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Abstract: This summary presents the application of modulated metasurfaces in millimeter wave and 

sub-terahertz antenna systems. We succinctly show that by adopting metasurfaces as array element, one may 

mitigate some of the challenges found in large phased arrays with a limited field of view and concurrently 

enhance the gain bandwidth of modulated metasurfaces antennas with a single port. 

 

The advent of future wireless networks beyond 5G has fostered the interest in millimeter and sub-terahertz 

(sub-THz) frequency bands, which will allow one to benefit from large unlicensed bandwidths and thus satisfy 

the need for higher data rates [1]. However, to make the most of such large bandwidths, one has to compensate 

the free space path loss (FSPL), which is proportional to the carrier’s frequency and typically burdens the link 

budget as one approaches sub-THz bands [2]. Moreover, the generation of power at room temperature in the 

sub-THz gap is also challenging. Therefore, high-gain antennas radiating narrow pencil beams must be adopted. 

Typical architectures consist of scalar horns used as focal source for large reflector and lens systems [3]. 

Although efficient and wideband, such architectures are bulky and difficult to adopt in a paradigm that foresees 

the massive deployment of small cells. As opposed to electrically large reflectors and lenses, we target 

low-profile and light-weight architectures that can provide similar gains without imposing a toll on the relative 

bandwidth. This summary discusses the use of modulated metasurfaces (MTSs) [4]-[5] for the efficient 

transformation of guided modes into directive radiation in the millimeter-wave and sub-THz ranges. 

In modulated MTSs, a dominantly transverse magnetic (TM) surface wave (SW) is typically excited on an 

inductive impedance plane. It has been shown that one can gradually radiate the SW power by periodically 

modulating such impedance boundary condition (IBC) [6]. This effect has been successfully exploited to design 

high-gain antennas capable of providing multiple beams [7], dual-polarization [8], and dual-band [9] operation 

[9]. Their main drawback is a relatively narrow bandwidth (BW) in gain, which has so far precluded their use for 

broadband applications (wideband sensing, 5G communications, etc.). The relative -3dB gain fractional BW 

(Δf/f0, with f0 being the center frequency and Δf the total BW) of modulated MTS antennas with circular shape is 

equal to [10], 
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where c is the speed of light in vacuum, a is the antenna radius, λ0 is the free-space wavelength at f0, and vg is the 

SW group velocity at f0. Practical values of Δf/f0 may vary between 3.5% and 12% when the radius goes from 

17λ0 to 5λ0 for vg/c =0.5. On the other hand, the aperture gain G in absence of losses (directivity) is given by 
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Combining the latter expressions the product between fractional bandwidth and gain can be approximately 

written as G×B=47.37(vg/c)(a/λ0)2/(a/λ0+2). On this basis, and assuming that vg is fixed and according to (1), we 



will show that one can increase the BW without impacting the gain (G) by dividing the total aperture into 

sub-apertures with smaller radius, each one fed by its own source. Second, grating lobes (repetitions of the main 

lobe related to the spacing between sources) can be avoided by the combined action of an aperiodic tiling of the 

aperture [11] and appropriately tailoring the element pattern of each sub-aperture. Compared to other approaches 

for broadband operation [12], the aperiodic tiling of the plane presents the advantage of allowing one to steer the 

beam over a limited field of view (FoV). 
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