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Abstract—During the COVID-19 pandemic, digital contact tracing using mobile
devices has been widely explored, with many proposals from academia and
industry highlighting the benefits and challenges. Most approaches use Bluetooth
Low Energy (BLE) signals to learn and trace close contacts among users.
However, tracing only these contacts can mask the risk of virus exposure in
scenarios with low detection rates. To address this issue, we propose fostering
users to exchange information beyond close contacts, particularly about prior
’deep’ contacts that may have transmitted the virus. This presents new
opportunities for controlling the spread of the virus but also poses challenges that
require further investigation. We provide directions for addressing these
challenges based on our recent work developing a technological solution using
this approach.

D igital contact tracing (DCT) has received sig-
nificant attention during the COVID-19 pan-
demic because of its potential to surpass

traditional contact tracing methods [1]. Unlike manual
contact tracing, which relies on individuals to recall
their interactions, DCT utilizes mobile phone technol-
ogy to record encounters among people. Users can
easily participate by installing an app on their smart-
phone and exchanging information with other users,
typically via Bluetooth Low Energy (BLE). The app
can then register close contacts, which, in combination
with positive COVID-19 test results, can be used to
analyze the risk of virus exposure for app users. As a
result, DCT has the potential to significantly improve
the speed, accuracy, privacy, and scalability of contact
tracing efforts in the fight against COVID-19 and other
infectious diseases [2].

In contrast to the traditional procedure, which reac-
tively investigates close contacts only after an infected
case, DCT proactively collects all close contacts to
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analyze their risk for each positive case. This helps
to stop virus transmission much earlier than tradi-
tional contact tracing as it avoids typical delays of
interviewing and notifying individuals. However, DCT
must collect, store and manage more data than the
traditional contact tracing scheme. So far, most of
the effort in designing DCT solutions has focused
on preserving user privacy, resulting mainly in two
architectural approaches [3]. One approach involves
centralized solutions, where users must share their
contact data with a trusted central authority that can
notify them if any risks are detected. However, this
approach risks compromising individuals’ privacy, as
the central authority may access sensitive information
such as location, personal details, and social activ-
ity. The other approach involves distributed solutions
that store contact history locally on the user’s device.
This approach can help protect app users’ privacy by
avoiding disclosing sensitive information. However, to
assess the risk of virus exposure in a decentralized
scheme, data from infected users shall be accessed to
contrast with contact history stored inside the phone;
while in centralized systems, data from infected users
are always kept in the authority domain. While differ-
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ent solutions have been proposed for centralized and
distributed systems to protect privacy, limitations and
risks cannot be entirely avoided.

Risk analysis beyond close contacts
While user privacy has been a major focus in develop-
ing digital contact tracing (DCT) solutions, the impor-
tance of risk analysis has not received as much atten-
tion. Currently, most DCT solutions only consider close
contacts for risk assessment, similar to the traditional
contact tracing process. This means that to determine
the potential contagion risk, a positive test has to be
associated with each close contact. However, the ac-
curacy of this approach is significantly impacted when
asymptomatic cases are present or when individuals
are reluctant to be tested, leading to a low detection
rate [4]. To address this issue, tracing could consider
contacts beyond close ones. These contacts, which we
refer to as deep contacts, are not detected as close
contacts but can be identified by tracing a chain of
previous contacts. A deep contact can be understood
as an individual at the end of a chain of close contacts.
By tracing deep contacts, it may be possible to identify
potential infection paths that wouldn’t be found by
only considering direct contacts [5]. In particular, this
enables the analysis of individuals’ risk even when
their close contacts are all asymptomatic and may
not have been tested. Asymptomatic case detection
can also be improved as they can be more aware
of being infected by analyzing contagion paths that
include deep contacts, encouraging getting diagnosed
even without symptoms. Besides, since DCT impact is
highest when the testing delay is low [6]; tracing deep
contacts enables access to diagnoses even before a
close contact is tested; hence, speeding up the risk
assessment process. To ensure effective risk analysis
in DCT, it becomes important to consider both close
and deep contacts, especially when the detection rate
is low.

Tracing deep contacts is done in traditional contact
tracing and recently proposed DCT solutions, although
recursively. In practice, close contacts of an infected
case are expected to get tested, and if positive, a
new tracing iteration is started to identify its close
contacts. Even in scenarios where detection rates are
high, tracing contagion paths toward all potentially
infected persons can require several iterations, each
of which introduces delays given to the need to test
close contacts at each step. The slower the process,
the more likely the spread of the virus. Tracing deep
contacts opens new opportunities to analyze contagion
risk and challenges in properly exploiting contact data
collected by mobile devices.

A straightforward approach for tracing deep con-
tacts would be storing close contacts from all users in
a single database to establish contagion paths among
users who have not acknowledged any close contact
between them. This goes beyond what centralized
architectures currently propose, which isolates close
contacts from users instead of enabling any connection
among them. This aims to protect user privacy, mainly
regarding social activity, but also to make the system
scalable as it may become too complex to store and
process. Besides, DCT proposals based on ephemeral
identifiers impose limitations on the capability of relat-
ing close contacts as close contacts from the same
user may not be feasible to associate. As a result, a
different strategy is required to trace deep contacts.

This paper introduces and discusses a novel DCT
approach to enable close and deep contact tracing
using mobile devices. This is achieved by extending
the mobile app’s capabilities to share relevant contacts
via BLE towards users from which virus transmission
is feasible. As a result, each device collects all relevant
contacts that, given a positive test, can be used to
assess the contagion risk better. In other words, each
user shares with others all contacts from which a
contagion path can be considered feasible, given the
specific factors required for the virus to spread. These
contacts include close ones, learned by detecting the
presence of other users, and deep ones, learned in-
stead by the information shared by other users during
an encounter.

From early detection to prevention
Early notification of contagion risk is among the most
relevant opportunities this approach can offer. Users
may get risk notifications even before close contacts
are tested positive. Indeed, the infection period for
COVID-19 typically begins before any symptom is
present. This means that eventually, an individual may
be warned of potential risks. At the same time, their
close contacts are also notified of the risk, which helps
to isolate all the contacts in the chain that may be
affected. In particular, this could enable being notified
as soon as possible, likely before starting the infection
period.

Besides speed, our proposal can also offer the
capability to monitor the spread of the virus. Like
radar, risk notifications could indicate the distance of
contacts from the positive cases. This could help to
take preventive measures to avoid infection as much
as possible. Even if no risk is found, the amount of
contacts from which infection is feasible also helps
to adopt a preventive behavior. In practice, the fewer
contacts are identified, the more protected the indi-
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vidual is, as fewer chains of contagion are possible.
Recently, a proactive contact tracing scheme has been
proposed [7] in which risk messages that indicate the
likelihood of contagion are exchanged among users
during an encounter. These messages could consider
results from deep contact tracing analysis.

While individual behavior modification based on
app notifications is important, our proposal can provide
real-time and granular data to central authorities for
government planning and triage during a pandemic.
By tracking direct and deep contacts, the app can
provide a more comprehensive picture of potential
contagion dynamics. This can result in more effective
and targeted interventions, such as prioritizing test-
ing and resources in areas with a high density of
deep contacts or implementing localized lockdowns to
prevent further spread. The deep contact approach
thus can significantly enhance the value of contact
tracing apps, transforming them from individual risk
assessment tools into crucial resources for strategic
pandemic response.

However, tracing deep contacts requires consider-
ing the contagion risk beyond close contacts, which
needs to consider transmission factors such as infec-
tion periods. This could make our proposal extremely
complex and expensive for mobile devices. Our main
contribution relates to modeling deep contact tracing
in a distributed fashion such that each device can
assess the risk of contagion and decide on the relevant
information to be shared at each encounter. In partic-
ular, our proposal aims to reduce data exchange and
preserve privacy by storing all contact data locally. In
the following sections, we consider a general contagion
risk model and describe the algorithmic and techno-
logical requirements for mobile devices to implement it
efficiently.

CONTAGION MODEL
In the context of tracing social interactions, an en-
counter between individuals can be characterized by
several attributes, among which the participants’ iden-
tities and the event’s timing can be considered the
minimum required. Additional factors could encom-
pass the distance between the individuals, and the
type of environment (indoor [11] or outdoor), among
others [10]. For the sake of simplicity, we model en-
counters involving only two individuals, which can also
cover the case of more individuals by considering
multiple simultaneous encounters. With this approach,
we can represent the history of social interactions
within a community up to a given time, denoted as t ,
using an undirected multigraph where nodes represent

individuals and edges encounters. Note that since
multiple encounters between the same individuals can
occur at different time intervals, multiple edges can be
associated with the same pair of nodes.

In Figure 1, we show the encounters between 6
individuals, f , g, h, i , j and k , by indicating a start time
ts and end time te for each encounter during an interval
of 20 time units. The figure also includes two encounter
graphs captured at different moments: t = 18 and t =
20, which we will use in this section to discuss how
contagion risk can be modelled.

Contagion chain

Given an encounter graph, we can define a path
among two individuals as a sequence of nodes con-
nected by edges. Infection can spread through this
path if associated encounters satisfy contagion time
constraints, a notion we coin contagion chain. An
elemental constraint is that an encounter’s start time ts
precedes subsequent encounters’ end time t

′
e ≥ ts, en-

suring the events’ temporal order. Even both f → h → i
and i → h → f can be considered paths on the en-
counter graph from Figure 1, only the former satisfies
the temporal constraint. An important parameter of our
model is Tc, the maximum time between when an indi-
vidual becomes infected and stops being contagious.
This period may depend on their vaccination history,
previous infections, and other factors. For COVID-19,
Tc is usually estimated as 14 days. In a contagion
chain, the time between an encounter’s end time and
the next one’s start time must be less than Tc. This
ensures that if an individual is infected in the first times-
tamp, he is still contagious in the second timestamp,
passing the infection to the subsequent individual in
the chain. In infectious disease dynamics, the interval
between when an individual is infected and becomes
infectious is called latent period. In our model, this
interval is incorporated as parameter Tl, whose value is
typically 2 days for COVID-19, and plays an important
role in the containment of the infection risk. Finally, in a
contagion chain the time between an encounter’s end
time and the next one’s start time must be equal or
greater than Tl.

In Figure 1 (b), we show examples of contagion
chains. Assuming Tc = 5, and for simplicity, Tl = 0,
there exist a chain from g to i (blue) and one from g
to j (green). Each encounter is itself a contagion chain
of unit length. Besides, notice that there is no possible
chain from f to i because the end time of the encounter
between f and h is too far away from the start time of
any encounters between h and i .
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FIGURE 1. (a) Encounters between pairs of individuals during 20 time units, (b) encounter graph up to instant 18, (c) up to
instant 20.

Contagion risk
We define two classes of contagion chains: confirmed
and active chains. Both classes are valid at specific
moments in time. A chain can become confirmed with
the availability of new diagnoses. A chain can stop
being active with the mere passage of time.

A confirmed chain begins with an infected individ-
ual and continues with a sequence of hosts that may be
infected without knowing it. These hosts certainly could
spread the infection. For a chain to be confirmed at
instant t , it is enough that there is a positive diagnosis
available at t for the individual at the beginning of the
chain. The diagnostic must overlap temporally with the
start time of the first encounter of the chain.

A chain is active when it can still be extended
by incorporating new encounters, thus reaching new
individuals. For a chain to be active at instant t , the
time elapsed between the ending time of the chain’s
last encounter and t must be less than Tc.

Thus, we can establish that the last individual of
an active and confirmed chain is at risk of contagion.
Since the chain is confirmed, there is a particular
possibility that the infection has reached the individual.
If true, the individual is still infected and contagious
because the chain is active. In turn, while the chain
remains active, a new encounter would indicate the
new participant is at risk of contagion. This way, the
contagion risk spreads from a diagnosed individual to
other increasingly distant individuals.

We assume the existence of a set of diagnoses
containing all available positive diagnoses up to the
instant t . Each diagnosis of the form (i , ds, de) indicates
the interval, from ds to de, in which infected individual i
is contagious, and satisfies de −ds ≤ Tc. Recalling the

encounters of Figure 1 (b): if there exists a diagnosis
(g, 10, 15), then h and i are at risk of contagion. Since
the encounter between g and k is previous, the green
chain does not involve an infection spread. However, at
instant 20 (Figure 1 (c)), once the encounter between
i and j begins, the chain from g is extended (in dots),
putting j at risk.

The model presented so far is not intended to
calculate the contagion risk effectively. It is impractical
and insecure to depend on the availability of complete
and centralized information on the encounters of all the
individuals in a community. But, the centralization of
diagnoses may be reasonable as it is information pro-
tected by a health authority. Indeed, while information
is expected to be used for population well-being, cen-
tralizing encounters data threatens individual privacy.
Such a database could become prohibitively large and
a target of attack. A violation of its security could
have severe consequences. However, the presented
characterization allows us to define precisely what we
understand by the risk of contagion and the information
necessary to compute it. We will use this model to
determine the scope of what we can compute in a more
concise and distributed model while considering data
volume, privacy, and security concerns.

A MODEL FOR DEEP CONTACTS
By analyzing the notion of contagion risk on an en-
counter graph, we can discover three key factors that
allow us to design a distributed model for assessing
the infection spread:

1) The contagion risk for a particular individual in
a given time t depends on the contagion chains
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reaching them.
2) A contagion chain is determined by the individu-

als on both ends and the time restrictions of the
encounters of the chain; hence, data from other
individuals of the chain are not necessary.

3) Contagion chains become irrelevant over time
depending on whether individuals at the origin
have a positive diagnosis.

We can exploit these factors to define a model where
individuals only track information relevant to their risk.

The first step is to move to a more compact and
unstructured representation. We replace the notion
of encounter with that of contact between i and j ,
representing a chain of contagion from j to i . We
leverage the explicit start timestamp of the first link
and the ending timestamp of the last link in the chain.
Also, we incorporate the length of the chain as the
depth of the contact, distinguishing close from deep
contacts, with depth equal to 1 and depth greater than
1, respectively.

An individual only has to be aware of their close and
deep contacts to determine the possibility of infection.
Thus, the notion of contact allows us to move from a
centralized and structured global repository of informa-
tion like the encounters graph to a local unstructured
one for each individual. However, the amount of in-
formation required could scale significantly. Each final
sub-chain in a chain of contagion is, by definition, a
chain of contagion. Therefore, each participant in a
chain reaching i defines a contact of i .

Recall the example of Figure 1 (b). For i , chain be-
ginning at g is represented as the contact (g, 14, 18, 2).
The first encounter with h is represented as (h, 8, 9, 1),
and the second as (h, 15, 18, 1).

Contact computation
The main idea of a distributed model is that an individ-
ual can compute their contacts by recording the close
contact with any other individual and from the contacts
that the individual had with third parties. In a scheme
where i and j keep an account of their contacts and can
communicate them to each other, the management of
contacts of i comprises three activities:

1) To determine and register the occurrence of the
encounter with j .

2) To determine and transmit relevant contacts to j .
3) To derive own (deep) contacts from the contacts

provided by j .

The detection of encounters and the communica-
tion aspects are outside the description of this model
since they depend on the implementation technology.
We will present some of its details later. According to

the listed activities, the computation of contacts of i
during their encounter with j is carried out as follows.

The encounter registration does not present major
challenges once the technical aspects are resolved.
After determining the start time ts and ending time te
of the encounter, and the identity of the participant j , i
registers the close contact (j , ts, te, 1).

Regarding the information that must be transmit-
ted, notice that notions of an active and confirmed
chain of contagion extend directly to notions of active
and confirmed contact. Thus, active and confirmed
contacts of i determine their risk of being infected.
During the encounter with j , all the active contacts of
i , which satisfy the timing constraint imposed by the
latent period, become active contacts of j . Therefore,
i must transmit every active and confirmed contact
(f , t ′s, t ′e, n) to j as long as ts − t ′e ≥ Tl.

However, just transmitting these contacts is insuffi-
cient. There is a period between an individual suspect
being infected (e.g., due to the appearance of symp-
toms or having had an encounter with a confirmed
case) and the test is performed, and the result is
obtained. Fortunately, it is reasonable to assume that
there is a limit to the time between an individual becom-
ing infected and when the respective positive diagnosis
is available. We encode this limit as a parameter of
the model, named Td. This parameter helps us to
delimit the contacts with individuals who do not have a
positive diagnosis but can still receive it, representing
a risk if it happens. For the case of COVID-19, we
can estimate Td as 6 days, considering 5 days for
the appearance of symptoms plus one day for the
test [8], [9]. For instance, while i and j encounter at
ts, there may be an ongoing analysis that determines
in the future a diagnosis (h, ds, de) for some previous
contact (h, t ′′s , t ′′e , m) of i , with ds ≤ t ′′s and de ≥ t ′′s .
If ts − t ′′s ≤ Td, contact information about h must be
transmitted to j even if their diagnosis is unavailable.

With respect to how to derive deep contacts from
the received information, when i receives a contact
(k , t ′′′s , t ′′′e , l) from j during the encounter ending at
te, they only need to appropriately update timing and
depth components, registering (k , t ′′′s , te, l + 1) as their
contact.

Let’s examine the encounter between i and j ac-
cording to Figure 1 (c). Assuming Tc = 5, Td = 4
and a positive diagnosis (g, 10, 15), at instant 19 i
transmit to j contacts (g, 14, 18, 2) since it is active
and confirmed, and (h, 15, 18, 1) since it is active and
19−15 ≤ Td. However, contact (h, 6, 7, 1) is not trans-
mitted because it is inactive. In response, j registers
contacts (g, 14, 20, 3) and (h, 15, 20, 2) respectively.

Finally, recall that the determination of relevant
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contacts, i.e., those contacts that must be transmitted,
only depends on the availability of diagnosis and time
restrictions. Thus, individuals can manage their con-
tacts over time by registering encounters with others,
getting relevant contacts from them, and deleting irrel-
evant ones. Moreover, at any instant t , an individual
will have received all active and confirmed contacts at
t , either having received them as already confirmed
or as contacts who obtained their confirmation after
the reception. Therefore, the risk of contagion can be
assessed using an individual’s own contacts in the
same way as can be determined from the complete
encounters graph.

Equivalent contacts
There may exist situations where an individual will
receive multiple similar contacts, matching the partic-
ipant at the origin and the start time. Such situations
can originate from multiple paths between a pair of
individuals in the encounters graph and lead to consid-
erable data circulation. Moreover, circulating data could
grow indefinitely in some cases of cyclic paths.

It should be noted that the circular flow of contacts
is not a problem of the model but an intrinsic charac-
teristic of the circulation of an infection. It is perfectly
plausible that an infection passes through an individual
and continues a path that, at some point, returns to
the same individual. In such cases, if enough time has
passed, this poses a real risk to the individual, who
may become re-infected.

Fortunately, from the point of view of the contagion
risk, similar contacts are equivalent. From the point of
view of relevance for its transmission, the most recent
contact subsumes any other. Although we haven’t con-
sidered it, a shorter chain implies a greater risk. Con-
sidering these aspects, individuals can merge multiple
similar contacts into a unique contact integrating the
most recent ending time and the shallower depth.

Obsolete contacts
Recall that a chain of contagion could be extended
endlessly by new encounters as long as it remains
active. This represents the possibility of infection con-
tinuing as long as those in close or deep contact
with an infected individual continue having encoun-
ters with third parties. Consequently, active confirmed
contacts will continue to be transmitted from individual
to individual, increasing confirmed contacts circulating
among the community. However, at the same time, we
can speculate that the longer a confirmed chain of
contagion becomes, the more likely other contacts rep-
resenting the same path of infection will be confirmed.
Thus, it is reasonable to establish the hypothesis that a

confirmed contact represents a risk as long as it does
not become obsolete, i.e., its depth or the time passed
since its start time does not exceed certain limits. Such
limits are incorporated as model parameters, whose
value should be determined by expert knowledge or
by simulating the infection dynamics. During encoun-
ters, individuals avoid transmitting obsolete contacts,
reducing the circulation of confirmed contacts, but
maintaining an appropriate notion of infection risk.

Extensions
Duration and other characteristics of encounters In
general, exposure to a certain minimum amount of
a pathogen is necessary to become infected, which
translates into being in contact for a certain amount of
time with an infected individual. This minimum period
can be incorporated as a model parameter Tm, com-
monly established as 15 minutes in the case of COVID-
19. Thus, an individual should register contacts from
an encounter only if it last longer than Tm.

Also, the encounters could be characterized more
qualitatively, including the physical distance between
individuals and whether it occurs indoors or outdoors.
Defining a criterion for registering close contacts using
such characteristics would recursively limit the circula-
tion of deep contacts.

Negative test results Diagnosis sets could be ex-
tended to include negative test results. Such infor-
mation can be used to prevent transmission of active
contacts that certainly do not pose a contagion risk.

More expressive risk functions When defining the no-
tion of contagion risk, it seems arbitrary that very deep
contacts carry the same risk as close contacts. The
most apparent improvement direction is moving from a
binary notion to a risk scoring, considering the contact
depth to weigh the risk.

In the same spirit, the number of occurrences of
confirmed contacts could be incorporated. It must be
taken into account that, basically, the risk is linearly
proportional to the number of confirmed close contacts.
However, the risk provided by deep contacts could
overlap and therefore, their contribution should be
carefully evaluated.

The risk function could also take a more qualita-
tive approach. For instance, information on confirmed
contacts could be arranged in some form of heatmap,
based on their distance and number of occurrences,
to analyze closeness to the pathogen. Information on
non-diagnosed contacts could be added to the mix,
allowing us to estimate the social bubble of individuals.
Individuals could use such metrics, even in real-time, to
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FIGURE 2. Simulation results of the contacts transmitted per
encounter

understand their social dynamics and take preventive
measures based on their perception of their risk and
risk to third parties [12].

ANALYSIS

Estimation of transmitted data
We developed an analysis of the amount of data to be
transmitted in each encounter based on the simulation
of the infection dynamics in a synthetic community.
As transmitted data depends on diagnoses, we repli-
cated the probabilistic infection model of [12], which
considers the probability of transmission relative to
the individual’s infection day and the heterogeneity
in contagiousness amongst individuals. The simulated
scenarios render a population density similar to that
of Córdoba City (Argentina) and its periphery during 6
months, with a number of daily encounters similar to
that measured experimentally in Argentina for public
social interactions. We considered a positive diagno-
sis rate of 0.25 and an adoption rate, namely, the
proportion of individuals effectively using our tracing
mechanism, of 0.40. The model parameters were set
as 14 days for the infection period, 2 days for the latent
period, and 6 days for diagnosis time.

We analyzed the cases in which the maximum
depth of the contacts to be transmitted were 1, 2, and
3. The limits for obsolescence by contact’s start time
were established at 12, 18, and 24 days accordingly.
The histogram of the number of transmitted contacts
per encounter is presented in Figure 2. The first two
cases, those that a priori seem suitable to be used in
real-life implementations, show a contained amount of

contacts feasible to be transmitted.

Proof of concept
A proof-of-concept for analyzing the technological fea-
sibility of the proposed approach was developed. We
implemented a mobile app for BLE data exchange
among near users. We relied on a back-end run-
ning in the cloud for storing the diagnosis database.
This mobile app was originally aimed at investigating
encounter detection performance and accuracy using
BLE and different machine learning models [13]. This
previous activity motivated this paper’s discussions
about the role of mobile apps: whether they should
limit to performing proximity detection or profit of the
encounter to share relevant contact data (e.g., deep
contacts) with near users. In this context, we extended
the initial BLE protocol to carry information about close
and deep contact.

Selection of technologies BLE technology is among
the most appropriate technology for DCT [14]. Several
works have concluded that proximity sensing using
BLE is feasible even if open challenges still exist [16],
[17]. It supports the advertisement of packets with
payloads up to 255 bytes, with the possibility of packet
chaining in case of the need to broadcast data exceed-
ing this size. Application data transmitted in advertising
mode travels in the payload of the so-called PDU (Pro-
tocol Data Unit) segment within the BLE frame. Two
modes are available for this: Legacy and Extended.
In Legacy, the space available for the payload is up
to 31 bytes, and it is transmitted only on the primary
advertising channels. Even though the reduced size,
this message is visible to any BLE scanner using BLE
v4.0 onwards. On the other hand, in the Extended
mode, the available space is up to 255 bytes, which
is more suitable for deep contact sharing but requires
BLE v5.0 onwards.

Exploitation of technologies We developed the first
application version to publish BLE packets using An-
droid SDK (Level 23). We prioritized compatibility with
the largest fleet of devices possible, so the app adver-
tises in BLE’s Legacy mode. Each BLE packet incor-
porates a 16-byte UUID (Universal Unique Identifier)
into its PDU payload, ensuring the uniqueness of each
device identification. We leverage half of the UUID
to encode the user ID, leaving 23 bytes free in the
payload to populate with more data. Advertisement of
the user ID was enough since the goal of this first app
was the determination of other devices’ presence (i.e.,
encounter detection).
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Later, we prototyped a second version of the mobile
app for deep contact sharing, including an adver-
tiser and a scanner modules. These modules are re-
sponsible for sending and receiving information about
deep contacts. Advertiser and scanner modules run
in parallel every certain predetermined time interval.
A third component is responsible for calculating the
risk of contagion using the stored information on user
demand.

Contacts to be transmitted are computed once
diagnosis information is received from a remote
database Relevant contacts are prioritized and en-
coded. Then, all available PDU payload space is used
by the advertiser to share them with nearby devices,
according to their priority order. The PDU payload
carries both the user ID (8 bytes) and a sequence of
encoded contacts, each of which includes the identity
of the contact (8 bytes), the start time (4 bytes), the
ending time expressed as duration (2 bytes), the depth
(3 bits), the transmission power to infer distance (1
byte) and optional environment characteristics (5 bits).
Thus, in Legacy mode, each packet allows only one
contact to be sent, making the exchange of information
very inefficient. We decided to move to Extended mode
to send multiple contacts at once. This allows us to
send up to 15 contacts per message every 100ms.
In this mode, we can exchange hundreds of contacts
during one-second intervals; hence, the cost in terms
of time for data exchange is very low.

When the scanner receives a packet, it determines
as a first step if collected data initiates a new encounter
or if it belongs to an encounter in progress. This
depends on the time elapsed since the last packet was
received from the same ID. In the first case, a new
close contact is registered by setting the start and end-
ing time at the current instant. In the second case, the
ending time of the ongoing contact is updated. Next,
the advertised contacts are extracted, evaluated, and
consolidated as deep contacts in the local database,
updating timing information if necessary.

OPEN CHALLENGES

Privacy
Our contribution aims at extending risk analysis for
DCT solutions, but we have not deepened on privacy
preservation aspects. We acknowledge the concerns
associated with using static identifiers for tracing indi-
viduals, particularly the potential for third-party tracking
and the implications for the privacy of infected individu-
als. We claim that there are no technical impediments
to using ephemeral identifiers; however, using temporal

identifiers might incur extra storage and processing
effort since identifiers from the same individual cannot
be distinguished. Furthermore, our approach can be
adapted to identify encounters rather than individuals,
enhancing privacy at the expense of larger contact
identifiers. The use of static identifiers in our anal-
ysis is primarily for the purpose of our analysis of
deep contact tracing, and privacy-preserving methods
should be considered in the real-world implementation
of deep contact tracing. The research and development
of privacy-preserving enhancements are among the
most relevant challenges in deep contact tracing.

Usability
Besides, app users may adopt different privacy pro-
files based on the data aiming to share with oth-
ers at a given time. Even if the expectation is that
users advertise their presence and contacts relevant
for deep tracing, some users may decide to avoid
sharing some data. Some may share only relevant
contacts but hide their presence to protect their identity,
while others could only expose their presence but
keep other contact data private. As a result, different
privacy profiles may coexist and interact during user
encounters, leading to user negotiation schemes about
what profile to use. Indeed, it is expected that users
may tend to share similar data as shared with them.
This opens new questions about potential negotiation
protocols among users to agree on their roles at each
encounter. Additionally, the effectiveness of our deep
contact tracing system can be impacted by improper
app use, like disabling Bluetooth or encountering a
noisy channel that prevents successful data transmis-
sion. Such factors can significantly hinder coverage.

Evaluation
One of the open challenges of deep contact tracing
(and DCT in general) is performance evaluation. Digital
contact tracing performance strictly depends on the
application adoption rate [15]. However, digital app
adoption depends on convincing evidence regarding
the approach’s effectiveness, which is hard to ob-
tain without broad acceptance from the community:
a so-called causal loop. One means of approaching
evaluation is to leverage agent-based simulation en-
vironments to assess resulting epidemic sizes [12].
The drawback is that these models abstract and sim-
plify human behaviors, limiting the results’ credibility.
Indeed, these models could consider a multitude of
influencing factors to model virus spread and exposure
risks, such as mask-wearing, room size and ventilation,
and changes in emission due to human activities like
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singing, speaking, and shouting. Another alternative is
to consider localized deployments (e.g., a school or
a hospital) where deep digital contact tracing can be
enforced and closely monitored, resulting in high trac-
ing coverage. However, the reduced scope might also
generate skepticism about the validity of the results in a
broader context. In any case, creating an accurate and
comprehensive simulation of the spread of infections
is a highly complex task that interweaves multiple
disciplines, such as epidemiology, human behavior,
and computational modeling.

Storage
Storage in deep contact tracing will scale proportionally
to the number of contacts. When memory resources
are constrained, a contact pruning approach can be
leveraged. However, defining a pruning criterion that
minimizes the impact on the contagion risk analysis
is not trivial. Given that each contact may result from
one or more heterogeneous chained encounters, the
factors contributing to risk may be present differently.
For example, we may have a contact of length 1
(close contact) of 15 minutes duration in an outdoor
environment and a contact of length 2 (deep contact),
composed of 2 encounters of 60 minutes each, in
indoor environments. The question arises regarding
which contact should be kept if the information volume
needs to be reduced. A different approach to the
storage issue is to rely on a centralized entity where
mobile devices could upload and store all their contact
data. However, extra data exchange between devices
and the database might impact energy efficiency and
risk computation latency as deep contact data must be
fetched via 4G/5G networks. In general, the storage
challenge reduces to determine the optimal trade-off
between memory requirements and available contact
information.

Energy
Because deep contact tracing implementations must
continuously run on end-users’ smartphones, energy
consumption must be seriously considered. This is
crucial, provided that app adoption is to be promoted.
One approach toward energy optimization is to impose
a duty cycle to the aforementioned advertiser and
scanner tasks, although at the expense of reduced
contact detection and sharing efficiency. Another so-
lution worth exploring is to reduce BLE’s transmission
power. However, the contact detection range will be
reduced, requiring careful fine-tuning of the power
levels. Again, achieving energy efficiency involves an
in-depth trade-off study between contact detection and

sharing efficiency against risk assessment accuracy.

CONCLUSION
Since COVID-19, the use of mobile devices for contact
tracing attracted the attention of the research commu-
nity due to its capability to register close contacts au-
tomatically, without any user intervention. In this work,
we proposed deep digital contact tracing as a means
to collect and process not only close contacts but all
contacts from which the virus may have been trans-
mitted. This enables risk analysis even when infected
close contacts have not been tested. We presented
a model for contagion risk computation with multiple
practical uses such as risk notifications and monitoring.
Then, based on experimental experiences, we put
forward concrete technical approaches to implement
deep contact tracing in mobile devices. A series of
open challenges comprising privacy, evaluation, stor-
age, and energy motivates this emerging field of study.
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