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Highlights 

• The effects of nursery habitat restoration were assessed for four species of main fisheries of interest 

in the Eastern English Channel. 

• Potential restoration gains in terms of biomass and catches were substantial, up to more than 50% 

of spawning biomass at maximal sustainable yield for the most shallow nursery-dependent species. 

• Species with higher concentrations in shallow nurseries were the most sensitive to habitat 

restoration. 

• Contrasts in life history traits lead to species-specific responses: a lower resilience to fishing 

pressure induces a stronger response to habitat restoration. 

 

Abstract 

Coastal and estuarine (CE) areas are essential fish habitats; they act as nurseries for a large proportion 

of species of fisheries interest but face high levels of cumulative anthropogenic pressures. A 

comprehensive analysis of the impacts of CE nursery habitat degradation at the population scale for 

exploited fish species is still lacking. Our study aims to assess the effects of CE nursery habitat 
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restoration for four species of main fisheries of interest in the Eastern English Channel (EEC): sole 

(Solea solea), plaice (Pleuronectes platessa), whiting (Merlangius merlangus) and seabass 

(Dicentrarchus labrax). A generic age- and stage-based population model representing the dynamics 

of exploited populations and integrating the dependence of recruitment on juvenile habitats was used. 

This model allowed us to evaluate the combined effect of nursery degradation and fishing pressure 

on stock dynamics. The model was parameterized for each of the four species based on stock 

assessment outputs in the EEC and literature and then used to simulate equilibrium states under 

different habitat restoration scenarios. These scenarios were built using previous estimates of both 

surface area loss and decrease in marine juvenile fish density in CE habitats facing anthropogenic 

pressures in the EEC. Surface area and quality restoration enhanced both biomass and sustainable 

catch levels for the four species in the EEC. The species with higher concentrations in shallow nursery 

areas were the most sensitive to habitat restoration. The response also depended on life history traits, 

i.e., species with lower resilience to fishing pressure (i.e., steepness) exhibited a stronger response to 

habitat quality scenarios. 

 

Keywords: Coastal degradation; Nursery; Population dynamics; Maximum Sustainable Yield; 

Eastern English Channel. 
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1. Introduction 1 

Coastal and estuarine (CE) areas are essential habitats for many fish species (Seitz et al., 2014). CE 2 

ecosystems act as nurseries for a large proportion of fish resources (Miller et al., 1984; Minello, 1999; 3 

Beck et al., 2001) and play a major role in the renewal of nursery-dependent species (Rijnsdorp et al., 4 

1992; Gibson, 1994); thus, they are of great importance to fisheries. For instance, two-thirds of 5 

commercial landings in the North‒East Atlantic come from species using CE systems as nursery 6 

habitats (Brown et al., 2018). 7 

However, the concentration of juveniles in CE areas renders them particularly vulnerable to human 8 

activities (Lotze et al., 2006; Airoldi and Beck, 2007). These pressures can impact both the surface 9 

extent and suitability of these nursery habitats (Johnson et al., 1998; Peterson et al., 2000). Surface 10 

area losses in the CE zone led to a dramatic decrease in nursery habitat capacity (Rochette et al., 11 

2010). The toxic effects of exposure to pollutants at the juvenile stage impact growth and survival 12 

(Davoodi and Claireaux, 2007; Foekema et al., 2008; Wessel et al., 2010) as well as future 13 

reproductive success (Fonds et al., 1995; Daouk et al., 2011; Horri et al., 2018). Ninety-two percent 14 

of species that use coastal habitats are impacted by human pressures, which can be related to 15 

pollutants, eutrophication, anoxia, invasive species and physical development of the coastline (Brown 16 

et al., 2018). 17 

Although the impacts of local anthropogenic disturbance on juveniles of nearshore nursery-dependent 18 

species are well documented (Brown et al., 2018), their consequences for population renewal remain 19 

poorly quantified (Lotze et al., 2006; Sundblad and Bergström, 2014; Vasconcelos et al., 2014) and 20 

even largely unknown (Rose et al., 2003; Hamilton et al., 2016; Boyd et al., 2018). Few studies have 21 

quantified the impact of nursery habitat degradation at the population scale with age- and stage-based 22 

models (Rose et al., 2018; Ono et al., 2019; Camp et al., 2020; Champagnat et al., 2021). These 23 

models are very case-specific, especially regarding the large amount of data and knowledge needed 24 

for parameterization (Lipcius et al., 2019). Consequently, their application to numerous other case 25 
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studies is difficult or not realistic, although such approaches are needed for management purposes 26 

(Hayes et al., 2009; Kraufvelin et al., 2018). 27 

In this work, we used a generic age- and stage-structured population model for nursery-dependent 28 

exploited species (Champagnat et al., in rev.) to quantify the importance of nursery restoration to 29 

population dynamics and productivity. This model describes density-dependent survival in nursery 30 

areas (hereafter called the stock-recruitment relationship) with a Beverton and Holt (1957) 31 

relationship parameterized in terms of steepness (Mace and Doonan, 1988; Punt and Dorn, 2014) and 32 

carrying capacity. Parameterization of a specific stock-recruitment relationship between the spawning 33 

biomass and the number of recruits is spurious (Myers et al., 1999; Rose et al., 2001; Zhou, 2007). 34 

Steepness is a dimensionless proxy of the resilience of a stock to fishing pressure (Myers et al., 1999; 35 

Mangel et al., 2013; Munyandorero, 2020). Hierarchical meta-analyses have been conducted to 36 

identify relationships between steepness and life history traits that can be used to provide reliable 37 

estimates of steepness for a wide range of species (Myers and Mertz, 1998; Myers et al., 1999; 38 

Hilborn, 2003; Thorson, 2019). Formulating our model in terms of steepness thus provides a sensible 39 

way to parametrize stock-recruitment relationships for different species of fisheries interest. In 40 

addition, following Champagnat et al. (in rev.), the steepness-based parameterization of the stock-41 

recruitment relationship is extended, directly depends upon the habitat quality and surface area of 42 

nursery habitats, and allows for simulating juvenile habitat restoration scenarios. 43 

The model was applied to nursery-dependent species of fisheries of interest on a fishery management 44 

unit in the Eastern English Channel (EEC). The EEC (ICES division 7.d; Figure 1) is a fishery unit 45 

of main interest (Ulrich et al., 2002). CE areas of the EEC face high levels of anthropogenic pressures 46 

(Le Pape et al., 2007). They have experienced important morphological changes from land 47 

reclamation, channel dredging, and the building of dikes and harbours (Ducrotoy and Dauvin, 2008, 48 

Stamp et al., 2022), resulting in a substantial reduction in the extent of suitable nursery areas 49 

(Rochette et al., 2010, Champagnat et al., 2021). In addition, land‒sea interfaces have faced high 50 

levels of chemical contamination for decades in the EEC (Meybeck et al., 2007; Tappin and Millward, 51 
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2015; Barjhoux et al., 2018), causing reductions in habitat quality for marine juvenile fish (Gilliers et 52 

al., 2006; Amara et al., 2007; Courrat et al., 2009). 53 

Four species of high fisheries interest were considered in this analysis: sole (Solea solea), plaice 54 

(Pleuronectes platessa), whiting (Merlangius merlangus) and seabass (Dicentrarchus labrax). These 55 

species have similar life cycles, with juveniles concentrated in CE habitats while adults show a wider 56 

distribution (Riou et al., 2001; Leakey et al., 2008; Day et al., 2021). 57 

The study aims to quantify the effects of human disturbance on nurseries in the EEC and assess their 58 

consequences on the four populations of interest. We first parameterized the generic stage-based 59 

population model of Champagnat et al. (in rev.) for the four populations of interest. Then, the model 60 

was used to simulate the response of populations to nursery habitat restoration scenarios. For this 61 

purpose, the loss of nursery habitat area extent in the EEC since 1870 was quantified, and the effects 62 

of quality degradation on marine juvenile density were also estimated. Then, the potential effects of 63 

the restoration of both the surface area and quality of these habitats on population dynamics and 64 

fishery productivity were assessed and compared between the species. 65 

 66 
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 67 

2. Materials and Methods 68 

A diagram of the framework summarizing the articulation of modelling steps, parameterization, and 69 

construction of habitat scenarios is shown in Figure 2.  70 

 71 

Figure 1. Location of the Eastern English Channel (Fishery management unit, ICES division 7.d), 

highlighted in grey. The Bay of Veys, Seine and Somme-Canche estuaries are three major CE 

nursery areas. Inset in the lower right corner: general location in Western Europe. 
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 72 

Figure 2. Diagram of the framework summarizing the articulation of the modelling steps: parameterization 

of the population model, construction of habitat scenarios, and simulation. 1. Recruitment age (arec), 

maximum age (amax), natural mortality (M) and maturity (mat) were extracted from stock assessments, 

whereas steepness (h, e.g., resilience to fishing pressure), larval mortality (Mlarvae) and fecundity (fec; except 

for plaice, extracted from stock assessment) were collected from the literature. Carrying capacity (K) was 

calibrated by minimizing the difference between the spawning stock biomass (SSB) and catch (C) simulated 

by our model with those of the stock assessment outputs. 2. The surface area scenario was based on an 

estimation of area loss since 1870 in three coastal sectors of the French EEC coastline. Surface scenario was 

only applied to the proportion of juveniles present in habitats above 5 m (Prop). Quality scenarios relied on 

Courrat et al. (2009), with restoration applied to all juveniles (Quality all) or only to juveniles located above 

5 m bathymetry (Quality band). 3. Finally, the gains in SSB and C at maximum sustainable yield (MSY) 

are estimated for each habitat restoration scenarios. 
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2.1. Population dynamics model 73 

The impact of the degradation of nursery areas on stock productivity was simulated with a 74 

deterministic life cycle model structured by stage and age (Champagnat et al., in rev.). This model 75 

considers a single closed population and a unique nursery and homogeneous area. After recruitment 76 

age (𝑎𝑟𝑒𝑐), fish undergo both natural and fishing mortality. Population abundance (𝑁𝑎,𝑦 ) at age 𝑎 for 77 

year 𝑦 is described by classical population dynamics (Equation 1): 78 

(1) 𝑁𝑎+1,𝑦+1 = 𝑁𝑎,𝑦 × 𝑒−(𝑀𝑎,𝑦+𝐹𝑎,𝑦) 79 

 80 

where 𝑀 and 𝐹 are the natural and fishing mortality rates, respectively. 81 

For the last age group 𝑎𝑚𝑎𝑥, the population abundance is described as (Equation 2): 82 

(2) 𝑁𝑎𝑚𝑎𝑥,𝑦+1 = 𝑁𝑎𝑚𝑎𝑥,𝑦 × 𝑒−(𝑀𝑎𝑚𝑎𝑥,𝑦+𝐹𝑎𝑚𝑎𝑥,𝑦) + 𝑁𝑎𝑚𝑎𝑥−1,𝑦 × 𝑒−(𝑀𝑎𝑚𝑎𝑥−1,𝑦+𝐹𝑎𝑚𝑎𝑥−1,𝑦) 83 

 84 

Recruitment, defined as the number of juveniles produced in nurseries, accounts for habitat-mediated 85 

mortalities during the juvenile stage and is the critical component of this model. 86 

The recruitment 𝑁𝑎𝑟𝑒𝑐,𝑦 is computed from egg numbers produced in a year, 𝜔𝑦 (Equation 3): 87 

(3) 𝜔𝑦 = ∑
𝑎=𝑎𝑟𝑒𝑐

𝑎𝑚𝑎𝑥

𝑁𝑎,𝑦 × 𝑀𝑎𝑡𝑎 × 𝑝𝑓𝑎 × 𝐹𝑒𝑐𝑎 88 

where 𝑀𝑎𝑡𝑎 is the probability of being mature at age 𝑎, 𝑝𝑓𝑎 is the proportion of females at age 𝑎, and 89 

𝐹𝑒𝑐𝑎 is the fecundity at age 𝑎, all considered constant in time. 90 

The mortality from eggs to recruited juveniles follows a compensatory density-dependent mortality 91 

process resulting from intra-cohort competition for trophic resources and/or space (Beverton and 92 

Holt, 1957). Recruitment (𝑁𝑎𝑟𝑒𝑐,𝑦) is modelled by a Beverton-Holt relationship parameterized in 93 

terms of its asymptote, 𝐾, interpreted as the carrying capacity of the nursery, and steepness (ℎ) 94 

(Equation 4): 95 

(4) 𝑁𝑎𝑟𝑒𝑐,𝑦 =
4×ℎ×𝜔𝑦−1

𝑊×(1−ℎ)+
4×ℎ×𝜔𝑦−1

𝐾

 96 

 97 
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where ℎ is the steepness, defined as the proportion of unfished equilibrium recruitment produced 98 

when the spawning stock biomass is reduced to 20% of its unfished level (Mace and Doonan, 1988). 99 

It characterizes the drop-off in recruitment when the reproductive potential is reduced. It varies in 100 

theory from 0.2 for a linear stock-recruitment relationship to 1 for a constant recruitment above 20% 101 

of pristine biomass (Myers et al., 1999; Mangel et al., 2013; Rindorf et al., 2022). 𝐾 is the carrying 102 

capacity (Daily and Ehrlich, 1992), defined as the maximal number of juveniles that a nursery area 103 

(here considered unique for the population) can produce. 𝑊 is the average number of eggs produced 104 

by a recruit during its lifetime in the absence of fishing (equation in Appendix A). 105 

Once parameterized for each species (see next section), this simulation model is used to simulate 106 

equilibrium states under a range of fishing mortality rates (F, from 0 to 1) to empirically construct 107 

equilibrium curves for catch (C) and spawning stock biomass (SSB), enabling the estimation of 108 

management reference points such as SSBMSY, CMSY and FMSY (MSY, Maximum Sustainable Yield). 109 

Equations for computation C and SSB are available in Appendix A. 𝐹𝑀𝑆𝑌 and the 
𝑆𝑆𝐵𝑀𝑆𝑌

𝑆𝑆𝐵0
 ratio will be 110 

used as indicators to be compared with stock assessment outputs and with the empirical results of 111 

Froese et al. (2016), respectively. 112 

2.2.  Parameterization of the case studies 113 

For each of the four case studies, all stock-specific parameters were extracted from both stock 114 

assessment outputs and the literature (Table 1), except for the carrying capacity (𝐾), which was 115 

calibrated. 116 

Parameters from stock assessments and literature 117 

Recruitment age, maximum age, weights at ages, maturity ogive and natural mortality were taken 118 

from the assessment reports for the four studied stocks (ICES, 2021ab). Fecundity equations, larval 119 

mortality, and lengths at ages were collated from the literature (Appendix B). 120 
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The FishLife package (Thorson, 2019) was used to parameterize steepness for the baseline scenarios. 121 

This package analysed stock-recruitment series from the RAM database (Myers et al., 1995) in 122 

relation to life-history data extracted from FishBase (Froese and Pauly, 2022) using a multivariate 123 

hierarchical Bayesian model with taxonomic structure. Steepness values were extracted at the 124 

taxonomic level of order to obtain a robust estimate (Thorson, 2019). 125 

Calibration of carrying capacity for the baseline habitat scenario 126 

Only the parameter 𝐾, the carrying capacity of the nursery area (considered a unique entity), which 127 

ultimately determines the population size, requires calibration. For each of the four case studies, the 128 

carrying capacity 𝐾 representative of the current state (baseline habitat scenario) was estimated by 129 

minimizing the difference between the SSB and catches simulated by our model with those of the 130 

stock assessment outputs (i.e., by minimizing the objective function in Equation 5): 131 

(5) ∑
𝑦=𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥

(𝑙𝑜𝑔(𝑆𝑆𝐵𝑝𝑟𝑒𝑑,𝑦) − 𝑙𝑜𝑔(𝑆𝑆𝐵𝐼𝐶𝐸𝑆,𝑦))2 + (𝑙𝑜𝑔(𝐶𝑝𝑟𝑒𝑑,𝑦) − 𝑙𝑜𝑔(𝐶𝐼𝐶𝐸𝑆,𝑦))2 132 

 133 

where 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 are the first and last year of the stock assessments, respectively, 𝑆𝑆𝐵𝑝𝑟𝑒𝑑 is the 134 

model predictions of SSB, 𝑆𝑆𝐵𝐼𝐶𝐸𝑆  is the SSB provided by the stock-specific assessment (ICES 135 

2021ab), 𝐶𝑝𝑟𝑒𝑑 is the model predictions of catches and 𝐶𝐼𝐶𝐸𝑆 is the catches (ICES, 2021ab). 136 

For sole and plaice, SSB and catches were taken directly from stock assessments (ICES, 2021a). For 137 

whiting (ICES, 2021a) and seabass (ICES, 2021b), SSB and catches were derived from stock 138 

assessments covering a wider area. They were scaled to the EEC proportionally to the average 139 

proportion of landings in division 7.d with respect to total landings (Appendix C). 140 

 141 
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Table 1. Species-specific model parameterization for the baseline habitat scenario. 142 

 143 

2.3. Parameterization of scenarios for CE nursery habitat 144 

Habitat restoration scenarios were parameterized by modifying both the surface area and the quality 145 

of nursery habitat (Champagnat et al., in rev.), which will impact the two key parameters ℎ and 𝐾 in 146 

the stock-recruitment relationship in Equation (4). 147 

Modelling scenarios of surface area modification are straightforward. The carrying capacity 𝐾 148 

depends directly on the surface area 𝑆 of the nursery habitats (Equation 6). Writing the carrying 149 

 

Recruitment 

age (𝑎𝑟𝑒𝑐) 

Maximum 

age (𝑎𝑚𝑎𝑥)  

Steepness (ℎ) 

(Thorson, 2019) 

Natural 

mortality rate 

(𝑀) 

Larval 

survival rate 

(𝑒−𝑀𝑙𝑎𝑟𝑣𝑎𝑒×Δ𝑙) 

(Le Pape and 

Bonhommeau, 

2015) 

Carrying 

capacity 

(𝐾) 

(calibrated) 

 Sole 
1 

(ICES, 2021a) 

11 

(ICES, 

2021a) 

0.771 
0.1 

(ICES, 2021a) 
𝟏𝟎−𝟑 𝟒. 𝟎 × 𝟏𝟎𝟕 

Plaice 
1 

(ICES, 2021a) 

7 

(ICES, 

2021a) 

0.771 

Age 1: 0.3531; 

Age 2: 0.3132; 

Age 3: 0.292; 

Age 4: 0.2749; 

Age 5: 0.2594; 

Age 6: 0.2474; 

Age 7: 0.2329 

(ICES, 2021a) 

𝟏𝟎−𝟑 𝟕. 𝟏 × 𝟏𝟎𝟕 

Whiting 
0 

(ICES, 2021a) 

8 

(ICES, 

2021a) 

0.626 

Age 0: 2.0057; 

Age 1: 1.1510; 

Age 2: 0.6560; 

Age 3: 0.5107; 

Age 4: 0.4690; 

Age 5: 0.4477; 

Age 6: 0.3387; 

Age 7: 0.2797; 

Age 8: 0.2610 

(ICES, 2021a) 

𝟏𝟎−𝟑 𝟓. 𝟑 × 𝟏𝟎𝟗 

Seabass 
0 

(ICES, 2021b) 

16 

(ICES, 

2021b) 

0.736 
0.24 

(ICES, 2021b) 
𝟏𝟎−𝟑 𝟏. 𝟏 × 𝟏𝟎𝟕 Jo
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capacity 𝐾 as the product of a carrying capacity per unit of surface area 𝐾∗ and the surface area 150 

𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, we parameterized surface area scenarios using a multiplier (𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎) as: 151 

(6) 𝐾 = 𝐾𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∗ ×

𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎
 152 

 153 

so that 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎 = 1  corresponds to the baseline situation and a value of 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎 < 1 154 

denotes an increase in surface area. 155 

To model scenarios of habitat quality alteration/restoration, we relied on Champagnat et al. (in rev.), 156 

with a parameterization of the stock-recruitment relationship (Equation 4) in terms of instantaneous 157 

density-independent (𝑀𝑑𝑖) and density-dependent (𝑀𝑑𝑑) mortality rates between larvae and juveniles 158 

(Quinn and Deriso, 1999). Relationships between classical (ℎ, 𝐾) and new (𝑀𝑑𝑖 , 𝑀𝑑𝑑) parameters 159 

can be written as (Equations 7 & 8; see Champagnat et al. in rev. and Appendix A for more details): 160 

(7) ℎ =
𝑒−𝑀𝑑𝑖×𝑎𝑟𝑒𝑐×𝑒−𝑀𝑙𝑎𝑟𝑣𝑎𝑒×Δ𝑙×𝑊

4+𝑒−𝑀𝑑𝑖×𝑎𝑟𝑒𝑐×𝑒−𝑀𝑙𝑎𝑟𝑣𝑎𝑒×Δ𝑙×𝑊
 161 

(8) 𝐾 =
𝑀𝑑𝑖

𝑀𝑑𝑑
×

1

𝑒𝑀𝑑𝑖×𝑎𝑟𝑒𝑐−1
× 𝑆 162 

where 𝑒−𝑀𝑙𝑎𝑟𝑣𝑎𝑒×Δ𝑙  is the resulting survival from density-independent mortality occurring during 163 

larval drift of duration Δ𝑙 and 𝑆 is the surface area of the nursery. Hence, looking at Equation (6), the 164 

carrying capacity per unit of surface area is written as a function of 𝑀𝑑𝑖  and 𝑀𝑑𝑑  ( 𝐾∗ =165 

𝑀𝑑𝑖

𝑀𝑑𝑑 ×
1

𝑒𝑀𝑑𝑖×𝑎𝑟𝑒𝑐−1
). 166 

This alternative formulation allows us to parameterize the restoration (resp. alteration) of the quality 167 

of juvenile habitats in terms of a decrease (resp. increase) in both density-independent and density-168 

dependent mortality rates, 𝑀𝑑𝑖 and 𝑀𝑑𝑑  (Champagnat et al., in rev). A common multiplier (𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦) 169 

is applied to 𝑀𝑑𝑑 and 𝑀𝑑𝑖, which in turn modifies the values of ℎ and 𝐾∗. 170 

Finally, the combination of scenarios of surface area alteration/restoration (varying 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎) 171 

and quality alteration/restoration (varying 𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦) modifies stock-recruitment parameters (ℎ, 𝐾) as 172 

(Equations 9 &10): 173 
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(9) ℎ(𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦) =
𝑒

−𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦×𝑀𝑑𝑖×𝑎𝑟𝑒𝑐×𝑒−𝑀𝑙𝑎𝑟𝑣𝑎𝑒×𝑊

4+𝑒
−𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦×𝑀𝑑𝑖×𝑎𝑟𝑒𝑐×𝑒−𝑀𝑙𝑎𝑟𝑣𝑎𝑒×𝑊

 174 

 175 

(10) 𝐾(𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦, 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎) =
𝑀𝑑𝑖

𝑀𝑑𝑑 ×
1

𝑒
𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦×𝑀𝑑𝑖×𝑎𝑟𝑒𝑐−1

×
𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎
 176 

 177 

2.3.1. Parameterization of surface area losses 178 

The habitat surface area scenarios were based on estimation of surface area losses since 1870, derived 179 

from bathymetry data in three coastal sectors of the French EEC coastline in 1870 (Bay of Veys, 180 

Seine Estuary, Somme and Canche) available on the EMODnet website. The maps from 1870 were 181 

compared with the 2020 bathymetry map (Appendix D). The loss of habitats above a bathymetry of 182 

5 m, including the intertidal area, was estimated in each sector. This limit was chosen because it 183 

integrates almost all surface area loss in CE nursery areas (Rochette et al., 2010; Stamp et al., 2022). 184 

The proportion of habitat loss (𝑆𝑙𝑜𝑠𝑠) was estimated as the surface areas lost in each French sector 185 

between 1870 and 2020 for the total habitats above 5 m of the EEC French coast: 𝑆𝑙𝑜𝑠𝑠 = 26.9% 186 

(Appendix D). 187 

In the scenarios, 𝑆𝑙𝑜𝑠𝑠 was considered a proxy of the surface area loss at the EEC scale. Indeed, (i) 188 

these sectors represent major nursery areas for the four studied species (Riou et al., 2001; Carpentier 189 

et al., 2009); (ii) to the best of our knowledge, no similar data were available for the English coast. 190 

However, English intertidal habitats have lost surface area during the same period with similar levels 191 

of loss (Stamp et al., 2022). Thus, a global surface area restoration multiplier (𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎|𝑔𝑙𝑜𝑏𝑎𝑙) 192 

was calculated as (Equation 11): 193 

(11) 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎|𝑔𝑙𝑜𝑏𝑎𝑙 =
1

1−𝑆𝑙𝑜𝑠𝑠
 194 

2.3.2. Species-specific bathymetric distribution of juveniles 195 

The juveniles of the four studied species have different bathymetric distributions (Riou et al., 2001; 196 

Carpentier et al., 2009; Ellis et al., 2012) and hence different concentrations in shallow areas (<5 m). 197 
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These different concentrations determine the proportion of juveniles impacted by surface area loss in 198 

these shallow areas. The species-specific proportion of juveniles present in habitats above 5 m 199 

(𝑃𝑟𝑜𝑝𝑠𝑝𝑒𝑐𝑖𝑒𝑠) was estimated from both bathymetric and nursery maps (Appendix E; 𝑃𝑟𝑜𝑝𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =200 

 49.7, 16.7, 4.1 and 80.2 for sole, plaice, whiting and seabass, respectively). 201 

The nursery surface area loss factor was only applied to the proportion of juveniles present in this 202 

shallow area. Consequently, a species-specific surface area restoration factor (𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎|𝑠𝑝𝑒𝑐𝑖𝑒𝑠) 203 

was calculated to simulate the restoration of the nursery area extent to the 1870 level (Equation 12; 204 

Table 2): 205 

(12) 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎|𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =  
1

1+൫𝑃𝑟𝑜𝑝𝑠𝑝𝑒𝑐𝑖𝑒𝑠× 𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎|𝑔𝑙𝑜𝑏𝑎𝑙൯−𝑃𝑟𝑜𝑝𝑠𝑝𝑒𝑐𝑖𝑒𝑠
 206 

 207 

2.3.3. Parameterization of quality effects 208 

We relied on Courrat et al. (2009), who quantified the impact of the chemical quality of French 209 

estuaries on the density of marine juvenile fish, to estimate the ecological status of estuarine waters 210 

for the European water framework directive (Delpech et al., 2010). Courrat et al. (2009) found that 211 

estuaries with a medium ecological status had densities of juveniles 20% lower than estuaries of good 212 

quality. We assumed that this loss of density directly reflected a loss in carrying capacity per unit of 213 

surface area (𝐾∗) due to degradation of habitat quality only (without loss of surface area). We denote 214 

𝐾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
∗  as the new carrying capacity under the habitat restoration scenario. 215 

Based on Equation (10) (but see also details in Appendix F), we back-calculated the habitat quality 216 

multiplier 𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦 to be applied to 𝑀𝑑𝑖 and 𝑀𝑑𝑑 that corresponds to the change from the baseline 217 

carrying capacity 𝐾∗ to 𝐾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
∗  (Equation 13): 218 

(13) 𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑙𝑜𝑔(

𝑀𝑑𝑖

𝑀𝑑𝑑

𝐾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜
∗ +1)

𝑀𝑑𝑖  219 

 220 
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The quality scenarios have been constructed by considering a homogeneous quality status of the 221 

nursery areas for all the nursery sectors (i.e., a single parameter 𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦 for the whole EEC). Then, 222 

an additional assumption of the ecological status of CE areas in the EEC was made: on average, all 223 

estuaries were considered of average quality, and our scenarios simulated the restoration of these 224 

estuaries to a good ecological status (Courrat et al., 2009; Delpech et al., 2010). 225 

The sensitivity of juveniles to changes in habitat quality likely depends upon their concentration in 226 

shallow habitats (<5 m), which varies greatly among species (Table 2; parameter Prop). Logically, 227 

the higher the concentration of juveniles in shallow areas, the higher their sensitivity to changes in 228 

habitat quality. To assess the sensitivity of the response to habitat quality to the concentration in 229 

shallow areas, we tested two different scenarios for habitat quality restoration. 230 

- The first scenario (quality all) considers the restoration applied to all juveniles. This restoration 231 

scenario was based on a new carrying capacity (𝐾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑎𝑙𝑙
∗ ) calculated to simulate a restoration of 232 

the 20% loss (Equation 14): 233 

(14) 𝐾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑎𝑙𝑙
∗ = 𝐾∗ × 1.25 234 

 235 

- The second scenario (quality band) considers the restoration applied only to the proportion of 236 

juveniles located above the 5 m bathymetry (Prop). This assumption was made to differentiate 237 

juveniles present in very shallow coastal areas, sensitive to high levels of contamination, from those 238 

located in deeper waters, considered not impacted (𝐾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑏𝑎𝑛𝑑
∗ ; Equation 15) 239 

(15) 𝐾𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑏𝑎𝑛𝑑
∗ = (𝐾∗ × 𝑃𝑟𝑜𝑝 × 1.25) + (𝐾∗ × (1 − 𝑃𝑟𝑜𝑝)) 240 

 241 

2.3.4. Summary of scenarios 242 

The estimates of surface area losses and quality effects (Table 2) were used to simulate four species-243 

specific scenarios: (i) surface area restoration, (ii) quality restoration applied to all juveniles (quality 244 

all), (iii) quality restoration applied to the most coastal juveniles (quality band) and finally (iv) a 245 

scenario that combines surface area and “quality band” restoration. 246 

 247 
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Table 2. Percentage of juveniles present in habitats above 5 m and associated restoration factors. 248 

 Sole Plaice Whiting Seabass 

Percentage of juveniles in 

shallow nurseries 

(𝑃𝑟𝑜𝑝𝑠𝑝𝑒𝑐𝑖𝑒𝑠) 

49.71 16.72 4.10 80.23 

Surface area restoration 

factor 

(𝜆𝑠𝑢𝑟𝑓𝑎𝑐𝑒_𝑎𝑟𝑒𝑎|𝑠𝑝𝑒𝑐𝑖𝑒𝑠) 
0.8446 0.9417 0.9850 0.7711 

Quality restoration factor 

Quality all 

(𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦) 
0.9453 0.9330 0.8574 0.9367 

Quality restoration factor 

Quality band 

(𝜆𝑞𝑢𝑎𝑙𝑖𝑡𝑦) 
0.9712 0.9877 0.9932 0.9481 

 249 

In the first step, the results will be illustrated only with the second quality scenario (impact on inshore 250 

juveniles, quality band). Then, a sensitivity analysis will compare the two quality scenarios. 251 

3. Results 252 

A detailed interpretation of both the calibration and results of the habitat scenarios is presented for 253 

seabass before interspecific comparisons. 254 

3.1. Seabass case study 255 

The results are expressed as a percentage of seabass SSB or catch reallocated to fishery unit 7.d 256 

(Figure 1; Appendix C) and not in relation to the actual management unit (ICES, 2021b). 257 

Calibration of the carrying capacity to stock assessment outputs 258 

𝐾 is estimated at 1.1 × 107 juveniles. The results highlight discrepancies between model predictions 259 

and catches and SSB reported by ICES (Appendix G). However, the average SSB values estimated 260 

by ICES and the average SSB values predicted by our model are quite similar (5.8 × 106  and 261 

5.6 × 106  kg, respectively). The same conclusion holds for catches (average ICES values at 262 
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1.4 × 106 kg and model predictions at 1.2 × 106, Appendix H). Model behaviour at equilibrium is 263 

realistic: an FMSY of 0.15 without habitat restoration scenario (Figure 3), while the FMSY from ICES 264 

(2021b) was 0.17, and a 
𝑆𝑆𝐵𝑀𝑆𝑌

𝑆𝑆𝐵0
 of 0.28. 265 

Equilibrium production curves under habitat restoration scenarios 266 

Restoring the surface area of juvenile habitat only impacts 𝐾 (Equation 10) and hence the scale of the 267 

productivity curve, with increased catches and increased levels of biomass at MSY (Figure 3A), while 268 

FMSY remains unchanged (Figure 3B). In contrast, restoring habitat quality (quality band scenario) 269 

affects both the 𝐾 and ℎ parameters (Equations 9 and 10), hence increasing catches, SSBMSY and 270 

FMSY (Figure 3B). 271 

Figure 3. Production curves according to habitat scenarios as function of SSB (A) or fishing mortality 

(B) for seabass in ICES division 7.d. Quality and combined effect based on the quality band 

hypothesis. 

A B 
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3.2. Comparison between species 272 

Population model fit 273 

For all four species, as shown for seabass, the calibration of the model led to predictions of catches 274 

and SSB that did not match perfectly with annual ICES data (Appendix G). However, the average 275 

SSB and catches estimated by ICES and predicted by our model were similar. Overall, the model 276 

outputs at equilibrium, FMSY and 
𝑆𝑆𝐵𝑀𝑆𝑌

𝑆𝑆𝐵0
 ratio fit within the expected range (0.2 to 0.34; Horbowy and 277 

Hommik, 2022) (Appendix H). 278 

Maximum sustainable yield indicators under habitat restoration scenarios 279 

The impacts of habitat restoration scenarios were compared across species by estimating relative 280 

gains in SSB and catches at MSY equilibrium states (Figure 4). The surface area scenario has the 281 

largest impact on SSB, with gains ranging from 1.5% for whiting to 29.6% for seabass (Figure 4A). 282 

This interspecific pattern also concerned the gains linked to the restoration of quality, with an increase 283 

in SSB ranging from 0.4% for plaice to 17.1% for seabass. When combining the surface area and 284 

quality restoration scenarios, the effects are multiplicative (i.e., greater than the sum of both effects), 285 

and two groups of species emerge: whiting and plaice, for which the combined restoration has the 286 

lowest effect, with gains of 2.9% and 6.6%, respectively, whereas sole and seabass had gains of 27.4% 287 

and 51.8% in SSB, respectively. The catch increase at MSY almost followed that of SSB (Figure 4B). 288 

In volume, the restoration of both habitat surface area and quality represents an increase in catches of 289 

327, 957, 1990 and 810 tons for whiting, plaice, sole and seabass, respectively. 290 
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 291 

Sensitivity to the quality scenario hypothesis 292 

Large differences emerged between the two scenarios for quality restoration (quality band = impacts 293 

only the juveniles located in shallow (<5 m) habitat; quality all = impacts all juveniles). The 294 

restoration of quality for all juveniles in the EEC leads to a greater homogeneity in the gains than 295 

when the restoration is carried out according to the bathymetric distribution of juveniles (Figure 5). 296 

Under the quality all scenario, interspecific patterns depended on demographic parameters only, 297 

especially steepness and fecundity, which differed between species. The results show that the 298 

sensitivity to quality restoration is higher for species with lower steepness (whiting; Figure 5). 299 

Moreover, all species have greater catch gains in this “global” restoration scenario due to a larger 300 

 

 

Figure 4. Effects of habitat scenarios on SSB (A) and Catch (B) gain at MSY by species. 

The quality and combined scenarios are based on the quality band hypothesis. 

A 

B 
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quantity of juveniles impacted by the restoration (an increase of 32%, 26%, 15% and 7%, compared 301 

to the “partial” scenario, for whiting, plaice, sole and seabass, respectively; Figure 5). 302 

 303 

 304 

4. Discussion 305 

4.1 Main findings 306 

We assessed the consequences of CE nursery restoration through a generic age- and stage-structured 307 

model with a stock-recruitment relationship that directly depends upon the quality and surface area 308 

of the nursery habitat (Champagnat et al., in rev). The model was applied to four nursery-dependent 309 

species, i.e., sole, plaice, whiting and seabass, characterized by different life history traits and various 310 

degrees of concentration in EC nursery habitats in the EEC. For the four species, models were 311 

parameterized from the literature and stock assessment outputs (ICES, 2021a,b), except for the 312 

Figure 5. Difference in catch gains per species according to the assumption made for quality 

scenarios. Quality band is the restoration scenario applied only to the juveniles in shallow 

habitats (<5 m) and quality all is the restoration scenario applied to all the juveniles. 
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carrying capacity, which was calibrated to stock assessment outputs to achieve realistic population 313 

sizes. 314 

The model was used to simulate equilibrium catch curves obtained under different scenarios of 315 

nursery quality and surface area restoration for the four species. Surface area restoration increased 316 

the catches and biomass at MSY. The restoration of quality led to an increase in catches and biomass 317 

at MSY but also in fishing mortality at MSY. Overall, the species with higher levels of concentration 318 

in shallow nursery areas were the most sensitive to the habitat restoration scenarios. Thus, seabass 319 

was the species for which habitat restoration had the greatest positive impact, while whiting was the 320 

least affected species. However, the response also depended upon species-specific life history traits: 321 

lower steepness led to a stronger response to habitat quality scenarios. 322 

4.2 Limitations in model assumptions and scenarios 323 

Generic model to simulate population dynamics without stochastic recruitment variability 324 

In this generic model, only one parameter, the carrying capacity (𝐾), needed to be calibrated to stock 325 

assessment outputs. This makes it easy to apply for several case studies, i.e., four stocks herein, as 326 

needed parameters and data were available from the literature and stock assessments. Indeed, the 327 

model used requires age-based stock assessment outputs to be implemented, and this is the main 328 

limitation to its use. However, the calibration of 𝐾 implies two ecological assumptions, the first being 329 

that the carrying capacity of the nursery habitat limits recruitment (Beverton and Iles, 1992; Le Pape 330 

and Bonhommeau, 2015). The second is that this carrying capacity does not vary over time, which is 331 

a strong assumption. Indeed, fluctuations were previously evidenced (Luo et al., 2001; Le Pape et al., 332 

2003), for instance, as a response to the supply of nutrients and organic matter that support food 333 

provisioning (Kostecki et al., 2010; Day et al., 2021).  334 

Considering a deterministic population dynamic is another limitation of the model. Indeed, 335 

environmental variability dramatically impacts population dynamics, especially regarding the 336 

recruitment process (Pfister and Stevens, 2003). This has led to poor predictions of annual variations 337 
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in SSB and catches. However, the objective was not to reproduce these annual fluctuations but to 338 

simulate realistic average population dynamics. The calibration led to an average estimate of SSB 339 

and catches close to the average estimate of the ICES over the same period for the four studied 340 

species. In addition, population indicators (FMSY and 
𝑆𝑆𝐵𝑀𝑆𝑌

𝑆𝑆𝐵0
 ratio) confirmed the realism of the 341 

dynamics. 342 

Finally, the model structure does not take into account the ecosystem relationships between different 343 

life stages within a species or among species (Day et al., 2021). Such interactions may also impact 344 

the carrying capacity, thus SSB and catches. 345 

Model without spatial population structure 346 

The model considered juvenile habitat as a single homogeneous block, whereas CE areas are 347 

composed of a multitude of habitats with high heterogeneity that can vary over time (“shifting habitat 348 

mosaic”, Peterson, 2003; Wimberly, 2006; Nagelkerken et al., 2015). Considering the nursery areas 349 

as a single block is limiting, especially for the construction of quality restoration scenarios. However, 350 

considering spatial heterogeneity would require parameterizing specific Beverton-Holt relationships 351 

for each nursery area (Rochette et al., 2013), which is inaccessible. Moreover, considering different 352 

nursery sectors in the EEC would greatly complicate our model and the elaboration of restoration 353 

scenarios by raising questions about steepness estimation for the different nursery sectors (White, 354 

2010) and population connectivity (Archambault et al., 2016). 355 

Diffusion of the outcomes of local nursery restoration at a metapopulation scale highly depends on 356 

the level of connectivity at different stages of the life cycle (Archambault et al., 2018; Randon et al., 357 

2021; Ma et al., 2022). The results therefore provide global estimates at the stock scale, with caution 358 

regarding the interpretations of both internal and external spatial structures, especially when based on 359 

estimates at MSY (Ying et al., 2011). 360 
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Realistic but simplified scenarios 361 

The estimation of surface area losses was based on historical data available on three CE nursery areas 362 

on the French side of the EEC in 1870. Accounting for surface area losses in these three CE areas 363 

was an innovative step forward, as previous studies in the EEC have focused on the single Seine 364 

Estuary (Rochette et al., 2010, Archambault et al., 2018; Champagnat et al., 2021). However, no 365 

similar data were available for the English coasts, where nurseries have experienced surface area 366 

losses over the same period (Stamp et al., 2022). This proxy of French surface area loss was 367 

considered the best available knowledge for the EEC. 368 

To fit with available information on CE surface area loss, the concentration of juveniles in the shallow 369 

nursery habitat was considered dependent on depth only. Depth is a main driver of juvenile fish 370 

distribution for the studied species in the EEC (Riou et al., 2001; Carpentier et al., 2009; Ellis et al., 371 

2012), but defining an ecological niche by a single variable is a very simplifying assumption 372 

(Grinnell, 1917; Hutchinson, 1957). CE nursery areas can be defined by other parameters, e.g., 373 

salinity and hydrodynamics (Kennedy and Fitzmaurice, 1972; Kelley, 1988; Le Pape et al., 2003), 374 

sediment structure (Riou et al., 2001; Rochette et al., 2010), and coastal shelter (Trimoreau et al., 375 

2013). The estimation of species-specific surface area losses was therefore oversimplified. Moreover, 376 

the proportion of juveniles above 5 m was calculated on maps representing present habitats. When 377 

shallow habitats were of larger surface extent, as in 1870, the proportion of juveniles present in this 378 

shallow fringe was likely greater, which could have led to underestimation of species-specific 379 

consequences of surface area loss. 380 

The scenarios of quality degradation were based on a global estimate of juvenile density drop in 381 

nursery areas (Courrat et al., 2009). This proxy was used due to the lack of knowledge on the species-382 

specific impact of nursery habitat quality degradation on the demographic parameters of juvenile fish. 383 

Indeed, despite the well-documented impacts of local anthropogenic disturbances on juveniles of CE 384 

nursery-dependent species (Brown et al., 2018), the consequences of these impacts on demographic 385 
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rates are still poorly understood and need to be quantified to infer impacts at the population scale 386 

(Vasconcelos et al., 2014; Lipcius et al., 2019; Schneeweiss et al., 2022). 387 

Given this lack of knowledge, two strong hypotheses were put forward. First, the parameterization of 388 

the quality scenario assumed a common multiplier on density-dependent and density-independent 389 

mortality rates. This is a strong assumption, as different processes are associated with these mortality 390 

rates (Jonhson, 2007; Juanes, 2007). Density-dependent mortality refers to interactions among 391 

juveniles of the same cohort, mostly competition for food or space (Gibson, 1994; Craig et al., 2007; 392 

Le Pape and Bonhommeau, 2015). Density-independent mortality involves other mortality processes 393 

linked to a large panel of stressors (e.g., pollutants, Rose et al., 2003; oxygen, Gibson, 1994) and/or 394 

predation (Gibson, 1994; Hilborn and Walters, 2021). Second, the simulation results were very 395 

sensitive to the two assumptions made on which fraction of the nursery habitat is affected by quality 396 

restoration/degradation (i.e., the whole nursery area or the <5 m band only). The lack of knowledge 397 

on the gradient of land‒sea impacts on marine juvenile fish in CE nurseries prevents selecting 398 

between scenarios or developing more accurate scenarios. 399 

Because survival rates are very low at young stages, the sensitivity of population dynamics to minor 400 

changes in the mortality rate is high (Levin and Stunz, 2005; Hilborn and Walters, 2021) and would 401 

require attention in future studies to design more accurate scenarios. 402 

4.3 Effects of nursery restoration and comparison between species 403 

To the best of our knowledge, our study is the first to assess the effect of restoration of CE nursery 404 

areas for a group of species at the scale of a management unit. 405 

Surface area restoration, which leads to an increase in the carrying capacity of the nursery, enhances 406 

the catches and biomass at MSY. The restoration of quality increases both the carrying capacity and 407 

the steepness, thus increasing catches, biomass and fishing mortality at MSY (Champagnat et al., in 408 

rev.). For a combined restoration, the effects are multiplicative, i.e., higher than the simple sum of 409 

the marginal restoration effects. 410 
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The difference in gains between species due to surface area restoration is mainly due to a different 411 

degree of concentration of juveniles in the shallow nursery habitat. The differences in quality 412 

restoration are also highly sensitive to assumptions regarding the proportion of juveniles impacted by 413 

restoration. However, the impacts of quality restoration are also related to species-specific 414 

demographic parameters (Champagnat et al., in rev.). Thus, an interesting result of this study is that 415 

life history traits, especially steepness, not only drive the sensitivity of marine fish to fishing pressure 416 

(Froese et al., 2016; Miller and Brooks, 2021; Horbowy and Hommik, 2022) but also their response 417 

to essential fish habitat degradation. 418 

Previous studies focusing on sole examined the effect of surface area and/or habitat quality scenarios 419 

in the EEC with more complex and species-specific life cycle models. Archambault et al. (2018) and 420 

Champagnat et al. (2021) demonstrated the effects of quality degradation and surface area loss in CE 421 

nursery areas in the EEC, considering the restoration of the surface area and the quality of the Seine 422 

estuary only. The present model provided outputs consistent with these species-specific approaches, 423 

but the main focus was its generic formulation, allowing us to consider four species. This generic 424 

steepness-based approach requires limited tuning (i.e., only of the carrying capacity parameter) to 425 

parametrize the stock-specific population dynamics as long as an age-structured stock assessment is 426 

available. Such a tool to infer the consequences of habitat degradation at the population and fisheries 427 

scale is highly needed (Rabalais, 2015; Lipcius et al., 2019; Schneeweiss et al., 2022), and this model 428 

could easily be applied for other study areas and fish species in the future. 429 

However, the accuracy of the scenarios relies on the existing knowledge on both the fraction of 430 

juveniles concentrated in impacted CE nurseries and the level of impact (surface area loss and drop 431 

in demographic rates or density in response to lower quality). The sensitivity to these uncertain levels 432 

of change (Levin and Stunz, 2005; Hilborn and Walters, 2021; Zimmerman et al., 2021) could be 433 

high. However, both the use of simulation at equilibrium states and the lack of data allowing model 434 

predictions to be directly compared to habitat scenarios related to field records on a long-term (i.e., 435 

since 1870 for surface area loss) temporal basis prevent further validation. 436 
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4.4 Management implications 437 

The present approach shows that the gains from fisheries management could be greatly increased if 438 

nursery areas were restored in the EEC. This restoration could lead to annual catch gains of 2.9%, 439 

11.6%, 35.3% and 65.2% for whiting, plaice, sole and seabass, respectively, representing gains of 440 

327, 957, 1990 and 810 tons, respectively. In addition to catch gains, the spawning stock biomass 441 

would also be enhanced, which could have beneficial consequences for the whole ecosystem (Froese 442 

et al., 2008; Froese et al., 2016). However, the lack of time series to compare model predictions and 443 

habitat status prevents us from validating the simulation outputs. Nevertheless, ongoing management 444 

measures to restore the surface area (in the Seine estuary, Ducrotoy and Dauvin, 2008) and quality of 445 

CE habitats (decreases in pollutant levels; Meybeck et al., 2007; Tappin and Millward, 2015) in the 446 

EEC should therefore be continued to enhance fish and fisheries production (Katara et al., 2021). 447 

This study supports the need to consider essential fish habitat in the management of fishing resources 448 

(Brown et al., 2018; Kraufvelin et al., 2018; Brown et al., 2019). The high level of surface area loss 449 

and anthropogenic disturbances to the remaining CE ecosystems (Halpern et al., 2008) impact their 450 

nursery function (Jokinen et al., 2015) worldwide (Barbier et al., 2011). Substantial recovery of the 451 

function of habitats essential to marine life could be achieved (Duarte et al., 2020). Restoring coastal 452 

nurseries (Buelow et al., 2022; Troast et al., 2022) may be even more beneficial than regulating 453 

fishing pressure (Levin and Stunz, 2005; van de Wolfshaar et al., 2011). 454 
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Highlights “Potential impacts of the restoration of coastal and 

estuarine nurseries on the stock dynamics of fisheries species” 

 

Gernez M.1*, Champagnat J.1, Rivot E.1, Le Pape O.1 

 

• The effects of nursery habitat restoration were assessed for four species of main fisheries of 

interest in the Eastern English Channel. 

• Potential restoration gains in terms of biomass and catches were substantial, up to more than 

50% of spawning biomass at maximal sustainable yield for the most shallow nursery-

dependent species. 

• Species with higher concentrations in shallow nurseries were the most sensitive to habitat 

restoration. 

• Contrasts in life history traits lead to species-specific responses: a lower resilience to fishing 

pressure induces a stronger response to habitat restoration. 
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