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1. Motivation

• Adverse Drug Reactions (ADRs) being mandatory for healthcare professionals, phar-
macovigilance still suffers from a significant under-reporting, accounting for only 5-10%
of all ADRs.

• Identification of ADRs relies on the well-trained health professionals, while there are
still an enormous amount of documents waiting to be reviewed.

• Annotating such electronic health records (EHRs) is very expensive, yet supervised
approaches need a large amount of annotated data.

2. Structure of Model Pipeline

4. Contrastive Learning Enhanced Clustering (CLEC)

5. Results and Discussion

• Assumption : ”the ADR relation lies in the contexts of the drug-symptom target entities”.
More specifically, we assume there exists a short text around the entities pair which is
sufficient for the representation of ADR.

• Our goal is to separate the ADR-related text blocks (noted as positive blocks β+) from
non-related ones (noted as negative blocks β−).
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Experimental Data
• Data source from MADE challenge 2018, whose corpora are only electronic health records.

• The information about medications and symptoms are given.

• MADE 1d1s where we extract those who has exactly one drug and one symptom as the
• ”perfect situation”, a nearly balanced dataset with short textual blocks.

• MADE multi-d-s has longer blocks of the EHR corpus with an almost balanced distribution
• between negative and positive blocks. Each block contains at least one drug and one symptom.

• In BioBERT based model, we use average pooling for short text input in MADE 1d1s
• and took [CLS] representation for long inputs in MADE multi-d-s

• Both BioBERT-based model and SBert-based Model benefit the contrastive
clustering comparing to our previous work.

• For short EHR data, BioBERT based model benefits more from its
biomedical domain specified dictionary comparing to

the SBERT-based model,

• SBert model has more adventage for long textual EHR data,

• For the Instance-level Contrastive head, the the model is trained to distinguish
• between similar and dissimilar data by evaluating the loss1
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i /M

• For the clustering head, we use the Student’s t-distribution2 to measure the similarity
• between mapped point zi and centroid µk:
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, and refine the clusters with the help of an auxiliary target

• distribution3 pik =
q2ik/fk∑
k′ q

2
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with fk =
∑

i qik as soft cluster frequencies,

• The objective is a KL divergence loss between the soft assignments qi and the
• auxiliary distribution for both instance pairs:
• LC =
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• Total objective of CLEC: LCLEC = LIC + ηLC .

Category Exp
MADE multi-d-s
Prec Recall F1

Supervised BOW+LR 0.809 0.847 0.827

Unsupervised
BioBERT∗ 4 0.604 0.634 0.619
SBERT∗ 4 0.653 0.673 0.663

Unsupervised
BioBERT+CLEL 0.582 0.827 0.673
SBERT+CLEL 0.660 0.773 0.702

Supervised BOW+Random 0.509 0.440 0.472

Category Exp
MADE 1d1s
Prec Recall F1

Supervised BOW+LR 0.702 0.797 0.746

Unsupervised
BioBERT∗ 4 0.651 0.663 0.650
SBERT∗ 4 0.733 0.615 0.665

Unsupervised
BioBERT+CLEL 0.768 0.669 0.715
SBERT+CLEL 0.646 0.711 0.677

Supervised BOW+Random 0.514 0.529 0.522

We have chosen a fully supervised approach
(Bag of Words + Logistic Regression Classifier) as the upper bound baseline,
and a BoW with random guessing as the lower bound.

The results for unsupervised approaches (*) are always followed by a
KMedoids clustering

• BioBERT model is pre-trained and fine-tuned on biomedical corpora instead of
• employing general domain text corpora in BERT.

• Both BERT and BioBERT are token-wise language model.

• Sentence-BERT applys a siamese fine-tuning structure on basic BERT model to
• capture features in semantic space, which transform a whole sentence direclty
• into vector representation.


