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Computing Δ(𝑥, 𝑦) ≥ 𝜏, the distance between two vectors 𝑥 and 𝑦 chained with a comparison to a predefined public threshold 𝜏, is an essential functionality that is extensively used in privacy-sensitive applications such as biometric authentication and identification, machine learning algorithms (e.g., linear regression, k-nearest neighbors etc.) or typo-tolerant password-based authentication. Cosine similarity is one of the most popular distance metrics employed in these settings. In this paper, we investigate the privacy-preserving computation of cosine similarity in a two-party distributed setting i.e., where a client outsources the distance calculation to two servers, while revealing only the result of the comparison to the service provider. We propose two two-party computation (2PC) protocols of cosine similarity followed by comparison to a public threshold, one in the semi-honest and one in the malicious setting. Our protocols combine additive secret sharing with function secret sharing, saving one communication round by employing a new building block to compute the composition of a bit and a binary function 𝑓 , thus requiring only two communication rounds under a strong threat model. We evaluate our protocols in the setting of biometric authentication using voice biometrics. Our results show that not only are the proposed protocols efficient, but they also maintain the same accuracy as the plain-text systems.

INTRODUCTION

Computing distance metrics of sensitive data and comparing to a predefined public threshold in a privacy-preserving way is an indispensable building block for a wide range of applications including privacy-preserving biometric authentication, 1:K biometric identification, privacy-preserving machine learning (e.g., linear regression, matrix multiplication) as well as typo-tolerant (fuzzy) password based authentication. This thresholded distance computation is very challenging to evaluate on sensitive data when multiple untrusted parties are involved in the process.

Although computing distance metrics in a privacy-preserving way has been widely covered in the literature, protecting non-linear , .

computations such as the comparison to a predefined threshold is not easy to achieve in an efficient way. In this paper, we focus on the privacy-preserving computation of cosine similarity between two vectors, one of the most commonly employed distance metrics, subsequently comparing the computed result to a public value 𝜏 acting as threshold. We propose two novel privacy-preserving protocols to realize this thresholded distance functionality where the computation is outsourced to two computing servers in a two-party computation (2PC) scenario. We leverage recent advances of Function Secret Sharing (FSS) [START_REF] Boyle | Function secret sharing for mixed-mode and fixed-point secure computation[END_REF][START_REF] Boyle | Secure computation with preprocessing via function secret sharing[END_REF] alongside additive secret sharing to achieve strong privacy guarantees for both protocols, since the only information revealed is the result of the comparison (and this only to the service provider). Our protocols are proven secure in the semi-honest setting and in the malicious setting respectively. Crucially, the proposed protocols rely on a new building block named CondEval, which can be employed to compute the composition of an input bit 𝑠 and a binary function 𝑓 (evaluated via FSS) i.e., 𝑠 • 𝑓 (𝑥) for an input value 𝑥. This building block is proven secure under both the semi-honest and the malicious models, and may be of independent interest for generic 2PC secure computation.

We apply and evaluate our protocols in the biometric authentication setting with voice biometrics. Biometric authentication consists of veryfing a the identty of a user by comparing a fresh compact representation of the biometric trait with a pre-existing (claimed) reference provided during the enrolment phase. The authentication is granted or denied based on whether or not the obtained similarity score is below a pre-fixed threshold. Although biometrics holds significant promise as a convenient authentication method, privacy concerns have hindered public trust and created obstacles to widespread adoption. For instance, in December 2021, the Flagstar Bank data breach leaked sensitive data of 1.5 million customers and forced the financial institution to pay 5.9 million Dollars in out-of-court settlements 1 .

Furthermore, we provide a detailed experimental evaluation of our proposed protocol by employing benchmark speech recognition datasets (i.e., VoxCeleb2). Our results show that the proposed scheme is not only efficient requiring only two communication rounds, but also maintains the same accuracy as the plain-text systems while guaranteeing security under a strong threat model.

Table 1: Benchmark of theoretical costs on evaluating a scalar product and comparison to threshold between two vectors of l n-bits integers Privacy-preserving comparison: Although linear operations such as scalar products are efficiently addressed by these techniques [START_REF] Huang | Secure two-party distance computation protocol based on privacy homomorphism and scalar product in wireless sensor networks[END_REF][START_REF] Rahulamathavan | Scalar product lattice computation for efficient privacy-preserving systems[END_REF][START_REF] Li Shundong | Secure Scalar Product Protocols[END_REF][START_REF] Van Daalen | Privacy Preserving 𝑛-Party Scalar Product Protocol[END_REF], non-linear operations like comparisons to a public threshold are still a challenge and are often inefficient for realtime applications. Privacy-preserving comparison is possible with FHE setting using computationally intensive polynomial approximations [START_REF] Hee Cheon | Numerical method for comparison on homomorphically encrypted numbers[END_REF][START_REF] Iliashenko | Faster homomorphic comparison operations for BGV and BFV[END_REF]. In contrast, many MPC-based solutions and frameworks realize privacy-preserving comparison in various settings [START_REF] Knott | Crypten: Secure multi-party computation meets machine learning[END_REF][START_REF] Deevashwer Rathee | CrypTFlow2: Practical 2-party secure inference[END_REF][START_REF] Wagh | F: Honest-majority maliciously secure framework for private deep learning[END_REF]. Mixed protocols (i.e., protocols that combine the use of arithmetic circuits with homomorphic encryption and/or Boolean circuits) compute scalar products using arithmetic protocols and switch from arithmetic to binary circuits in order to compute comparisons [START_REF] Demmler | ABY-A framework for efficient mixed-protocol secure two-party computation[END_REF][START_REF] Mohassel | ABY3: A mixed protocol framework for machine learning[END_REF][START_REF] Patra | {ABY2. 0}: Improved {Mixed-Protocol} Secure {Two-Party} Computation[END_REF]. However, these frameworks assume all parties to behave honestly, an often unrealistic assumption for real-world applications. Veugen et al. [START_REF] Veugen | A framework for secure computations with two non-colluding servers and multiple clients, applied to recommendations[END_REF] proposed a 2PC framework that improves comparison computation in the SPDZ protocol [START_REF] Damgård | Practical covertly secure MPC for dishonest majorityor: breaking the SPDZ limits[END_REF] which is a mixed protocol that takes into account the presence of malicious parties. However, these proposed solutions come with a notable drawback which is the intensive communication cost in terms of communication size and/or number of rounds. Recently, Functional Secret Sharing (FSS)-based protocols have been proposed to efficiently compute the comparison to a public threshold operation [START_REF] Boyle | Function secret sharing for mixed-mode and fixed-point secure computation[END_REF][START_REF] Boyle | Secure computation with preprocessing via function secret sharing[END_REF][START_REF] Ibarrondo | Funshade: Functional Secret Sharing for Two-Party Secure Thresholded Distance Evaluation[END_REF][START_REF] Ryffel | Ariann: Low-interaction privacy-preserving deep learning via function secret sharing[END_REF]. Nevertheless, the mentioned protocols focus mainly on the semi-honest model and barely security against malicious adversaries.

Privacy-preserving biometrics: Multiple initiatives have been proposed in the literature to securely compute similarity distance and comparison to a public threshold for biometric authentication applications. Boddeti [START_REF] Vishnu | Secure face matching using fully homomorphic encryption[END_REF] presented a privacy-preserving framework for facial recognition based on FHE. The face dissimilarity score is computed in the encrypted domain and consists of performing scalar multiplications and scalar additions. In [START_REF] Kumar Morampudi | Privacypreserving iris authentication using fully homomorphic encryption[END_REF], the authors made use of an FHE scheme to compute the Hamming distance in the encrypted domain for iris authentication. The work proposed in [START_REF] Rahulamathavan | Privacy-preserving similarity calculation of speaker features using fully homomorphic encryption[END_REF] makes use of FHE to privately compute the cosine similarity for an Automatic Speaker Verification (ASV) system. However, the authors focused solely on studying the similarity computation, without carrying out the crucial step of comparing the result to the threshold. They assumed that the decision score would be received and decrypted by the client's device, which could potentially create a security vulnerability in the event of a malicious client attempting to modify the score to gain unauthorized access. Kim et al. [START_REF] Kim | Efficient privacypreserving fingerprint-based authentication system using fully homomorphic encryption[END_REF] presented a fingerprint authentication system using FHE in which fingerprint data is stored and processed in decrypted form. The decision score is computed using the square of Euclidean distance between two encrypted vectors. The threshold comparison is also performed in the encrypted domain. Despite the potential shown by FHE in the previously mentioned work, its utilization in real-world circumstances is still restricted by the significant computational overheads.

Additionally, MPC-based techniques have been successfully used to protect sensitive data like face [START_REF] Barni | SEMBA: secure multi-biometric authentication[END_REF], iris [START_REF] Barni | SEMBA: secure multi-biometric authentication[END_REF][START_REF] Fălămaş | Assessment of Two Privacy Preserving Authentication Methods Using Secure Multiparty Computation Based on Secret Sharing[END_REF], and voice [START_REF] Nautsch | Privacypreserving speaker recognition with cohort score normalisation[END_REF][START_REF] Treiber | Privacy-preserving PLDA speaker verification using outsourced secure computation[END_REF]. Barni et al. [4] introduced a secure multi-modal biometric authentication, that combines face and iris features, based on secure two-party computation against one malicious party. The two noncolluding parties compute the Hamming distance and the Euclidean distance and later evaluate the comparison of the fused scores with a public threshold. The work in [START_REF] Fălămaş | Assessment of Two Privacy Preserving Authentication Methods Using Secure Multiparty Computation Based on Secret Sharing[END_REF] proposes a secure two-party computation solution for an iris verification that is secure in the semi-honest adversary model. The Hamming distance along with the threshold comparison is computed securely.

Nautsch et al. [START_REF] Nautsch | Privacypreserving speaker recognition with cohort score normalisation[END_REF] provided the first computationally feasible privacy-preserving ASV system with cohort score normalization based on 2PC. However, this work only considers the case where the parties/servers are honest-but-curious, i.e., the parties will not deviate from the described protocol, nevertheless, they can try to collect extra information about the input of the other party. In [START_REF] Treiber | Privacy-preserving PLDA speaker verification using outsourced secure computation[END_REF], Treiber et al. proposed a 2PC-based ASV system secure against a malicious client device that can change the score to get authenticated by the service provider. However, the 2PC servers are assumed to be honest-but-curious and one party reconstructs the decision.

Our Contributions. In this work, we propose a novel two-party protocol for secure computation of cosine similarity followed by comparison to a predefined threshold. Based on secure 2PC and FSS, we prove two variants of our protocol secure in the semi-honest and malicious settings respectively. Table 1 provides a detailed comparison of our solution with prior work. Contrary to prior work that assumes honest normalisation performed by the client, we require the client to submit a non-normalised reference template and we incorporate a mechanism to check that the secret sharing of the fresh (as well as the reference) template has been secret shared correctly. Falcon is the only work that considers a malicious server. However, it is a symmetric 3PC solution and the maliciousness is introduced thanks to Replicated Secret Sharing (RSS).

The main contributions of our paper are:

• We propose a 2PC framework for privacy-preserving cosine similarity computation and comparison to a pre-defined threshold. We propose two variants: one protocol for the semi-honest setting and one for the malicious setting. We provide robustness guarantees, since the malicious protocol allows us to control the malicious behaviour of one of the servers. In both protocols, we consider that the normalisation is performed by the servers. Our protocol for the malicious setting relies on authenticated 2PC secret sharing as well as recent advances of FSS.

• We introduce a new building block we call as CondEval that can be employed to compute the composition of an input bit and a binary function 𝑓 (evaluated via FSS) i.e., 𝑠 • 𝑓 (𝑥) for an input value 𝑥. This building block is provably secure under both the semi-honest and malicious model. This solution is of independent interest and can be employed in a general 2PC secure computation. • We provide a detailed security analysis of the introduced protocols as well as the new building block CondEval described above.

• We evaluate the proposed protocols experimentally, employing voice biometrics as a use case. Our experiments show that the proposed protocols are very efficient, requiring only two communication rounds while maintaining the same accuracy as the plain-text systems. The paper is organised as follows. Section 2 describes the problem statement, introducing the application scenario alongside the threat model, and outlining a technical overview of our solution. In Section 3, we revisit the cryptographic 2PC primitives we rely on, namely additive secret sharing and function secret sharing. In Section 4, we introduce CondEval, a building block that allows the composition of an input bit and a binary function 𝑓 evaluated via FSS, and prove its security in both the semi-honest and malicious settings. Section 5 covers our two novel protocols for the privacy-preserving computation of thresholded cosine similarity for both the semihonest and the malicious settings as well as their corresponding security analysis. Section 6 presents our experimental evaluation and results, concluding the paper in Section 7.

PROBLEM STATEMENT

This section briefly introduces notations, the application scenario and threat model considered as well as the technical overview of our approach to compute cosine similarity and compare to a threshold in a privacy-preserving way.

Notations

We use the following notations throughout the paper.

𝜀 empty string.

[𝑛] set of integers {1, 2, . . . , 𝑛} for a positive integer 𝑛. [𝑥] A Arithmetic/Additive secret sharing of 𝑥 ∈ U 𝑁 . 

Application Scenario

Let us examine a scenario in which a client C requests access to a service, such as an online bank, that uses a biometric-based authentication system. During the authentication process, the client's fresh biometric template is compared to the stored reference biometric template using the cosine similarity distance, and the authentication decision is taken based on a pre-determined threshold. This application scenario is depicted in Figure 1.

For privacy reasons, the client does not want to disclose her biometric data in clear to any party, considering their sensitive nature and the high risk of a data breach in a centralised database. We therefore consider two additional non-colluding servers, S 0 and S 1 , in charge of collecting and privately storing the secret shares of the clients' reference templates upon their registration during the enrollment phase, performing the biometric verification process (i.e., matching of the templates) and disclosing the decision output to the service provider B (i.e., the bank).

Threat Model

In this paper, we assume that the client has already registered and submitted her biometric data (e.g., voice reference template) in a privacy-preserving manner to the two non-colluding servers. Then, in the authentication process the comparison between the fresh biometric template and the registered reference template is performed by the two servers. Note that neither any server nor the service provider have access to any biometric templates in cleartext. We also assume that the protocol is running through secure channels providing security against any external adversary that can compromise the transmission.

In the considered setting, we have four players playing three different roles. We assume a semi-honest dealer (e.g., the central bank B) distributing reliable correlated randomness to two computing servers in the setup phase. We consider that the client may act maliciously i.e., may attempt to impersonate a legitimate user and deduce information for the corresponding templates. Thus, we require the client to submit a non-normalised reference template and we incorporate a mechanism to check that the secret sharing of the fresh (as well as the reference) template have been secret shared correctly. Finally, we consider two non-colluding servers that tolerate one corruption from an active adversary deviating from the correct execution of the protocol (i.e., perform wrong computation in the matching process between the fresh and stored template and/or try to infer information about the fresh and/or stored biometric templates). We highlight that if both servers deviate from the protocol, they don't obtain any useful information related to the client's data as long as they don't collude.

Privacy-preserving cosine similarity -Technical Overview

Let 𝑥 and 𝑦 of dimension 𝑛 denote the fresh template received from the user requesting to authenticate and the reference template submitted upon enrollment, respectively. The cosine similarity metric would then computed as:

𝑐𝑜𝑠 (𝑥, 𝑦) = IP(𝑥, 𝑦) ∥𝑥∥ • ∥𝑦∥ = 𝑛 𝑖=1 𝑥 𝑖 • 𝑦 𝑖 √︃ 𝑛 𝑖=1 𝑥 2 𝑖 • √︃ 𝑛 𝑖=1 𝑦 2 𝑖 (1)
To authenticate the owner of 𝑥 against the reference 𝑦, the resulting score of 𝑐𝑜𝑠 (𝑥, 𝑦) would then compared with a public threshold 𝜏 ∈ [-1, 1]. If the similarity score is greater than or equal to 𝜏, then the user is successfully authenticated, otherwise, the authentication fails. Overall, we can define the biometric authentication functionality as:

F CosAuth (𝑥, 𝑦, 𝜏) = Sign(𝑐𝑜𝑠 (𝑥, 𝑦) -𝜏) (2) 
In order to design a privacy-preserving protocol for this functionality, we must define privacy-preserving protocols to realize all to the underlying operations: addition, multiplication, inner product, division, square-root and sign extraction. Arithmetic operators can be straightforwardly instantiated using additive secret sharing [START_REF] Beaver | Efficient Multiparty Protocols Using Circuit Randomization[END_REF]. In contrast, the square root is relatively complex to realize, thus we choose instead to remove it by squaring the inputs to the Sign function with additional terms to maintain the original signs. The computation of F CosAuth = 𝑐 would proceed as follows:

• If 𝜏 > 0, we compute 𝑐 = 𝑐 1 ∧ 𝑐 2 where

𝑐 1 = Sign( [IP(𝑥, 𝑦)] A ) 𝑐 2 = Sign( [1/𝜏 2 • IP(𝑥, 𝑦) 2 -IP(𝑥, 𝑥) • IP(𝑦, 𝑦)] A ) (3) 
• If 𝜏 = 0, we compute:

𝑐 = Sign(IP(𝑥, 𝑦)) • Otherwise if 𝜏 < 0, we compute 𝑐 = 𝑐 1 ∨ 𝑐 2 where 𝑐 1 = Sign( [IP(𝑥, 𝑦)] A ) 𝑐 2 = Sign( [IP(𝑥, 𝑥) • IP(𝑦, 𝑦) -1/𝜏 2 • IP(𝑥, 𝑦) 2 ] A )
One can easily verify the correctness of this definition. For the remnant of this paper, w.l.o.g., we assume 𝜏 > 0, and define the computation pipeline defined in Equation 3 as a circuit C. When naively implemented with a traditional 2PC protocols and FSS, this circuit requires three communication rounds: one round to compute 𝑐 1 , one for 𝑐 2 and one to compute 𝑐 = 𝑐 1 ∧ 𝑐 2 .

We enhance the naïve solution by decreasing the number of communication rounds to 2. To achieve this, we propose a new 2PC protocol named CondEval that combines 2PC authenticated secret sharing and recent advances of FSS in order to compute the composition of a Sign function with an ∧ or ∨ operation. Leveraging new building block, the computation of 𝑐 = 𝑐 1 ∧𝑐 2 can be performed at the same time as the computation of 𝑐 2 performed through FSS, saving up a communication round.

We prove the security of this new CondEval block, as well as that of the complete privacy-preserving protocol realizing F CosAuth , under the semi-honest and the malicious models admitting one corruption out of the two computing servers. For maliciously-secure variants of our protocols we employ homomorphic MACs when using additive secret shares (as in the SPDZ protocol [START_REF] Damgård | Practical covertly secure MPC for dishonest majorityor: breaking the SPDZ limits[END_REF]). Additionally, to provide active security in the FSS gates we resort to the parallel execution of multiple instances of these gates with independent FSS keys. A subset of these instances, chosen at FSS key generation and unknown to the computing servers, act as "trap" instances, allowing the detection of malicious behavior in a single computing server.

The full maliciously-secure protocol, combining arithmetic secret sharing with FSS, consists of the following four stages:

(1) Setup: Generation of relevant correlated randomness;

(2) Input: Both the client and B input their secret vectors 𝑥, 𝑦 separately;

(3) Evaluation: The two servers:

• First round: Compute a Boolean sharing [𝑐 1 ] B ;

• Second round: Compute the final Boolean sharing

[𝑐] B = [𝑐 1 ] B • 𝑓 (𝑥) (or (𝑐) 𝑚 along

with a proof [𝜎]

A for the computation in the malicious setting); (4) Reveal: The service provider B builds 𝑐 in cleartext (or verifies (𝑐) 𝑚 and check [𝜎] A in the malicious setting).

PRELIMINARIES

In this section, we describe notions used in the rest of the paper i.e., two party secure computations, secure truncation and function secret sharing.

Two-Party Secure Computation

Secure two-party computation allows two non-colluding parties 𝑃 0 and 𝑃 1 to compute a function 𝑓 on their private inputs (e.g., 𝑥 and 𝑦) without revealing any information beyond the final value of 𝑓 (𝑥, 𝑦). 2PC protocols are based on either: (i) Secret Sharing (SS) techniques i.e., arithmetic SS, like additive SS [START_REF] Beaver | Efficient Multiparty Protocols Using Circuit Randomization[END_REF] and replicated SS [START_REF] Araki | High-throughput semi-honest secure three-party computation with an honest majority[END_REF], or Boolean SS like GMW [START_REF] Micali | How to play any mental game[END_REF]; or (ii) Garbled Circuits (CG) like Yao's GCs [START_REF] Andrew | How to generate and exchange secrets[END_REF], BMR [START_REF] Beaver | The round complexity of secure protocols[END_REF].

Optimized Additive SS. In this work, we make use of an optimized additive SS with function dependent pre-processing as our building block [START_REF] Ben-Efraim | Turbospeedz: double your online SPDZ! improving SPDZ using function dependent preprocessing[END_REF]. In the setup phase, correlated random offset shares are generated and computed for input wires and output wires of each gate to the function circuit to be evaluated. These correlated random shares are input-independent, i.e., they do not depend on the private input of the parties and can be executed at any time before the online/data-dependent phase where the actual function 𝑓 is evaluated. In the evaluation phase, efficient online secure computation is performed. We denote by ⟨𝑥⟩ A the optimized additive SS of a secret 𝑥 in a two-party setting of S 0 , S 1 , where ∀𝑏 ∈ {0, 1}, S 𝑏 holds partial shares

⟨𝑥⟩ A 𝑏 : (𝛿 𝑥 , [𝑟 𝑥 ] A 𝑏 ) in which 𝛿 𝑥 = 𝑥 + 𝑟 𝑥 , [𝑟 𝑥 ]
A is the associated random offset of the secret value 𝑥. One share alone does not disclose any information about 𝑥 but when summed together, they reconstruct it

(𝑥 = 𝛿 𝑥 -[𝑟 𝑥 ] A 0 -[𝑟 𝑥 ] A 1 )
. The parties interact with each other to compute any desired function from the input secret shares. We denote by F Reveal ([𝑥] A ) the functionality that inputs an arithmetic secret sharing of 𝑥 from two servers and outputs 𝑥. Given ⟨𝑥⟩ A and ⟨𝑦⟩ A , we demonstrate how addition and multiplication gates are performed in the following.

Addition. It requires no communication between the two parties.

The two parties simply locally add the shares they hold. More precisely, each party 𝑏 ∈ {0, 1} computes:

⟨𝑥 + 𝑦⟩ A 𝑏 = (𝛿 𝑥 + 𝛿 𝑦 , [𝑟 𝑥 ] A 𝑏 + [𝑟 𝑦 ] A 𝑏 ) Multiplication.
It requires interaction between the two parties and relies on additional input-independent but function-dependent random pre-computed secret shares named Beaver's triples [START_REF] Beaver | The round complexity of secure protocols[END_REF]. To compute [𝑧] A where 𝑧 = 𝑥𝑦, with the corresponding Beaver's triples

[𝑟 𝑥 ] A ,[𝑟 𝑥 ] A , [𝑟 𝑥 𝑟 𝑦 ]
A generated in the setup phase, the parties are able to locally compute the additive secret shares of 𝑧. i.e., ∀𝑏 ∈ {0, 1}, S 𝑏 holds

{⟨𝑥⟩ A 𝑏 = (𝛿 𝑥 , [𝑟 𝑥 ] A 𝑏 ), ⟨𝑦⟩ A 𝑏 = (𝛿 𝑦 , [𝑟 𝑦 ] A 𝑏 ), [𝑟 𝑥 𝑟 𝑦 ] A 𝑏 } FUNCTIONALITY [𝜍] A ← F MacVryGen ([Δ] A , 𝐿) Players: S 0 , S 1 .
Input: An arithmetic secret sharing of the MAC authentication key

[Δ] A , along with a list 𝐿 = (𝑥 𝑖 , [Δ • 𝑥 𝑖 ] A , 𝑟 𝑖 ) 𝑖 ∈ [𝑛] , in which ∀𝑖 ∈ [𝑛] that 𝑥 𝑖 , 𝑟 𝑖 is public and [Δ •𝑥 𝑖 ] A is the arithmetic secret sharing over Δ • 𝑥 𝑖 . Output: [𝜍] A .
1: for 𝑏 = 0 to 1 do 2:

[𝜍] A 𝑏 ← 0 3:

for 𝑖 = 1 to 𝑛 do 4: in which 𝛿 𝑥 = 𝑥 + 𝑟 𝑥 , 𝛿 𝑦 = 𝑦 + 𝑟 𝑦 . Then, 𝑆 𝑏 computes:

[𝜍] A 𝑏 ← [𝜍] A 𝑏 + 𝑟 𝑖 • ([Δ] A 𝑏 • 𝑥 𝑖 -[Δ • 𝑥 𝑖 ] A 𝑏 ) 5: Ouput [𝜍] A .
[𝑧] A 𝑏 = 𝑏 • 𝛿 𝑥 𝛿 𝑦 -𝛿 𝑥 [𝑟 𝑥 ] A 𝑏 -𝛿 𝑦 [𝑟 𝑦 ] A 𝑏 + [𝑟 𝑥 𝑟 𝑦 ] A 𝑏 . (4) 
However, to conform the multiplication output to an optimized secret sharing format, the parties locally compute [𝑧 + 𝑟 𝑧 ] A and reveal 𝑧+𝑟 𝑧 in one round, where 𝑟 𝑧 is a pre-generated random output wire offset in the setup phase. Thus, obtaining

⟨𝑧⟩ A = (𝑧 +𝑟 𝑧 , [𝑟 𝑧 ] A ).
Throughout this paper, we denote [𝑥] A ← SS.Share(𝑥, Z 2 ℓ ) as the algorithm dividing a secret into secret sharing in the domain Z 2 ℓ , where 𝑥 can be a single value or an 𝑛-sized vector; SS.MUL(⟨𝑥⟩ A , ⟨𝑦⟩ A , [𝑟 𝑥 𝑟 𝑦 ] A ) as the multiplication process shown in Eq. 4, SS.IP(⟨𝑥⟩ A , ⟨𝑦⟩ A , [𝑢] A ) as the inner product of two vectors 𝑥, 𝑦 where 𝑢 is the correlated product of randomness.

SPDZ2k protocol. The SPDZ protocol [START_REF] Cramer | SPDZ 2 𝑘 : efficient MPC mod 2 𝑘 for dishonest majority[END_REF] is a MPC protocol works in the context of the dishonest majority setting, or assuming one malicious server in the 2PC setting. It performes secure operations over authenticated secret sharing in a ring, and manages to detect any cheating behavior by introducing a message authentication code Δ secretly shared between the two servers. Throught out this paper where we deal with 2PC setting, we denote an authenticated arithemetic secret sharing of a secret 𝑥 as

𝑥 A : ([𝑥] A , [Δ • 𝑥] A )
and ⟨⟨𝑥⟩⟩ A as the authenticated optimized arithmetic secret sharing of 𝑥. Naturally, we use notations 𝑥 A 𝑏 and ⟨⟨𝑥⟩⟩ A 𝑏 to denote the share held by S 𝑏 . After the online secure computation, two servers work together to verify the integrity of every revealed value in the secure computation. This is done by using a final MAC verification algorithm F MacVryGen ([Δ] A , 𝐿) ( as shown in Fig. 2), in which Δ denotes the secret authentication key,

𝐿 = (𝑥 𝑖 , [Δ • 𝑥 𝑖 ] A , 𝑟 𝑖 ) 𝑖 ∈ [𝑛]
is the list of all revealed values, their associated authenticated share, and random numbers negotiated between two servers. If the verification fails, malicious behaviors are detected and the parties abort the procedure.

When working with authenticated optimized secret sharing in the malicious setting, we use same notation SS.MUL(⟨⟨𝑥⟩⟩ A , ⟨⟨𝑦⟩⟩ A , 𝑟 𝑥 𝑟 𝑦 A ) and SS.IP(⟨⟨𝑥⟩⟩ A , ⟨⟨𝑦⟩⟩ A , 𝑢 A ) to denote secure multiplication and secure inner product, respectively.

Secure Truncation

Given an arithmetical secret sharing [𝑥]

A where 𝑥 ∈ Z ℓ and a truncation parameter 𝜌 ∈ Z + , a secret sharing based truncation operation aims to compute the truncated secret sharing [Shift(𝑥, 𝜌, ℓ)] A .

In the proposed protocols of section 5, we use a secure truncation operation over random secret sharing results in the pre-processing model. We employ the truncation pair (𝑟, Shift(𝑟, 𝜌, ℓ)) introduced in [START_REF] Mohassel | ABY3: A mixed protocol framework for machine learning[END_REF]. More precisely, in our model, we generate a truncation pair (𝑟, Shift(𝑟, 𝜌, ℓ)) as follows:

(1) In the setup phase, a random offset 𝑟 ∈ Z 

Function Secret Sharing

Function Secret Sharing (FSS) was first introduced by Boyle et al. [START_REF] Boyle | Function secret sharing[END_REF] as a cryptographic primitive that secretly shares a function 𝑓 . Informally, in a two party setting with a function 𝑓 : D → R, function secret sharing comprises a key generation algorithm Gen 𝑓 (1 𝜆 ) producing a key pair (𝑘 0 , 𝑘 1 ), and an evaluation algorithm Eval 𝑓 , which takes in one shared key and a value 𝑥, ensuring that ∀𝑥 ∈ D that the sum of Eval 𝑓 (𝑘 0 , 0, 𝑥) and Eval 𝑓 (𝑘 1 , 1, 𝑥) is equal to 𝑓 (𝑥). Shortly after, a secure computation scheme with pre-processing via FSS was proposed by Boyle et al. [START_REF] Boyle | Secure computation with preprocessing via function secret sharing[END_REF]. In this scheme, nonlinear gates (e.g., for equality tests, integer comparison, etc.) can be computed with a relatively small amount of communication in one round. We give an example how in this model a secure equality check is conducted between S 0 and S 1 .

Let us consider the case of a point function 𝑓 𝑎 : {0, 1} ℓ → {0, 1} corresponding to a special point 𝑎 ∈ {0, 1} ℓ , ∀𝑥 ∈ {0, 1} ℓ that outputs 1 if 𝑥 = 𝑎 and outputs 0 otherwise. In the pre-processing phase, a trustworthy dealer respectively distributes S 0 , S 1 additive secret shares 𝑟 0 , 𝑟 1 of a random mask value 𝑟 ← {0, 1} ℓ and FSS key shares 𝑘 0 , 𝑘 1 correspond to the random point function 𝑓 𝑟 . In the online phase, ∀𝑖 ∈ {0, 1}, 𝑃 𝑖 holds 𝑥 𝑖 , 𝑟 𝑖 and 𝑘 𝑖 , and 𝑃 𝑖 exchanges 𝑥 𝑖 + 𝑟 𝑖 with 𝑃 1-𝑖 . After revealing the masked value 𝑥 + 𝑟 , ∀𝑖 ∈ {0, 1}, 𝑃 𝑖 computes 𝑓 𝑟,𝑖 (𝑥 + 𝑟 -𝑎) and thus, obtains secret shares of 𝑓 𝑎 (𝑥). Boyle et al. also proposed FSS schemes for comparison functions in [START_REF] Boyle | Function secret sharing[END_REF][START_REF] Boyle | Secure computation with preprocessing via function secret sharing[END_REF].

In constructing all our protocols, we make use the interval containment function secret sharing (IC-FSS) ([10], Section 4.1) as our secure comparison primitive. 

< 𝑞, ∀𝛼 ∈ Z 2 ℓ , ∀𝛽 1 , 𝛽 2 ∈ U 𝑁 , (𝑘 0 , 𝑘 1 ) ← Gen [𝑝,𝑞 ] ℓ (1 𝜆 , 𝛼, 𝛽 1 , 𝛽 2 , U 𝑁 ) for ∀𝑥 ∈ Z 2 ℓ denote 𝛿 𝑥 = 𝑥 + 𝛼, it holds that: 1 ∑︁ 𝑏=0 Eval [𝑝,𝑞 ] ℓ (𝑘 𝑏 , 𝑏, 𝛿 𝑥 ) = 𝛽 1 , if 𝑥 ∈ [𝑝, 𝑞] 𝛽 2 , if 𝑥 not in [𝑝, 𝑞]
In order to design our privacy-preserving biometric matching solution in an optimized manner, we propose a new building block that helps us in reducing the number of communication rounds. Indeed, as explained in Section 2.4, the evaluation of a biometric matching protocol consists of the following steps: (i) computing shares of the Boolean values 𝑐 1 and 𝑐 2 (see Equation 3) and then, depending on the value of 𝜏, (ii It is worth to note that such a building block can be used as an independent scheme, whenever there is a need to compute the Boolean composition of a certain bit 𝑠 with a certain function 𝑓 evaluated with FSS with an input 𝑥:

)
[𝑠 • 𝑓 (𝑥)] B ← CondEval(•, K • , [𝑠] B , [𝑥] A )
In the context of biometric matching 𝑠 corresponds to the already computed 𝑐 1 and 𝑓 (𝑥) corresponds to the evaluation of 𝑐 2 , namely,

Sign( [1/𝜏 2 • IP(𝑥, 𝑦) 2 -IP(𝑥, 𝑥) • IP(𝑦, 𝑦)] A ).
Thanks to this newly proposed solution, CondEval is realized in only one communication round (instead of two) among two parties in the pre-processing model. In this Section, we consider only the ∧ operation and we describe how CondEval computes 𝑠 ∧ 𝑓 (𝑥) in a symmetric two-party setting. Two versions of CondEval are described: one in the semi-honest model and another one in the malicious model in which one of the servers does not follow the protocol correctly.

High-level Overview

As previously mentioned the goal of CondEval is to evaluate 𝑠 • 𝑓 (𝑥) using FSS in a 2PC setting where two computing servers, S 0 and S 1 , engage in symmetric computation and communication. The input to this protocol is mainly secret shares of a bit 𝑠 and an input 𝑥.

In the sequel of this paper, we consider the ∧ operation only and details on the ∨ operation are provided in Appendix C. In order to avoid the additional communication round that is due to the ∧ operation, we propose to integrate this particular operation through the FSS evaluation of 𝑥. Indeed, from Table 2 (which corresponds to the truth table of 𝑠 ∧ 𝑓 (𝑥)), we observe that if 𝑠 = 0, then the output is 0 and if 𝑠 = 1 then the output is the actual output of 𝑓 (𝑥). In the case when the output range is in Z 2 , 𝑓 (𝑥) is obtained when each server S 𝑏 (𝑏 ∈ {0, 1}) runs Eval 𝑓 (𝑘 𝑏 , 𝑥) and the output is reconstructed with an XOR of these. If each server runs Eval 𝑓 over the same keys, the reconstructed output would become 0, which corresponds to the case when 𝑠 = 0. Hence, the overall idea is to make sure that when running Eval, the two servers use the same FSS key if 𝑠 = 0 and different FSS keys if 𝑠 = 1. This is illustrated in the 2PC setting (note that 𝑠 is secretly shared among the two servers as well) in Table 2. The goal is therefore to make sure that each server retrieves the correct FSS key according to 𝑠, without leaking any information neither about 𝑠, nor the other FSS key.

𝑠 𝑠 ∧ 𝑓 (𝑥) 𝑠 0 𝑠 1 [𝑦] B 0 [𝑦] B 1 [𝑦] B 0 ⊕ [𝑦] B 1 0 0 0 0 Eval 𝑓 (𝑘 0 , 0, 𝛿 𝑥 ) Eval 𝑓 (𝑘 0 , 0, 𝛿 𝑥 ) 0 1 1 Eval 𝑓 (𝑘 1 , 1, 𝛿 𝑥 ) Eval 𝑓 (𝑘 1 , 1, 𝛿 𝑥 ) 1 𝑓 (𝑥) 1 0 Eval 𝑓 (𝑘 0 , 0, 𝛿 𝑥 ) Eval 𝑓 (𝑘 1 , 1, 𝛿 𝑥 ) 𝑓 (𝑥) 0 1 Eval 𝑓 (𝑘 1 , 1, 𝛿 𝑥 ) Eval 𝑓 (𝑘 0 , 0, 𝛿 𝑥 ) Table 2: The truth table of [𝑠 ∧ 𝑓 (𝑥)] B .
Such a protocol could be easily designed if the trusted bank, would store these two FSS keys 𝑘 0 and 𝑘 1 and randomly map them to the values of 𝑠 (𝑘 𝑡 if 𝑠 = 0, 𝑘 1-𝑡 is 𝑠 = 1, where 𝑡 ←$ {0, 1}). Then, each server would run a private information retrieval protocol with the bank to retrieve the actual key corresponding to its share without revealing the actual share. In order not to involve an additional party on the computation and save in the number of communication rounds, we propose to store these two keys at both servers in an encrypted manner. More precisely, server S 0 will store the two FSS keys, encrypted beforehand and will receive one decryption key from server S 1 based on its share of 𝑠 and vice versa. Hence, the key required to decrypt the FSS key (stored on one server) is stored on the other server.

This implies that, each server S 𝑏 will store both FSS keys in an encrypted manner but will only be able to decrypt one of them according to the value of 𝑠. The goal is to receive and decrypt the correct FSS key, without disclosing 𝑠 nor the FSS key not used by S 𝑏 .

To prevent any leakage about [𝑠] B 𝑏 from S 1-𝑏 , and the other FSS key not used by S 1-𝑏 where 𝑏 ∈ {0, 1}, CondEval integrates the following measures:

• since Eval 𝑓 takes as input not only one FSS key but also this FSS key's corresponding index (0 or 1), this index information should not leak any information about 𝑠. Hence, the mapping between the FSS key index and [𝑠] B 𝑏 needs to be protected as well, this is realized by set the initial FSS key pair as (𝑘 𝑡 , 𝑘 1-𝑡 ) where 𝑡 ←$ {0, 1}.

• to protect the value of [𝑠] B 𝑏 , a random permutation is applied to (𝑘 𝑡 , 𝑘 1-𝑡 ); • to protect one of the FSS key not used, the permuted key pair are encrypted through one-time-pad before their storage and only one decryption key will be sent from S 𝑏 to S 1-𝑏 in the key decryption step.

In a highlevel overview, CondEval consists of four algorithms executed in two phases:

• During the setup phase, a trusted dealer generates the keying material using CondEval.KeyGen and protects the FSS key pair with CondEval.KeyEnc. These encrypted FSS keys and the keying material are distributed to the servers; • During the online phase, each server who has received the share of 𝑠 and the randomized input 𝛿 𝑥 = 𝑥 + 𝑟 , will send the correct decryption key 𝑠𝑘 according to its share of 𝑠 to the other server. Once the correct FSS key is decrypted using CondEval.KeyDec, the server finishes the protocol by executing the FSS Eval function (CondEval.Eval) to obtain the share of the output 𝑠 ∧ 𝑓 (𝑥).

KeyGen

𝑟 ←$ Z 2 ℓ , [𝑟 ] A ← SS.Share(𝑟, Z 2 ℓ ) (𝑘 0 , 𝑘 1 ) ← Gen 𝑓 (1 𝜆 , 𝑟, 1, 0, Z 2 )(|𝑘 0 | = |𝑘 1 | = 𝐾); 𝑡 ←$ Z 2 , 𝜋 0 ←$ Z 2 , 𝜋 1 ←$ Z 2 ; 𝐿 := 𝐾 + 1; sk (0) 0 ∥sk (0) 1 ∥sk (1)
0 ∥sk

(1) 3: The construction of K ∧ ← CondEval.Setup(∧, 1 𝜆 , ℓ) in the semi-honest setting, where 𝜆 is the security parameter used in generating FSS keys, ℓ defines the domain of the secret sharing.

1 ←$ {0, 1} 4𝐿 , |sk (0) 0 | = |sk (0) 1 | = |sk (1) 0 | = |sk (1) 1 | = 𝐿. KeyEnc 𝑚 0 = {sk (0) 0 ⊕ (𝑘 𝑡 ∥𝑡), sk (0) 1 ⊕ (𝑘 1-𝑡 ∥(1 -𝑡))} 𝐶 0 = F Permu (𝜋 0 , 𝑚 0 ); SK 0 = {(sk (1) 0 , sk (1) 1 ), 𝜋 1 } 𝑚 1 = {sk (1) 0 ⊕ (𝑘 𝑡 ∥𝑡), sk (1) 1 ⊕ (𝑘 1-𝑡 ∥(1 -𝑡))} 𝐶 1 = F Permu (𝜋 1 , 𝑚 1 ); SK 1 = {(sk (0) 0 , sk (0) 1 ), 𝜋 0 } Outputs K ∧ = {𝐶 𝑖 , SK 𝑖 , [𝑟 ] A 𝑖 } 𝑖 ∈ {0,1} Table 
In the following, we describe CondEval in both the semi-honest and malicious settings. Specifically, we consider the cases of computing 𝑠 ∧ 𝑓 (𝑥) and 𝑠 ∨ 𝑓 (𝑥). We only demonstrate the construction of CondEval for the case of computing 𝑠 ∧ 𝑓 (𝑥) in both the semihonest and malicious settings; The protocol for computing 𝑠 ∨ 𝑓 (𝑥) is defined similarly and can be performed either by using:

𝑠 ∨ 𝑓 (𝑥) = ¬(¬𝑠 ∧ ¬𝑓 (𝑥))
or directly by relying on a slightly different key preparation and evaluation compared with computing 𝑠 ∧𝑓 (𝑥). The second approach due to space constraints, we have attached in the Appendix C.

CondEval in the Semi-Honest setting

We propose the building block CondEval which can be used to evaluate 𝑠 • 𝑓 (𝑥). In this section, we introduce the CondEval construction that is secure in the semi-honest setting and focus on the ∧ operation only. It works in the pre-processing model, and is composed of two functionalities:

K ∧ ← CondEval.Setup(∧, 1 𝜆 , ℓ) and [𝑦] B ← CondEval.Eval(∧, K ∧ , [𝑠] B , [𝑥] A )
that are run respectively in the setup and online phase. The construction of CondEval.Setup is shown in Table 3 

∧, K ∧ , [𝑠] B , [𝑥] A ) honestly, then it outputs [𝑦] B = [𝑠 ∧ 𝑓 (𝑥)] B . Proof. If 𝑠 = 0, then ([𝑠] B 0 , [𝑠] B 1
) is equal to either (0, 0) or (1, 1). Thus, in the online phase after the decryption of FSS keys, the servers obtain either {𝑘 𝑡 , 𝑘 𝑡 } or {𝑘 1-𝑡 , 𝑘 1-𝑡 }, which implies

Functionality [𝑠 ∧ 𝑓 (𝑥)] B ← CondEval.Eval(∧, K ∧ , [𝑠] B , [𝑥] A ) Players: S 0 , S 1 . Functionality: [𝑠 ∧ 𝑓 (𝑥 ) ] B ← CondEval.Eval(∧, K ∧ , [𝑠 ] B , [𝑥 ] A ). Input: [𝑠 ] B , [𝑥 ]
A from two servers, and K ∧ prepared in the setup phase as shown in Table 3 where K ∧ = {𝐶 𝑏 , SK 𝑏 , 𝑟 𝑏 } 𝑏 ∈{0,1} , more specifically each S 𝑏 (𝑏 ∈ {0, 1} ) inputs {𝐶 𝑏 , SK 𝑏 , 𝑟 𝑏 }. (Note that (𝑟 0 , 𝑟 1 ) constitutes

[𝑟 ] A ). Output: [𝑠 ∧ 𝑓 (𝑥 ) ] B . 1: 𝛿 𝑥 ← F Reveal ( [𝑥 ] A + [𝑟 ] A ) 2:
for 𝑏 = 0 to 1 do 3:

S 𝑏 : 𝑝 (1-𝑏) ← [𝑠 ] B 𝑏 ⊕ 𝜋 1-𝑏 , sk (1-𝑏) ← sk (1-𝑏) [𝑠 ] B 𝑏 . 4:
S 𝑏 : Sends 𝑝 (1-𝑏) ∥sk (1-𝑏) to S 1-𝑏 .

⊲ Key decryption 5: for 𝑏 = 0 to 1 do 6:

S 𝑏 : 𝑘 (𝑏) ∥id (𝑏) ← 𝐶 𝑏 [𝑝 (𝑏) ] ⊕ sk (𝑏) 7:

S 𝑏 : [𝑦 ] B 𝑏 ← Eval 𝑓 (𝑘 (𝑏) , id (𝑏) , 𝛿 𝑥 ) 8: Outputs [𝑦 ] B .
that:

𝑦 = Eval 𝑓 (𝑘 0 , 0, 𝛿 𝑥 ) ⊕ Eval 𝑓 (𝑘 0 , 0, 𝛿 𝑥 ) or Eval 𝑓 (𝑘 1 , 1, 𝛿 𝑥 ) ⊕ Eval 𝑓 (𝑘 1 , 1, 𝛿 𝑥 ).
In either case, 𝑦 = 0, as desired. On the other hand, if 𝑠 = 1, then

([𝑠] B 0 , [𝑠] B 1
) equals either (0, 1) or {1, 0}, which implies that 𝑦 = ⊕ 1 𝑡 =0 Eval 𝑓 (𝑘 𝑡 , 𝑡, 𝛿 𝑥 ). In either case, we obtain 𝑦 = 𝑓 (𝑥), as desired. Thus, 𝑦 = 𝑠 ∧ 𝑓 (𝑥). □ Theorem 2. Security. In the presence of a passive PPT adversary A corrupting one of the two servers in CondEval.Eval (∧, K ∧ , [𝑠] B , [𝑥] A ), we assert that A learns nothing about the inputs 𝑥, 𝑠, nor about the output 𝑠 ∧ 𝑓 (𝑥).

Proof. After online evaluation, for each 𝑏 ∈ {0, 1} we denote S 𝑏 's transcript view as:

View 𝑏 := {[𝑟 ] A 𝑏 , 𝛿 𝑥 , 𝑘 𝑡 ⊕[𝑠 ] B 1-𝑏 ∥(𝑡 ⊕ [𝑠] B 1-𝑏 ), [𝑠] B 1-𝑏 ⊕ 𝜋 𝑏 } From this transcript, {𝑘 𝑡 ⊕[𝑠 ] B 1-𝑏 , [𝑟 ]
A 𝑏 , 𝛿 𝑥 } correspond to the FSS evaluation in the pre-processing model, and we resort to the security proof in [START_REF] Boyle | Secure computation with preprocessing via function secret sharing[END_REF] (Definition 2) of Boyle et al. to argue the computational indistinguishability of the ideal and real-world executions; Regarding the remaining items of the view transcripts, since both 𝜋 𝑏 and 𝑡 are uniformly selected, both [𝑠] B 1-𝑏 ⊕𝜋𝑏 and 𝑡 ⊕ [𝑠] B 1-𝑏 provide information-theoretic secrecy for [𝑠] B 1-𝑏 . Therefore, from View 𝑏 , A learns nothing about the input 𝑥, 𝑠, nor the output 𝑠 ∧ 𝑓 (𝑥). □

CondEval in the Malicious Setting

We extend the setting and consider one of the servers be an active adversary. Since the two servers are symmetric (and execute the same protocol), for the sake of clarity, we consider that S 0 is malicious. Assume we run CondEval.Eval(∧, K ∧ , [𝑠] B , [𝑥] A ) in the malicious setting where S 0 is malicious and K ∧ is the output of K ∧ ← CondEval.Setup(∧, 1 𝜆 , Z 2 ℓ ), then we report three disruptions from S 0 that might compromise the correctness or security of the scheme:

• S 0 may dishonestly report [𝑥 + 𝑟 ] A 0 when revealing 𝑥 + 𝑟 to introduce errors and thus disrupt the computation;

• S 0 may flip [𝑠] B 0 during the key decryption step, thus potentially flipping [𝑦] B to be equal to [¬(𝑠 ∧ 𝑓 (𝑥))] B ; • After the online evaluation, S 0 may submit ¬[𝑦] B 0 to B, thus potentially resulting in a flipped authentication bit 𝑦 = ¬(𝑠 ∧ 𝑓 (𝑥)).

To counter the first attack, we incorporate a homomorphic MAC scheme from the spdz2k framework [START_REF] Cramer | SPDZ 2 𝑘 : efficient MPC mod 2 𝑘 for dishonest majority[END_REF]. More specifically, during the setup phase, a trustworthy dealer generates random offset shares and the corresponding authenticated shares. This enables an additional verification step to be performed over all partially disclosed intermediate values at the end of the online evaluation phase. The final output is only deemed valid if the verification is successful, thereby deterring any fraudulent disclosure of secret sharing. In order to safeguard against the remaining attacks, we require a separate scheme that protects Boolean secret sharings. As a solution, we propose the use of authenticated Boolean secret sharing defined as below.

Definition 2. An authenticated Boolean secret sharing (𝑣) 𝑚 of bit 𝑣 ∈ {0, 1} is a list of Boolean secret shares defined with a secret authentication key 𝜓 ∈ {0, 1} 𝑚 , 𝑚 ∈ Z + , denoted as:

(𝑣) 𝑚 : {[𝑣 1 ] B , • • • , [𝑣 𝑚 ] B }
where ∀𝑖 ∈ [𝑚],

𝑣 𝑖 = 𝑣, if 𝜓 [𝑖] = 0 0, if 𝜓 [𝑖] = 1
By extending the semi-honest CondEval constructions with the above two authentication schemes, we realize CondEval in a malicious setting which contains three functionalities: 4, where a trustful dealer prepares 𝑚 instances of FSS key pairs based on a uniform random string 𝜓 ←$ {0, 1} 𝑚 . More precisely, for all 𝑖 ∈ [𝑚], let us denote 𝐾 𝑖 as the 𝑖 th FSS key pair prepared. Then, if 𝜓 [𝑖] = 0, the dealer outputs 𝐾 𝑖 as a normal FSS key pair, which means that the evaluation result is equal to 𝑠 ∧ 𝑓 (𝑥); Otherwise, if 𝜓 [𝑖] = 1, the dealer outputs 𝐾 𝑖 as a trap FSS key pair which guarantees that the corresponding evaluation result will be equal to 0 for whatever value of 𝑥. Furthermore CondEval * .Setup generates additional proof string differently due to the FSS key type (normal or trap) which are appended at each FSS key. With these designs, any manipulation from A in the KeyDec step of CondEval.Eval * will be captured with high probability (assuming that A does not know 𝜓 ). As a result, the probability that A flips (𝑠 ∧ 𝑓 (𝑥)) 𝑚 to (¬(𝑠 ∧ 𝑓 (𝑥))) 𝑚 without being detected is in negligible probability. In conclusion, compared with the construction of CondEval.Eval, this extended construction CondEval.Eval * comes at a cost of 𝑚 times the computation time and communication volume when dealing with FSS gates; Nevertheless this malicious construction retains the advantage of the optimized one round communication which is of more impact in practice.

K * ∧ ← CondEval.Setup * (∧, 1 𝜆 , ℓ 0 , ℓ 1 , 𝑚), ( 
The concrete construction of CondEval.Eval * is shown in the following pseudo code, where it takes in the desired operation ∧, as well as K * ∧ , (𝑠) 𝑚 , 𝑥 A from the two servers; During the online evaluation, for each 𝑖 ∈ [𝑚], within one round of communication 𝛿 𝑥 𝑖 is revealed, and simultaneously one cleartext FSS key is obtained by each of the two servers by decrypting one FSS key from other party's choice; Finally, CondEval.Eval * outputs (𝑦) 𝑚 and an associated proof [𝜎] A which can only be validated if they could pass the verification procedure in functionality CondEval.Verify as shown below.

Functionality (𝑦) 𝑚 , [𝜎] A ← CondEval.Eval * (∧, K * ∧ , (𝑠) 𝑚 , 𝑥 A ) Players: S 0 , S 1 . Functionality: (𝑦) 𝑚 , [𝜎 ] A ← CondEval.Eval * (∧, K * ∧ , (𝑠 ) 𝑚 , 𝑥 A ). Input: For each 𝑏 ∈ {0, 1} that K * ∧ [𝑏 ] = { {𝐶 𝑖,𝑏 , SK 𝑖,𝑏 , 𝑟 𝑖 A 𝑏 } 𝑖 ∈ [𝑚] , [𝜓 ] B 𝑏 , [Δ]
A 𝑏 } are obtained by S 𝑏 in the setup phase, and authenticated secret sharing (𝑠 ) 𝑚 whose secret authentication key is equal to 𝜓 in

K * ∧ . Output: ( (𝑠 ∧ 𝑓 (𝑥 ) ) 𝑚 , [𝜎 ] A ). 1: ( { [𝑠 1 ] B , • • • , [𝑠 𝑚 ] B } ) ← (𝑠 ) 𝑚 2: r ← F rand (1 𝜆 , 𝑚, Z 2 ℓ 0 +ℓ 1 ) 3: 𝑉 ← [ ∅ ] 𝑚 4:
for 𝑏 = 0 to 1 do

5:

[𝜎 ] A 𝑏 ← 0 6:

{𝐶 𝑏 , SK 𝑏 , 𝑟 A 𝑏 , [𝜓 ] B 𝑏 } ← K * ∧ [𝑏 ] 7: for 𝑖 = 1 to 𝑚 do 8: 𝛿 𝑥 (𝑖 ) A ← 𝑥 A + 𝑟 𝑖 A 9: 𝛿 𝑥 (𝑖 ) ← F Reveal ( [𝛿 𝑥 (𝑖 ) ] A ) 10: 𝑉 [𝑖 ] ← (𝛿 𝑥 (𝑖 ) , [Δ • 𝛿 𝑥 (𝑖 ) ] A , r[𝑖 ] ) 11:
for 𝑏 = 0 to 1 do 12:

S 𝑏 : Sends { [𝑠 𝑖 ] B 𝑏 ⊕ 𝜋 1-𝑏 , sk (1-𝑏) [𝑠 𝑖 ] B 𝑏 } to S 1-𝑏 as {𝑝 (1-𝑏) , sk (1-𝑏) }
⊲ Key decryption 13:

for 𝑏 = 0 to 1 do 14:

S 𝑏 : 𝑘 (𝑏) ∥id (𝑏) ∥𝜉 (𝑏) ← 𝐶 𝑖,𝑏 [𝑝 (𝑏) ] ⊕ sk (𝑏)

15:

[𝜎 ] A 𝑏 ← [𝜎 ] A 𝑏 + 𝜉 (𝑏)
16:

[𝑦 𝑖 ] B 𝑏 ← Eval 𝑓 (𝑘 (𝑏) , id (𝑏) , 𝛿

𝑥 (𝑖 ) ) 17: [𝜍 ] A ← F MacVryGen ( [Δ] A , 𝑉 ) 18: [𝜎 ] A ← [𝜍 ] A + [𝜎 ] A 19: (𝑦) 𝑚 ← { [𝑦 1 ] B , • • • , [𝑦 𝑚 ] B } 20: Output (𝑦) 𝑚 , [𝜎 ] A .
As the same as in CondEval in the semi-honest setting, we also have correctness, security and additional soundness proof of our constructions in the malicious setting. However, due to page limit, we have attached the corresponding theorems and their associated proofs in Appendix A.

SECURE COSINE SIMILARITY COMPUTATION AND VERIFICATION

In this section, we provide comprehensive constructions for cosine similarity back-end verification (matching fresh and reference templates) in both semi-honest and malicious settings, utilizing building blocks from Section 4. For example, in the semi-honest setting within a pre-processing model, our proposed protocol initially calculates a Boolean secret sharing [𝑐 1 ] B and an arithmetic secret sharing [𝑧] A using optimized secret sharing and FSS. Then, it employs CondEval.Eval(∧,

[𝑐 1 ] B , [𝑥] A ) to compute [𝑐 1 ∧Sign(𝑧)] B
as the final authentication bit.

Let 𝜓 ←$ {0, 1} 𝑚 , [𝜓 ] B 0 ←$ {0, 1} 𝑚 , [𝜓 ] B 1 ← 𝜓 ⊕ [𝜓 ] B 0 ; Δ ←$ Z 2 ℓ 1 , [Δ] A ← SS.share(Δ, Z 2 ℓ 0 +ℓ 1 )
then it does KeyGen and KeyEnc for each 𝑖 ∈ [𝑚] as follows:

KeyGen If 𝜓 [𝑖] = 0 (Normal) Otherwise if 𝜓 [𝑖] = 1 (Trap) 𝛽 1 ← 1, 𝛽 2 ← 0 𝛽 1 ← 0, 𝛽 2 ← 0 𝑟 𝑖 ←$ Z 2 ℓ 0 , [𝑟 𝑖 ] A ← SS.share(𝑟 𝑖 , Z 2 ℓ 0 +ℓ 1 ), 𝑟 𝑖 A ← {[𝑟 𝑖 ] A , SS.share(𝑟 𝑖 • Δ, Z 2 ℓ 0 +ℓ 1 )}; (𝑘 0 , 𝑘 1 ) ← Gen(1 𝜆 , 𝑟 𝑖 , 𝛽 1 , 𝛽 2 , Z 2 )(|𝑘 0 | = |𝑘 1 | = 𝐾) 𝑡 ←$ Z 2 , 𝜋 0 ←$ Z 2 , 𝜋 1 ←$ Z 2 ; 𝜔 ←$ Z 2 ; 𝜉 1 ←$ Z 2 ℓ 0 +ℓ 1 , 𝜉 2 ←$ Z 2 ℓ 0 +ℓ 1 ; 𝐿 := 𝐾 + ℓ 0 + ℓ 1 + 1; sk (0) 0 ∥sk (0) 1 ∥sk (1) 0 ∥sk 
(1)

1 ←$ {0, 1} 4𝐿 , |sk (0) 
0 | = |sk (0) 1 | = |sk (1) 0 | = |sk (1) 1 | = 𝐿 KeyEnc 𝑀 𝑖,0 = {𝑘 𝑡 ∥𝑡 ∥𝜉 1 , 𝑘 1-𝑡 ∥(1 -𝑡)∥𝜉 1 } 𝑀 𝑖,0 = {𝑘 𝑡 ∥𝑡 ∥𝜉 1 , 𝑘 1-𝑡 ∥(1 -𝑡)∥𝜉 2 } 𝑀 𝑖,1 = {𝑘 𝑡 ∥𝑡 ∥(-𝜉 1 ), 𝑘 1-𝑡 ∥(1 -𝑡)∥(-𝜉 1 )} 𝑀 𝑖,1 = {𝑘 𝑡 ∥𝑡 ∥(-𝜉 1 ), 𝑘 1-𝑡 ∥(1 -𝑡)∥(-𝜉 2 )} 𝐶 𝑖,0 = F Permu (𝜋 0 , {𝑀 𝑖,0 [0] ⊕ sk (0) 0 , 𝑀 𝑖,0 [1] ⊕ sk (0) 1 }), SK i,0 = {(sk (1) 0 , sk (1) 
1 ), 𝜋 1 } 𝐶 𝑖,1 = F Permu (𝜋 1 , {𝑀 𝑖,1 [0] ⊕ sk (1) 0 , 𝑀 𝑖,1 [1] ⊕ sk (1) 1 }), SK i,1 = {(sk (0) 0 , sk (0) 1 ), 𝜋 0 } Outputs 𝜓, K * ∧ = {{𝐶 𝑖,𝑗 , SK 𝑖,𝑗 , 𝑟 𝑖 A } 𝑖 ∈ [𝑚],𝑗 ∈ {0,1} , [Δ] A } Table 4: The construction of K * ∧ ← CondEval.Setup * (∧, 1 𝜆 , ℓ 0 , ℓ 1 , 𝑚)
in the malicious setting, it inputs a security parameter 𝜆, ℓ 0 and ℓ 1 , where ℓ 0 is both used in generating FSS keys and it also defines the domain of the input secrets, ℓ 1 defines the domain of authenticated secret key Δ, 𝑚 ∈ Z + defines the secret key for authenticated Boolean secret sharing.

Functionality 𝑧 ← CondEval.Verify((𝑦) 𝑚 , [𝜎] A ,𝜓 )

Players: S 0 , S 1 , B. Functionality: 𝑠 ← CondEval.Verify( { ( (𝑦) 𝑚 𝑏 , [𝜎 ] A 𝑏 ) } 𝑏 ∈{0,1} ,𝜓 ). Input: ( (𝑦) 𝑚 𝑏 , [𝜎 ] A 𝑏 ) from S 𝑏 for each 𝑏 ∈ {0, 1}, and 𝜓 from B. Output: 𝑧 ∈ { -1, 0, 1, ⊥}. 1: 𝑧 ← -1 2: if 𝜓 ≠ {1} 𝑚 then 3: if [𝜎 ] A 0 + [𝜎 ] A 1 = 0 then 4:
for 𝑖 = 1 to 𝑚 do 5:

𝑦 𝑖 ← [𝑦 𝑖 ] B 0 ⊕ [𝑦 𝑖 ] B 1 6: 
if 𝜓 [𝑖 ] = 0 then 7:

if 𝑧 = -1 then if 𝑦 𝑖 ≠ 0 then 14:

𝑧 ← ⊥, abort

𝑧 ← ⊥, abort 17: Outputs 𝑧.

The solutions we propose for evaluating the circuit C in a 2PC model has the dual objectives of minimizing the number of communication rounds and communication volume. Our method leverages optimized secret sharing and CondEval to perform secure addition, multiplication, and comparison operations within C. The online evaluation process requires two communication rounds, with a communication cost of four ring elements (corresponds to the four times of F reveal invocations) and two decryption keys transmitted for decrypting the FSS keys.

When using floating-point numbers as input for a secure computation framework, these secret floating-point numbers need to be converted to fixed-point representation by multiplying them by a precision parameter 2 𝜌 . This process occurs before entering the secure computation framework, where 𝜌 defines the preserved precision in the fraction part. In a standard way, a secure truncation operation is required to obtain the same precision when performing one multiplication over two fixed point values. This is meaningful in the sense of performing an operation within a smaller ring and also outputs an arithmetical result with the same precision. However, in the context of secure cosine similarity computation, where the input vectors are small float point numbers, while the comparison the circuit C outputs a secret bit that does not depends on the precision, in order to reduce the complexity our final scheme, we perform truncation once over 1/𝑡 2 • IP(𝑥, 𝑦) 2 -IP(𝑥, 𝑥) • IP(𝑦, 𝑦) in C.

FUNCTIONALITY ⟨𝑥⟩ A or ⊥ ← F Input (𝑥, [𝑟 in ] A ): Players: A client C, S 0 and S 1 . Input: A secret 𝑥 from C, and [𝑟 in ] A from S 0 , S 1 . Output: ⟨𝑥⟩ A or ⊥. 1: ∀𝑏 ∈ {0, 1}, S 𝑏 sends [𝑟 in ] A 𝑏 to C. 2: ∀𝑏 ∈ {0, 1}, C returns 𝛿 𝑏 𝑥 = 𝑥 + [𝑟 in ] A 0 + [𝑟 in ] A 1 to S 𝑏 . 3: ∀𝑏 ∈ {0, 1}, S 𝑏 exchanges 𝛿 𝑏 𝑥 with S 1-𝑏 to check if 𝛿 𝑏 𝑥 is equal to 𝛿 1-𝑏 𝑥 . If both the verification pass, denote 𝛿 𝑥 = 𝛿 0 𝑥 = 𝛿 1 𝑥 , then servers output ⟨𝑥⟩ A = (𝛿 𝑥 , [𝑟 in ] A 𝑏 ), otherwise output ⊥.

Full protocol in the semi-honest setting

In the semi-honest setting, our final solution comprises of three sub-protocols: CS.Setup, F Input and CS.Eval, executed in the Setup, Input, and Evaluation phases, respectively. Protocol 1 details the setup phase, integrating CondEval.Setup and generating correlated randomness based on circuit C. Next, the client and B input their secret vectors 𝑥, 𝑦 by running F Input through F Input , as shown in Fig. 3. Lastly, with correlated randomness and input prepared, CS.Eval produces the boolean secret sharing of the desired authentication bit [𝑦] B , where 𝑦 = Sign (cos(x, y) -𝜏).

Correctness.

From Theorem 1 we know that Protocol 2 outputs [𝑐] B where 𝑐 = 𝑐 1 ∧𝑐 2 , 𝑐 1 = Sign(IP(𝑥, 𝑦)) and 𝑐 2 = Sign(1/𝑡 2 • IP(𝑥, 𝑦) 2 -IP(𝑥, 𝑥) • IP(𝑦, 𝑦)), thus computes Sign (cos(x, y) -𝜏) as shown in Eq. 3.

5.1.2 Security. Our goal is to prove that Protocols 1 and 2 provide a secure implementation of the circuit C when faced with a semihonest PPT adversary A in a 2PC setting. We assert that, with the correlated randomness provided in protocol 1, and following the online evaluation of protocol 2, A learns nothing about the input 𝑥, 𝑦, or Sign(cos(𝑥, 𝑦) -𝜏).

Proof. By applying Theorem 2, we ensure that there is no information leakage from the internal view tapes of CondEval.Eval trunc (∧, K∧ , [𝑐 1 ] B , [𝑧] A ). However, we need to consider the other view transcripts View 𝑏 for each 𝑏 ∈ {0, 1}, where:

View 𝑏 := {𝑘 (1)
𝑏 , 𝛿 𝑢 , 𝛿 𝑣 , 𝛿 𝑤 } As 𝛿 𝑣 and 𝛿 𝑤 hide the correlated intermediate values of 𝑥 and 𝑦, we argue that the view 𝑘 [START_REF] Agrawal | Functional encryption: deterministic to randomized functions from simple assumptions[END_REF] 𝑏 is pseudo-random (computationally indistinguishable from the real random key) as proved in Fig. 1 in [START_REF] Boyle | Function secret sharing for mixed-mode and fixed-point secure computation[END_REF], thereby concealing the information of 𝛼 (1) that is contained in (𝑘 (1) 

0 , 𝑘 (1) 1 ) from A. □ Protocol 1 ( [R] A , K ∧ , K 0 ) ← CS.
3: K ∧ ← CondEval.Setup(∧, 1 𝜆 , ℓ ) 4: {𝐶 𝑖 , SK 𝑖 , [𝑟 ] A 𝑖 } 𝑖 ∈{0,1} ← K ∧ 5: 𝛼 (2) ← [𝑟 ] A 0 + [𝑟 ] A 1 6: 𝑣 ←$ Z 2 𝜌 , [𝜂 ] A ← SS.Share(Shift(𝛼 (2) , -𝜌, ℓ ) + 𝑣, Z 2 ℓ +𝜌 ) 7: K∧ ← {𝐶 𝑖 , SK 𝑖 , [𝜂 ] A 𝑖 } 𝑖 ∈{0,1} 8: 𝛼 (1) ←$ Z 2 ℓ 9: (𝑘 0 , 𝑘 1 ) ← Gen [0,2 ℓ -1 ] ℓ
(1 𝜆 , 𝛼 (1) , 1, 0, Z 2 ) 10: R ← {𝑥 𝑖𝑛 , 𝑦 𝑖𝑛 , 𝑢 𝑖𝑛 , 𝑣 𝑖𝑛 , 𝑤 𝑖𝑛 , (𝑟 1 , 𝑟 2 , 𝑟 1 𝑟 2 ), 𝛼 (1) , (𝛼 (1) 

) 2 } 11: K 0 ← {𝑘 0 , 𝑘 1 } 12: Outputs ( [ R ] A , K∧ , K 0 )
We have also realized the full protocol in the malicious setting, due to page limit, we have attached it in Appendix B.

EXPERIMENT & RESULTS

In this section, to demonstrate how practical our solution is, we present experimental assessments of the proposed solution through a use case of voice biometric authentication. We first describe the experimental setting and then further evaluate our solution in the malicious model. With the same input data, we compare the performance results between a regular cleartext version implementation, an invocation of spdz2k.x from MP-SPDZ [START_REF] Keller | MP-SPDZ: A versatile framework for multi-party computation[END_REF] and our own implementation of protocol CSB.Eval * over the circuit C.

Protocol 2 [𝑐] B ← CS.Eval([R] A , K∧ , K 0 , ⟨𝑥⟩ A , ⟨𝑦⟩ A , 𝜏, 𝜌, ℓ) Players: S 0 , S 1 . Functionality: [𝑐 ] B ← CS.Eval( [ R ] A , K∧ , K 0 , ⟨𝑥⟩ A , ⟨𝑦⟩ A , 𝜏, 𝜌, ℓ ). Input: [ R ] A , K ∧ , K 0 , ⟨𝑥⟩ A , ⟨𝑦⟩ A from S 0 and S 1 respectively. A public threshold 𝜏 ∈ (0, 1], element encoding length ℓ ∈ Z + , and a truncation parameter 𝜌 ∈ Z + where 𝜌 < ℓ. Output: [𝑐 ] B .

1: {𝑘 0 , 𝑘 1 } ← K 0 2: {𝑥 𝑖𝑛 , 𝑦 𝑖𝑛 , 𝑢 𝑖𝑛 , 𝑣 𝑖𝑛 , 𝑤 𝑖𝑛 , (𝑟 1 , 𝑟 2 , 𝑟 1 𝑟 2 ), 𝛼 (1) , (𝛼 (1) )

2 } ← R 3: [𝑢 ] A ← SS.IP( ⟨𝑥⟩ A , ⟨𝑦⟩ A , [𝑢 𝑖𝑛 ] A ) 4: [𝑣 ] A ← SS.IP( ⟨𝑥⟩ A , ⟨𝑥⟩ A , [𝑣 𝑖𝑛 ] A ) 5: [𝑤 ] A ← SS.IP( ⟨𝑦⟩ A , ⟨𝑦⟩ A , [𝑤 𝑖𝑛 ] A ) 6: 𝛿 𝑢 ← F Reveal ( [𝑢 + 𝛼 (1) ] A ) ⊲ First round 7: ⟨𝑢 ⟩ A ← (𝛿 𝑢 , [𝛼 (1) ] A ) 8: ⟨𝑣⟩ A ← ( F Reveal ( [𝑣 + 𝑟 1 ] A ), [𝑟 1 ] A ) ⊲ First round 9: ⟨𝑤 ⟩ A ← ( F Reveal ( [𝑤 + 𝑟 2 ] A ), [𝑟 2 ] A )
⊲ First round 10: for 𝑏 = 0 to 1 do 11: 

[𝑐 1 ] B 𝑏 ← Eval [0,2 ℓ -1 ] ℓ (𝑘 𝑏 , 𝑏, 𝛿 𝑢 ) 12: 𝑇 ← Shift( 1 𝜏 2 , -𝑝, ℓ ) ⊲ after shifting, 𝑇 ∈ Z 2 ℓ 13: [𝑧 ] A ← 𝑇 • SS.MUL( ⟨𝑢 ⟩ A , ⟨𝑢 ⟩ A , [ (𝛼 (1) ) 2 ] A ) 14: [𝑧 ] A ← [𝑧 ] A -2 𝜌 • SS.MUL( ⟨𝑣⟩ A , ⟨𝑤 ⟩ A , [𝑟 1 𝑟 2 ] A ) 15: [𝑐 ] B ← CondEval.Eval trunc (∧, K∧ , [𝑐 1 ] B , [𝑧 ] A ) ⊲ Second

Data preparation

We propose to use a pre-trained model of the ECAPA-TDNN [START_REF] Desplanques | Ecapatdnn: Emphasized channel attention, propagation and aggregation in tdnn based speaker verification[END_REF] model available in [START_REF] Kumar Das | HLT-NUS SUBMISSION FOR 2020 NIST Conversational Telephone Speech SRE[END_REF] to extract speaker embeddings. The model was trained using the development part of the VoxCeleb2 dataset [START_REF] Joon | Voxceleb2: Deep speaker recognition[END_REF] with 5994 speakers. The datasets RIR [START_REF] Ko | A study on data augmentation of reverberant speech for robust speech recognition[END_REF] and MUSAN [START_REF] Snyder | Musan: A music, speech, and noise corpus[END_REF] were also used for data augmentation. The model is composed of 3 SE-Res2Block modules. The channel size and the dimension of the bottleneck in the SEBlock are set to 1024 and 256, respectively [START_REF] Kumar Das | HLT-NUS submission for 2020 NIST conversational telephone speech SRE[END_REF]. The entire utterance is fed into the ECAPA-system to finally obtain a vector of 192-dimensional speaker embedding. We get our experiments' input from the test set of VoxCeleb1, which consists of 37720 pairs of enrolment and verification ECAPA-TDNN embeddings, in which we have approximately half target and half non-target speakers.

Evaluation setting

We perform all benchmarks on three droplets provided by DigitalOcean where two of them are in the same LAN located in Singapore, and the third one located in Frankfurt connected by WAN with one of the two droplets in Singapore. We measured 0.47ms latency with 1.8Gbps in our LAN setting, and 152ms latency with 130Mbps in our WAN setting. All of the droplets have similar configurations, with each one having a relatively low specification of 4GB memory and 2-core CPUs, running Ubuntu 22.04 LTS. The cleartext version implementation of C is in Python 3.10, directly using float point numbers as input. We implemented our protocol CSB.Eval * in Python 3.10, in which the IC-FSS module are implemented from Fig. 3 of [START_REF] Boyle | Function secret sharing for mixed-mode and fixed-point secure computation[END_REF].

To use our implementation of CSB.Eval * and spdz2k for the raw input vectors, we need to convert them from floating-point numbers to integers while maintaining precision in the fractional part. We achieve this by multiplying the floating-point numbers with 2 8 (𝜌 = 8) and keeping only the integer digits. In our experiments, we set the same parameters for both experiments, namely 𝜆 = 40, ℓ 0 = 64, ℓ 1 = 48. This ensures a fair performance comparison between our implementation and the procool spdz2k from MP-SPDZ. We also set the input domain of IC-FSS as 32 bits, which covers our use case. To evaluate the practical performance with different levels of soundness (Theroem 5) where the value of 𝑚 is dominant, we vary the value of 𝑚 between 10, 20, 40.

Evaluation results

Table 5 presents the experimental results of computing functionality C with one pair of enrolment (reference template) and verification vectors (fresh template) as input. The costs shown for spdz2k and CSB.Eval * exclude the offline phase generation cost, and the computation time cost in both LAN and WAN settings is measured for 100 runs on average.

Our observations reveal that employing a conversion parameter of 𝜌 = 8 yields a non-significant deviation (0.003%) in performance, as represented by the false acceptance rate (FAR) and false rejection rate (FRR), when compared to the cleartext version. It is important to note that the threshold was established at a point where the FAR and FRR are equal in the cleartext scenario.

In terms of communication cost, our protocol outperforms spdz2k from MP-SPDZ by more than 100 times for all our test cases (𝑚 = 10, 20, 40). With respect to computation cost, our round-efficient design enables our protocol to complete the online evaluation in less than 700 milliseconds for all test cases in the WAN setting, whereas spdz2k takes around 8 seconds. However, in a LAN setting where the network latency can be ignored (less than 0.47ms), spdz2k performs better than our system due to their efficient C++ implementation. Since our current implementation is a fast prototype, there is significant room for improvement. This could involve reimplementing our protocol using C++ or using a more efficient variant construction for the core FSS module, such as the one proposed in [START_REF] Guo | Half-tree: Halving the cost of tree expansion in cot and dpf[END_REF].

In summary, our experimental results demonstrate that our CSB.Eval * offers a practical solution even in the WAN setting, where the network latency is a bottleneck for efficient secure computation, surpassing the state-of-the-art in terms of the communication volume and the computation time for computing circuit C, making it suitable for real-world applications.

CONCLUSION

Privacy-preserving cosine similarity computation and comparison to a predefined threshold is an important building block that has multiple applications (e.g., biometric authentication and identification, privacy-preserving machine learning). In this paper, we introduce two novel protocols to compute the cosine similarity and compare to a threshold in a privacy-preserving way. One protocol is suitable for both the semi-honest and malicious setting, both protocols rely on the recent advances of Function Secret Sharing (FSS) [START_REF] Boyle | Function secret sharing for mixed-mode and fixed-point secure computation[END_REF][START_REF] Boyle | Secure computation with preprocessing via function secret sharing[END_REF], and the one for malicious setting addtionally relies on 2PC authenticated secret sharing and our proposed use of multiple instances of random FSS keys (either normal or trap). All our protocols are based on a new building block we introduce called CondEval that allows computing the composition of an input bit 𝑠 and a binary function 𝑓 (evaluated via FSS) on an input 𝑥 i.e., 𝑠 •𝑓 (𝑥). This introduced building block is provably secure under both the semi-honest and malicious setting, is general and of independent interest; Thus, could be used in general 2PC computations.

Furthermore, we provide a detailed security analysis of the proposed protocols and introduced building block and evaluate the proposed protocols in the biometric authentication setting. Our results show that the proposed protocols are not only efficient (requiring two communication rounds) but also maintain the same accuracy as plain-text systems. To the best of our knowledge this is the first biometric authentication protocol in the malicious setting.

Additionally, we denote 𝐵 2 as the event when S 0 correctly guesses all 𝜓 [𝑖] where 𝜓 [𝑖] = 0, but not perfectly correctly guesses all 𝜓 [𝑖] where 𝜓 [𝑖] = 1, i.e., S 0 wrongly determined 𝜓 [ 𝑗] = 0 by at least one index 𝑗 where in fact 𝜓 [ 𝑗] is equal to 0. The reason why we distinguish 𝐵 1 and 𝐵 2 is because for event 𝐵 1 the adversary S 0 does not need to do anything to pass the verification. However, for the event 𝐵 2 the adversary S 0 needs to select a random offset value 𝑒 added to [𝜎] A 0 to pass the verification (it happens with probability 2 -(ℓ 0 +ℓ 1 ) ), the reason is because in event 𝐵 2 that S 0 wrongly assumed 𝜓 [ 𝑗] = 0 by at least one index 𝑗 where in fact when 𝜓 [ 𝑗] = 1, under this case servers obtain an associated secret sharing of a non-zero random value. Thus, we have

𝑃 (𝐵 2 ) = 3 4 𝑚 -𝑃 (𝐵 1 ) • 2 -(ℓ 0 +ℓ 1 ) < 3 4 𝑚 • 2 -(ℓ 0 +ℓ 1 ) .
Denote 𝑝 * ∈ [0, 1] the probability when the input 𝑓 (𝑥) is equal to 1, then we have

𝑃 (𝐵) = 𝑃 * • (𝑃 (𝐵 1 ) + 𝑃 (𝐵 2 )) < 𝑃 * • ( 1 2 𝑚 + 3 4 𝑚 • 2 -(ℓ 0 +ℓ 1 ) )
Denote 𝑃 (𝐵 * ) the probability that an occurrence of event 𝐵 results in an flipped result 𝑦 = ¬(𝑠 ∧ 𝑓 (𝑥)), which we know it happens only when 𝜓 ≠ {1} 𝑚 , so we have 𝑃 (𝐵 * ) < 𝑃 (𝐵).

For event C, 𝑃 (𝐶) = 1/2 𝑚 . Thus,

𝑝 2 < 𝑃 (𝐴) + 𝑃 (𝐵 * ) + 𝑃 (𝐶) < 𝑃 (𝐴) + 𝑃 (𝐵) + 𝑃 (𝐶) < 2 -ℓ 1 +log (ℓ 1 +1) + 𝑝 * + 1 2 𝑚 + 3 4 𝑚 • 2 -(ℓ 0 +ℓ 1 ) < 2 -ℓ 1 +log (ℓ 1 +1) + 2 1-𝑚 + 3 4 𝑚 • 2 -(ℓ 0 +ℓ 1 ) .
In conclusion,

𝑝 = 𝑝 1 + 𝑝 2 < 2 -ℓ 1 +log (ℓ 1 +1) + 2 1-𝑚 + 3 4 𝑚 • 2 -(ℓ 0 +ℓ 1 )
.

□ B FULL PROTOCOL IN THE MALICIOUS SETTING

We now present Protocols 3 and 4 which evaluate the circuit C in a stronger threat model, with one malicious server who might deviate from the protocol description in Protocol 2. More specifically:

• In protocol 3, B first runs CondEval * .Setup(1 𝜆 ), then from those results it obtains Δ and 𝜓 , which are secret keys for authenticating an arithmetical revelation and a Boolean revelation in the later online evaluation. Afterwards, B additionally generates an authenticated random secret sharing I 𝑥 , I 𝑦 to be used in input phase. It also generates a function dependent authenticated correlated random secret sharing R A from Δ, and random function secret sharing keys K 0 from 𝜓 for computing 𝑐 1 ; • After the setup phase is done, whenever the input is ready, (i.e., the client provides her fresh template 𝑥), the client and the two servers coordinately run: We note here that via Protocol 4, we are able to capture a client who may act maliciously i.e., may attempt to impersonate a legitimate user and deduce information for the corresponding templates. Thus, we incorporate a mechanism to check that the secret sharing of the fresh (as well as the reference) template have been secret shared correctly. 𝜂 𝑖 ← Shift(𝛼 (2,𝑖 ) , -𝜌, ℓ ) + 𝑟 14:

⟨⟨𝑥 𝑖 ⟩⟩ A ← F Input * (𝑥 𝑖 , [Δ] A , 𝑟 ( 
(𝑘 (1,𝑖 ) 0

, 𝑘

(1,𝑖 ) 1

) ← Gen [0,2 ℓ -1 ] ℓ

(1 𝜆 , 𝛼 (1,𝑖 ) , 1 -𝜓 [𝑖 ], 0, Z 2 )

15:

𝜂 𝑖 A ← (SS.Share(𝜂 𝑖 , Z 2 ℓ 0 +ℓ 1 ), SS.Share(Δ • 𝜂 𝑖 , Z 2 ℓ 0 +ℓ 1 ) ) B.0.2 Security. We assert that, Protocols 3 and 4 provide a secure implementation of the circuit C when faced with an active PPT Protocol 4 ((𝑦) 𝑚 , [𝜎] A ) ← CS.Eval * ( R A , ⟨⟨𝑥⟩⟩ A , ⟨⟨𝑦⟩⟩ A , K * ∧ , K 0 , 𝜏, 𝜌) Players: S 0 , S 1 . Functionality: ( (𝑦) 𝑚 , [𝜎 ] A ) ← CS.Eval * ( R A , ⟨⟨𝑥⟩⟩ A , ⟨⟨𝑦⟩⟩ A , K * ∧ , K 0 , 𝜏, 𝜌 ). Input: Secret sharing [Δ] A , R A , ⟨⟨𝑥⟩⟩ A , ⟨⟨𝑦⟩⟩ A and K 1 from S 0 , S 1 , K 2 from B, a public threshold 𝜏 ∈ (0, 1] and a truncation parameter 𝜌 ∈ Z + . Output: ( (𝑦) 𝑚 , [𝜎 ] A ). 

Figure 1 :

 1 Figure 1: Privacy-preserving biometric authentication system based on cosine similarity in the 2PC setting.

Figure 2 :

 2 Figure 2: Homomorphic MAC Verification proof generation in the malicious setting.

Definition 1 .

 1 Interval containment function secret sharing. There is a key generation algorithm Gen [𝑝,𝑞 ] ℓ (•), and an evaluation algorithm Eval [𝑝,𝑞 ] ℓ (•), given an interval containment [𝑝, 𝑞] where 𝑝, 𝑞 ∈ Z 2 ℓ and 𝑝

  𝑦) 𝑚 , [𝜎] A ← CondEval.Eval * (∧, K * ∧ , (𝑠) 𝑚 , 𝑥 A ) and 𝑧 ← CondEval.Verify((𝑦) 𝑚 , [𝜎] A ,𝜓 ) CondEval.Setup * is shown in Table

Figure 3 :

 3 Figure 3: Robust input protocol in the semi-honest setting.

  𝑥) 𝑖𝑛 [𝑖] A , 𝑥 𝑖𝑛 [𝑖] A )where F Input * is shown in Fig.4; • Then in the evaluation phase, the two servers execute the online evaluation Protocol 4 CS.Eval * in which we incorporate a variant version of CondEval.Eval * denoted as CondEval.Eval * trunc , whose sole difference to the former is to perform a local truncation after each 𝛿 𝑥 is revealed (similarly to the process applied in the semi-honest setting); • After completing the evaluation phase in Protocol 4, the servers obtain a final authenticated boolean secret sharing (𝑦) 𝑚 and an associated proof [𝜎] A . • Upon receiving (𝑦) 𝑚 and [𝜎] A from the servers, with value 𝜓 already known in the setup phase, B runs CondEval.Verify ((𝑦) 𝑚 , [𝜎] A ,𝜓 ) and outputs a symbol 𝑧 ∈ -1, 0, 1, ⊥. B accepts the authentication bit as 𝑧 if 𝑧 is not in {-1, ⊥}.

9 :

 9 for 𝑖 = 1 to 𝑚 do 10:𝛼 (1,𝑖 ) ←$ Z 2 ℓ 11: 𝑟 ←$ Z 2 𝜌 12: 𝛼 (2,𝑖 ) ← [𝑟 𝑖 ] A 0 + [𝑟 𝑖 ] A113:

Figure 4 : 4 𝑚 • 2 -

 442 Figure 4: Robust input protocol in the malicious setting.

  IP(𝑥, 𝑦) Inner product of two vectors 𝑥, 𝑦. Prod(𝑥, 𝑦) Element-wise product of two vectors 𝑥, 𝑦. Shift(𝑥, 𝜌, ℓ) Outputs an encoding in Z 2 ℓ of left/right logical shifting |𝜌 | bits over 𝑥 respectively if 𝜌 < 0 or 𝜌 > 0. Sign(𝑥) Outputs 1 if 𝑥 ≥ 0 and 0 otherwise. (𝑀 𝑏 , 𝜀) ← F OT (𝑏, {𝑀 0 , 𝑀 1 }) Given a pair of messages {𝑀 0 , 𝑀 1 } from a sender and a choice bit 𝑏 ∈ {0, 1} from a receiver, it returns 𝑀 𝑏 to the receiver and 𝜀 to the sender. 𝑟 ← F rand (1 𝜆 , 𝑛, U 𝑁 ) Given a security parameter 𝜆 and a positive integer 𝑛, it outputs a random vector 𝑟 ∈ U 𝑛 𝑁 . F Permu (𝜋, {𝑎 0 , 𝑎 1 }) Given a list {𝑎 0 , 𝑎 1 } and a permutation bit 𝜋 ∈ {0, 1}, it outputs {𝑎 0 , 𝑎 1 } if 𝜋 = 0 and {𝑎 1 , 𝑎 0 } otherwise.[𝑥] B Boolean secret sharing of 𝑥 ∈ Z 2 .

𝑠 [𝑖] 𝑖 th leftmost bit of a binary string 𝑠, where 𝑖 ≤ |𝑠 |. 𝑠 [𝑖..𝑗] substring {𝑠 [𝑖], 𝑠 [𝑖 + 1], . . . , 𝑠 [ 𝑗]} of binary string 𝑠.

𝑎 𝑖 : 𝑖 th element of a vector 𝑎 where 𝑖 < |𝑎|.

  2 ℓ is generated, both [𝑟 ] A and [Shift(𝑟, 𝜌, ℓ)] A are distributed among S 0 and S 1 ; (2) In the evaluation phase, to truncate a secret sharing [𝑥] A where 𝑥 ∈ Z 2 ℓ , the servers run F reveal ([𝑥 + 𝑟 ] A ) to obtain 𝑥 + 𝑟 , ∀𝑏 ∈ {0, 1} then S 𝑏 computes Shift(𝑥 + 𝑟, 𝜌, ℓ) -[Shift(𝑟, 𝜌, ℓ)] A 𝑏 as [Shift(𝑥, 𝜌, ℓ)] A 𝑏 .

  computing 𝑐 1 ∧ 𝑐 2 or 𝑐 1 ∨ 𝑐 2 . Since 𝑐 1 and 𝑐 2 are the output of the Sign operation, FSS can be used efficiently. On the other hand, because computing a Boolean gate (∧ or ∨) in secret sharing requires at least one communication round, we propose a new building block CondEval that integrates this operation within the FSS computation of 𝑐 2 and hence, reduces the number of communication rounds to one.

  . CondEval.Setup, inputs a security parameter 1 𝜆 and outputs K ∧ . After KeyGen and KeyEnc, it outputs correlated random keys which are then distributed to the two servers. CondEval.Eval(∧, K ∧ , [𝑠] B , [𝑥] A ) inputs K ∧ generated by CondEval.Setup as well as [𝑠] B , [𝑥] A . Then, within one round of communication, 𝛿 𝑥 is revealed and one cleartext FSS key is obtained from both servers with KeyDec being performed, and finally it outputs [𝑦] B .

	Theorem 1. Correctness. If two servers follow CondEval.Eval(

  Setup(1 𝜆 , ℓ, 𝜌) Players: The central bank B. Functionality: ( [ R ] A , K ) ← CS.Setup(1 𝜆 , ℓ, 𝜌 ). Input: A security parameter 𝜆, element encoding length ℓ, and a truncation parameter 𝜌 ∈ Z + where 𝜌 < ℓ. Output: ( [ R ] A , K ). 1: (𝑥 𝑖𝑛 , 𝑦 𝑖𝑛 ) ←$ Z 2𝑛 2 ℓ , 𝑢 𝑖𝑛 ← Prod(𝑥 𝑖𝑛 , 𝑦 𝑖𝑛 ) 2: 𝑣 𝑖𝑛 ← Prod(𝑥 𝑖𝑛 , 𝑥 𝑖𝑛 ), 𝑤 𝑖𝑛 ← Prod(𝑦 𝑖𝑛 , 𝑦 𝑖𝑛 )

  round 16: Outputs [𝑐 ] B .

		FAR (%) FRR (%) LAN (ms) WAN (ms) Com(KB)
	Cleartext	0.575	0.575	0.17	-	-
	spdz2k	0.573	0.580	74	8020	1789
	Ours (m=10)	0.573	0.580	57	457	3.5
	Ours (m=20)	0.573	0.580	102	500	6.9
	Ours (m=40)	0.573	0.580	201	628	13.72

Table 5 :

 5 Evaluation comparison results between the cleartext version, spdz2k and CSB.Eval * . The computation and communication cost are measured per party.

  Protocol 3 (I 𝑥 , I 𝑦 , R A , K * ∧ , K 0 ) ← CS.Setup * (1 𝜆 , 𝑚, ℓ 0 , ℓ 1 , 𝜌)Players: B. Functionality: ( I 𝑥 , I 𝑦 , R A , K * ∧ , K 0 ) ← CS.Setup * (1 𝜆 , 𝑚, ℓ 0 , ℓ 1 , 𝜌 ). Input: A security parameter 𝜆, ℓ, ℓ 1 , 𝜌 ∈ Z + . Output: ( I 𝑥 , I 𝑦 , R A , K * ∧ , K 0 ). 1: K * ∧ ← CondEval * .Setup(∧, 1 𝜆 , ℓ 0 , ℓ 1 , 𝑚) 2: { {𝐶 𝑖,𝑗 , SK 𝑖,𝑗 , 𝑟 𝑖 A } 𝑖 ∈ [𝑚],𝑗 ∈{0,1} , [𝜓 ] B , [Δ] A } ← K * }, Z 2 ℓ 0 +ℓ 1 ) 6: (𝑥 𝑖𝑛 , 𝑦 𝑖𝑛 ) ←$ Z 2𝑛 2 ℓ , 𝑢 𝑖𝑛 ← Prod(𝑥 𝑖𝑛 , 𝑦 𝑖𝑛 ) 7: 𝑣 𝑖𝑛 ← Prod(𝑥 𝑖𝑛 , 𝑥 𝑖𝑛 ), 𝑤 𝑖𝑛 ← Prod(𝑦 𝑖𝑛 , 𝑦 𝑖𝑛 ) 8: (𝑟 1 , 𝑟 2 ) ←$ Z 2 2 ℓ

						∧
	3: Δ ← [Δ] A 0 + [Δ] A 1 ,𝜓 ← [𝜓 ] A 0 ⊕ [𝜓 ] A 1	
	4: 𝑟	(𝑥) 𝑖𝑛 ←$ Z 𝑛 2 ℓ , 𝑟 𝑖𝑛 (𝑥)	A ← SS.Share( {𝑟	(𝑥)	(𝑥) 𝑖𝑛 }, Z 2 ℓ 0 +ℓ 1 )
	5: 𝑟	(𝑦) 𝑖𝑛 ←$ Z 𝑛 2 ℓ , 𝑟	(𝑦) 𝑖𝑛	A ← SS.Share( {𝑟	(𝑦)

𝑖𝑛 , Δ • 𝑟 𝑖𝑛 , Δ • 𝑟 (𝑦) 𝑖𝑛

  ← { {𝐶 𝑖,𝑗 , SK 𝑖,𝑗 , 𝜂 𝑖 A } 𝑖 ∈ [𝑚],𝑗 ∈{0,1} , [𝜓 ] B , [Δ] A } 17: R ← {𝑥 𝑖𝑛 , 𝑦 𝑖𝑛 , 𝑢 𝑖𝑛 , 𝑣 𝑖𝑛 , 𝑤 𝑖𝑛 , (𝑟 1 , 𝑟 2 , 𝑟 1 𝑟 2 ), (𝛼 (1,1) ) 2 } 18: R A ← (SS.Share( R, Z 2 ℓ 0 +ℓ 1 ), SS.Share( R • Δ, Z 2 ℓ 0 +ℓ 1 ) )Players: A client C, S 0 and S 1 . Input: A secret 𝑥 from C, and 𝑟 A , 𝑟 in A from S 0 , S 1 . ∀𝑏 ∈ {0, 1}, C returns𝛿 𝑏 𝑥 = 𝑥 + [𝑟 ] A 0 + [𝑟 ] A 1 to S 𝑏 . 3: ∀𝑏 ∈ {0, 1}, S 𝑏 computes 𝑥 A 𝑏 = (𝑏 • 𝛿 𝑏 𝑥 -[𝑟 ] A 𝑏 , [Δ] A 𝑏 • 𝛿 𝑥 -[Δ • 𝑟 ] A 𝑏 ) 4: Servers run F Reveal ([𝑥 + 𝑟 in ] A )and obtain 𝑥 + 𝑟 in . After that, ∀𝑏 ∈ {0, 1} S 𝑏 computes ⟨⟨𝑥⟩⟩ A 𝑏 = (𝑥 + 𝑟 in , 𝑥 A 𝑏 , 𝑟 in A 𝑏 ) 5: Ouput ⟨⟨𝑥⟩⟩ A .

	19: K 0 ← {𝑘	(1,𝑖 ) 0	, 𝑘	(1,𝑖 ) 1

16: K * ∧ } 𝑖 ∈ [𝑚] 20: I 𝑥 ← ( 𝑟 (𝑥) 𝑖𝑛 A , 𝑥 𝑖𝑛 A ), I 𝑦 ← ( 𝑟 (𝑦) 𝑖𝑛 A , 𝑦 𝑖𝑛 A ) 21: Outputs ( I 𝑥 , I 𝑦 , R A , K * ∧ , K 0 ) FUNCTIONALITY ⟨⟨𝑥⟩⟩ A or ⊥ ← F Input * (𝑥, [Δ] A , 𝑟 A , 𝑟 in A ):

Output: ⟨⟨𝑥⟩⟩ A . 1: ∀𝑏 ∈ {0, 1}, S 𝑏 sends [𝑟 ] A 𝑏 to C. 2:

  1: 𝑝 ← [ ∅ ] 𝑚+2 2: 𝑟 ← F rand (1 𝜆 , 𝑚 + 2, Z 2 ℓ 0 +ℓ 1 ) 3: 𝑢 A ← SS.IP( ⟨⟨𝑥⟩⟩ A , ⟨⟨𝑦⟩⟩ A , 𝑢 𝑖𝑛 A ) 4: 𝑣 A ← SS.IP( ⟨⟨𝑥⟩⟩ A , ⟨⟨𝑥⟩⟩ A , 𝑣 𝑖𝑛 A ) 5: 𝑤 A ← SS.IP( ⟨⟨𝑦⟩⟩ A , ⟨⟨𝑦⟩⟩ A , 𝑤 𝑖𝑛 A ) 6: 𝛿 𝑣 ← F Reveal ( [𝑣 + 𝑟 1 ] A ) ⊲ First round 7: 𝛿 𝑤 ← F Reveal ( [𝑤 + 𝑟 2 ] A ) ⊲ First round 8: 𝑝[1] ← (𝛿 𝑣 , [Δ • 𝛿 𝑣 ] A , 𝑟[1] ), 𝑝[2] ← (𝛿 𝑤 , [Δ • 𝛿 𝑤 ] A , 𝑟[2] ) 9: ⟨⟨𝑣⟩⟩ A ← (𝛿 𝑣 , 𝑣 A , 𝑟 1 A ) 10: ⟨⟨𝑤 ⟩⟩ A ← (𝛿 𝑤 , 𝑤 A , 𝑟2A ) 11: { {𝐶 𝑖,𝑗 , SK 𝑖,𝑗 , 𝑟 𝑖 A } 𝑖 ∈ [𝑚],𝑗 ∈{0,1} , [𝜓 ] B , [Δ] A } ← K *

				∧
	12: {𝑘	(1,𝑖 ) 0	, 𝑘	(1,𝑖 ) 1

} 𝑖 ∈{0,1} ← K 0 13: for 𝑖 = 1 to 𝑚 do 14:

https://www.cpomagazine.com/cyber-security/flagstar-bank-data-breach-leakedsensitive-information-of-1-5-million-customers/
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A FURTHER THEOREMS AND ASSOCIATED PROOFS

We attach these theorems and their proofs of our CondEval constructions of section 4.3 in the following.

Theorem 3. Correctness. Assuming all servers indeed honestly follow CondEval.Eval * (∧, K * ∧ , (𝑠) 𝑚 , 𝑥 A ), i.e., none of the servers deviate from the protocol description, then they obtain ((𝑦) 𝑚 , [𝜎] A ). Denote 𝑝 the probability that CondEval.Verify((𝑦) 𝑚 , [𝜎] A , 𝜓 ) is equal to 𝑠 ∧ 𝑓 (𝑥), we claim 𝑝 = 1 -1/2 

thus, from Theorem 2, we know that CondEval.Eval * (∧, K * ∧ , (𝑠) 𝑚 , 𝑥 A ) does not leak any information about 𝑥, 𝑠, or 𝑠 ∧ 𝑓 (𝑥). Furthermore, owing to the computational indistinguishability of FSS keys from entirely random keys, based on the security of the pseudorandom generator [START_REF] Boyle | Function secret sharing for mixed-mode and fixed-point secure computation[END_REF], a probabilistic polynomial-time (PPT) bounded A cannot distinguish between a trap key instance, a completely random key, or a normal key instance with significant probability. Consequently, A gains no information about 𝜓 . □ Theorem 5. Soundness. Assuming the existence of an active PPT adversary A (S 0 or S 1 ) when performing CondEval.Eval * (∧, K * ∧ , (𝑠) 𝑚 , 𝑥 A ) that outputs ((𝑦) 𝑚 , [𝜎] A ). We denote by 𝑝 the probability that CondEval.Verify((𝑦) 𝑚 , [𝜎] A ,𝜓 ) = ¬(𝑠 ∧ 𝑓 (𝑥)). We claim

where ℓ 1 denotes the length of the MAC key.

Proof. If CondEval.Verify((𝑦) 𝑚 , [𝜎] A ,𝜓 ) = ¬(𝑠 ∧𝑓 (𝑥)), w.l.o.g., we assume S 0 is the malicious server in the functionality CondEval * . The actual computation can be performed in two ways:

• S 0 honestly follows CondEval.Eval * (∧, K * ∧ , (𝑠) 𝑚 , 𝑥 A ). • S 0 arbitrarily deviates from CondEval.Eval * (∧, K * ∧ , (𝑠) 𝑚 , 𝑥 A ), either by flipping [𝑠 𝑖 ] B 0 (𝑖 ∈ [𝑚]) when performing the KeyDec step OT, or dishonestly flipping partial shares when reporting (𝑠) 𝑚 to the receiver. We denote by 𝑝 1 and 𝑝 2 as the probability that CondEval.Verify ((𝑦) 𝑚 , [𝜎] A , 𝜓 ) = ¬(𝑠 ∧ 𝑓 (𝑥)) for each of the two cases above respectively.

In the first case, from Theorem 1 we know with probability of 1/2 𝑚 the protocol outputs -1, and with probability of 1 -1/2 𝑚 it outputs 𝑠 ∧ 𝑓 (𝑥), but it never outputs ¬(𝑠 ∧ 𝑓 (𝑥)). Thus, 𝑝 1 = 0.

For the second case, there are three events A, B, C that S 0 may manipulate the protocol and thus, may result in outputting a flipped authentication bit (¬(𝑠 ∧ 𝑓 (𝑥))) 𝑚 :

(1) 𝐴: S 0 reports one or more dishonest arithmetical shares, submits a manipulated proof 𝜏 * 0 such that it still guarantees 𝜏 * 0 + 𝜏 1 = 0, and resulting to a valid flipped authenticated bit (𝑦 * ) 𝑚 where 𝑦 * = ¬(𝑠 ∧ 𝑓 (𝑥)).

(2) B: S 0 manages to flip the compuation result (𝑦) 𝑚 to (¬𝑦) 𝑚 by flipping

when performing the KeyDec step, and also presents a correct proof that passes the final verification.

(3) C: ∀𝑖 ∈ [𝑚], S 0 manages to guess each 𝜓 [𝑖] correctly, thus,

unchanged. In the end S 0 submits his manipulated sharing of (𝑦) 𝑚 to B.

Each event is considered independently. Concerning event 𝐴, according to [START_REF] Cramer | SPDZ 2 𝑘 : efficient MPC mod 2 𝑘 for dishonest majority[END_REF], it is known that the probability of event 𝐴 occurring is no greater than 2 -ℓ 1 +log (ℓ 1 +1) .

Regarding event 𝐵, the final outcome is only altered when 𝑓 (𝑥) = 1 and all the normal indexes (𝜓 [𝑖] = 0) must be flipped during the oblivious transfer, as we know 𝜓 is uniformly determined. We analyse the probability of S 0 successfully flipping all normal indexes without being detected as follows. First, we distinguish two complementary events 𝐵 1 , 𝐵 2 that are covered by 𝐵. We denote 𝐵 1 as the event that S 0 correctly guesses 𝜓 [𝑖] for all 𝑖 ∈ [𝑚]. Then we have

for 𝑏 = 0 to 1 do 17:

18:

A in the 2PC setting. Specifically, with the correlated randomness provided in Protocol 3, following the online evaluation of Protocol 4, A learns nothing about the inputs 𝑥, 𝑦, or Sign(cos(𝑥, 𝑦) -𝜏).

Proof. From Theorem 4, we first exclude information leakage within CondEval.Eval * trunc (∧, K * ∧ , (𝑠) 𝑚 , 𝑧 A ). Still, we need to prove that the view transcript

of S 𝑏 for each 𝑏 ∈ {0, 1} does not leak any information. This is true, as 𝛿 𝑣 , 𝛿 𝑤 ∼ U 𝑁 information theoretically hide the associated intermediate computation results; Nevertheless, for {(𝑘

which are correlated, we argue that A has only the view 𝑘 (1,𝑖 ) 𝑏 which is pseudo-random (computationally indistinguishable from a real random key) as proved in Fig. 1 in [START_REF] Boyle | Function secret sharing for mixed-mode and fixed-point secure computation[END_REF]; Thus, hiding the information of 𝛼 (1,𝑖 ) Previously, when dealing with the truncation of [𝑥] A , [𝜂] A was generated and corresponds to the secret sharing result of the sum of the shifting of 𝑟 to the left by 𝜌 and a random value 𝑣 ∈ Z 2 𝜌 ; In the above equation, the fractional part of 𝛿 𝑥 is truncated by 4𝜌 bits due to the accumulation of the three multiplications over secret sharing and one multiplication over a public scalar value (𝑇 , 2 𝜌 resp. in line [START_REF] Boyle | Secure computation with preprocessing via function secret sharing[END_REF][START_REF] Hee Cheon | Numerical method for comparison on homomorphically encrypted numbers[END_REF]. Such a truncation does not imply any additional communication round and is performed during the second communication round. Furthermore, as it will be shown in section 6.3, such a truncation has almost no impact on the actual accuracy of the protocol.

C CONDEVAL OVER THE OR GATE

In this section, we demonstrate a direct method of computing 𝑠 ∨ 𝑓 (𝑥) instead of computing ¬(¬𝑠 ∧¬𝑓 (𝑥)). The pipeline is similar to that of computing a logical-and gate, including the CondEval.Setup and CondEval.Eval functions. In 

) is equal to either (0, 0) or (1, 1), which implies

In either case, 𝑦 = 𝑓 (𝑥), as desired. On the other hand, if 𝑠 = 1, then

) equals either (0, 1) or (1, 0), which implies

In either case, 𝑦 = 1, as desired. Thus, 𝑦 = 𝑠 ∨ 𝑓 (𝑥). Naturally, we have same security guarantee for CondEval.Eval (∨, K ∨ , [𝑠] B , [𝑥] A ) following theorem 2. The detailed construction in the case of malicious setting follows similarly with the protocols in section 4.3 and we omit the detials here.