Mohamad Mansouri
email: mohamad.mansouri@eurecom.com

Melek Önen
email: melek.onen@eurecom.com

Wafa Ben Jaballah
email: wafa.benjaballah@thalesgroup.com

Mauro Conti
email: conti@math.unipd.it

Mansouri Mohamad

SoK: Secure Aggregation based on cryptographic schemes for Federated Learning

Keywords: Secure Aggregation, Homomorphic Encryption, Multi-Party Computation, Federated Learning

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

With the recent advances in information technology, the adoption of distributed systems become a major trend for various applications/systems such as electronic voting [START_REF] Kohno | Analysis of an electronic voting system[END_REF], smart grids [ADMC17], industry's actuators and sensors, swarms of drones etc. All these systems involve multiple geo-dispersed edge devices that usually collect, store and collaboratively aggregate data. Recently, federated learning emerged as a new collaborative machine learning technology to train machine learning models. This new technology consists of several federated clients holding private data and contributing to the training of a machine learning model in a collaborative manner: Each client first trains a local machine learning model using its own dataset and further shares training parameter results with a server. The server aggregates the training results and sends the aggregate back to the clients. The clients repeat the process so that they finally converge to one shared, global model. The global model's parameters consist of the average of each local model's parameters. Thanks to this new technology, clients can train more accurate machine learning models using larger and more diverse datasets (originating from other clients).

Consequently, aggregating data from multiple sources is never more useful as in these days (such as their use in federated learning). Nevertheless, such operations that usually involve sensitive data raise serious privacy concerns and call for suitable privacy enhancing technologies to protect the confidentiality of clients' data while still being able to perform the aggregation operation. During the past 20 years, a huge amount of research focused on designing secure aggregation solutions [ÖM07, LEM14a, BSK + 19, BIK + 17, DA16, CMT05] for various applications that enable the computation of the sum of several parties' inputs without leaking any information about each individual input except the aggregate (the sum). Secure aggregation can be achieved using four main privacy enhancing technologies: differential privacy, Trusted-Execution Environment (TEE), secure shuffling under anonymity assumptions, and cryptography.

In this paper, we propose to study secure aggregation solutions based on cryptographic schemes as these seem to be the most popular ones for federated learning (37 solutions). We believe that this is mainly due to their practical setup and to the fact they do not affect the accuracy of the results.We first identify and investigate the three phases of secure aggregation protocol: Setup, Protection, and Aggregation. We categorize existing solutions based on two cryptographic primitives: encryption and multi-party computation (MPC). We further investigate the suitability of these solutions to federated learning and identify additional security, privacy and performance challenges, accordingly. More specifically, we study whether and how encryption-based or MPC-based secure aggregation can cope with: client failures/dynamics, scalability in terms of clients' input size, scalability in terms of number of clients, the presence of malicious clients or malicious server, and statistical attacks that leak private information.

To summarize, our contributions are as follows:

• We propose a formal definition of secure aggregation based on cryptographic schemes, by identifying a set of features that help an effective comparison among existing solutions. • We study the existing secure aggregation solutions based based on the underlying cryptographic schemes that are masking, additive homomorphic encryption, functional encryption, and multi-party computation. We analyze each category with respect to the set of features we have identified. • We further present a comprehensive study on the suitability of secure aggregation based on cryptographic schemes for federated learning, by identifying the main security, privacy, and performance challenges raised by this integration and their impact on each of the proposed categories. • We review the 37 solutions that integrate secure aggregation for federated learning and we propose a categorization based on two axes: the challenges that each solution tackles and the type of secure aggregation used. • We finish with some key takeaways that can help developers design, develop or improve secure aggregation schemes for federated learning.

The remaining of the paper is organized as follows: Section 2 presents the scope of our study, a historical background on SA based on cryptographic schemes and studies the threat model. Section 3 proposes a formal definition of SA and establishes a categorization of existing schemes. Section 4 focuses on the deployment of SA based on cryptographic schemes in federated learning. Furthermore, section 5 describes the major takeaways of this research. Finally, section 6 concludes this paper.

BACKGROUND AND MOTIVATION

This section briefly introduces federated learning and explains the need for secure aggregation for such applications. Then, we define the scope of our study by focusing our research on secure aggregation based on cryptographic schemes that are appropriate for federated learning. Third, we present a historical overview of secure aggregation. Last but not least, we provide the threat model and the security requirements.

Federated Learning

The term Federated Learning was initially introduced by McMahan et al. [MMR + 17] and refers to a technology that enables training machine learning models on data from different sources without the need to store the data at a central location. Federated Learning (FL) is performed in several rounds with multiple clients and a server. A FL client is installed at each data source location. At the beginning, the FL server initiates the same model for all clients. For each FL round, the clients perform local training on their own data to improve the received machine learning model and send the updated model to the server. The latter aggregates the trained models received from clients by averaging them and then sends the outcome back to the clients. After the clients receive the aggregated model, a new FL round starts where the clients and the server repeat the steps. FL stops when the aggregated model converges.

The main goal of FL is to protect the privacy of the local data while still being able to use them for training public models. This technology provides a great advantage over other techniques that try to achieve the same goal (eg., training on encrypted data [VNP + 20, HTGW18, WGC19, DGBL + 16, WTB + 20]). The latter adds a large computational overhead since it involves encryption of the inputs then performing complex computations on encrypted data. FL requires less computation as it only involves the averaging operation at the server.

While FL is proposed for privacy preserving purposes, it lacks formal guarantee of privacy. For example, adversaries who have access to the training results sent from each client to the server might be able to infer a training sample from a client's private dataset. Many types of inference attacks on FL are investigated and researched in [MSDCS19, ZLH19, LHCH20, NSH19]. To prevent such attacks, SA is used as a protection of the client's input while permitting the computation of the sum of all the updates.

The Scope of the Study

In this paper, aggregation refers to the process where data collected from multiple sources are summed up. Usually, data is provided in consecutive time periods and the sum (aggregate) is calculated for each time period. For many applications including federated learning, the data contain sensitive information.

Usually, SA involves two actors: Users (U) and Aggregators (A). Users are parties that provide the input data while Aggregators are the parties that perform the aggregation to obtain the sum. Additionally, a Trusted Third Party (T P) may also be defined for setup purposes. There are mainly four types of secure aggregation: SA based on differential privacy, SA based on Trusted-Execution Environment (TEE), SA based on anonymity, and SA based on cryptography. In this paper, we specifically focus on SA based on cyrptographic schemes. In the following, we elaborate on each type of secure aggregation and we clarify the choice of studying SA based on cryptographic schemes.

SA based on differential privacy. Differential privacy (DP) is a technique that theoretically ensures that a change in a single sample in the training dataset of an algorithm, causes only statistically insignificant changes to the algorithm's output. To achieve secure aggregation using DP mechanisms, clients protect their trained models by adding statistical noise[MASN21, ASY + 18, TF19, YWW21, CYD20, STL20, DHCP21]. The main concern with this approach is that the added noise is amplified during the aggregation thus, significantly affecting the accuracy of the aggregated model.

SA based on trusted-execution environment. Another method to perform secure aggregation is to use a TEE at the server [ZJF + 21, NMZ + 21, ZWC + 21, MHK + 21]. The TEE is a hardware-separated area of the main processor that guarantees the confidentiality and integrity of the processed data. SA can be achieved by computing the aggregation within the TEE. This method requires strong trust assumptions regarding the use of the TEE.

SA based on anonymity.

A different method relies on anonymous communication assumption [START_REF] Ishai | Cryptography from anonymity[END_REF]. This method is also known as secure shuffling where users split their inputs into shares and send them anonymously to the aggregator [ZWC + 21]. Thanks to the anonymous communication, the server cannot discover the origin of the received shares and thus is unable to reconstruct the user inputs. In the case of federated learning applications, it is often impossible to have completely anonymous communication channels between the clients and the server.

SA based on cryptography. Finally, cryptographic techniques are used to design secure aggregation protocols. Many researchers are particularly interested in this type of secure aggregation (even much Figure 1: The publications that used terms "secure aggregation"and "privacy-preserving aggregation" in their title or abstract. The publications are grouped based on their application domain.

before federated learning existed) since it does not significantly affect the accuracy of the aggregation result. It also does not rely on impractical assumptions such as in the case of TEE and secure shuffling which makes this choice suitable for federated learning applications. Indeed, we count around around 37 solutions based on cryptographic schemes that are used for federated learning.

History of Secure Aggregation

SA was originally designed to aggregate private data generated by nodes in wireless sensor networks (WSN) (also in smart grids and smart meters applications). As far as we know, the "secure aggregation" term first appeared around 2003 [START_REF] Hu | Secure aggregation for wireless networks[END_REF]. With the increase in popularity of WSN and the Internet of Things (IoT), more solutions were proposed [START_REF] Önen | Secure data aggregation with multiple encryption[END_REF][START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF]. It appeared also with alternative names that refer to the same concept. Namely, "privacypreserving aggregation" [SCR + 11], "privacy-friendly aggregation" [START_REF] Kursawe | Privacyfriendly aggregation for the smart-grid[END_REF], and "private stream aggregation" [START_REF] Hubert Chan | Privacy-preserving stream aggregation with fault tolerance[END_REF]. Later in 2017, after the emerge of the federated learning technology, Bonawitz et al. [BIK + 17] identified the need for secure aggregation solutions for federated learning and proposed the first secure aggregation solution in this context. The scheme was an improvement and adaptation of an existing SA scheme [ÁC11]. After the first solution of SA for federated learning appeared in 2017 [BIK + 17], more researchers further explored this area and propose more SA solutions for federated learning. Most of the proposed solutions are enlightened by existing solutions which were originally designed for WSN. A study on the appearance of the term "secure aggregation" and its alternatives is shown in Figure 1. The figure shows a clear research trend on secure aggregation in the context of federated learning.

Threat Model and Security Requirements

A common security model for secure aggregation schemes is the honest-but-curious model with collusions. An honest-but-curious party is a party that correctly follows the protocol steps but remains curious to discover any private information. Honest-but-curious users may collude with each other or/and with the honest-butcurious aggregator. In case of collusion, the colluding parties share all their private information. In this model, a SA solution is said to be secure if it achieves Aggregator Obliviousness. Definition 1. Aggregator Obliviousness: This security notion ensures that an honest-but-curious aggregator cannot learn more than what could be learned from the sum of the users inputs. If some users are corrupted (i.e., users sharing their private information with the aggregator), the notion only requires that the aggregator gets no extra information about the values of the honest users beyond that their aggregate value. This notion was initially proposed by Shi et al.

[SCR + 11] for SA schemes in the context of WSN.

In addition to the honest-but-curious model, several research works considered a malicious model where the adversaries are more powerful. Malicious entities may alter their inputs to the protocol to either learn private information or to alter the result of the aggregation. There are two main malicious settings: The malicious aggregator model and the malicious users model. A SA solution is said to be secure if it achieves Aggregate Integrity and Aggregator Obliviousness. Definition 2. Aggregate Integrity: This security notion ensures that a malicious aggregator cannot forge a false aggregation result without being detected by the users. A forgery is defined as an aggregation outcome that is not equal to the sum of the users' inputs. Additionally, a set of malicious users cannot compromise the aggregation result as long as their is a sufficient number of honest users (more than a threshold). A compromise is defined as a significant drift in the value of the aggregation outcome from the sum of the honest users' inputs.

In this paper, we first study SA solutions based on cryptographic schemes in the honest-but-curious model. Then, in section 4, we show how these schemes are extended to consider the malicious model adhering to federated learning use-cases.

SECURE AGGREGATION BASED ON CRYPTOGRAPHIC SCHEMES

In this section, we systematize crypto-based secure aggregation by first proposing a general definition that captures its different instantiations. We define it by describing three consecutive phases. Then, we regroup secure aggregation (SA) into two categories based on the underlying cryptographic tools used to build the SA protocol. Specifically, we distinguish encryption-based secure aggregation and multi-party-computation (MPC)-based secure aggregation. For each of the categories, we show how to build a secure aggregation protocol from the existing cryptographic schemes by defining the algorithms executed at each SA phase. We summarize the advantages and disadvantages of the different categories in Table 1.

Secure Aggregation Protocol Phases

A secure aggregation protocol consists of three consecutive phases: SA.Setup, SA.Protect, and SA.Agg. Each of these phases achieves a specific task described as follows:

• SA.Setup: In this phase, the 𝑛 users and the aggregator get the public parameters and the key material. The public parameters and the keys are generated either using a trusted third party (T P) or through a distributed mechanism. At the end of this phase, each user stores a single unique key 𝑘 𝑖 where 𝑖 ∈ [1, .., 𝑛] and the aggregator stores its aggregation key 𝑘 0 . • SA.Protect: Each user U 𝑖 locally executes a protection algorithm to protect its input 𝑚 𝑖,𝜏 of time period 𝜏. The resulting protected input is sent to the aggregator(s). • SA.Agg: After the aggregators collect all the protected inputs, they collaboratively execute an aggregation algorithm to retrieve the sum of user inputs for time period 𝜏. In the case with a single aggregator, the aggregation algorithm is locally executed by the aggregator.

Encryption-based SA

Encryption-based SA protocols use encryption schemes to protect the inputs of the users. Encryption utilizes a secret key to ensure the confidentiality of the user input. However, to further achieve Aggregator Obliviousness (see Definition 1), users should not be allowed to encrypt their inputs with the same key. Moreover, the encryption scheme should allow the computation of the sum of the inputs over the ciphertexts without leaking the individual cleartext values. There are three types of encryption schemes that are used to build a secure aggregation protocol: (i) masking, (ii) additively homomorphic encryption (AHE), and (iii) functional encryption (FE). In general, encryption-based SAs rely on a single aggregator to perform the aggregation which minimizes the communication overheard of the protocol.

3.2.1

Secure Aggregation using Masking. Masking is a symmetric encryption technique based on one-time pad [START_REF] Rubin | One-time pad cryptography[END_REF]. It uses modular addition to mask the data owner inputs. Given a shared key 𝑘 between two parties and an upper bound 𝑟 of the message, masking is defined by two algorithms:

• 𝑐 ← 𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑀𝑎𝑠𝑘 (𝑘, 𝑚) : Masks an input 𝑚 with the masking key 𝑘 (𝑐 = 𝑚 + 𝑘 mod 𝑟). • 𝑚 ← 𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑈 𝑛𝑀𝑎𝑠𝑘 (𝑘, 𝑐) : Unmasks the ciphertext 𝑐 using the masking key 𝑘 (𝑐 = 𝑐 -𝑘 mod 𝑟). It is one of the oldest techniques for designing a secure aggregation protocol. It was used first in tree structured networks. These schemes are called layered masking schemes [CMT05, ÖM07, CCMT09]. We describe an example of these schemes in Appendix B. More recently, a Dining Cryptographers network (DC-net) variant is proposed in [ÁC11, BIK + 17, BBG + 20, SGA21b].

In the SA.Setup phase, each pair of users (U 𝑖 , U 𝑗) agrees on a random key 𝑘 (𝑖,𝑗),𝜏 using a Key Agreement protocol (ex., Diffie Hellman (DH) [START_REF] Diffie | New directions in cryptography[END_REF] using the aggregator as a proxy to forward the public keys). Also, each user U 𝑖 agrees on a random key 𝑘 (𝑖,0),𝜏 with the aggregator. As a result, each user U 𝑖 and the aggregator A computes their own unique key as follows:

𝑘 𝑖,𝜏 ← 𝑖 -1 ∑︁ 𝑗=1 𝑘 (𝑖,𝑗),𝜏 - 𝑛 ∑︁ 𝑗=𝑖+1 𝑘 (𝑖,𝑗),𝜏 -𝑘 (𝑖,0),𝜏 s.t. 𝑘 (𝑖,𝑗),𝜏 = 𝑘 (𝑗,𝑖),𝜏 and 𝑘 (𝑖,𝑖),𝜏 = 0 ∀ 𝑖 ∈ [0, .., 𝑛] (1)
In the SA.Protect phase, each user masks its own input 𝑚 𝑖,𝜏 with the key 𝑘 𝑖,𝜏 : 𝑐 𝑖,𝜏 ← 𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑀𝑎𝑠𝑘 (𝑘 𝑖,𝜏 , 𝑚 𝑖,𝜏) In the SA.Agg phase, the aggregator adds the masked inputs from all users. Then, it removes the mask using its key 𝑘 0,𝜏 (all the operation are mod 𝑅 = 𝑛𝑅 𝑢 where [0, 𝑅 𝑢] is the range for the input values of each user):

𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑈 𝑛𝑀𝑎𝑠𝑘 (𝑘 0,𝜏 , 𝑛 ∑︁ 𝑖=1 𝑐 𝑖,𝜏) = 𝑛 ∑︁ 𝑖=1 𝑐 𝑖,𝜏 -𝑘 0,𝜏 = 𝑛 ∑︁ 𝑖=1 (𝑚 𝑖,𝜏 + 𝑖 -1 ∑︁ 𝑗=1 𝑘 (𝑖,𝑗),𝜏 - 𝑛 ∑︁ 𝑗=𝑖+1 𝑘 (𝑖,𝑗),𝜏 -𝑘 (𝑖,0),𝜏) -𝑘 0,𝜏 = 𝑛 ∑︁ 𝑖=1 𝑚 𝑖,𝜏 + $ $ $ $ $ $ $ $ $ $ $ $ X 0 𝑛 ∑︁ 𝑖=1 (𝑖 -1 ∑︁ 𝑗=1 𝑘 (𝑖,𝑗),𝜏 - 𝑛 ∑︁ 𝑗=𝑖+1 𝑘 (𝑖,𝑗),𝜏) - 𝑛 ∑︁ 𝑖=1 𝑘 (𝑖,0),𝜏 -𝑘 0,𝜏 = 𝑛 ∑︁ 𝑖=1 𝑚 𝑖,𝜏 - 𝑛 ∑︁ 𝑖=1 𝑘 (𝑖,0),𝜏 -(- 𝑛 ∑︁ 𝑖=1 𝑘 (0,𝑖),𝜏) = 𝑛 ∑︁ 1 𝑚 𝑖,𝜏 (2)
... Analysis: This scheme does not require a key dealer (KD) to distribute the masks. However, it relies on a trusted public key infrastructure (PKI). On the other hand, the masking operations are themselves very lightweight since they only include modular additions. However, the setup phase incurs significant overhead in terms of computation and communication costs per user which increase linearly with the total number of users. Since masking uses one-time pad encryption, the setup phase is performed on each time period 𝜏 (notice the use of the tag 𝜏 for each key). Another disadvantage is that once keys are distributed, all users should provide their protected inputs (i.e., does not support dynamic users). Indeed, if some users did not participate, the masks on the aggregated value cannot be removed. Note that masking itself is information theoretically secure but the setup relies on a key agreement protocol that is computationally secure.

3.2.2 Secure Aggregation using AHE. A special type of Additively Homomorphic Encryption (AHE) schemes can be used for secure aggregation. Specifically, multi-user AHE are proposed such that "addition homomorphism" property is maintained across ciphertext generated by different users with different keys. These schemes are generally defined by the three following algorithms: Multi-user AHE schemes are designed specifically for secure aggregation protocols. So the SA phases are described as follows: in the SA.Setup phase, T P runs 𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 (𝜆) and distributes the keys to the users and the aggregator. The SA.Setup phase is executed only once; In the SA.Protect phase, U 𝑖 executes 𝐴𝐻𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘 𝑖 , 𝜏, 𝑚 𝑖,𝜏) and sends the ciphertext to the aggregator; Finally, in the SA.Agg phase, the aggregator executes 𝐴𝐻𝐸.𝐴𝑔𝑔(𝑝𝑝, 𝑘 0 , 𝜏, {𝑐 𝑖,𝜏 } 𝑖 ∈ [1,..,𝑛]) and retrieves the sum of the inputs. Analysis: The main advantage of AHE schemes is that they require to run the setup phase only one time, and hence they are effective when aggregating a stream of data. This originally comes with a cost of relying on a trusted key dealer (KD) to perform the setup. Nevertheless, previous work has improved these schemes to enable running them without the need for a key dealer [START_REF] Leontiadis | Private and dynamic time-series data aggregation with trust relaxation[END_REF]. In terms of the computational cost per user, SA.Protect does not depend on the total number of users but incurs heavy operations. Similarly the communication cost per user does not depend on the total number of users but incurs a size expansion because of the size of the ciphertext. Additionally, similar to masking schemes, AHE does not support dynamic users since all users should provide their inputs to correctly aggregate them. Analysis: Similar to AHE schemes, MIFE-based SA incurs constant computation and communication cost per user with respect to the total number of users. A very important property of these schemes is that it can deal with dynamic users by replacing zero weights in the vector 𝑦 𝜏 for the users that do not provide input at time period 𝜏. On the other hand, the disadvantage of these schemes is that they require an online key dealer (KD) as a trusted third party to generate the decryption key for each time period.

• (𝑝𝑝, {𝑘 𝑖 } 𝑖 ∈ [1,..,𝑛] , 𝑘 0) ← 𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 (

3.2.3

MPC-based SA

Another cryptographic tool used to build secure aggregation protocols is multi-party computation (MPC). In MPC, keys are not needed to protect the user inputs. Instead, private messages are split into shares and distributed to multiple servers such that 𝑡 of them can collaborate to reconstruct the private message. The schemes are also called 𝑡-out-of-𝑛 secret sharing and they are composed of two main algorithms: where |𝑈 | ≥ 𝑡).

• {[𝑠] 𝑖 } 𝑖 ∈ [1,.
A widely used MPC scheme is Shamir's secret sharing [START_REF] Shamir | How to share a secret[END_REF]. This 𝑡-out-of-𝑛 sharing scheme uses polynomials to generate shares of secret values. Alternatively, a simpler 𝑛-out-of-𝑛 secret sharing can be constructed by simply splitting a secret value to 𝑛 random values that sum up to the secret.

To design a secure aggregation protocol from MPC, the SA.Setup phase is not needed since no keys are generated. In the SA.Protect phase, a user protects its input by splitting it into 𝑙 random shares using 𝑀𝑃𝐶.𝑆ℎ𝑎𝑟𝑒 (𝑚 𝑖,𝜏 , 𝑡, 𝑙) where 𝑙 is the number of aggregators. It then sends one unique share to each aggregator. In the SA.Agg phase, each aggregator locally sums up the shares. Because secret sharing is additively homomorphic, the sum of the shares will result in a share of the sum. Finally, at least 𝑡 aggregators broadcast their shares of the sum so that any aggregator can then run 𝑀𝑃𝐶.𝑅𝑒𝑐𝑜𝑛 and retrieve the sum 𝑛 1 𝑚 𝑖,𝜏 .

SA.Setup (offline) SA.Protect SA.Agg ...

Share Recon

Figure 5: The main operations and the communication between parties in MPC-based SA.

Analysis: An important property of MPC-based SA is that it does not need a trusted third party since it does not need a key setup phase. Also, MPC supports dynamic users since it allows any subset of users to participate in the aggregation. This is mainly because MPC does not rely on secret keys that uniquely identifies a user. In the contrary, MPC incurs high computation and communication costs since the protection of a user input involves creating 𝑂 (𝑛𝑚) shares where 𝑛 is the number of users and 𝑚 is the size of the input. Furthermore, to distribute the shares, pre-existing secure channels are needed between the users and the aggregators. The secure channels ensure that each share is received and accessed only by its destined aggregator.

SECURE AGGREGATION FOR FEDERATED LEARNING

Secure aggregation is used in federated learning to preserve the privacy of the clients. In this section, we first elaborate on the different categories of federated learning systems and we present the problem of inference attacks. Then, we show how secure aggregation based on cryptographic schemes can mitigate these attacks. We further study the suitability of the baseline SA categories presented in Section 3 to federated learning. To study their suitability, we identify the unique requirements of federated learning and we analyze whether the basic schemes presented in Section 3 meet these requirements. Finally, we survey the existing work on improving the existing SA protocols to cope with FL challenges, specifically. We propose to regroup these solutions based on the specific challenges they tackle.

Federated Learning and Inference Attacks

In Scale of federation. Based on the scale of the FL protocol, two types of FL can be distinguished: cross-silo FL and cross-device FL [KMA + 19]. In cross-silo scenarios, a small number (order of tens) of powerful users host the data who often have decent computational power with a reliable and high bandwidth network connections. On the contrary, cross-device scenarios involve a large number of users. These users often correspond to end-devices with moderate to low computational power. In many applications, these devices interact directly with end-users from which they collect data.

Partitioning of the training data.

There exist three categories of data partitioning [YLCT19, LWH19]: Horizontal partitioning, vertical partitioning, and a hybrid partitioning. In a horizontal partitioned dataset, each FL client holds a set of complete training samples. Each sample contains all the training features and the corresponding label. Hence, each client is able to train a local model on these samples. Differently, in a vertically partitioned dataset [START_REF] Das | Multi-tier federated learning for vertically partitioned data[END_REF], a client may hold part of the features of each training sample while the other parts might be held by other FL clients. In this FL type, the clients are not able to locally train a model without collecting the missing information of each sample from other clients. A hybrid partitioned dataset is a combination of horizontally and vertically partitioned datasets. SA is only suitable to FL based on horizontally partitioned datasets since those based vertically partitioned datasets require more operations than just summing the clients' updates. Therefore, in the remaining of this section, FL for vertical and hybrid datasets will be omitted.

Learning algorithm. The most used learning algorithm for horizontal FL is Federated Averaging [MMR + 17], which is based on Stochastic Gradient Descent (SGD) [iA93]. SGD is an iterative algorithm used to train a model on a dataset (i.e., find the best weights of a model that can fit the dataset). On each SGD step, the client 𝑖 uses the current weights 𝑤 𝜏 of the model M 𝜏 and a loss function L 𝑓 to compute the gradient 𝑔 𝜏 𝑖 from the values in its dataset D 𝑖 .

𝑔 𝜏 𝑖 = ΔL 𝑓 (𝑤 𝜏 , D 𝑖) = Δ ∑︁ (𝑥,𝑦) ∈ D 𝑖 L 𝑓 (𝑤 𝜏 , 𝑥, 𝑦)
Then, the gradient is used to update the weights of the model with a learning rate 𝜂 (𝑤 𝜏 𝑖 = 𝑤 𝜏 -𝜂𝑔 𝜏 𝑖). The FL clients send their new trained model M 𝜏 𝑖 represented by the computed weights 𝑤 𝜏 𝑖 to the FL server which aggregates them:

𝑚 𝑖,𝜏 ← 𝑤 𝜏 𝑖 , 𝑤 𝜏+1 ← 𝑛 1 𝑚 𝑖,𝜏 𝑛

SA to Mitigate Inference Attacks on Federated Learning

Secure aggregation based on cryptographic schemes aims to prevent inference attacks by hiding the model updates from any potential adversary. Based on the definition given in Section 3, it involves two main players (i.e., users U and aggregators A) which execute the three SA phases (i.e., SA.Setup, SA.Protect, and SA.Agg). The users correspond to the FL clients and their inputs in each round are the locally trained models (𝑚 𝑖,𝜏 ← 𝑤 𝜏 𝑖). On the other hand, the aggregator (or the set of aggregators) act as the FL server. Any secure aggregation algorithm consisting of the three defined phases can be used for running a secure version of the FL protocol. To run FL with secure aggregation, SA.Setup phase is performed before the training starts. Then for each FL round 𝜏, the client U 𝑖 trains its model on its local data and obtains the gradient 𝑤 𝜏 𝑖 . It then runs SA.Protect to protect the local trained model and send it to the server. Finally, the server runs SA.Agg after it collects all protected trained models. As a result, the clients get the aggregated model and starts a new FL round. Figure 7 shows the components of secure aggregation integrated in federated learning.

The Challenges in using SA for FL

Nowadays, the use of SA based on cryptographic schemes in federated learning becomes increasingly popular. We already witness several federated learning frameworks such as FATE [START_REF]Fate[END_REF], Paddle FL [START_REF] Paddlepaddle | [END_REF], and Pysyft [START_REF] Openmined | Pysyft[END_REF] Table 2: The challenges of using SA for FL based on the unique requirements of FL. It shows for each challenge wether the baseline SA protocols defined in Section 3 can originally cope with that challenge.

scenarios since they underestimate the impact of SA schemes based on cryptographic schemes on FL. Indeed, federated learning features some unique properties and characteristics that differ from previous applications where SA was used. We hereby identify six unique properties for FL that raise significant challenges for the integration of SA in FL. We further analyze the suitability of each SA category (see Section 3) to cope with these characteristics. We summarize the results in Table 2.

Failures and drops of clients at realtime (C 1).

In cross-device FL scenarios, it is common to have mobile, unreliable FL clients. The mobility of a client may cause failures (drops) of some FL clients causing their unavailability for some federated learning rounds. Failures of clients may even happen within the FL round as well.

All this can be a problem for some secure aggregation schemes that do not support dynamic users. In particular, SA schemes based on masking and AHE are not fundamentally designed to cope with user failures. Therefore, the need for fault-tolerant secure aggregation is a new requirement for FL.

Client's inputs are vectors of high dimension rather than integers (C 2).

In FL, the user's input is a vector that holds all the model parameters (weights). Not all types of secure aggregation protocols can work efficiently with vectors. For example, MPC-based SA incurs a significant communication cost since shares of the inputs have the same size of the input. Therefore, it is not practical to run secret sharing to share large vectors. Also, in masking-based SA, the masks have the size of the input; Hence, agreeing on the masks should be efficient in terms of bandwidth consumption. Additionally, for AHE, it is not practical to encrypt each element of the input vector. This calls for efficient packing techniques designed for AHE-based SA. Secure aggregation protocols by definition do not provide protection against these types of attacks. Therefore, additional security mechanisms should be used with secure aggregation to mitigate these attacks.

Huge number of clients (C

Malicious Users (C 5

). Earlier SA protocols proposed before the appear of the FL paradigm appeared, consider a honest-butcurious threat model with colluding users (see Section 2). Such threat model is not sufficient in the context of federated learning. Specifically, FL clients cannot be trusted to provide their inputs truthfully at each FL round. Thus, we should consider an extended threat model which considers malicious users.

Indeed, poisoning attacks (a.k.a., backdooring attacks) are attacks where malicious FL clients manipulate their model updates M 𝜏 𝑖 to affect the aggregated model M 𝜏+1 . Their goal is to install a backdoor in the trained model. A "backdoored" model behaves almost normally on all inputs except for attacker-chosen inputs at which it outputs attacker-desired predictions. Malicious FL clients use two main methods to poison a model: Dataset poisoning [START_REF] Shen | Auror: Defending against poisoning attacks in collaborative deep learning systems[END_REF] where attackers insert malicious records in their dataset; and model poisoning [BVH + 20a] (a.k.a., constrain-and-scale attacks) where the attacker replaces the trained model by a malicious model and send it instead of the trained model. An even more recent attack method is distributed poisoning attacks [START_REF] Xie | Dba: Distributed backdoor attacks against federated learning[END_REF] in which the poison is distributed among several malicious clients inputs so it is harder to detect malicious models. On the other hand, malicious clients can perform less stealthy attacks by sending ill-formed inputs to prevent the calculation of the aggregation.

All SA protocols studied in Section 3 are designed to achieve Aggregator Obliviousness in the honest-but-curious model. To further prevent poisoning attacks we need additional security mechanisms for SA.

Scale

[BEG+19] [BBG+19] [SGA21b] [SMH21] [SAGA21] [JNMALC22] FT [BIK+17] [SSV+21] [XBZ+19] [KRKR20] [YSH+21]
Comm.

[BSK+19]

[PAH+ 18] [LCV19] [ZLX+ 20] [BT20] [DCSW20] Privacy [KLS21] [SAG+21] [SSV+ 21] [FMLF21] [TBA+19]
Mal. users

[SGA21a] [VXK21] [ZLYM21] [BLV+ 21] [KOB21] [KTC20] [NRY+ 21]
Mal. agg. is implemented on masking-based SA but can be used also for AHE-based SA). Hatched boxes indicates that the scheme used cannot achieve the security requirements since they do not support collusions (this is discussed in Section 5). Colors represents research groups of the authors.

Malicious Aggregator (C 6

). Similar to challenge (C 5), the honest-but-curious threat model is not sufficient to prevent the cheating of a server in the context of federated learning. More specifically, the SA protocols described in Section 3 prevent a curious FL server from learning the clients inputs, but cannot protect against a malicious server that modifies the aggregated model. Indeed a malicious server can cause a huge damage because it has full control of the final aggregated value. Therefore, an adversary controlling the FL server can force the clients to learn an adversary chosen model. In fact, the impact of a malicious aggregator can even go beyond forging the aggregation result. Pasquini et al. [START_REF] Pasquini | Eluding secure aggregation in federated learning via model inconsistency[END_REF] showed that a malicious aggregator can even compromise the privacy by bypassing the secure aggregation protocol. An example for these attacks illustrated by the authors is when the malicious aggregator chooses specific values for the aggregated result. The values are chosen such that when the clients train the forged model sent by the aggregator, the training outputs a model of zero parameters. Hence, the malicious aggregator can suppress arbitrary clients of his choice from the aggregation by sending them malformed models. Therefore, it can suppress all clients except a targeted one and leak its input.

To prevent such attacks, SA protocols should consider a malicious aggregator in their threat model.

Crypto-based SA solutions designed for FL

Many research has been performed on designing SA protocols based on cryptographic schemes for federated learning applications. Most of the proposed schemes are improvements of the basic secure aggregations protocols described in Section 3 and tackle one or more of the aforementioned challenges (C 1 -C 6). The proposed schemes can be categorized based on the challenge they tackle. We summarize how these solutions propose different solutions for each of the challenges. Table 3 presents an overview of these solutions grouped by their challenge scope. Also, Figure 8 regroups them per SA category and shows the relation between the solutions. 4.4.1 Fault-tolerant SA. To tackle the problem of client failures (see C 1), a fault-tolerant secure aggregation protocol should be used. MPC-based secure aggregation, specifically, Shamir's SS scheme [START_REF] Shamir | How to share a secret[END_REF] is by design fault-tolerant. It is used in [START_REF] Dong | Eastfly: Efficient and secure ternary federated learning[END_REF][START_REF] Kadhe | Fastsecagg: Scalable secure aggregation for privacypreserving federated learning[END_REF] where the FL server is replaced with a set of separated aggregators. The high communication cost these solutions incur encouraged researchers to look for alternative fault-tolerant solutions.

MIFE-based schemes are also by design fault-tolerant since the data aggregator can assign zero weights for missing clients [XBZ + 19]. However, these schemes require a key-dealer to stay online for each federated learning round.

On the other hand, Bonawitz et al. [BIK + 17] proposed a faulttolerant variant of the masking-based SA. Later, this scheme was widely adopted and improved by [BBG + 20, EA20, SGA21b, KLS21, XLL + 20, GLL + 21]. The idea of this scheme is to merge Shamir's SS scheme with masking. This merging can achieve best of both worlds. Specifically, it benefits from the lightweight operations and low communication overhead of the masking scheme and on the other hand, it benefits from the fault-tolerance property of Shamir's SS scheme. Thanks to this tradeoff, it is considered as a big jump towards designing practical secure aggregation scheme for crossdevice FL scenarios. The details of this scheme are explained in Appendix C. A similar scheme is proposed by Stevens In BatchCrypt [ZLX + 20], the authors propose a method to quantize and batch the elements of a gradient before encryption. The strength of their approach is that it preserves the additively homomorphic property of the ciphertexts. Alternatively, Beguier et al. [START_REF] Beguier | Safer: Sparse secure aggregation for federated learning[END_REF] propose a compression technique to decrease the size of the inputs and then use secret sharing over the compressed results. Another interesting technique presented by Wu et al. [WPX + 20] is to use All Or Nothing Transformation (AONT) [START_REF] Ronald | All-or-nothing encryption and the package transform[END_REF]. The authors show that by transforming the client's gradient with AONT, it is sufficient to encrypt a small part of the transformed gradient. This can decrease the size of the protected user input by several orders. Another method followed by Elkordy et al. [START_REF] Roushdy | Secure aggregation with heterogeneous quantization in federated learning[END_REF] and Benawitz et al. [BSK + 19] is to use auto-tuned quantization. This technique is one for each subgroup of clients. Each subgroup compute intermediate aggregates which are combined later. The same intuition of grouping clients is followed up by Bell et al. [BBG + 20] and by So et al. [START_REF] So | Turbo-aggregate: Breaking the quadratic aggregation barrier in secure federated learning[END_REF]. Bell et al. observe that the FT-Masking scheme in [BIK + 17] does not require that all the clients need to be connected. Thus, they propose to generalize the scheme by creating random graphs. Each FL client executes the FT-Masking with its neighbors. The new protocol assumes that not all the neighbors will be corrupted at the same time and it proposes a method to build the so called "good" graphs. Similarly, both So et al. (TurboAgg) [START_REF] So | Turbo-aggregate: Breaking the quadratic aggregation barrier in secure federated learning[END_REF] and Sandholm et al. (SAFE) [START_REF] Sandholm | SAFE: secure aggregation with failover and encryption[END_REF] propose a circular topology. Clients perform a chain of aggregations by passing the aggregated updates to the next client. To further deal with large number of client, So et al. [START_REF] So | Secure aggregation for buffered asynchronous federated learning[END_REF] propose a SA protocol that can be integrated in asynchronous FL. The solution uses the scheme proposed in [YSH + 21] and adapts it to enable securely aggregating inputs from different time periods. 4.4.4 SA resilient to privacy attack. To deal with inference attacks on the aggregated model (C 4). Differential Privacy (DP) [START_REF] Dwork | Differential privacy. In Automa, Languages and Programming[END_REF] should be used with secure aggregation. Notice that using DP with SA is to protect the aggregated model, only and not user inputs.

A simple method is to let the aggregator apply DP on the aggregated model [START_REF] Delgado Fernández | Secure federated learning for residential short term load forecasting[END_REF]. However, this requires to trust the aggregator. A better method is to use a distributed version of DP (DDP) along with SA to mitigate the information leakage caused by the public aggregated model. Few works have followed this approach for FL [KLS21, TBA + 19]. These solutions add Gaussian noise to the FL clients' inputs. They leverage the fact that FL clients inputs are protected with cryptographic tools (thanks to SA) which permit them to decrease the level of noise while achieving sufficient privacy level. Therefore, using DDP with SA limits the degradation of the accuracy of the trained model compared to using DP alone. Stevens et al. [SSV + 21] followed a similar approach by using Learning with Error (LWE) masking technique to make the final aggregate differentially private.

On the other hand, a multi-round privacy concept is introduced by So et al. [SAG + 21]. This concept is to ensure that an adversary cannot learn valuable information by monitoring the changes in the aggregated model across different FL rounds. The authors propose a solution enlightened by the work done by [TNW + 21]. They propose to randomly and fairly (using weights) select participants in each FL round based on well-defined criteria so called Batch Partitioning. Using this technique they can guarantee the long-term privacy of the data at the FL clients. 4.4.5 SA against malicious users. To deal with malicious users that perform poisoning attacks (C 5), the FL server needs a mechanism to validate the inputs of the clients. Mitigating poisoning attacks is studied by researchers independently from using secure aggregation for FL [START_REF] Fung | Mitigating sybils in federated learning poisoning[END_REF][START_REF] Andreina | Baffle: Backdoor detection via feedback-based federated learning[END_REF]. One of the methods used to prevent such attacks is to use the cosine distance [START_REF] Fung | Mitigating sybils in federated learning poisoning[END_REF] to detect poisoned inputs that deviate from the other benign inputs. Clustering [START_REF] Shen | Auror: Defending against poisoning attacks in collaborative deep learning systems[END_REF][START_REF] Blanchard | Machine learning with adversaries: Byzantine tolerant gradient descent[END_REF] and anomaly detection methods [START_REF] Andreina | Baffle: Backdoor detection via feedback-based federated learning[END_REF] are also used to detect malicious model updates. An orthogonal approach is to use clipping and noising to smooth the model updates and remove the differences [BVH + 20b]. While all these solutions are shown to be efficient in preventing poisoning attacks, using them with secure aggregation is a big challenge. The problem is that all these solutions rely on analyzing the FL clients' inputs while secure aggregation aims to hide and protect these inputs.

Several methods are proposed to verify the inputs while keeping them protected to preserve their privacy. For MPC-based SA, it is possible to build circuits that can perform complex operations on the shares. This can be used to evaluate functions on the inputs other than just computing the sum. Indeed, MLGuard [START_REF] Khazbak | Mlguard: Mitigating poisoning attacks in privacy preserving distributed collaborative learning[END_REF] proposes to verify the users' inputs by transforming a verification function into a circuit which gets executed by the two servers using 2PC. The verification function computes the distance between the clients' inputs. The circuit compares the distance to pre-defined thresholds and thus reject the input. FLGuard [NRY + 21] follows the same approach by building two circuits. One circuit for detecting poisoned inputs using a dynamic clustering algorithm (HDBSCAN [START_REF] Ricardo | Densitybased clustering based on hierarchical density estimates[END_REF]) and another circuit for reducing the impact of poisoned inputs using clipping and noising. The communication cost of running these circuits is significant thus making scalability even harder to achieve for SA in the federated learning context. A promising approach to reduce this cost is through the use of secret-sharing noninteractive proof (SNIP). This approach was proposed in [START_REF] Corrigan | Prio: Private, robust, and scalable computation of aggregate statistics[END_REF] (Prio). Using SNIP enables the aggregators to validate the user inputs without interacting with the users and with minimal interaction between themselves. This scheme is not yet deployed in FL applications. SNIP brings a great advantage over standard 2-PC validation circuits since it does not limit the number of aggregators thanks to its lower communication cost. The limitation of SNIP is that it only supports specific validation functions. Therefore, it is an open challenge to design validation circuits for detecting poisoning attack using SNIP.

On the other hand, regarding AHE-based SA, Karakoc et al. [START_REF] Karakoç | Secure aggregation against malicious users[END_REF] propose OPPRF, an algorithm based on private set membership (PSM) [START_REF] Ciampi | Combining private setintersection with secure two-party computation[END_REF] and oblivious transfer (OT) [START_REF] Naor | Computationally secure oblivious transfer[END_REF]. OPPRF uses PSM to perform equality checks between values (i.e., equivalent to finding intersection between sets of cardinality equal to one [START_REF] Couteau | New protocols for secure equality test and comparison[END_REF]). Using OPPRF, the users can create tags that are only valid if their inputs are lower than a threshold provided by the aggregator. Karakoc et al. [START_REF] Karakoç | Secure aggregation against malicious users[END_REF] applied this scheme for Multi-Key AHE secure aggregation schemes and evaluated it in SFL applications. The scheme enables the FL server to detect poisoning attacks by checking that the minimum, maximum and the average of the gradient elements does not cross a certain threshold value. The threshold is configured based on an observation of the gradients of benign clients. Another approach is proposed by Lukas et al.

[BLV + 21]. The authors use a non-interactive commitment scheme proposed in [START_REF] Pryds | Non-interactive and information-theoretic secure verifiable secret sharing[END_REF]. Using this scheme, the users create proofs that the Euclidean distance of their inputs satisfies the bounds set by the aggregator. Upon receiving the client protected input and the commitment, the server verifies that the proof is valid.

For masking-based SA, two techniques are proposed. One technique proposed by So et al. [START_REF] So | Byzantine-resilient secure federated learning[END_REF] in which users secretly share their model updates with all other clients and then compute the square distance between the model shares. The server can finally reconstruct the square distances and use the result to detect malicious inputs. An alternative technique is proposed by Zhang et al. [START_REF] Zhang | Safelearning: Enable backdoor detectability in federated learning with secure aggregation[END_REF] and Velicheti et al. [START_REF] Velicheti | Secure byzantine-robust distributed learning via clustering[END_REF]. In details, users are anonymously and randomly grouped into clusters. Aggregation happens per cluster and then a second round of aggregation happens on the results of each cluster. For each cluster, the intermediate aggregation results are checked to prevent poisoning attacks. The fact that attackers do not know to which cluster the compromised device belongs to, protects from distributed poisoning attacks (see C 5). HHF can be build using bilinear maps [START_REF] Boneh | Aggregate and verifiably encrypted signatures from bilinear maps[END_REF][START_REF] Mandell | Improved security for linearly homomorphic signatures: A generic framework[END_REF]. First, the data owners create authentication tags of their inputs and send them to the aggregator. The latter aggregates them to prove the outcome of the aggregation. Finally, the aggregator verifies the result. Hahn et al. [START_REF] Hahn | Versa: Verifiable secure aggregation for cross-device federated learning[END_REF] detected possible brute-force attacks on VerifyNet and improved it by deploying a keyed HHF. All these solutions do not support collusions between the users and the aggregator. Therefore, cannot be considered secure based on our security definitions (see Section 2). Another problem with these solutions is that they significantly affect the performance of SA. This is because of the linear increase in computation and communication overhead with the increase of the dimension of inputs. This is a clear limitation since the performance of the ML model highly depends on their size (i.e., number of parameters). To solve this problem, Guo et al. (VeriFL) [GLL + 21] focus on designing a verification scheme specifically for secure aggregation applications with inputs of high dimension. To support user-aggregator collusions, the authors integrated a commitment scheme to prevent users from changing their hashes after the computation of the aggregate. The authors of VeriFL apply this scheme to the fault-tolerant masking scheme in [BIK + 17]. The evaluation on federated learning application show a significant reduction in communication overhead with respect to other verification schemes. However, VeriFL still suffers from a quadratic computation and communication cost with respect to the number of FL clients. Achieving a better scalability for verification systems is an open problem.

For MPC-based SA, Brunetta et al. [BTL + 21] propose NIVA as a non-interactive secure aggregation protocol that includes the verification of the result. The users create a tag for each of their input shares. Upon computing the aggregate, the result can be verified using all the generated tags. Tsaloli et al. [TLB + 21] proposes DEVA which improves the number of tags created for each user. DEVA requires that a user creates a single tag for its input rather than creating a tag per for each share. Both approaches do not support collusions between users and the aggregator and incur very high communication overhead since they use MPC.

TAKEAWAY MESSAGES AND OBSERVATIONS

We have extensively studied the federated learning solutions that integrate secure aggregation schemes. In this section, we identify and share the following observations and takeaway messages: O 2 We notice that secure aggregation solutions based on AHE are not widely adopted in federated learning. This is mainly because they do not support user dynamics. However, we see that AHE-based SA is promising since they provide long-term security using the same user keys. We hope to see more research improving these schemes towards a practical deployment in federated learning context.

O 1 We
O 3 We notice that some of the solutions proposed to preserve the privacy in federated learning do not adhere to the minimal security requirements for secure aggregation protocols Based on all the previous observations, we propose to revisit the definition of crypto-based secure aggregation to make it suitable for FL. Specifically, we revise the description of the protocol phases (i.e., SA.Setup, SA.Protect, and SA.Agg) to meet all the security requirements for FL application. Following observation O 4 , the SA.Protect phase should be modified such that users first pre-process their inputs with distributed differential privacy mechanism before running the actual protection algorithm. Additionally, based on observation O 5 , SA.Protect should also generate integrity proofs of inputs which are sent together with the protected inputs to the data aggregators. On the other hand, SA.Agg should include a verification mechanism of the inputs which validates the integrity proofs. Moreover, observation O 6 indicates that SA.Agg should compute a proof of the aggregation which is sent to the users along with aggregation result. In order for the users to validate the aggregation result, we require an additional secure aggregation phase. Namely, SA.Verify phase which is performed as a final step by the users. In this phase, the users verify the received result of the aggregation.

In summary, we propose a better definition of secure aggregation protocols based on cryptographic schemes which copes with the security requirements of federated learning. The defintion consists of four phases: SA.Setup, SA.Protect, SA.Agg, and SA.Verify. Figure 9 shows the details of the improvements in each of the phases. It is worth to note that this new definition combines and generalizes all the improvements proposed by the state-of-the-art solutions. It would be interesting to develop the first SA solution for FL implementing our proposed definition by combining all the state-of-the-art techniques.

RELATED STUDIES

To the best of our knowledge, there are no systematization of knowledge in the literature focusing on secure aggregation ptotocols based on cryptographic schemes and their application to federated learning protocols. Recent works [KMA + 19, SWRH20, MPP + 21] studied federated learning and the security and privacy issues of machine learning. In all these three studies, the authors present a high level overview of all the possible secure aggregation techniques that can be deployed in federated learning. With respect to our work, we concentrate our research only on the solutions based on cryptographic schemes by performing an in-depth systematic study that results in a clear comparison of these solutions. For example, none of theses studies give a formal definition of this concept and shows how all the existing techniques can be instantiated under this definition. More importantly, we extensively study the use of such SA protocols for federated learning in the literature. Therefore, we identify the specific challenges of using these SA protocols in FL and we analyze the existing solutions.

In a recent work [START_REF] Chatel | Sok: Privacy-preserving collaborative treebased model learning[END_REF], the study focuses on a cross-field systematization of knowledge on privacy-preserving collaborative training of tree-based models such as decision-trees, random forests, and boosting. The systematization was based on the learning algorithm, the collaborative model, the protection mechanism, and the threat model. In [START_REF] Hegde | Sok: Efficient privacy-preserving clustering[END_REF], the authors review and analyze techniques and protocols used for privacy-preserving clustering with respect to efficiency, privacy, and security models. The above studies focus on specific types of machine learning models that require special treatment to be trained collaboratively. In contrary, our study focuses on general machine learning models that can be trained using horizontal federated learning.

CONCLUSION

In this paper, we proposed a formal definition of secure aggregation based on cryptographic schemes and provided an overview of the literature. We have first categorized the solutions based on the underlying cryptographic technique and further studied them with respect to their architecture, performance and their support of dynamic users. We then focused on the use of secure aggregation in federated learning. We have identified six main challenges: FL clients' failures, large dimension of client's input, huge number of clients, inference attacks and multi-round leakage, poisoning attacks from malicious users, and forged aggregation from malicious aggregator. We studied the existing 37 SFL solutions and categorized them based on the challenge they tackle and the attack they mitigate. Thanks to this study, we were able to present six main observations that we hope will help point the research in this field to the right direction.

A AHE SCHEMES FOR SECURE AGGREGATION

Figure 2 :

 2 Figure 2: The main operations and the communication between parties in Masking-based SA.

Figure 3 :

 3 Figure 3: The main operations and the communication between parties in AHE-based SA.

Figure 4 :

 4 Figure 4: The main operations and the communication between parties in FE-based SA.

Figure 6 :

 6 Figure 6: One federated learning round with 3 FL clients and the server.

 FL, a model M is trained on 𝑛 datasets (D 1 , D 2 , ..., D 𝑛) each maintained by a different FL client. For each FL round 𝜏, the client 𝑖 receives the model M 𝜏 from the server and trains it on D 𝑖 which results in the trained model M 𝜏 𝑖 . The server aggregates the model and sends the aggregated model M 𝜏+1 back to the clients. Figure 6 illustrates one FL round.

 Finally, each FL client obtains the aggregated model M 𝜏+1 represented by the aggregated weights 𝑤 𝜏+1 𝑖 and starts a new federated learning round.Inference Attacks. An adversary having access to the model updates sent by the clients can perform inference attacks. In more details, the attacker learns some private information about the clients' datasets. These attacks could consist of membership inference attacks[START_REF] Shokri | Membership inference attacks against machine learning models[END_REF][START_REF] Nasr | Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[END_REF] where the attackers learn whether a specific data record is part of the training dataset or not. One can also consider data reconstruction attacks [DN03, WLW + 09] (a.k.a. model invasion attacks[START_REF] Fredrikson | Model inversion attacks that exploit confidence information and basic countermeasures[END_REF]) where the attacker learns some of the attributes of a record in the dataset. Furthermore,Ateniese et al. [AMS + 15] and Ganju et al. [GWY + 18] present data properties inference attacks where the attacker learns global properties of the training dataset, such as the environment in which the data was produced.

Figure 7 :

 7 Figure 7: A secure aggregation protocol integrated in federated learning. The secure aggregation protocol ensures that the aggregators do not learn anything about the clients' locally trained ML models except their aggregate.

Figure 8 :

 8 Figure8: A summary of the existing FL solutions that use crypto-based secure aggregation grouped by the type of the SA used and the specific challenge they tackle. Bordered boxes indicates that the solution presents a technique that can be deployed in other types of SA protocols (eg., [XLL + 20] is implemented on masking-based SA but can be used also for AHE-based SA). Hatched boxes indicates that the scheme used cannot achieve the security requirements since they do not support collusions (this is discussed in Section 5). Colors represents research groups of the authors.

 et al. [SSV + 21] that replaces the standard masking with a Learning With Error masking and used a packed and verifiable version of Shamir's secret sharing. Also, Yang et al. proposed LightSecAgg [YSH + 21] which replaces the Shamir's secret sharing scheme with a secret sharing scheme based on Maximal Distance Seperable (MDS) code [RL89]. The work of Yang et al. reduces the computation time on the server. Another approach is proposed by Swanand et al. [KRKR20] that uses Fast Fourier Transform (FFT) for secret sharing. 4.4.2 Communication efficient SA. Researchers propose some techniques to bound the overhead incurred by SA (see C 2). For encryption based schemes, batch encryption has been leveraged by Liu et al. [LCV19], Phong et al. [PAH + 18], and Yang et al. [ZLX + 20].

 4.4.6 SA against malicious aggregator. In a malicious aggregator threat model, the FL server forges false aggregation results (C 6). Mitigating these attacks requires a verifiable secure aggregation scheme. Many solutions are proposed to enable the verification of the aggregation outcome [KShS12, SS11, DOS18, CDE + 18]. However, these solutions do not fit well federated learning applications due to their high communication overhead. In the context of federated learning, six solutions are proposed [GLL + 21, HKKH21, XLL + 20, ZFW + 20, TLB + 21, BTL + 21]. For masking-based and AHE-based SA, Zhang et al. [ZFW + 20] and Xu et al. (VerifyNet) [XLL + 20] used Homomorphic Hash Functions (HHF) to verify the result of the aggregation.

Figure 9 :

 9 Figure 9: New Components of Secure Aggregation nice to see all these parallel improvements integrated in a single solution.

A. 1

 1 Shi-Chan-Rieffel-Chow-Song Scheme SCRCS scheme [SCR + 11] is the first Key AHE scheme used for secure aggregation. It guarantees Aggregator Obliviousness based on Decisional Diffie Hellman (DDH) assumption. The three algorithms (𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝, 𝐴𝐻𝐸.𝐸𝑛𝑐, and 𝐴𝐻𝐸.𝐴𝑔𝑔) are defined as follows: • (𝑝𝑝, {𝑘 𝑖 } 𝑖 ∈ [1,..,𝑛] , 𝑘 0) ← 𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 (𝜆): Given a security parameter 𝜆, it chooses a generator 𝑔 ∈ G where G is a cyclic group of prime order 𝑝 for which Decisional Diffie-Hellman is hard. Additionally, it defines the hash function 𝐻 : Z → G. It also generates 𝑛 random secrets 𝑘 1 , ..., 𝑘 𝑛 ∈ Z 𝑛 and 𝑘 0 = -𝑁 1 𝑠 𝑖 . It outputs the public parameters 𝑝𝑝 = (𝑔, 𝐻), the secrets keys of each user {𝑘 𝑖 } 𝑖 ∈ [1,..,𝑛] , and the secret key of the aggregator 𝑘 0 .

 𝜆): Given a security parameter 𝜆, it generates the public parameters, the encryption keys, and the decryption key. • 𝑐 𝑖,𝜏 ← 𝐴𝐻 𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘 𝑖 , 𝜏, 𝑚 𝑖,𝜏): It encrypts a message 𝑚 𝑖,𝜏 for a time period 𝜏 using the key 𝑘 𝑖 and outputs the ciphertext 𝑐 𝑖,𝜏 . It evaluates the homomorphic operation on the 𝑛 ciphertexts generated at the time period 𝜏. Then decrypts the resulting ciphertext using the decryption key 𝑘 0 . A multi-user AHE scheme can guarantee Aggregator Obliviousness if each user encrypts only one input per time period. Several instantiations are proposed in [SCR + 11, ET12, JL13, BJL16]. We present examples of AHE schemes that guarantee Aggregator Obliviousness in Appendix A.

• 𝑛 1 𝑚 𝑖,𝜏 ← 𝐴𝐻𝐸.𝐴𝑔𝑔(𝑝𝑝, 𝑘 0 , 𝜏, {𝑐 𝑖,𝜏 } 𝑖 ∈ [1,..,𝑛]):

 Secure Aggregation using Functional Encryption. Functional encryption (FE) is a type of encryption schemes that enables a user to learn a function on the encrypted data[START_REF] Boneh | Functional encryption: Definitions and challenges[END_REF].Multi-Input Function Encryption (MIFE), introduced by Goldwasser [GGG + 14], enables the learning of a function over multiple encrypted inputs. A special type of MIFE schemes can be designed to compute the inner product function of multiple inputs [AGRW17, ACF + 18, DOT18]. Assuming we have two vectors 𝑥 and 𝑦 each consisting of 𝑙 elements, the inner product of 𝑥 and 𝑦 is as follows: 𝑐 𝑖,𝜏 ← 𝑀𝐼 𝐹 𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘 𝑖 , 𝑚 𝑖,𝜏): It encrypts a message 𝑚 𝑖,𝜏 using the key 𝑘 𝑖 and outputs the ciphertext 𝑐 𝑖,𝜏 . • 𝑑𝑘 𝜏 ← 𝑀𝐼 𝐹 𝐸.𝐷𝐾𝐺𝑒𝑛(𝑝𝑝, 𝑚𝑠𝑘, 𝑦 𝜏) : It generates a decryption key 𝑑𝑘 𝜏 using the master secret key and a vector 𝑦 𝜏 of 𝑛 elements. • 𝐼𝑃 (𝑚 𝜏 , 𝑦 𝜏) ← 𝑀𝐼 𝐹 𝐸.𝐷𝑒𝑐 (𝑝𝑝, 𝑑𝑘 𝜏 , 𝑐 𝜏 , 𝑦 𝜏) : It takes the vector 𝑐 𝜏 = [𝑐 1,𝜏 , .., 𝑐 𝑛,𝜏], the vector 𝑦 𝜏 , and the decryption key 𝑑𝑘 𝜏 generated from 𝑦 𝜏 . It decrypts 𝑐 𝜏 such that the result is the inner product of 𝑚 𝜏 = [𝑚 1,𝜏 , .., 𝑚 𝑛,𝜏] and 𝑦 𝜏 . MIFE schemes for inner product can be used to construct a secure aggregation protocol [XBZ + 19, WPX+ 20]. In the SA.Setup phase, T P runs 𝑀𝐼 𝐹 𝐸.𝑆𝑒𝑡𝑢𝑝 (𝜆) and distributes the keys to the users. In the SA.Protect phase, U 𝑖 executes 𝑀𝐼 𝐹 𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘 𝑖 , 𝑚 𝑖,𝜏) and sends the ciphertext 𝑐 𝑖,𝜏 to the aggregator. Finally, in the SA.Agg phase, the aggregator first sends a vector 𝑦 𝜏 = [1, ..., 1] to T P which executes 𝑀𝐼 𝐹 𝐸.𝐷𝐾𝐺𝑒𝑛(𝑝𝑝, 𝑚𝑠𝑘, 𝑦 𝜏) and sends the decryption key 𝑑𝑘 𝜏 of time period 𝜏 to the aggregator. The aggregator then executes 𝑀𝐼 𝐹 𝐸.𝐷𝑒𝑐 (𝑝𝑝, 𝑑𝑘 𝜏 , [𝑐 1,𝜏 , .., 𝑐 𝑛,𝜏], 𝑦 𝜏) and retrieve the inner product 𝑛 𝑖=1 𝑚 𝑖,𝜏 𝑦 [𝑖] = 𝑛 1 𝑚 𝑖,𝜏 .

			𝑙	
		𝐼𝑃 (𝑥, 𝑦) =	∑︁	𝑥 [𝑖]𝑦 [𝑖]	(3)
			𝑖=1	
	SA.Setup (offline)	SA.Protect	SA.Agg
	Setup	Enc		DKGen
		...		
					Dec

An inner product MIFE scheme is defined by four algorithms: • {𝑝𝑝, 𝑚𝑠𝑘, {𝑘 𝑖 } 𝑖 ∈ [1,..,𝑛] } ← 𝑀𝐼 𝐹 𝐸.𝑆𝑒𝑡𝑢𝑝 (𝜆) : Given a security parameter 𝜆, it generates the public parameters 𝑝𝑝, a master secret key 𝑚𝑠𝑘, and 𝑛 user keys {𝑘 𝑖 } 𝑖 ∈ [1,..,𝑛] . •

 .,𝑛] ← 𝑀𝑃𝐶.𝑆ℎ𝑎𝑟𝑒 (𝑠, 𝑡, 𝑛): It splits a secret message 𝑠 into 𝑛 shares such that the secret can be reconstructed with 𝑡 of the shares. • 𝑠 ← 𝑀𝑃𝐶.𝑅𝑒𝑐𝑜𝑛({[𝑠] 𝑖 } 𝑖 ∈𝑈 ⊂ [1,..,𝑛]): It reconstructs the se-

cret 𝑠 from a subset of more than 𝑡 shares ({[𝑠] 𝑖 } 𝑖 ∈𝑈 ⊂ [1,..,𝑛]

 integrating these technologies. Nevertheless, these implementations are not practical in real-world

	Masking-	AHE-	FE-	MPC-
	based	based	based	based
	SA	SA	SA	SA
	Client Failure (C 1)			
	High Dim. Inputs (C 2)			
	Scalability (C 3)			
	Privacy Leaks (C 4)			
	Malicious Users (C 5)			
	Malicious Agg (C 6)			

 In an asynchronous FL protocol, clients do not wait for the updates of a sufficient number of users at each FL round. Instead, the updates of the users are incorporated as soon as they arrive at the server. Adopting SA for asynchronous FL is challenging because updates may be protected with keys corresponding to different FL rounds. 4.3.4 Privacy attacks that bypass SA (C 4). The aggregated model M 𝜏+1 is a public information that is accessible for all FL clients. Therefore, secure aggregation is not used to hide this value. There exist a different type of inference attacks that can still infer private information from the aggregated model, only[START_REF] Shokri | Membership inference attacks against machine learning models[END_REF]. For example, recently So et al. [SAG + 21] pointed out a new attack to leak the client's updates even when protected with secure aggregation. The authors notice that the models from the FL clients do not change a lot between one training step and another one when the trained model starts to converge. This causes a privacy leakage if a FL client did not participate. In detail, if all FL clients participate in round 𝜏 -1 and all clients except one participate in round 𝜏, and if the inputs did not change a lot, an adversary who has access to the aggregated model updates for rounds 𝜏 and 𝜏 -1 will be able to approximate the inputs of the missing FL client. Such specific attacks can bypass the security measures of SA. Gao et al. [GHG + 21] implemented these types of attacked and showed how they can effectively infer the category of given data samples.

	3). Recently, we start to observe
	FL applications involving thousands of FL clients. Google is re-
	searching how to train Gboard (the Android's keyboard applica-
	tion) search suggestion system using federated learning on large
	scale [YAE + 18, HKR + 18]. With secure aggregation integrated with
	federated learning, the scalability problem becomes a serious chal-
	lenge. MPC-based SA protocols do not scale well for huge number

of users since they suffer from a quadratic complexity in terms of communication and computation. Similarly, masking-based SA suffers from a quadratic complexity in the setup phase. Additionally, with large number of clients, the typical synchronized FL protocol is not practical.

Verify Inputs SA.Agg Prove Aggregate Verify Aggregate SA.Verify SA.Protect Prove Inputs Noise Add DP Noise

can clearly see that masking-based SA are the most integrated secure aggregation solution for federated learning. More specifically FT-Masking [BIK + 17], appeared in 20 solutions where each one tried to improve it in a certain direction. It will be very

 (see Aggregator Obliviousness in Section 2). Specifically, AHE schemes [PAH + 18, LCV19, ZLX + 20, ZFW + 20] and masking-based verification schemes [ZFW + 20, XLL + 20, HKKH21] that use the same key for all usersp should not be considered secure since they do not guarantee security in case of a collusion between a user and the aggregator. 6 Similar to the previous observation, we identify the need for an integrity mechanism for verifying the correctness of the actual aggregate. Basic solutions would linearly increase the size of the transmitted data between parties w.r.t. the model size. Using incremental HHF is promising as shown in VeriFL [GLL+ 21]. However, this solution is still far from being applied for FL application in larger scales since it still implies a linear increase in communication and computation cost w.r.t the number of clients.

	O 4 We note that secure aggregation alone is insufficient to guaran-
	tee the privacy of the clients datasets in the context of federated
	learning. Although SA helps prevent inference attacks, the global
	model that is collaboratively computed from private individual
	inputs can still leak information. Therefore, additional protection
	mechanisms are required. For this purpose, differentially private
	mechanism and multi-round privacy are suitable candidates to cope
	with this problem.
	O 5 Poisoning attacks against federated learning call for some in-
	tegrity mechanisms that would allow the aggregator (the FL server
	in this context) verify the correctness/veracity of received inputs.

Nevertheless, the cost of such mechanisms can be significant. Therefore, we can consider the design of such mechanisms that can (i) detect stealthy and sophisticated poisoning attacks, (ii) ensure the security and scalability requirements as an open challenge. O

(malicious users) thus addressing a specific malicious setting. An exception is for the solutions in red which don't protect against collusions between users and aggregators and thus are considered not secure (based on our security definitions in Section 2).

integrated with FT-Masking [BIK + 17] and enables the data owners to adapt their quantization level based on the requirements. One very important aspect for these quantization techniques is their impact on performance. Therefore, all these mentioned work study the trade-off between reducing the size of the protected gradient and the maintaining a high precision for the trained model.

Scalable

Then it compute the discrete logarithm base 𝑔 of 𝑉 to obtain 𝑛 1 𝑚 𝑖,𝜏 mod 𝑝. For efficient computation of the discrete logarithm using Pollard's method [START_REF] Pollard | Monte carlo methods for index computation[END_REF], the output 𝑛 1 𝑚 𝑖,𝜏 should be a small number. For the prove of correctness and security of this scheme, refer to [SCR + 11].

A.2 Joye-Libert Scheme

JL scheme [START_REF] Joye | A scalable scheme for privacy-preserving aggregation of time-series data[END_REF] is another AHE scheme for SA which was designed as an improvement of the SCRCS scheme. JL scheme has a simpler decryption function as it does not require the computation of the discrete logarithm in a group in which the DDH assumption hold. The JL scheme guarantees Aggregator Obliviousness based on Decision Composite Residuosity (DCR) assumption [START_REF] Paillier | Public-key cryptosystems based on composite degree residuosity classes[END_REF]. It defines the three algorithms (𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝, 𝐴𝐻𝐸.𝐸𝑛𝑐, and 𝐴𝐻𝐸.𝐴𝑔𝑔) as follows:

• (𝑝𝑝, {𝑘 𝑖 } 𝑖 ∈ [1,..,𝑛] , 𝑘 0) ← 𝐴𝐻𝐸.𝑆𝑒𝑡𝑢𝑝 (𝜆): Given a security parameter 𝜆, it generates randomly two equal-size prime numbers 𝑝 and 𝑞 and sets 𝑁 = 𝑝𝑞. Then, it defines a cryptographic hash function 𝐻 : Z → Z * 𝑁 2 . It randomly generates 𝑛 secret keys {𝑘 𝑖 } 1..𝑛 ∈ Z 𝑁 2 and sets 𝑘 0 = -𝑛 1 𝑘 𝑖 . It outputs the public parameters 𝑝𝑝 = (𝑁 , 𝐻), the secrets keys of each user {𝑘 𝑖 } 𝑖 ∈ [1,..,𝑛] , and the secret key of the aggregator 𝑘 0 .

• 𝑐 𝑖,𝜏 ← 𝐴𝐻 𝐸.𝐸𝑛𝑐 (𝑝𝑝, 𝑘 𝑖 , 𝜏, 𝑚 𝑖,𝜏):

For the prove of correctness and security of this scheme, refer to [START_REF] Joye | A scalable scheme for privacy-preserving aggregation of time-series data[END_REF].

B LAYERED MASKING VARIANT

Another variant of masking-based secure aggregation is the layered masking [CCMT09, CMT05, ÖM07, WGA06]. In this type of masking scheme, the users are assumed to have network connectivity with each others. So, the users arrange in a tree structure. In the SA.Setup phase, the ones that are at a distance ℎ hops from each other, shares the same keys (ℎ being a security parameter). Each user representing a node in the tree runs a secure aggregation process with its children. In SA.Protect, each child node masks its input with the sum of the keys it holds using 𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑀𝑎𝑠𝑘. It then sends it to its parent node. In SA.Agg, the parent sums the masked inputs received from all its children and then removes the layers of the masks that corresponds to their keys using 𝑀𝑎𝑠𝑘𝑖𝑛𝑔.𝑈 𝑛𝑀𝑎𝑠𝑘.

The same process is repeated from bottom to up for each parent node until the aggregated value reaches the root of the tree at which the final layers are removed. Castelluccia et al. [START_REF] Castelluccia | Efficient aggregation of encrypted data in wireless sensor networks[END_REF] applied a specific version of this scheme when ℎ = ∞. Önen et al. [ÖM07] later generalized this scheme.

C FAULT-TOLERANT SA WITH MASKING

Masking is one of the lightest techniques in terms of communication and computational overhead. It also offers, a descent security against collusion attacks. However, using Masking for secure aggregation is inefficient when the data owners are mobile or when the network is highly disrupted. This is because the failure of one user providing its input results in the failure of the entire secure aggregation operation. To bypass this limitation, Shamir Secret Sharing is integrated with Masking which derive a new fault tolerance secure aggregation technique [BIK + 17, BBG + 20, SGA21b]. This technique uses the DC-net variant of masking. In the SA.Setup phase, the users agree on mutual seeds using Deffie-Hellman similar to the case in standard masking-based SA. However, for FT-Masking, users additionally using the 𝑡-out-of-𝑛 Shamir's Secret Sharing [START_REF] Shamir | How to share a secret[END_REF] to share their Deffie-Helmen secret key. Using this approach, masks of dropped users can be recovered as long as 𝑡 users are still alive. The outcome owner can reconstruct the DH secret key of the missing users and consequently compute their masks. While this solves the problem of dropped users, it causes a new security problem. If a user delays in sending its masked input to the aggregator, the aggregator may consider it as dropped and thus asks for reconstructing its masks. Later when the masked input is received, the outcome owner is able to unmask its input. To solve this problem, a double masking technique is used in the SA.Protect. In detail, each user adds another layer of masking using a randomly generated mask 𝑏 𝑖,𝜏 : 𝑐 𝑖,𝜏 ← 𝑚 𝑖,𝜏 + 𝑘 𝑖,𝜏 + 𝑏 𝑖,𝜏 where 𝑘 𝑖,𝜏 is computed as in the equation 1. This new mask is generated from a random generated seed which is also shared using Shamir's Secret Sharing with all other users. In SA.Agg, the aggregator first collects 𝑡 shares of the seed of each mask 𝑏 𝑖,𝜏 for every alive user U 𝑖 and reconstruct it. Then it get 𝑡 shares of the Deffie-Helmen's secret key of the dropped users and thus reconstruct the missing masks 𝑘 𝑗,𝜏 for every dropped data owner U 𝑗 . Consider X and Y the set of remaining and dropped users respectively (all the operation are mod 𝑅 = 𝑛𝑅 𝑢 where [0, 𝑅 𝑢] is the range for the input values of each user). ∑︁