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ABSTRACT
Secure aggregation consists of computing the sum of data collected
from multiple sources without disclosing these individual inputs.
Secure aggregation has been found useful for various applications
ranging from electronic voting to smart grid measurements. Re-
cently, federated learning emerged as a new collaborative machine
learning technology to train machine learning models. In this work,
we study the suitability of secure aggregation based on crypto-
graphic schemes to federated learning. We first provide a formal
definition of the problem and suggest a systematic categorization
of existing solutions. We further investigate the specific challenges
raised by federated learning and analyze the recent dedicated secure
aggregation solutions based on cryptographic schemes. We finally
share some takeaway messages that would help a secure design
of federated learning and identify open research directions in this
topic. Based on the takeaway messages, we propose an improved
definition of secure aggregation that better fits federated learning.

KEYWORDS
Secure Aggregation, Homomorphic Encryption, Multi-Party Com-
putation, Federated Learning

1 INTRODUCTION
With the recent advances in information technology, the adoption
of distributed systems become a major trend for various applica-
tions/systems such as electronic voting [KSRW04], smart grids
[ADMC17], industry’s actuators and sensors, swarms of drones
etc. All these systems involve multiple geo-dispersed edge devices
that usually collect, store and collaboratively aggregate data. Re-
cently, federated learning emerged as a new collaborative machine
learning technology to train machine learning models. This new
technology consists of several federated clients holding private
data and contributing to the training of a machine learning model
in a collaborative manner: Each client first trains a local machine
learning model using its own dataset and further shares training
parameter results with a server. The server aggregates the training
results and sends the aggregate back to the clients. The clients re-
peat the process so that they finally converge to one shared, global
model. The global model’s parameters consist of the average of each
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local model’s parameters. Thanks to this new technology, clients
can train more accurate machine learning models using larger and
more diverse datasets (originating from other clients).

Consequently, aggregating data from multiple sources is never
more useful as in these days (such as their use in federated learn-
ing). Nevertheless, such operations that usually involve sensitive
data raise serious privacy concerns and call for suitable privacy en-
hancing technologies to protect the confidentiality of clients’ data
while still being able to perform the aggregation operation. During
the past 20 years, a huge amount of research focused on design-
ing secure aggregation solutions [ÖM07, LEM14a, BSK+19, BIK+17,
DA16, CMT05] for various applications that enable the compu-
tation of the sum of several parties’ inputs without leaking any
information about each individual input except the aggregate (the
sum). Secure aggregation can be achieved using four main privacy
enhancing technologies: differential privacy, Trusted-Execution En-
vironment (TEE), secure shuffling under anonymity assumptions,
and cryptography.

In this paper, we propose to study secure aggregation solutions
based on cryptographic schemes as these seem to be the most pop-
ular ones for federated learning (37 solutions). We believe that this
is mainly due to their practical setup and to the fact they do not
affect the accuracy of the results.We first identify and investigate
the three phases of secure aggregation protocol: Setup, Protection,
and Aggregation. We categorize existing solutions based on two
cryptographic primitives: encryption and multi-party computation
(MPC). We further investigate the suitability of these solutions to
federated learning and identify additional security, privacy and
performance challenges, accordingly. More specifically, we study
whether and how encryption-based or MPC-based secure aggrega-
tion can cope with: client failures/dynamics, scalability in terms
of clients’ input size, scalability in terms of number of clients, the
presence of malicious clients or malicious server, and statistical
attacks that leak private information.

To summarize, our contributions are as follows:

• We propose a formal definition of secure aggregation based
on cryptographic schemes, by identifying a set of features
that help an effective comparison among existing solutions.
• We study the existing secure aggregation solutions based
based on the underlying cryptographic schemes that are
masking, additive homomorphic encryption, functional en-
cryption, and multi-party computation. We analyze each
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category with respect to the set of features we have identi-
fied.
• We further present a comprehensive study on the suitability
of secure aggregation based on cryptographic schemes for
federated learning, by identifying the main security, privacy,
and performance challenges raised by this integration and
their impact on each of the proposed categories.
• We review the 37 solutions that integrate secure aggregation
for federated learning and we propose a categorization based
on two axes: the challenges that each solution tackles and
the type of secure aggregation used.
• We finish with some key takeaways that can help developers
design, develop or improve secure aggregation schemes for
federated learning.

The remaining of the paper is organized as follows: Section 2
presents the scope of our study, a historical background on SA based
on cryptographic schemes and studies the threat model. Section 3
proposes a formal definition of SA and establishes a categorization
of existing schemes. Section 4 focuses on the deployment of SA
based on cryptographic schemes in federated learning. Furthermore,
section 5 describes the major takeaways of this research. Finally,
section 6 concludes this paper.

2 BACKGROUND AND MOTIVATION
This section briefly introduces federated learning and explains
the need for secure aggregation for such applications. Then, we
define the scope of our study by focusing our research on secure
aggregation based on cryptographic schemes that are appropriate
for federated learning. Third, we present a historical overview of
secure aggregation. Last but not least, we provide the threat model
and the security requirements.

2.1 Federated Learning
The term Federated Learning was initially introduced by McMahan
et al. [MMR+17] and refers to a technology that enables training
machine learning models on data from different sources without
the need to store the data at a central location. Federated Learning
(FL) is performed in several rounds with multiple clients and a
server. A FL client is installed at each data source location. At the
beginning, the FL server initiates the same model for all clients.
For each FL round, the clients perform local training on their own
data to improve the received machine learning model and send
the updated model to the server. The latter aggregates the trained
models received from clients by averaging them and then sends the
outcome back to the clients. After the clients receive the aggregated
model, a new FL round starts where the clients and the server repeat
the steps. FL stops when the aggregated model converges.

The main goal of FL is to protect the privacy of the local data
while still being able to use them for training public models. This
technology provides a great advantage over other techniques that
try to achieve the same goal (eg., training on encrypted data [VNP+20,
HTGW18, WGC19, DGBL+16, WTB+20]). The latter adds a large
computational overhead since it involves encryption of the inputs
then performing complex computations on encrypted data. FL re-
quires less computation as it only involves the averaging operation
at the server.

While FL is proposed for privacy preserving purposes, it lacks
formal guarantee of privacy. For example, adversaries who have
access to the training results sent from each client to the server
might be able to infer a training sample from a client’s private
dataset. Many types of inference attacks on FL are investigated and
researched in [MSDCS19, ZLH19, LHCH20, NSH19]. To prevent
such attacks, SA is used as a protection of the client’s input while
permitting the computation of the sum of all the updates.

2.2 The Scope of the Study
In this paper, aggregation refers to the process where data collected
from multiple sources are summed up. Usually, data is provided
in consecutive time periods and the sum (aggregate) is calculated
for each time period. For many applications including federated
learning, the data contain sensitive information.

Usually, SA involves two actors: Users (U) and Aggregators (A).
Users are parties that provide the input data while Aggregators
are the parties that perform the aggregation to obtain the sum.
Additionally, a Trusted Third Party (TP) may also be defined for
setup purposes. There are mainly four types of secure aggregation:
SA based on differential privacy, SA based on Trusted-Execution
Environment (TEE), SA based on anonymity, and SA based on
cryptography. In this paper, we specifically focus on SA based on
cyrptographic schemes. In the following, we elaborate on each type
of secure aggregation and we clarify the choice of studying SA
based on cryptographic schemes.

SA based on differential privacy. Differential privacy (DP) is a
technique that theoretically ensures that a change in a single sam-
ple in the training dataset of an algorithm, causes only statisti-
cally insignificant changes to the algorithm’s output. To achieve
secure aggregation using DP mechanisms, clients protect their
trained models by adding statistical noise[MASN21, ASY+18, TF19,
YWW21, CYD20, STL20, DHCP21]. The main concern with this ap-
proach is that the added noise is amplified during the aggregation
thus, significantly affecting the accuracy of the aggregated model.

SA based on trusted-execution environment. Another method to
perform secure aggregation is to use a TEE at the server [ZJF+21,
NMZ+21, ZWC+21, MHK+21]. The TEE is a hardware-separated
area of the main processor that guarantees the confidentiality and
integrity of the processed data. SA can be achieved by computing
the aggregation within the TEE. This method requires strong trust
assumptions regarding the use of the TEE.

SA based on anonymity. A different method relies on anonymous
communication assumption [IKOS06]. This method is also known
as secure shuffling where users split their inputs into shares and
send them anonymously to the aggregator [ZWC+21]. Thanks to
the anonymous communication, the server cannot discover the
origin of the received shares and thus is unable to reconstruct the
user inputs. In the case of federated learning applications, it is
often impossible to have completely anonymous communication
channels between the clients and the server.

SA based on cryptography. Finally, cryptographic techniques are
used to design secure aggregation protocols. Many researchers are
particularly interested in this type of secure aggregation (evenmuch
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Figure 1: The publications that used terms “secure aggrega-
tion”and “privacy-preserving aggregation” in their title or
abstract. The publications are grouped based on their appli-
cation domain.

before federated learning existed) since it does not significantly
affect the accuracy of the aggregation result. It also does not rely
on impractical assumptions such as in the case of TEE and secure
shuffling which makes this choice suitable for federated learning
applications. Indeed, we count around around 37 solutions based
on cryptographic schemes that are used for federated learning.

2.3 History of Secure Aggregation
SA was originally designed to aggregate private data generated
by nodes in wireless sensor networks (WSN) (also in smart grids
and smart meters applications). As far as we know, the “secure
aggregation” term first appeared around 2003 [HE03]. With the in-
crease in popularity of WSN and the Internet of Things (IoT), more
solutions were proposed [ÖM07, CMT05]. It appeared also with
alternative names that refer to the same concept. Namely, “privacy-
preserving aggregation” [SCR+11], “privacy-friendly aggregation”
[KDK11], and “private stream aggregation” [CSS12]. Later in 2017,
after the emerge of the federated learning technology, Bonawitz
et al. [BIK+17] identified the need for secure aggregation solutions
for federated learning and proposed the first secure aggregation
solution in this context. The scheme was an improvement and adap-
tation of an existing SA scheme [ÁC11]. After the first solution
of SA for federated learning appeared in 2017 [BIK+17], more re-
searchers further explored this area and propose more SA solutions
for federated learning. Most of the proposed solutions are enlight-
ened by existing solutions which were originally designed for WSN.
A study on the appearance of the term “secure aggregation” and its
alternatives is shown in Figure 1. The figure shows a clear research
trend on secure aggregation in the context of federated learning.

2.4 Threat Model and Security Requirements
A common security model for secure aggregation schemes is the
honest-but-curious model with collusions. An honest-but-curious
party is a party that correctly follows the protocol steps but remains
curious to discover any private information. Honest-but-curious

users may collude with each other or/and with the honest-but-
curious aggregator. In case of collusion, the colluding parties share
all their private information. In this model, a SA solution is said to
be secure if it achieves Aggregator Obliviousness.

Definition 1. Aggregator Obliviousness: This security notion
ensures that an honest-but-curious aggregator cannot learn more
than what could be learned from the sum of the users inputs. If some
users are corrupted (i.e., users sharing their private information with
the aggregator), the notion only requires that the aggregator gets no
extra information about the values of the honest users beyond that
their aggregate value. This notion was initially proposed by Shi et al.
[SCR+11] for SA schemes in the context of WSN.

In addition to the honest-but-curious model, several research
works considered a malicious model where the adversaries are
more powerful. Malicious entities may alter their inputs to the
protocol to either learn private information or to alter the result
of the aggregation. There are two main malicious settings: The
malicious aggregator model and the malicious users model. A SA
solution is said to be secure if it achieves Aggregate Integrity and
Aggregator Obliviousness.

Definition 2. Aggregate Integrity: This security notion ensures
that a malicious aggregator cannot forge a false aggregation result
without being detected by the users. A forgery is defined as an ag-
gregation outcome that is not equal to the sum of the users’ inputs.
Additionally, a set of malicious users cannot compromise the aggre-
gation result as long as their is a sufficient number of honest users
(more than a threshold). A compromise is defined as a significant drift
in the value of the aggregation outcome from the sum of the honest
users’ inputs.

In this paper, we first study SA solutions based on cryptographic
schemes in the honest-but-curious model. Then, in section 4, we
show how these schemes are extended to consider the malicious
model adhering to federated learning use-cases.

3 SECURE AGGREGATION BASED ON
CRYPTOGRAPHIC SCHEMES

In this section, we systematize crypto-based secure aggregation by
first proposing a general definition that captures its different instan-
tiations. We define it by describing three consecutive phases. Then,
we regroup secure aggregation (SA) into two categories based on
the underlying cryptographic tools used to build the SA protocol.
Specifically, we distinguish encryption-based secure aggregation
and multi-party-computation (MPC)-based secure aggregation. For
each of the categories, we show how to build a secure aggregation
protocol from the existing cryptographic schemes by defining the al-
gorithms executed at each SA phase. We summarize the advantages
and disadvantages of the different categories in Table 1.

3.1 Secure Aggregation Protocol Phases
A secure aggregation protocol consists of three consecutive phases:
SA.Setup, SA.Protect, and SA.Agg. Each of these phases achieves
a specific task described as follows:
• SA.Setup: In this phase, the 𝑛 users and the aggregator get
the public parameters and the key material. The public pa-
rameters and the keys are generated either using a trusted
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Schemes TP No SC Dynamic Comp. Comm.required required users

Masking (DC-net) PKI 𝑂 (𝑛 +𝑚) 𝑂 (𝑛 +𝑚)
AHE KD 𝑂 (𝑚) 𝑂 (𝑚)

En
cr
yp
tio

n

FE KD 𝑂 (𝑚) 𝑂 (𝑚)
n-out-of-n SS

M
PC t-out-of-n SS - 𝑂 (𝑛𝑚) 𝑂 (𝑛𝑚)

Table 1: Table comparing the different categories of secure
aggregation. TP stands for trusted third party. SC stands
for pre-established secure channels. Dynamic users property
shows wether the aggregation can be performed with only
a subset of the users. Comp. stands for computation cost on
users. Comm. stands for communication cost between users
and aggregators. 𝑛 and 𝑚 represents the number of users
and the size of user’s input respectively. means that the
property is attained.

third party (TP) or through a distributed mechanism. At
the end of this phase, each user stores a single unique key 𝑘𝑖
where 𝑖 ∈ [1, .., 𝑛] and the aggregator stores its aggregation
key 𝑘0.
• SA.Protect: Each userU𝑖 locally executes a protection algo-
rithm to protect its input𝑚𝑖,𝜏 of time period 𝜏 . The resulting
protected input is sent to the aggregator(s).
• SA.Agg: After the aggregators collect all the protected in-
puts, they collaboratively execute an aggregation algorithm
to retrieve the sum of user inputs for time period 𝜏 . In the
case with a single aggregator, the aggregation algorithm is
locally executed by the aggregator.

3.2 Encryption-based SA
Encryption-based SA protocols use encryption schemes to protect
the inputs of the users. Encryption utilizes a secret key to ensure
the confidentiality of the user input. However, to further achieve
Aggregator Obliviousness (see Definition 1), users should not be
allowed to encrypt their inputs with the same key. Moreover, the
encryption scheme should allow the computation of the sum of the
inputs over the ciphertexts without leaking the individual cleartext
values. There are three types of encryption schemes that are used
to build a secure aggregation protocol: (i) masking, (ii) additively
homomorphic encryption (AHE), and (iii) functional encryption
(FE). In general, encryption-based SAs rely on a single aggregator
to perform the aggregation which minimizes the communication
overheard of the protocol.

3.2.1 Secure Aggregation using Masking. Masking is a sym-
metric encryption technique based on one-time pad [Rub96]. It uses
modular addition to mask the data owner inputs. Given a shared
key 𝑘 between two parties and an upper bound 𝑟 of the message,
masking is defined by two algorithms:
• 𝑐 ← 𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑀𝑎𝑠𝑘 (𝑘,𝑚) : Masks an input𝑚 with the mask-
ing key 𝑘 (𝑐 =𝑚 + 𝑘 mod 𝑟 ).
• 𝑚 ← 𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑈𝑛𝑀𝑎𝑠𝑘 (𝑘, 𝑐) : Unmasks the ciphertext 𝑐
using the masking key 𝑘 (𝑐 = 𝑐 − 𝑘 mod 𝑟 ).

It is one of the oldest techniques for designing a secure aggrega-
tion protocol. It was used first in tree structured networks. These

schemes are called layeredmasking schemes [CMT05, ÖM07, CCMT09].
We describe an example of these schemes in Appendix B. More
recently, a Dining Cryptographers network (DC-net) variant is
proposed in [ÁC11, BIK+17, BBG+20, SGA21b].

In the SA.Setup phase, each pair of users (U𝑖 , U𝑗 ) agrees on
a random key 𝑘 (𝑖, 𝑗 ),𝜏 using a Key Agreement protocol (ex., Diffie
Hellman (DH) [DH06] using the aggregator as a proxy to forward
the public keys). Also, each userU𝑖 agrees on a random key 𝑘 (𝑖,0),𝜏
with the aggregator. As a result, each userU𝑖 and the aggregator
A computes their own unique key as follows:

𝑘𝑖,𝜏 ←
𝑖−1∑︁
𝑗=1

𝑘 (𝑖, 𝑗 ),𝜏 −
𝑛∑︁

𝑗=𝑖+1
𝑘 (𝑖, 𝑗 ),𝜏 − 𝑘 (𝑖,0),𝜏

s.t. 𝑘 (𝑖, 𝑗 ),𝜏 = 𝑘 ( 𝑗,𝑖 ),𝜏 and 𝑘 (𝑖,𝑖 ),𝜏 = 0 ∀ 𝑖 ∈ [0, .., 𝑛]
(1)

In the SA.Protect phase, each user masks its own input𝑚𝑖,𝜏 with
the key 𝑘𝑖,𝜏 :

𝑐𝑖,𝜏 ← 𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑀𝑎𝑠𝑘 (𝑘𝑖,𝜏 ,𝑚𝑖,𝜏 )
In the SA.Agg phase, the aggregator adds the masked inputs from
all users. Then, it removes the mask using its key 𝑘0,𝜏 (all the op-
eration are mod 𝑅 = 𝑛𝑅𝑢 where [0, 𝑅𝑢 ] is the range for the input
values of each user):

𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑈𝑛𝑀𝑎𝑠𝑘 (𝑘0,𝜏 ,
𝑛∑︁
𝑖=1

𝑐𝑖,𝜏 ) =
𝑛∑︁
𝑖=1

𝑐𝑖,𝜏 − 𝑘0,𝜏

=

𝑛∑︁
𝑖=1
(𝑚𝑖,𝜏 +

𝑖−1∑︁
𝑗=1

𝑘 (𝑖, 𝑗 ),𝜏 −
𝑛∑︁

𝑗=𝑖+1
𝑘 (𝑖, 𝑗 ),𝜏 − 𝑘 (𝑖,0),𝜏 ) − 𝑘0,𝜏

=

𝑛∑︁
𝑖=1

𝑚𝑖,𝜏 +
������������: 0
𝑛∑︁
𝑖=1
(
𝑖−1∑︁
𝑗=1

𝑘 (𝑖, 𝑗 ),𝜏 −
𝑛∑︁

𝑗=𝑖+1
𝑘 (𝑖, 𝑗 ),𝜏 )

−
𝑛∑︁
𝑖=1

𝑘 (𝑖,0),𝜏 − 𝑘0,𝜏

=

𝑛∑︁
𝑖=1

𝑚𝑖,𝜏 −
𝑛∑︁
𝑖=1

𝑘 (𝑖,0),𝜏 − (−
𝑛∑︁
𝑖=1

𝑘 (0,𝑖 ),𝜏 ) =
𝑛∑︁
1
𝑚𝑖,𝜏

(2)

...

DH

DH ...

Mask

UnMask

SA.Setup (online) SA.Protect SA.Agg

Figure 2: The main operations and the communication be-
tween parties in Masking-based SA.

Analysis: This scheme does not require a key dealer (KD) to dis-
tribute the masks. However, it relies on a trusted public key in-
frastructure (PKI). On the other hand, the masking operations are
themselves very lightweight since they only include modular ad-
ditions. However, the setup phase incurs significant overhead in
terms of computation and communication costs per user which
increase linearly with the total number of users. Since masking uses
one-time pad encryption, the setup phase is performed on each
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time period 𝜏 (notice the use of the tag 𝜏 for each key). Another dis-
advantage is that once keys are distributed, all users should provide
their protected inputs (i.e., does not support dynamic users). Indeed,
if some users did not participate, the masks on the aggregated value
cannot be removed. Note that masking itself is information theo-
retically secure but the setup relies on a key agreement protocol
that is computationally secure.

3.2.2 Secure Aggregation using AHE. A special type of Addi-
tively Homomorphic Encryption (AHE) schemes can be used for
secure aggregation. Specifically, multi-user AHE are proposed such
that “addition homomorphism” property is maintained across ci-
phertext generated by different users with different keys. These
schemes are generally defined by the three following algorithms:
• (𝑝𝑝, {𝑘𝑖 }𝑖∈[1,..,𝑛] , 𝑘0) ← 𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 (_): Given a security
parameter _, it generates the public parameters, the encryp-
tion keys, and the decryption key.
• 𝑐𝑖,𝜏 ← 𝐴𝐻𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘𝑖 , 𝜏,𝑚𝑖,𝜏 ): It encrypts a message𝑚𝑖,𝜏

for a time period 𝜏 using the key𝑘𝑖 and outputs the ciphertext
𝑐𝑖,𝜏 .
• ∑𝑛

1 𝑚𝑖,𝜏 ← 𝐴𝐻𝐸.𝐴𝑔𝑔(𝑝𝑝, 𝑘0, 𝜏, {𝑐𝑖,𝜏 }𝑖∈[1,..,𝑛] ): It evaluates
the homomorphic operation on the 𝑛 ciphertexts generated
at the time period 𝜏 . Then decrypts the resulting ciphertext
using the decryption key 𝑘0.

A multi-user AHE scheme can guarantee Aggregator Obliviousness
if each user encrypts only one input per time period. Several instan-
tiations are proposed in [SCR+11, ET12, JL13, BJL16]. We present
examples of AHE schemes that guarantee Aggregator Obliviousness
in Appendix A.

Multi-user AHE schemes are designed specifically for secure ag-
gregation protocols. So the SA phases are described as follows: in the
SA.Setup phase, TP runs 𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 (_) and distributes the keys
to the users and the aggregator. The SA.Setup phase is executed
only once; In the SA.Protect phase,U𝑖 executes𝐴𝐻𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘𝑖 , 𝜏,𝑚𝑖,𝜏 )
and sends the ciphertext to the aggregator; Finally, in the SA.Agg
phase, the aggregator executes 𝐴𝐻𝐸.𝐴𝑔𝑔(𝑝𝑝, 𝑘0, 𝜏, {𝑐𝑖,𝜏 }𝑖∈[1,..,𝑛] )
and retrieves the sum of the inputs.

... Agg

EncSetup

SA.Setup (offline) SA.Protect SA.Agg

Figure 3: The main operations and the communication be-
tween parties in AHE-based SA.

Analysis: The main advantage of AHE schemes is that they require
to run the setup phase only one time, and hence they are effective
when aggregating a stream of data. This originally comes with a
cost of relying on a trusted key dealer (KD) to perform the setup.
Nevertheless, previous work has improved these schemes to enable
running them without the need for a key dealer [LEM14b]. In terms
of the computational cost per user, SA.Protect does not depend on
the total number of users but incurs heavy operations. Similarly

the communication cost per user does not depend on the total
number of users but incurs a size expansion because of the size
of the ciphertext. Additionally, similar to masking schemes, AHE
does not support dynamic users since all users should provide their
inputs to correctly aggregate them.

3.2.3 SecureAggregation using Functional Encryption. Func-
tional encryption (FE) is a type of encryption schemes that enables a
user to learn a function on the encrypted data [BSW11]. Multi-Input
Function Encryption (MIFE), introduced by Goldwasser [GGG+14],
enables the learning of a function over multiple encrypted inputs. A
special type of MIFE schemes can be designed to compute the inner
product function of multiple inputs [AGRW17, ACF+18, DOT18].
Assumingwe have two vectors 𝑥 and𝑦 each consisting of 𝑙 elements,
the inner product of 𝑥 and 𝑦 is as follows:

𝐼𝑃 (𝑥,𝑦) =
𝑙∑︁

𝑖=1
𝑥 [𝑖]𝑦 [𝑖] (3)

An inner product MIFE scheme is defined by four algorithms:
• {𝑝𝑝,𝑚𝑠𝑘, {𝑘𝑖 }𝑖∈[1,..,𝑛] } ← 𝑀𝐼𝐹𝐸.𝑆𝑒𝑡𝑢𝑝 (_) : Given a secu-
rity parameter _, it generates the public parameters 𝑝𝑝 , a
master secret key𝑚𝑠𝑘 , and 𝑛 user keys {𝑘𝑖 }𝑖∈[1,..,𝑛] .
• 𝑐𝑖,𝜏 ← 𝑀𝐼𝐹𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘𝑖 ,𝑚𝑖,𝜏 ): It encrypts a message 𝑚𝑖,𝜏

using the key 𝑘𝑖 and outputs the ciphertext 𝑐𝑖,𝜏 .
• 𝑑𝑘𝜏 ← 𝑀𝐼𝐹𝐸.𝐷𝐾𝐺𝑒𝑛(𝑝𝑝,𝑚𝑠𝑘,𝑦𝜏 ) : It generates a decryp-
tion key 𝑑𝑘𝜏 using the master secret key and a vector 𝑦𝜏 of
𝑛 elements.
• 𝐼𝑃 (𝑚𝜏 , 𝑦𝜏 ) ← 𝑀𝐼𝐹𝐸.𝐷𝑒𝑐 (𝑝𝑝, 𝑑𝑘𝜏 , 𝑐𝜏 , 𝑦𝜏 ) : It takes the vector
𝑐𝜏 = [𝑐1,𝜏 , .., 𝑐𝑛,𝜏 ], the vector 𝑦𝜏 , and the decryption key 𝑑𝑘𝜏
generated from 𝑦𝜏 . It decrypts 𝑐𝜏 such that the result is the
inner product of𝑚𝜏 = [𝑚1,𝜏 , ..,𝑚𝑛,𝜏 ] and 𝑦𝜏 .

MIFE schemes for inner product can be used to construct a secure ag-
gregation protocol [XBZ+19,WPX+20]. In the SA.Setup phase,TP
runs 𝑀𝐼𝐹𝐸.𝑆𝑒𝑡𝑢𝑝 (_) and distributes the keys to the users. In the
SA.Protect phase,U𝑖 executes 𝑀𝐼𝐹𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘𝑖 ,𝑚𝑖,𝜏 ) and sends
the ciphertext 𝑐𝑖,𝜏 to the aggregator. Finally, in the SA.Agg phase,
the aggregator first sends a vector 𝑦𝜏 = [1, ..., 1] to TP which exe-
cutes𝑀𝐼𝐹𝐸.𝐷𝐾𝐺𝑒𝑛(𝑝𝑝,𝑚𝑠𝑘,𝑦𝜏 ) and sends the decryption key 𝑑𝑘𝜏
of time period 𝜏 to the aggregator. The aggregator then executes
𝑀𝐼𝐹𝐸.𝐷𝑒𝑐 (𝑝𝑝, 𝑑𝑘𝜏 , [𝑐1,𝜏 , .., 𝑐𝑛,𝜏 ], 𝑦𝜏 ) and retrieve the inner product∑𝑛
𝑖=1𝑚𝑖,𝜏𝑦 [𝑖] =

∑𝑛
1 𝑚𝑖,𝜏 .

SA.Setup (offline) SA.Protect SA.Agg

...

Setup Enc DKGen

Dec

Figure 4: The main operations and the communication be-
tween parties in FE-based SA.

Analysis: Similar to AHE schemes, MIFE-based SA incurs constant
computation and communication cost per user with respect to the
total number of users. A very important property of these schemes
is that it can deal with dynamic users by replacing zero weights in
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the vector 𝑦𝜏 for the users that do not provide input at time period
𝜏 . On the other hand, the disadvantage of these schemes is that
they require an online key dealer (KD) as a trusted third party to
generate the decryption key for each time period.

3.3 MPC-based SA
Another cryptographic tool used to build secure aggregation proto-
cols is multi-party computation (MPC). InMPC, keys are not needed
to protect the user inputs. Instead, private messages are split into
shares and distributed to multiple servers such that 𝑡 of them can
collaborate to reconstruct the private message. The schemes are
also called 𝑡-out-of-𝑛 secret sharing and they are composed of two
main algorithms:
• {[𝑠]𝑖 }𝑖∈[1,..,𝑛] ← 𝑀𝑃𝐶.𝑆ℎ𝑎𝑟𝑒 (𝑠, 𝑡, 𝑛): It splits a secret mes-
sage 𝑠 into 𝑛 shares such that the secret can be reconstructed
with 𝑡 of the shares.
• 𝑠 ← 𝑀𝑃𝐶.𝑅𝑒𝑐𝑜𝑛({[𝑠]𝑖 }𝑖∈𝑈 ⊂[1,..,𝑛] ): It reconstructs the se-
cret 𝑠 from a subset of more than 𝑡 shares ({[𝑠]𝑖 }𝑖∈𝑈 ⊂[1,..,𝑛]
where |𝑈 | ≥ 𝑡 ).

A widely used MPC scheme is Shamir’s secret sharing [Sha79].
This 𝑡-out-of-𝑛 sharing scheme uses polynomials to generate shares
of secret values. Alternatively, a simpler 𝑛-out-of-𝑛 secret sharing
can be constructed by simply splitting a secret value to 𝑛 random
values that sum up to the secret.

To design a secure aggregation protocol fromMPC, the SA.Setup
phase is not needed since no keys are generated. In the SA.Protect
phase, a user protects its input by splitting it into 𝑙 random shares
using𝑀𝑃𝐶.𝑆ℎ𝑎𝑟𝑒 (𝑚𝑖,𝜏 , 𝑡, 𝑙) where 𝑙 is the number of aggregators.
It then sends one unique share to each aggregator. In the SA.Agg
phase, each aggregator locally sums up the shares. Because secret
sharing is additively homomorphic, the sum of the shares will result
in a share of the sum. Finally, at least 𝑡 aggregators broadcast their
shares of the sum so that any aggregator can then run𝑀𝑃𝐶.𝑅𝑒𝑐𝑜𝑛
and retrieve the sum

∑𝑛
1 𝑚𝑖,𝜏 .

SA.Setup (offline) SA.Protect SA.Agg

...

Share Recon

Figure 5: The main operations and the communication be-
tween parties in MPC-based SA.

Analysis: An important property of MPC-based SA is that it does
not need a trusted third party since it does not need a key setup
phase. Also, MPC supports dynamic users since it allows any subset
of users to participate in the aggregation. This is mainly because
MPC does not rely on secret keys that uniquely identifies a user. In
the contrary, MPC incurs high computation and communication
costs since the protection of a user input involves creating 𝑂 (𝑛𝑚)
shares where 𝑛 is the number of users and 𝑚 is the size of the
input. Furthermore, to distribute the shares, pre-existing secure
channels are needed between the users and the aggregators. The

Train ML model on private data

Send ML models to server

Aggregate models

+

Send agg. model to clients

+ =

Figure 6: One federated learning round with 3 FL clients and
the server.

secure channels ensure that each share is received and accessed
only by its destined aggregator.

4 SECURE AGGREGATION FOR FEDERATED
LEARNING

Secure aggregation is used in federated learning to preserve the pri-
vacy of the clients. In this section, we first elaborate on the different
categories of federated learning systems and we present the prob-
lem of inference attacks. Then, we show how secure aggregation
based on cryptographic schemes can mitigate these attacks. We
further study the suitability of the baseline SA categories presented
in Section 3 to federated learning. To study their suitability, we iden-
tify the unique requirements of federated learning and we analyze
whether the basic schemes presented in Section 3 meet these re-
quirements. Finally, we survey the existing work on improving the
existing SA protocols to cope with FL challenges, specifically. We
propose to regroup these solutions based on the specific challenges
they tackle.

4.1 Federated Learning and Inference Attacks
In FL, a modelM is trained on 𝑛 datasets (D1,D2, ...,D𝑛) each
maintained by a different FL client. For each FL round 𝜏 , the client
𝑖 receives the modelM𝜏 from the server and trains it on D𝑖 which
results in the trained modelM𝜏

𝑖
. The server aggregates the model

and sends the aggregated modelM𝜏+1 back to the clients. Figure 6
illustrates one FL round.

Scale of federation. Based on the scale of the FL protocol, two
types of FL can be distinguished: cross-silo FL and cross-device FL
[KMA+19]. In cross-silo scenarios, a small number (order of tens) of
powerful users host the data who often have decent computational
power with a reliable and high bandwidth network connections.
On the contrary, cross-device scenarios involve a large number of
users. These users often correspond to end-devices with moderate
to low computational power. In many applications, these devices
interact directly with end-users from which they collect data.
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Partitioning of the training data. There exist three categories
of data partitioning [YLCT19, LWH19]: Horizontal partitioning,
vertical partitioning, and a hybrid partitioning. In a horizontal par-
titioned dataset, each FL client holds a set of complete training
samples. Each sample contains all the training features and the cor-
responding label. Hence, each client is able to train a local model on
these samples. Differently, in a vertically partitioned dataset [DP21],
a client may hold part of the features of each training sample while
the other parts might be held by other FL clients. In this FL type, the
clients are not able to locally train a model without collecting the
missing information of each sample from other clients. A hybrid
partitioned dataset is a combination of horizontally and vertically
partitioned datasets. SA is only suitable to FL based on horizon-
tally partitioned datasets since those based vertically partitioned
datasets require more operations than just summing the clients’
updates. Therefore, in the remaining of this section, FL for vertical
and hybrid datasets will be omitted.

Learning algorithm. The most used learning algorithm for hor-
izontal FL is Federated Averaging [MMR+17], which is based on
Stochastic Gradient Descent (SGD) [iA93]. SGD is an iterative algo-
rithm used to train a model on a dataset (i.e., find the best weights
of a model that can fit the dataset). On each SGD step, the client 𝑖
uses the current weights𝑤𝜏 of the modelM𝜏 and a loss function
L𝑓 to compute the gradient 𝑔𝜏

𝑖
from the values in its dataset D𝑖 .

𝑔𝜏𝑖 = ΔL𝑓 (𝑤𝜏 ,D𝑖 ) = Δ
∑︁

(𝑥,𝑦) ∈D𝑖

L𝑓 (𝑤𝜏 , 𝑥,𝑦)

Then, the gradient is used to update the weights of the model with
a learning rate [ (𝑤𝜏

𝑖
= 𝑤𝜏 − [𝑔𝜏

𝑖
). The FL clients send their new

trained modelM𝜏
𝑖
represented by the computed weights𝑤𝜏

𝑖
to the

FL server which aggregates them:

𝑚𝑖,𝜏 ← 𝑤𝜏
𝑖 , 𝑤𝜏+1 ←

∑𝑛
1 𝑚𝑖,𝜏

𝑛

Finally, each FL client obtains the aggregated modelM𝜏+1 repre-
sented by the aggregated weights𝑤𝜏+1

𝑖
and starts a new federated

learning round.

Inference Attacks. An adversary having access to the model up-
dates sent by the clients can perform inference attacks. In more
details, the attacker learns some private information about the
clients’ datasets. These attacks could consist of membership infer-
ence attacks [SSSS17a, NSH19] where the attackers learn whether
a specific data record is part of the training dataset or not. One can
also consider data reconstruction attacks [DN03, WLW+09] (a.k.a.
model invasion attacks [FJR15]) where the attacker learns some of
the attributes of a record in the dataset. Furthermore, Ateniese et
al. [AMS+15] and Ganju et al. [GWY+18] present data properties
inference attacks where the attacker learns global properties of the
training dataset, such as the environment in which the data was
produced.

4.2 SA to Mitigate Inference Attacks on
Federated Learning

Secure aggregation based on cryptographic schemes aims to prevent
inference attacks by hiding the model updates from any potential
adversary. Based on the definition given in Section 3, it involves

SA.Protect

E
nc
ry
pt
io
n

M
PC

SA.Setup

Broadcast aggregate

Train

Send protected models

E
nc
ry
pt
io
n

M
PC

+ + =

++ =

Onl
y f

or
 M

as
ki

ng

E
nc
ry
pt
io
n

SA.Agg

+ + =

Figure 7: A secure aggregation protocol integrated in feder-
ated learning. The secure aggregation protocol ensures that
the aggregators do not learn anything about the clients’ lo-
cally trained ML models except their aggregate.

two main players (i.e., usersU and aggregators A) which execute
the three SA phases (i.e., SA.Setup, SA.Protect, and SA.Agg). The
users correspond to the FL clients and their inputs in each round
are the locally trained models (𝑚𝑖,𝜏 ← 𝑤𝜏

𝑖
). On the other hand,

the aggregator (or the set of aggregators) act as the FL server. Any
secure aggregation algorithm consisting of the three defined phases
can be used for running a secure version of the FL protocol. To run
FL with secure aggregation, SA.Setup phase is performed before
the training starts. Then for each FL round 𝜏 , the clientU𝑖 trains
its model on its local data and obtains the gradient𝑤𝜏

𝑖
. It then runs

SA.Protect to protect the local trained model and send it to the
server. Finally, the server runs SA.Agg after it collects all protected
trained models. As a result, the clients get the aggregated model
and starts a new FL round. Figure 7 shows the components of secure
aggregation integrated in federated learning.

4.3 The Challenges in using SA for FL
Nowadays, the use of SA based on cryptographic schemes in fed-
erated learning becomes increasingly popular. We already witness
several federated learning frameworks such as FATE [Dep21], Pad-
dle FL [Pad21], and Pysyft [Ope21] integrating these technologies.
Nevertheless, these implementations are not practical in real-world
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Masking-
based
SA

AHE-
based
SA

FE-
based
SA

MPC-
based
SA

Client Failure (C1)
High Dim. Inputs (C2)

Scalability (C3)
Privacy Leaks (C4)

Malicious Users (C5)
Malicious Agg (C6)

Table 2: The challenges of using SA for FL based on the unique
requirements of FL. It shows for each challenge wether the
baseline SA protocols defined in Section 3 can originally cope
with that challenge.

scenarios since they underestimate the impact of SA schemes based
on cryptographic schemes on FL. Indeed, federated learning fea-
tures some unique properties and characteristics that differ from
previous applications where SA was used. We hereby identify six
unique properties for FL that raise significant challenges for the
integration of SA in FL. We further analyze the suitability of each
SA category (see Section 3) to cope with these characteristics. We
summarize the results in Table 2.

4.3.1 Failures and drops of clients at realtime (C1). In cross-device
FL scenarios, it is common to have mobile, unreliable FL clients. The
mobility of a client may cause failures (drops) of some FL clients
causing their unavailability for some federated learning rounds.
Failures of clients may even happen within the FL round as well.
All this can be a problem for some secure aggregation schemes that
do not support dynamic users. In particular, SA schemes based on
masking and AHE are not fundamentally designed to cope with user
failures. Therefore, the need for fault-tolerant secure aggregation
is a new requirement for FL.

4.3.2 Client’s inputs are vectors of high dimension rather than inte-
gers (C2). In FL, the user’s input is a vector that holds all the model
parameters (weights). Not all types of secure aggregation protocols
can work efficiently with vectors. For example, MPC-based SA in-
curs a significant communication cost since shares of the inputs
have the same size of the input. Therefore, it is not practical to
run secret sharing to share large vectors. Also, in masking-based
SA, the masks have the size of the input; Hence, agreeing on the
masks should be efficient in terms of bandwidth consumption. Ad-
ditionally, for AHE, it is not practical to encrypt each element of the
input vector. This calls for efficient packing techniques designed
for AHE-based SA.

4.3.3 Huge number of clients (C3). Recently, we start to observe
FL applications involving thousands of FL clients. Google is re-
searching how to train Gboard (the Android’s keyboard applica-
tion) search suggestion system using federated learning on large
scale [YAE+18, HKR+18]. With secure aggregation integrated with
federated learning, the scalability problem becomes a serious chal-
lenge. MPC-based SA protocols do not scale well for huge number
of users since they suffer from a quadratic complexity in terms
of communication and computation. Similarly, masking-based SA
suffers from a quadratic complexity in the setup phase. Additionally,
with large number of clients, the typical synchronized FL protocol

is not practical. In an asynchronous FL protocol, clients do not wait
for the updates of a sufficient number of users at each FL round.
Instead, the updates of the users are incorporated as soon as they
arrive at the server. Adopting SA for asynchronous FL is challeng-
ing because updates may be protected with keys corresponding to
different FL rounds.

4.3.4 Privacy attacks that bypass SA (C4). The aggregated model
M𝜏+1 is a public information that is accessible for all FL clients.
Therefore, secure aggregation is not used to hide this value. There
exist a different type of inference attacks that can still infer private
information from the aggregated model, only [SSSS17b]. For exam-
ple, recently So et al. [SAG+21] pointed out a new attack to leak the
client’s updates even when protected with secure aggregation. The
authors notice that the models from the FL clients do not change a
lot between one training step and another one when the trained
model starts to converge. This causes a privacy leakage if a FL client
did not participate. In detail, if all FL clients participate in round
𝜏 − 1 and all clients except one participate in round 𝜏 , and if the
inputs did not change a lot, an adversary who has access to the
aggregated model updates for rounds 𝜏 and 𝜏 − 1 will be able to
approximate the inputs of the missing FL client. Such specific at-
tacks can bypass the security measures of SA. Gao et al. [GHG+21]
implemented these types of attacked and showed how they can
effectively infer the category of given data samples.

Secure aggregation protocols by definition do not provide pro-
tection against these types of attacks. Therefore, additional security
mechanisms should be used with secure aggregation to mitigate
these attacks.

4.3.5 Malicious Users (C5). Earlier SA protocols proposed before
the appear of the FL paradigm appeared, consider a honest-but-
curious threat model with colluding users (see Section 2). Such
threat model is not sufficient in the context of federated learning.
Specifically, FL clients cannot be trusted to provide their inputs
truthfully at each FL round. Thus, we should consider an extended
threat model which considers malicious users.

Indeed, poisoning attacks (a.k.a., backdooring attacks) are attacks
where malicious FL clients manipulate their model updatesM𝜏

𝑖
to

affect the aggregated modelM𝜏+1. Their goal is to install a back-
door in the trained model. A “backdoored” model behaves almost
normally on all inputs except for attacker-chosen inputs at which it
outputs attacker-desired predictions. Malicious FL clients use two
main methods to poison a model: Dataset poisoning [STS16] where
attackers insert malicious records in their dataset; and model poi-
soning [BVH+20a] (a.k.a., constrain-and-scale attacks) where the
attacker replaces the trained model by a malicious model and send
it instead of the trained model. An even more recent attack method
is distributed poisoning attacks [XHCL20] in which the poison is
distributed among several malicious clients inputs so it is harder
to detect malicious models. On the other hand, malicious clients
can perform less stealthy attacks by sending ill-formed inputs to
prevent the calculation of the aggregation.

All SA protocols studied in Section 3 are designed to achieve
Aggregator Obliviousness in the honest-but-curiousmodel. To further
prevent poisoning attacks we need additional security mechanisms
for SA.
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Figure 8: A summary of the existing FL solutions that use
crypto-based secure aggregation grouped by the type of the
SA used and the specific challenge they tackle. Bordered
boxes indicates that the solution presents a technique that
can be deployed in other types of SA protocols (eg., [XLL+20]
is implemented on masking-based SA but can be used also
for AHE-based SA). Hatched boxes indicates that the scheme
used cannot achieve the security requirements since they do
not support collusions (this is discussed in Section 5). Colors
represents research groups of the authors.

4.3.6 Malicious Aggregator (C6). Similar to challenge (C5), the
honest-but-curious threat model is not sufficient to prevent the
cheating of a server in the context of federated learning. More
specifically, the SA protocols described in Section 3 prevent a curi-
ous FL server from learning the clients inputs, but cannot protect
against a malicious server that modifies the aggregated model. In-
deed a malicious server can cause a huge damage because it has
full control of the final aggregated value. Therefore, an adversary
controlling the FL server can force the clients to learn an adversary
chosen model. In fact, the impact of a malicious aggregator can even
go beyond forging the aggregation result. Pasquini et al. [PFA21]
showed that a malicious aggregator can even compromise the pri-
vacy by bypassing the secure aggregation protocol. An example
for these attacks illustrated by the authors is when the malicious
aggregator chooses specific values for the aggregated result. The
values are chosen such that when the clients train the forged model
sent by the aggregator, the training outputs a model of zero parame-
ters. Hence, the malicious aggregator can suppress arbitrary clients
of his choice from the aggregation by sending them malformed
models. Therefore, it can suppress all clients except a targeted one
and leak its input.

To prevent such attacks, SA protocols should consider amalicious
aggregator in their threat model.

4.4 Crypto-based SA solutions designed for FL
Many research has been performed on designing SA protocols based
on cryptographic schemes for federated learning applications. Most

of the proposed schemes are improvements of the basic secure ag-
gregations protocols described in Section 3 and tackle one or more
of the aforementioned challenges (C1-C6). The proposed schemes
can be categorized based on the challenge they tackle. We sum-
marize how these solutions propose different solutions for each
of the challenges. Table 3 presents an overview of these solutions
grouped by their challenge scope. Also, Figure 8 regroups them per
SA category and shows the relation between the solutions.

4.4.1 Fault-tolerant SA. To tackle the problem of client failures
(seeC1), a fault-tolerant secure aggregation protocol should be used.
MPC-based secure aggregation, specifically, Shamir’s SS scheme
[Sha79] is by design fault-tolerant. It is used in [DCSW20, KRKR20]
where the FL server is replaced with a set of separated aggregators.
The high communication cost these solutions incur encouraged
researchers to look for alternative fault-tolerant solutions.

MIFE-based schemes are also by design fault-tolerant since the
data aggregator can assign zeroweights formissing clients [XBZ+19].
However, these schemes require a key-dealer to stay online for each
federated learning round.

On the other hand, Bonawitz et al. [BIK+17] proposed a fault-
tolerant variant of the masking-based SA. Later, this scheme was
widely adopted and improved by [BBG+20, EA20, SGA21b, KLS21,
XLL+20, GLL+21]. The idea of this scheme is to merge Shamir’s
SS scheme with masking. This merging can achieve best of both
worlds. Specifically, it benefits from the lightweight operations and
low communication overhead of the masking scheme and on the
other hand, it benefits from the fault-tolerance property of Shamir’s
SS scheme. Thanks to this tradeoff, it is considered as a big jump
towards designing practical secure aggregation scheme for cross-
device FL scenarios. The details of this scheme are explained in
Appendix C. A similar scheme is proposed by Stevens et al. [SSV+21]
that replaces the standard masking with a Learning With Error
masking and used a packed and verifiable version of Shamir’s secret
sharing. Also, Yang et al. proposed LightSecAgg [YSH+21] which
replaces the Shamir’s secret sharing scheme with a secret sharing
scheme based on Maximal Distance Seperable (MDS) code [RL89].
The work of Yang et al. reduces the computation time on the server.
Another approach is proposed by Swanand et al. [KRKR20] that
uses Fast Fourier Transform (FFT) for secret sharing.

4.4.2 Communication efficient SA. Researchers propose some tech-
niques to bound the overhead incurred by SA (see C2). For encryp-
tion based schemes, batch encryption has been leveraged by Liu
et al. [LCV19], Phong et al. [PAH+18], and Yang et al. [ZLX+20].
In BatchCrypt [ZLX+20], the authors propose a method to quan-
tize and batch the elements of a gradient before encryption. The
strength of their approach is that it preserves the additively homo-
morphic property of the ciphertexts. Alternatively, Beguier et al.
[BT20] propose a compression technique to decrease the size of
the inputs and then use secret sharing over the compressed results.
Another interesting technique presented by Wu et al. [WPX+20] is
to use All Or Nothing Transformation (AONT) [Riv97]. The authors
show that by transforming the client’s gradient with AONT, it is
sufficient to encrypt a small part of the transformed gradient. This
can decrease the size of the protected user input by several orders.
Another method followed by Elkordy et al. [EA20] and Benawitz
et al. [BSK+19] is to use auto-tuned quantization. This technique is
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Scope Solution (year) SA scheme FL scale Technique

Fa
ul
t-

To
le
ra
nc
e
(C

1) Bonawitz et al. [BIK+17] Masking X-Dev Integrating Shamir SS with Masking
HybridAlpha [XBZ+19] MIFE X-Silo Assigning zero weights for dropped clients
FastSecAgg [KRKR20] MPC-t-of-n X-Dev Using FFT with Shamir SS
Stevens et al. [SSV+21] Masking X-Dev Integrating Shamir SS with LWE-based Masking
LightSecAgg [YSH+21] Masking X-Dev Integrating MDS code with Masking

C
om

m
un

ic
at
io
n

Effi
ci
en
cy

(C
2)

Phong et al. [PAH+18] AHE X-Silo Batch encryption
Bonawitz et al. [BSK+19] Masking X-Dev Autotuned quantization

Liu et al. [LCV19] AHE X-Silo Batch encryption
BatchCrypt [ZLX+20] AHE X-Silo Batch encryption
Wu et al. [WPX+20] MIFE X-Silo All or nothing transformation

Safer [BT20] MPC-n-of-n X-Silo Compression
HeteroSAg [EA20] Masking X-Dev Autotuned quantization
EastFly [DCSW20] MPC-n-of-

n / AHE X-Silo Quantization: ternary FL

Sc
al
ab
ili
ty

(C
3)

Bonawtiz et al. [BEG+19] Masking X-Dev Sub-grouping: Running multiple SA instances
Bell et al. [BBG+20] Masking X-Dev Sub-grouping: Creating random connected graphs
TurboAgg [SGA21b] Masking X-Dev Sub-grouping: Circular subgroups of clients

SAFE [SMH21] Masking X-Dev Arranging clients in a circular chain
So et al. [SAGA21] Masking X-Dev Adapting SA for asynchronous FL

SwiftAgg [JNMALC22] Masking X-Dev Sub-grouping: Running multiple SA instances

Pr
iv
ac
y

En
ha

nc
in
g
(C

4) Truex et al. [TBA+19] AHE X-Silo DDP: clients add gaussian noise
Peter et al. [KLS21] Masking X-Dev DDP: clients add gaussian noise
So et al. [SAG+21] Masking X-Dev Multi-round privacy using client selection

Timothy et al. [SSV+21] Masking X-Dev DDP: clients use LWE-based masking
Joaquín et al. [FMLF21] Masking X-Dev DP: aggregator add noise to the aggregate

Ve
ri
fy

In
pu

ts
(C

5)

MLGuard [KTC20] MPC-2-of-2 X-Silo Boolean circuits to compute cosine distance
FLGuard [NRY+21] MPC-2-of-2 X-Silo Bool/Arth circuits to perform clustering

RoFL [BLV+21] AHE X-Silo Commitment scheme to compute euclidean distance
BREA [SGA21a] Masking X-Dev Arithmetic circuits to compute square distance

Karakoc et al. [KOB21] AHE X-Silo OPPRF to compare with a threshold
SAFELearning [ZLYM21] Masking X-Dev Multi-step aggregation to verify intermediate results
Velicheti et al. [VXK21] Masking X-Dev Multi-step aggregation to verify intermediate results

Ve
ri
fy

A
gg
.

(C
6)

Zhang et al. [ZFW+20] AHE X-Silo Using HHF based on Bilinear Maps
VerifyNet [XLL+20] Masking X-Dev Using HHF with ZKP scheme
VERSA [HKKH21] Masking X-Dev Using keyed HHF with ZKP scheme

NIVA [BTL+21] MPC X-Dev Verifiable secret sharing
DEVA [TLB+21] MPC X-Dev Verifiable secret sharing
VeriFL [GLL+21] Masking X-Dev Using commitment scheme with HHF

Table 3: Categorization of secure federated learning solutions based on the challenge tackled with a short description of the
proposed solution. All the solutions are secure in the HBC model except those addressing C6 (malicious aggregator) and C5
(malicious users) thus addressing a specific malicious setting. An exception is for the solutions in red which don’t protect
against collusions between users and aggregators and thus are considered not secure (based on our security definitions in
Section 2).

integrated with FT-Masking [BIK+17] and enables the data owners
to adapt their quantization level based on the requirements. One
very important aspect for these quantization techniques is their
impact on performance. Therefore, all these mentioned work study
the trade-off between reducing the size of the protected gradient
and the maintaining a high precision for the trained model.

4.4.3 Scalable SA. To tackle challenge C3, scalability of SA started
to gain researchers’ attention thanks to the new large-scale appli-
cations of FL. Bonawitz et al. [BEG+19] set up a general framework
to scale a secure aggregation framework to millions of devices. The
authors propose to simply run multiple instances of the scheme,

one for each subgroup of clients. Each subgroup compute inter-
mediate aggregates which are combined later. The same intuition
of grouping clients is followed up by Bell et al. [BBG+20] and by
So et al. [SGA21b]. Bell et al. observe that the FT-Masking scheme
in [BIK+17] does not require that all the clients need to be con-
nected. Thus, they propose to generalize the scheme by creating
random graphs. Each FL client executes the FT-Masking with its
neighbors. The new protocol assumes that not all the neighbors
will be corrupted at the same time and it proposes a method to build
the so called “good” graphs. Similarly, both So et al. (TurboAgg)
[SGA21b] and Sandholm et al. (SAFE) [SMH21] propose a circular
topology. Clients perform a chain of aggregations by passing the



SoK: Secure Aggregation based on cryptographic schemes for Federated Learning PoPETS, July 10–14, 2023, Lausanne, Switzerland

aggregated updates to the next client. To further deal with large
number of client, So et al. [SAGA21] propose a SA protocol that can
be integrated in asynchronous FL. The solution uses the scheme
proposed in [YSH+21] and adapts it to enable securely aggregating
inputs from different time periods.

4.4.4 SA resilient to privacy attack. To deal with inference attacks
on the aggregated model (C4). Differential Privacy (DP) [Dwo06]
should be used with secure aggregation. Notice that using DP with
SA is to protect the aggregated model, only and not user inputs.

A simple method is to let the aggregator apply DP on the aggre-
gated model [FMLF21]. However, this requires to trust the aggre-
gator. A better method is to use a distributed version of DP (DDP)
along with SA to mitigate the information leakage caused by the
public aggregated model. Few works have followed this approach
for FL [KLS21, TBA+19]. These solutions add Gaussian noise to
the FL clients’ inputs. They leverage the fact that FL clients inputs
are protected with cryptographic tools (thanks to SA) which per-
mit them to decrease the level of noise while achieving sufficient
privacy level. Therefore, using DDP with SA limits the degrada-
tion of the accuracy of the trained model compared to using DP
alone. Stevens et al. [SSV+21] followed a similar approach by using
Learning with Error (LWE) masking technique to make the final
aggregate differentially private.

On the other hand, a multi-round privacy concept is introduced
by So et al. [SAG+21]. This concept is to ensure that an adversary
cannot learn valuable information by monitoring the changes in the
aggregated model across different FL rounds. The authors propose a
solution enlightened by the work done by [TNW+21]. They propose
to randomly and fairly (using weights) select participants in each
FL round based on well-defined criteria so called Batch Partitioning.
Using this technique they can guarantee the long-term privacy of
the data at the FL clients.

4.4.5 SA against malicious users. To deal with malicious users that
perform poisoning attacks (C5), the FL server needs a mechanism
to validate the inputs of the clients. Mitigating poisoning attacks is
studied by researchers independently from using secure aggrega-
tion for FL [FYB18, AMMK20]. One of the methods used to prevent
such attacks is to use the cosine distance [FYB18] to detect poi-
soned inputs that deviate from the other benign inputs. Clustering
[STS16, BEMGS17] and anomaly detection methods [AMMK20]
are also used to detect malicious model updates. An orthogonal ap-
proach is to use clipping and noising to smooth the model updates
and remove the differences [BVH+20b]. While all these solutions
are shown to be efficient in preventing poisoning attacks, using
them with secure aggregation is a big challenge. The problem is
that all these solutions rely on analyzing the FL clients’ inputs while
secure aggregation aims to hide and protect these inputs.

Several methods are proposed to verify the inputs while keeping
them protected to preserve their privacy. For MPC-based SA, it is
possible to build circuits that can perform complex operations on
the shares. This can be used to evaluate functions on the inputs
other than just computing the sum. Indeed, MLGuard [KTC20]
proposes to verify the users’ inputs by transforming a verification
function into a circuit which gets executed by the two servers using
2PC. The verification function computes the distance between the
clients’ inputs. The circuit compares the distance to pre-defined

thresholds and thus reject the input. FLGuard [NRY+21] follows the
same approach by building two circuits. One circuit for detecting
poisoned inputs using a dynamic clustering algorithm (HDBSCAN
[CMS13]) and another circuit for reducing the impact of poisoned
inputs using clipping and noising. The communication cost of run-
ning these circuits is significant thus making scalability even harder
to achieve for SA in the federated learning context. A promising
approach to reduce this cost is through the use of secret-sharing non-
interactive proof (SNIP). This approach was proposed in [CGB17]
(Prio). Using SNIP enables the aggregators to validate the user
inputs without interacting with the users and with minimal inter-
action between themselves. This scheme is not yet deployed in FL
applications. SNIP brings a great advantage over standard 2-PC
validation circuits since it does not limit the number of aggregators
thanks to its lower communication cost. The limitation of SNIP is
that it only supports specific validation functions. Therefore, it is an
open challenge to design validation circuits for detecting poisoning
attack using SNIP.

On the other hand, regarding AHE-based SA, Karakoc et al.
[KOB21] propose OPPRF, an algorithm based on private set mem-
bership (PSM) [CO18] and oblivious transfer (OT) [NP05]. OPPRF
uses PSM to perform equality checks between values (i.e., equiv-
alent to finding intersection between sets of cardinality equal to
one [Cou18]). Using OPPRF, the users can create tags that are only
valid if their inputs are lower than a threshold provided by the ag-
gregator. Karakoc et al. [KOB21] applied this scheme for Multi-Key
AHE secure aggregation schemes and evaluated it in SFL applica-
tions. The scheme enables the FL server to detect poisoning attacks
by checking that the minimum, maximum and the average of the
gradient elements does not cross a certain threshold value. The
threshold is configured based on an observation of the gradients
of benign clients. Another approach is proposed by Lukas et al.
[BLV+21]. The authors use a non-interactive commitment scheme
proposed in [Ped92]. Using this scheme, the users create proofs
that the Euclidean distance of their inputs satisfies the bounds set
by the aggregator. Upon receiving the client protected input and
the commitment, the server verifies that the proof is valid.

For masking-based SA, two techniques are proposed. One tech-
nique proposed by So et al. [SGA21a] in which users secretly share
their model updates with all other clients and then compute the
square distance between the model shares. The server can finally
reconstruct the square distances and use the result to detect mali-
cious inputs. An alternative technique is proposed by Zhang et al.
[ZLYM21] and Velicheti et al. [VXK21]. In details, users are anony-
mously and randomly grouped into clusters. Aggregation happens
per cluster and then a second round of aggregation happens on the
results of each cluster. For each cluster, the intermediate aggrega-
tion results are checked to prevent poisoning attacks. The fact that
attackers do not know to which cluster the compromised device
belongs to, protects from distributed poisoning attacks (see C5).

4.4.6 SA against malicious aggregator. In a malicious aggregator
threat model, the FL server forges false aggregation results (C6).
Mitigating these attacks requires a verifiable secure aggregation
scheme. Many solutions are proposed to enable the verification of
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the aggregation outcome [KShS12, SS11, DOS18, CDE+18]. How-
ever, these solutions do not fit well federated learning applica-
tions due to their high communication overhead. In the context of
federated learning, six solutions are proposed [GLL+21, HKKH21,
XLL+20, ZFW+20, TLB+21, BTL+21].

For masking-based and AHE-based SA, Zhang et al. [ZFW+20]
and Xu et al. (VerifyNet) [XLL+20] used Homomorphic Hash Func-
tions (HHF) to verify the result of the aggregation. HHF can be
build using bilinear maps [BGLS03, Fre12]. First, the data owners
create authentication tags of their inputs and send them to the
aggregator. The latter aggregates them to prove the outcome of
the aggregation. Finally, the aggregator verifies the result. Hahn et
al. [HKKH21] detected possible brute-force attacks on VerifyNet
and improved it by deploying a keyed HHF. All these solutions
do not support collusions between the users and the aggregator.
Therefore, cannot be considered secure based on our security def-
initions (see Section 2). Another problem with these solutions is
that they significantly affect the performance of SA. This is because
of the linear increase in computation and communication overhead
with the increase of the dimension of inputs. This is a clear limi-
tation since the performance of the ML model highly depends on
their size (i.e., number of parameters). To solve this problem, Guo
et al. (VeriFL) [GLL+21] focus on designing a verification scheme
specifically for secure aggregation applications with inputs of high
dimension. To support user-aggregator collusions, the authors in-
tegrated a commitment scheme to prevent users from changing
their hashes after the computation of the aggregate. The authors of
VeriFL apply this scheme to the fault-tolerant masking scheme in
[BIK+17]. The evaluation on federated learning application show
a significant reduction in communication overhead with respect
to other verification schemes. However, VeriFL still suffers from a
quadratic computation and communication cost with respect to the
number of FL clients. Achieving a better scalability for verification
systems is an open problem.

For MPC-based SA, Brunetta et al. [BTL+21] propose NIVA as
a non-interactive secure aggregation protocol that includes the
verification of the result. The users create a tag for each of their
input shares. Upon computing the aggregate, the result can be
verified using all the generated tags. Tsaloli et al. [TLB+21] proposes
DEVA which improves the number of tags created for each user.
DEVA requires that a user creates a single tag for its input rather
than creating a tag per for each share. Both approaches do not
support collusions between users and the aggregator and incur
very high communication overhead since they use MPC.

5 TAKEAWAY MESSAGES AND
OBSERVATIONS

We have extensively studied the federated learning solutions that
integrate secure aggregation schemes. In this section, we identify
and share the following observations and takeaway messages:

O1 We can clearly see that masking-based SA are the most inte-
grated secure aggregation solution for federated learning. More
specifically FT-Masking [BIK+17], appeared in 20 solutions where
each one tried to improve it in a certain direction. It will be very
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nice to see all these parallel improvements integrated in a single
solution.

O2 We notice that secure aggregation solutions based on AHE
are not widely adopted in federated learning. This is mainly be-
cause they do not support user dynamics. However, we see that
AHE-based SA is promising since they provide long-term security
using the same user keys. We hope to see more research improving
these schemes towards a practical deployment in federated learning
context.

O3 We notice that some of the solutions proposed to preserve
the privacy in federated learning do not adhere to the minimal
security requirements for secure aggregation protocols (see Ag-
gregator Obliviousness in Section 2). Specifically, AHE schemes
[PAH+18, LCV19, ZLX+20, ZFW+20] and masking-based verifica-
tion schemes [ZFW+20, XLL+20, HKKH21] that use the same key
for all usersp should not be considered secure since they do not
guarantee security in case of a collusion between a user and the
aggregator.

O4 We note that secure aggregation alone is insufficient to guaran-
tee the privacy of the clients datasets in the context of federated
learning. Although SA helps prevent inference attacks, the global
model that is collaboratively computed from private individual
inputs can still leak information. Therefore, additional protection
mechanisms are required. For this purpose, differentially private
mechanism and multi-round privacy are suitable candidates to cope
with this problem.

O5 Poisoning attacks against federated learning call for some in-
tegrity mechanisms that would allow the aggregator (the FL server
in this context) verify the correctness/veracity of received inputs.
Nevertheless, the cost of such mechanisms can be significant. There-
fore, we can consider the design of such mechanisms that can (i)
detect stealthy and sophisticated poisoning attacks, (ii) ensure the
security and scalability requirements as an open challenge.
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O6 Similar to the previous observation, we identify the need for
an integrity mechanism for verifying the correctness of the actual
aggregate. Basic solutions would linearly increase the size of the
transmitted data between parties w.r.t. the model size. Using incre-
mental HHF is promising as shown in VeriFL [GLL+21]. However,
this solution is still far from being applied for FL application in
larger scales since it still implies a linear increase in communication
and computation cost w.r.t the number of clients.

Based on all the previous observations, we propose to revisit
the definition of crypto-based secure aggregation to make it suit-
able for FL. Specifically, we revise the description of the protocol
phases (i.e., SA.Setup, SA.Protect, and SA.Agg) to meet all the
security requirements for FL application. Following observation
O4, the SA.Protect phase should be modified such that users first
pre-process their inputs with distributed differential privacy mech-
anism before running the actual protection algorithm. Additionally,
based on observationO5, SA.Protect should also generate integrity
proofs of inputs which are sent together with the protected inputs
to the data aggregators. On the other hand, SA.Agg should include
a verification mechanism of the inputs which validates the integrity
proofs. Moreover, observation O6 indicates that SA.Agg should
compute a proof of the aggregation which is sent to the users along
with aggregation result. In order for the users to validate the aggre-
gation result, we require an additional secure aggregation phase.
Namely, SA.Verify phase which is performed as a final step by
the users. In this phase, the users verify the received result of the
aggregation.

In summary, we propose a better definition of secure aggregation
protocols based on cryptographic schemes which copes with the
security requirements of federated learning. The defintion consists
of four phases: SA.Setup, SA.Protect, SA.Agg, and SA.Verify.
Figure 9 shows the details of the improvements in each of the
phases. It is worth to note that this new definition combines and
generalizes all the improvements proposed by the state-of-the-art
solutions. It would be interesting to develop the first SA solution
for FL implementing our proposed definition by combining all the
state-of-the-art techniques.

6 RELATED STUDIES
To the best of our knowledge, there are no systematization of knowl-
edge in the literature focusing on secure aggregation ptotocols
based on cryptographic schemes and their application to federated
learning protocols. Recent works [KMA+19, SWRH20, MPP+21]
studied federated learning and the security and privacy issues of
machine learning. In all these three studies, the authors present
a high level overview of all the possible secure aggregation tech-
niques that can be deployed in federated learning. With respect
to our work, we concentrate our research only on the solutions
based on cryptographic schemes by performing an in-depth sys-
tematic study that results in a clear comparison of these solutions.
For example, none of theses studies give a formal definition of this
concept and shows how all the existing techniques can be instanti-
ated under this definition. More importantly, we extensively study
the use of such SA protocols for federated learning in the literature.
Therefore, we identify the specific challenges of using these SA
protocols in FL and we analyze the existing solutions.

In a recent work [CPTPH21], the study focuses on a cross-field
systematization of knowledge on privacy-preserving collaborative
training of tree-basedmodels such as decision-trees, random forests,
and boosting. The systematization was based on the learning al-
gorithm, the collaborative model, the protection mechanism, and
the threat model. In [HMSY21], the authors review and analyze
techniques and protocols used for privacy-preserving clustering
with respect to efficiency, privacy, and security models. The above
studies focus on specific types of machine learning models that
require special treatment to be trained collaboratively. In contrary,
our study focuses on general machine learning models that can be
trained using horizontal federated learning.

7 CONCLUSION
In this paper, we proposed a formal definition of secure aggrega-
tion based on cryptographic schemes and provided an overview
of the literature. We have first categorized the solutions based on
the underlying cryptographic technique and further studied them
with respect to their architecture, performance and their support of
dynamic users. We then focused on the use of secure aggregation
in federated learning. We have identified six main challenges: FL
clients’ failures, large dimension of client’s input, huge number of
clients, inference attacks and multi-round leakage, poisoning at-
tacks from malicious users, and forged aggregation from malicious
aggregator. We studied the existing 37 SFL solutions and catego-
rized them based on the challenge they tackle and the attack they
mitigate. Thanks to this study, we were able to present six main
observations that we hope will help point the research in this field
to the right direction.
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A AHE SCHEMES FOR SECURE
AGGREGATION

A.1 Shi-Chan-Rieffel-Chow-Song Scheme
SCRCS scheme [SCR+11] is the first Key AHE scheme used for
secure aggregation. It guaranteesAggregator Obliviousness based on
Decisional Diffie Hellman (DDH) assumption. The three algorithms
(𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 , 𝐴𝐻𝐸.𝐸𝑛𝑐 , and 𝐴𝐻𝐸.𝐴𝑔𝑔) are defined as follows:

• (𝑝𝑝, {𝑘𝑖 }𝑖∈[1,..,𝑛] , 𝑘0) ← 𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 (_): Given a security
parameter _, it chooses a generator 𝑔 ∈ GwhereG is a cyclic
group of prime order 𝑝 for which Decisional Diffie-Hellman
is hard. Additionally, it defines the hash function𝐻 : Z→ G.
It also generates 𝑛 random secrets 𝑘1, ..., 𝑘𝑛 ∈ Z𝑛 and 𝑘0 =

−∑𝑁
1 𝑠𝑖 . It outputs the public parameters 𝑝𝑝 = (𝑔, 𝐻 ), the

secrets keys of each user {𝑘𝑖 }𝑖∈[1,..,𝑛] , and the secret key of
the aggregator 𝑘0.
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• 𝑐𝑖,𝜏 ← 𝐴𝐻𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘𝑖 , 𝜏,𝑚𝑖,𝜏 ):

𝑐𝑖,𝜏 ← 𝑔𝑚𝑖,𝜏 · 𝐻 (𝜏)𝑘𝑖

• ∑𝑛
1 𝑚𝑖,𝜏 ← 𝐴𝐻𝐸.𝐴𝑔𝑔(𝑝𝑝, 𝑘0, 𝜏, {𝑐𝑖,𝜏 }𝑖∈[1,..,𝑛] ):

𝑐𝜏 ←
𝑛∏
1
𝑐𝑖,𝜏 = 𝑔

∑𝑁
1 𝑚𝑖,𝜏 · 𝐻 (𝜏)

∑𝑁
1 𝑘𝑖

𝑉 ← 𝐻 (𝜏)𝑘0 · 𝑐𝜏 = 𝑔
∑𝑛

1 𝑚𝑖,𝜏 mod 𝑛
Then it compute the discrete logarithm base 𝑔 of𝑉 to obtain∑𝑛

1 𝑚𝑖,𝜏 mod 𝑝 . For efficient computation of the discrete
logarithmusing Pollard’smethod [Pol78], the output

∑𝑛
1 𝑚𝑖,𝜏

should be a small number.
For the prove of correctness and security of this scheme, refer to
[SCR+11].

A.2 Joye-Libert Scheme
JL scheme [JL13] is another AHE scheme for SA which was de-
signed as an improvement of the SCRCS scheme. JL scheme has a
simpler decryption function as it does not require the computation
of the discrete logarithm in a group in which the DDH assumption
hold. The JL scheme guarantees Aggregator Obliviousness based
on Decision Composite Residuosity (DCR) assumption [Pai99]. It
defines the three algorithms (𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 , 𝐴𝐻𝐸.𝐸𝑛𝑐 , and 𝐴𝐻𝐸.𝐴𝑔𝑔)
as follows:
• (𝑝𝑝, {𝑘𝑖 }𝑖∈[1,..,𝑛] , 𝑘0) ← 𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 (_): Given a security
parameter _, it generates randomly two equal-size prime
numbers 𝑝 and 𝑞 and sets 𝑁 = 𝑝𝑞. Then, it defines a crypto-
graphic hash function 𝐻 : Z→ Z∗

𝑁 2 . It randomly generates

𝑛 secret keys {𝑘𝑖 }1..𝑛 ∈ Z𝑁 2 and sets 𝑘0 = −
𝑛∑
1
𝑘𝑖 . It outputs

the public parameters 𝑝𝑝 = (𝑁,𝐻 ), the secrets keys of each
user {𝑘𝑖 }𝑖∈[1,..,𝑛] , and the secret key of the aggregator 𝑘0.
• 𝑐𝑖,𝜏 ← 𝐴𝐻𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘𝑖 , 𝜏,𝑚𝑖,𝜏 ):

𝑐𝑖,𝜏 ← (1 +𝑚𝑖,𝜏𝑁 ) · 𝐻 (𝜏)𝑘𝑖 mod 𝑁 2

• ∑𝑛
1 𝑚𝑖,𝜏 ← 𝐴𝐻𝐸.𝐴𝑔𝑔(𝑝𝑝, 𝑘0, 𝜏, {𝑐𝑖,𝜏 }𝑖∈[1,..,𝑛] ):

𝑐𝜏 ←
𝑛∏
1
𝑐𝑖,𝜏 = (1 + 𝑁

𝑛∑︁
1
𝑚𝑖,𝜏 ) · 𝐻 (𝜏)

∑𝑛
1 𝑘𝑖 mod 𝑁 2

𝐻 (𝜏)𝑘0𝑐𝜏 − 1
𝑁

=

𝑛∑︁
1
𝑚𝑖,𝜏 mod 𝑁

For the prove of correctness and security of this scheme, refer to
[JL13].

B LAYERED MASKING VARIANT
Another variant of masking-based secure aggregation is the lay-
ered masking [CCMT09, CMT05, ÖM07, WGA06]. In this type of
masking scheme, the users are assumed to have network connec-
tivity with each others. So, the users arrange in a tree structure. In
the SA.Setup phase, the ones that are at a distance ℎ hops from
each other, shares the same keys (ℎ being a security parameter).
Each user representing a node in the tree runs a secure aggregation
process with its children. In SA.Protect, each child node masks its
input with the sum of the keys it holds using𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑀𝑎𝑠𝑘 . It then
sends it to its parent node. In SA.Agg, the parent sums the masked

inputs received from all its children and then removes the layers of
the masks that corresponds to their keys using𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑈𝑛𝑀𝑎𝑠𝑘 .
The same process is repeated from bottom to up for each parent
node until the aggregated value reaches the root of the tree at which
the final layers are removed. Castelluccia et al. [CMT05] applied a
specific version of this scheme when ℎ = ∞. Önen et al. [ÖM07]
later generalized this scheme.

C FAULT-TOLERANT SAWITH MASKING
Masking is one of the lightest techniques in terms of communica-
tion and computational overhead. It also offers, a descent security
against collusion attacks. However, using Masking for secure aggre-
gation is inefficient when the data owners are mobile or when the
network is highly disrupted. This is because the failure of one user
providing its input results in the failure of the entire secure aggrega-
tion operation. To bypass this limitation, Shamir Secret Sharing is
integrated with Masking which derive a new fault tolerance secure
aggregation technique [BIK+17, BBG+20, SGA21b]. This technique
uses the DC-net variant of masking. In the SA.Setup phase, the
users agree on mutual seeds using Deffie-Hellman similar to the
case in standardmasking-based SA. However, for FT-Masking, users
additionally using the 𝑡-out-of-𝑛 Shamir’s Secret Sharing [Sha79] to
share their Deffie-Helmen secret key. Using this approach, masks of
dropped users can be recovered as long as 𝑡 users are still alive. The
outcome owner can reconstruct the DH secret key of the missing
users and consequently compute their masks. While this solves the
problem of dropped users, it causes a new security problem. If a
user delays in sending its masked input to the aggregator, the aggre-
gator may consider it as dropped and thus asks for reconstructing
its masks. Later when the masked input is received, the outcome
owner is able to unmask its input. To solve this problem, a double
masking technique is used in the SA.Protect. In detail, each user
adds another layer of masking using a randomly generated mask
𝑏𝑖,𝜏 :

𝑐𝑖,𝜏 ←𝑚𝑖,𝜏 + 𝑘𝑖,𝜏 + 𝑏𝑖,𝜏
where 𝑘𝑖,𝜏 is computed as in the equation 1. This new mask is
generated from a random generated seed which is also shared
using Shamir’s Secret Sharing with all other users. In SA.Agg,
the aggregator first collects 𝑡 shares of the seed of each mask 𝑏𝑖,𝜏
for every alive user U𝑖 and reconstruct it. Then it get 𝑡 shares
of the Deffie-Helmen’s secret key of the dropped users and thus
reconstruct the missing masks 𝑘 𝑗,𝜏 for every dropped data owner
U𝑗 . Consider X and Y the set of remaining and dropped users
respectively (all the operation are mod 𝑅 = 𝑛𝑅𝑢 where [0, 𝑅𝑢 ] is
the range for the input values of each user).∑︁
U𝑖 ∈X

𝑐𝑖,𝜏 −
∑︁
U𝑖 ∈X

𝑏𝑖,𝜏 +
∑︁
U𝑗 ∈Y

𝑘𝑖,𝜏

=
∑︁
U𝑖 ∈X

𝑚𝑖,𝜏 +
∑︁
U𝑖 ∈X

𝑘𝑖,𝜏 +
∑︁
U𝑖 ∈X

𝑏𝑖,𝜏 −
∑︁
U𝑖 ∈X

𝑏𝑖,𝜏 +
∑︁
U𝑗 ∈Y

𝑘𝑖,𝜏

=
∑︁
U𝑖 ∈X

𝑚𝑖,𝜏 +
���

���* 0∑︁
U𝑖 ∈X∪Y

𝑘𝑖,𝜏

=

𝑛∑︁
1
𝑚𝑖,𝜏
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