., 2003. A Conceptual View of Environment-Habitat-Production Linkages in Tidal River Estuaries. Reviews in Fisheries Science 11, 291-313. https://doi.org/10.1080/10641260390255844
Pfister, C.A., Stevens, F.R., 2003. Individual variation and environmental stochasticity: implications for matrix model predictions. Ecology 84, 496-510. https://doi.org/10.1890/00129658(2003)084[0496:IVAESI]2.0.CO;2
Punt, A.E., Dorn, M., 2014. Comparisons of meta-analytic methods for deriving a probability distribution for the steepness of the stock-recruitment relationship. Fisheries Research 149,

43-54. https://doi.org/10.1016/j.fishres.2013.09.015
Quinn, T.J., Deriso, R.B., 1999. Quantitative fish dynamics, Biological resource management series. Oxford University Press, New York.
Rabalais, N.N., 2015. Human impacts on fisheries across the land-sea interface. Proc. Natl. Acad. Sci. U.S.A. 112, 7892-7893. https://doi.org/10.1073/pnas. 1508766112
Randon, M., Réveillac, E., Le Pape, O., 2021. A holistic investigation of tracers at population and individual scales reveals population structure for the common sole of the Eastern English Channel. Estuarine, Coastal and Shelf Science 249, 107096. https://doi.org/10.1016/j.ecss.2020.107096
Rijnsdorp, A.D., Van Beek, F.A., Flatman, S., Millner, R.M., Riley, J.D., Giret, M., De Clerck, R., 1992. Recruitment of sole stocks, Solea solea (L.), in the Northeast Atlantic. Netherlands Journal of Sea Research 29, 173-192. https://doi.org/10.1016/0077-7579(92)90018-A
Rindorf, A., van Deurs, M., Howell, D., Andonegi, E., Berger, A., Bogstad, B., Cadigan, N., Elvarsson, B.P., Hintzen, N., Savina Roland, M., Taylor, M., Trijoulet, V., van Kooten, T., Zhang, F., Collie, J., 2022. Strength and consistency of density dependence in marine fish productivity. Fish and Fisheries 23, 812-828. https://doi.org/10.1111/faf. 12650
Riou, P., Le Pape, O., Rogers, S.I., 2001. Relative contributions of different sole and plaice nurseries to the adult population in the Eastern Channel: application of a combined method using generalized linear models and a geographic information system. Aquat Living Resour 14:125-135.
Rochette, S., Rivot, E., Morin, J., Mackinson, S., Riou, P., Le Pape, O., 2010. Effect of nursery habitat degradation on flatfish population: Application to Solea solea in the Eastern Channel (Western Europe). Journal of Sea Research 64, 34-44. https://doi.org/10.1016/j.seares.2009.08.003
Rochette, S., Le Pape, O., Vigneau, J., Rivot, E., 2013. A hierarchical Bayesian model for embedding larval drift and habitat models in integrated life cycles for exploited fish. Ecological Applications 23, 1659-1676. https://doi.org/10.1890/12-0336.1
Rose, K.A., Cowan, J.H., Winemiller, K.O., Myers, R.A., Hilborn, R., 2001. Compensatory density dependence in fish populations: importance, controversy, understanding and prognosis: Compensation in fish populations. Fish and Fisheries 2, 293-327. https://doi.org/10.1046/j.1467-2960.2001.00056.x
Rose, K.A., Murphy, C.A., Diamond, S.L., Fuiman, L.A., Thomas, P., 2003. Using Nested Models and Laboratory Data for Predicting Population Effects of Contaminants on Fish: A Step Toward a Bottom-Up Approach for Establishing Causality in Field Studies. Human and Ecological Risk Assessment: An International Journal 9, 231-257. https://doi.org/10.1080/713609861
Rose, K.A., Creekmore, S., Thomas, P., Craig, J.K., Rahman, M.S., Neilan, R.M., 2018. Modeling the Population Effects of Hypoxia on Atlantic Croaker (Micropogonias undulatus) in the Northwestern Gulf of Mexico: Part 1—Model Description and Idealized Hypoxia. Estuaries and Coasts 41, 233-254. https://doi.org/10.1007/s12237-017-0266-6
Schneeweiss, A,. Juvigny-Khenafou, N.P.D.,, Osakpolor, S., Scharmüller, A.,Scheu, S., Schreiner, V.C., Ashauer, R., Escher, B.I., Leese, F.,Schäfer, R. B. 2022. Three perspectives on the prediction of chemical effects in ecosystems. Global Change Biology 29,,21- 40. https://doi.org/10.1111/gcb. 16438
Seitz, R.D., Wennhage, H., Bergström, U., Lipcius, R.N., Ysebaert, T., 2014. Ecological value of coastal habitats for commercially and ecologically important species. ICES Journal of Marine Science 71, 648-665. https://doi.org/10.1093/icesjms/fst152
Stamp, T., West, E., Robbins, T., Plenty, S., Sheehan, E., 2022. Large-scale historic habitat loss in estuaries and its implications for commercial and recreational fin fisheries. ICES Journal of Marine Science 79, 1981-1991. https://doi.org/10.1093/icesjms/fsac141
Sundblad, G., Bergström, U., 2014. Shoreline development and degradation of coastal fish reproduction habitats. AMBIO 43, 1020-1028. https://doi.org/10.1007/s13280-014-0522-y

Tappin, A.D., Millward, G.E., 2015. The English Channel: Contamination status of its transitional and coastal waters. Marine Pollution Bulletin 95, 529-550. https://doi.org/10.1016/j.marpolbul.2014.12.012
Thorson, J.T., 2019. Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data - integrated life - history model. Fish Fish 21, 237-251. https://doi.org/10.1111/faf. 12427
Trimoreau, E., Archambault, B., Brind'Amour, A., Lepage, M., Guitton, J., Le Pape, O., 2013. A quantitative estimate of the function of soft-bottom sheltered coastal areas as essential flatfish nursery habitat. Estuarine, Coastal and Shelf Science 133, 193-205. https://doi.org/10.1016/j.ecss.2013.08.027
Troast, B., Walters, L., Cook, G., 2022. A multi-tiered assessment of fish community responses to habitat restoration in a coastal lagoon. Mar. Ecol. Prog. Ser. 698, 1-14. https://doi.org/10.3354/meps 14163
Ulrich, C., Le Gallic, B., Dunn, M.R., Gascuel, D., 2002. A multi-species multi-fleet bioeconomic simulation model for the English Channel artisanal fisheries. Fisheries Research 58, 379-401. https://doi.org/10.1016/S0165-7836(01)00393-9
van de Wolfshaar, K., HilleRisLambers, R., Gårdmark, A., 2011. Effect of habitat productivity and exploitation on populations with complex life cycles. Mar. Ecol. Prog. Ser. 438, 175-184. https://doi.org/10.3354/meps09304
Vasconcelos, R.P., Eggleston, D.B., Le Pape, O., Tulp, I., 2014. Patterns and processes of habitatspecific demographic variability in exploited marine species. ICES Journal of Marine Science 71, 638-647. https://doi.org/10.1093/icesjms/fst136
Wessel, N., Santos, R., Menard, D., Le Menach, K., Buchet, V., Lebayon, N., Loizeau, V., Burgeot, T., Budzinski, H., Akcha, F., 2010. Relationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea). $\begin{array}{lllll}\text { Marine Environmental } & \text { Research } & \text { 69, } & \text { S71-S73. }\end{array}$ https://doi.org/10.1016/j.marenvres.2010.03.004
White, J.W., 2010. Adapting the steepness parameter from stock-recruit curves for use in spatially explicit models. Fisheries Research 102, 330-334. https://doi.org/10.1016/j.fishres.2009.12.008
Wimberly, M.C., 2006. Species Dynamics in Disturbed Landscapes: When does a Shifting Habitat Mosaic Enhance Connectivity, Landscape Ecol 21, 35-46. https://doi.org/10.1007/s10980-005-7757-8
Ying, Y., Chen, Y., Lin, L., Gao, T., 2011. Risks of ignoring fish population spatial structure in fisheries management. Can. J. Fish. Aquat. Sci. 68, 2101-2120. https://doi.org/10.1139/f2011-116
Zhou, S., 2007. Discriminating alternative stock-recruitment models and evaluating uncertainty in model structure. Fisheries Research 86, 268-279. https://doi.org/10.1016/j.fishres.2007.06.026
Zimmermann, F., Enberg, K., Mangel, M., 2021. Density-independent mortality at early life stages increases the probability of overlooking an underlying stock-recruitment relationship. ICES Journal of Marine Science 78, 2193-2203. https://doi.org/10.1093/icesjms/fsaa246

Highlights "Potential impacts of the restoration of coastal and estuarine nurseries on the stock dynamics of fisheries species"

Gernez M..*, Champagnat J. ${ }^{1}$, Rivot E. ${ }^{1}$, Le Pape O. ${ }^{1}$

- The effects of nursery habitat restoration were assessed for four species of main fisheries of interest in the Eastern English Channel.
- Potential restoration gains in terms of biomass and catches were substantial, up to more than 50% of spawning biomass at maximal sustainable yield for the most shallow nurserydependent species.
- Species with higher concentrations in shallow nurseries were the most sensitive to habitat restoration.
- Contrasts in life history traits lead to species-specific responses: a lower resilience to fishing pressure induces a stronger response to habitat restoration.

Declaration of interests

区 The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
\square The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

