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Abstract

In the present work, we demonstrate the ability of a technique based on Monte Carlo
resolution of the Boltzmann Transport Equation associated to the Green-Kubo autocorrelation
of phonon heat flux to predict, at thermal equilibrium, the thermal conductivity tensor of
nanoporous structures. This methodology, which is derived from a former work [D. Lacroix,
M. Isaiev, G. Pernot, Phys. Rev. B, 104, 165202 (2021)] developed in the case of bulk
systems, is used to predict thermal transport properties of Si porous matrices and Si phononic
membranes at room temperature. A broad range of porosities and different pore network
organisations are considered. Our results are compared to available experimental data and
former modelling techniques. In addition, analytical models based on phonon mean free path
are detailed and compared to numerical simulations.

1 Introduction

The study of the thermal properties of nano-structured materials and more specifically the control
of these properties through small-scale nano-systems is of prime interest in various communities,
for both the physical questions that are raised by this research and for the wide engineering appli-
cations that they promise. Over the last decade, significant efforts have been made to develop new
semiconductor devices at sub-micron scales, such as nanoporous membranes [1] or phononic crys-
tals [2, 3, 4],or suprlattices with embedded nanoparticles [5] where those particular designs strongly
impact the thermal conductivity and even to control the anisotropy of the thermal transport in
periodic structures.

For systems where the porosity is geometrically “organized”, commonly called Phononic Crys-
tals (PNC), many studies have focused on the possibility of achieving interference effects in the
transport of phonons, similar to what can be observed in optics with photons. In practice, co-
herence effects are not observable at temperatures close to ambient. It would only be possible at
ultra-low temperatures, where the frequency spectrum of phonons is reduced and their wavelength
is large compared to the size of the structures. However, if coherence effects are difficult to reach,
nano-structuring allows to control the phonon mean free path and thus tailor the thermal conduc-
tivity of the fabricated systems. These considerations have led to different experimental studies
associating elaboration and characterization of PNC, in several research groups, for different ge-
ometries (pore size and shape, film thickness, etc.), and it remains a very active research field
[6, 7, 8, 9, 10, 11, 12].

On the numerical side, different models have been developed to predict the thermal transport
properties of these objects. These include analytical approaches based on the evaluation of the
mean free path (mfp) of energy carriers as a function of the geometry considered. One can also find
works based on “finite element” tools that solve the classical equations of elasticity and give access
to the band structure of these objects; these calculations are however limited to low temperatures
[13]. Other approaches are nevertheless possible to evaluate the transport properties at higher
temperatures. This is the case of molecular dynamics (MD) which allows a more realistic approach
of atomic vibrations and induced thermal transport. However, if this tool is well mastered and
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Figure 1: Studied porous networks: left) packed spherical pores; center) aligned PNC membrane;
right) staggered PNC membrane.

classically used to describe the thermal conductivity of nano-structured semiconductors (nano-
films, nano-wires, etc.), it remains limited to small structures (a few nanometers to a few tens
of nanometers). In these studies, the compulsory requirement of a “scale change” is often an
underlying assumption to explain difference that can be observed with experimental behavior at
larger scales. Hence why, this assumption can be challenged in complex systems. In addition,
boundary conditions which are often used, such as the “periodicity” of the system studied, may be
far from the experimental reality or simply inappropriate to consider phonons with wavelengths
greater than typical simulation domain size (tens of nanometers). To overcome these drawbacks,
other simulation methods must be considered.

In the present paper, we discuss a general methodology based on the use of the Monte Carlo
(MC) solution of the Boltzmann Transport Equation (BTE) combined to the equilibrium Green-
Kubo formalism in complex porous networks like those plotted in Fig. 1. This work is in the conti-
nuity of a previous study made on bulk materials [14]. We demonstrate that a similar methodology
can be extended to evaluate the thermal conductivity tensor of several micron length devices with
included nanoscale features.

In the following section, the simulation methodology will be briefly recalled. Then, the ge-
ometrical features of the simulated devices will be presented. In the latter section, parametric
models based on the energy carriers “mean free path” and Matthiessen’s rule will be described in
order to assess general trends related to thermal conductivity variations with respect to the device
porosities. In result section, different configurations of organized porous systems are investigated,
at room temperature and their thermal conductivity tensors compared to the literature available
experimental data. Developments in progress and perspectives to this work end the study.

2 Monte Carlo - Green-Kubo formulation of Boltzmann
Transport Equation for phonons (BTE)

2.1 General formalism

At mesoscales, phonon dynamics is governed by the BTE. In the classical assumption where no
external forces are applied on the considered system, it reads:

∂f

∂t
+∇K,pω · ∇rf =

∂f

∂t

∣∣∣∣
scat

(1)

with f(K, p, r, t) the energy carrier distribution function. left hand side (lhs) of Eq. 1 refers to
phonon transport or drift, while right hand side (rhs) is related to phonon scattering. In this
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framework, the BTE can be solved with stochastic techniques known as “MC formalism” where
phonons are considered as particles, with a given frequency and polarization. Such MC modeling
relies on the following stages.

• First, their displacement (drift) during a given time step δt is calculated according to their
group velocity, which is frequency and polarisation dependant, along a randomly selected
propagation direction.

• Then, scattering process involving 3-phonons interactions and phonon-impurity / defect are
considered. The latter are known as intrinsic mechanisms which depends on the material
nature. These scattering mechanisms tend to restore a thermodynamic equilibrium in the
material in response to the drift of phonons. “Normal”, “Umklapp” and “Impurity” scat-
tering processes are here described in the frame of the relaxation time approximation which
allows to linearize the rhs of Eq. 1. In the MC procedure, the intrinsic phonon scattering is
addressed through the calculation of a collision probability Pscat (Eq. 2), the latter being a
function of calculated phonon lifetime and simulation time step δt with τtot(ω, p, T ) the total
relaxation time of phonon mode (K, p). This relaxation time can be expressed according to
the Matthiessen rule about individual relaxation times inverse summation.

Pscat(ω, p, T ) = 1− exp

[
−δt

τtot(ω, p, T )

]
(2)

• In addition to those intrinsic scattering mechanisms, boundary scattering on the edges of
simulation domain can be considered in the case of nanostrucures. The latter one is different
from the “intrinsic” ones as it does not alter the phonon spectra but modify the propagation
direction and mostly reduce the phonon mean free path. Such boundary scattering is a major
mechanism in porous systems as it dictates heat transport at the considered length-scales,
i.e. lowering the mfp lowers thermal conductivity. Boundary scattering is a part of the drift
process and is treated as a particular feature of phonon displacement. When an energy carrier
“hits” a physical boundary of the simulation domain (pore or wall), the phonon is reflected
specularly or diffusely according to the nature of the interface.

More details regarding the MC simulation procedure algorithm are given in [14]. In addition,
phonon dispersion properties and phonon intrinsic scattering lifetime are given in appendices for
silicon which is the test material considered in this work.

At this stage, it should be recalled that these MC simulations are done for a prescribed tem-
perature, i.e. no thermal gradient is imposed in the studied systems as it is usually the case in
MC modelling of phonon transport [15, 16, 17, 18]. As a consequence, thermal conductivity of
the studied systems is evaluated by another approach than the one based on the assumption of
the Fourier’s law applicability. In this study, we proceed as in our previous work [14], with the
calculation of heat flux autocorrelation with Green-Kubo formulation to determine the thermal
conductivity tensor of the system. The latter reads:

kα,β =
V

kBT 2

∫ ∞
0

〈qα(0)qβ(t)〉dt (3)

where α, β are the Cartesian coordinates of q (qx, qy and qz). For each time step, the heat flux
carried by each “particle” is calculated and stored. The resulting heat flux history is then split
into M = Nt/10 samples to compute discrete values of the heat flux autocorrelation (HFAC). In
this work, we used the same formalism as the one detailed by P.K. Schelling et al. [19]

kx,y =
V

kBT 2

δt

Np

Nph∑
p=1

M∑
m=1

1

Nt −m

Nt−m∑
n=1

qx(m+ n)qy(n) (4)

The computed thermal conductivities are averaged on the number of launched particles (Nph)
in the MC process. Time steps are typically of one picosecond in these porous systems where
boundary scatterings dominate even at low temperatures (no ballistic transport and thus short
correlation time). More details about convergence and accuracy of the method can be found in
[14].
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2.2 Analytic models for the studied systems

Thermal transport properties like thermal conductivity k in several bulk semiconductors can be
modelled with the “kinetic theory model” [20, 21] with a reasonably good accuracy. This is in
particular true in the systems where phonon transport is diffusive. With this formalism, the bulk
thermal conductivity kbulk integrated on the whole phonon spectrum reads:

kb =
1

3
CphvgΛb (5)

with Cph the phonon heat capacity, vg the energy carriers average group velocity and Λb the phonon
mean free path in bulk. In the latter expression, for a given material, it can be assumed that the
velocity and the heat capacity remain constant. In the specific case of porous devices, assuming
that pores induce no contribution to heat propagation (ideal case of “empty pores”), the phonon
mean free path becomes Λeff depending on the system porosity φ, the bulk Λb and the porous
network Λpn mfps. If independent phonon scattering mechanisms are assumed, the Matthiessen’s
law can be applied and Λ−1

eff = Λ−1
b + Λ−1

pn . The effective porous thermal conductivity keff in the
general framework of kinetic theory is:

keff =
1

3
CphvgΛeff (6)

According to the above assumption, the ratio of Eq. 6 and Eq. 5 leads to the general dimensionless
thermal conductivity κ:

κ =
keff
kb

=
1

1 + Λb/Λpn
(7)

Considering the above points, the dimensionless thermal conductivity κ of a porous system is
characterized by the porosity of the device and the geometric features of the pore network; i.e.
pore radius and spacing. As suggested in [16] and [22], a connection between the pore mfp and
the porosity can be directly addressed as a simplified configuration of the average mfp outside and
inside an inclusion: Λpn = (1− φ)Λoutp + φΛinp . In the case of empty inclusions (pores), the latter
becomes: Λpn = (1− φ)Λp. Eventually, Eq. 7 is rewritten under the general form:

κ(φ) =
1

1 + Λb

(1−φ)Λout
p

(8)

with Λoutp the phonon mean free path in the solid of the porous system. In the limit case of a
null porosity Λoutp = Λb and κ tends to 1. At this stage, the derived formalism remains general
and does not depend on the shape and organization of pores in the device. However, having
some dedicated analytic models that can help to evaluate thermal transport properties in porous
systems from pristine cases (i.e. bulk or membrane without any pore) using average carriers mean
free path and geometric considerations (i.e. pore shape and their organisation) is of interest for
many applications. In the following subsections Λoutp will be defined for the three considered cases
described in Figs. 1 and 2 having in mind such considerations. That being said, those models are
not proposed to give a validation of the MC-GK calculations detailed in the result section, but
rather to try to give some insights about pore boundary scattering mechanisms at play in tailored
nanoporous devices.

2.2.1 Organized spherical pores

The first case considered here is a theoretical one and corresponds to a stack of spherical inclusions
set along the three main Cartesian directions, see Fig. 1-(left). The elementary cell that can be
periodically reproduced by translation along x, y and z axes is plotted in Fig. 2-(left).

These elementary cells are used to calculate the phonon mfp around a pore Λoutp . To do so
one can consider the invariant property of diffusive random walks that states that “the average
length 〈Λ〉 of the random walk trajectories from entry point to first exit point is independent of the
characteristics of the diffusion process and therefore depends only on the geometry of the system”
[23]. This property is known as “Cauchy formula” (chord length distribution), it reads:

〈Λ〉 =
4V

S
(9)

where V and S are the volume and the collision surface of the considered domain that does not
include any inclusion. This relation can be straightforwardly applied in the case of convex bodies.
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Figure 2: Elementary cell for nanoporous mean free path calculation; left) Organized spherical
pores, center) Aligned PNC membrane, right) Staggered PNC membrane.

Here, for the specific cases discussed above (non-convex bodies), the unit cell includes a pore
(convex hole) with given volume (sphere or cylinder) that needs to be removed from the unit cell
(convex body). For such geometries, generalization of the Eq. 9 can be derived [24] in frame of
Euler functions Γ. This derivation is complex, thus a simple derivation of mfp can be assessed
through simple geometric considerations. Here, a particle travelling within the cell can diffusely
scattered on pore edge surface, this surface can be limited to half of the pore volume as forward
scattering through the pore is not possible. With this assumption, the modified Cauchy formula
is supposed to be:

〈Λ〉 =
4(Vcell − 1/2Vpore)

Spore
(10)

In the latter expression, cell volume and pore volume are calculated considering periodic unit cells
of the Fig. 2. On the other hand, scattering surface remain limited to the pore surface (convex
hole) as no scattering is expected from the periodic boundary edges of the unit cell (convex body).
Thus, one can compute, in the present case, the mfp around the pore in the elementary cell shown
in Fig. 2-(left) as:

Λoutp−sph =

[
a3 − (4πR3)/6

]
πR2

(11)

where a is the periodic side length of the cell. Using the same formalism, one recovers straight-
forwardly the inner mfp within an inclusion as Λinp = 4R/3. Eventually, the reduced thermal
conductivity for a porous device made of aligned spheres is:

κsph(φ) =

{
1 +

ΛbπR
2

(1− φ) [a3 − (4πR3)/6]

}−1

(12)

In the following, the same formalism is used to study PNC membranes.

2.2.2 PNC membranes

In the case of aligned and staggered PNC membranes, the procedure is applied with respect to
the elementary cells plotted in Fig. 2-(center & right). For both cases, the collision’s surface is the
inner cylinder (S = 2πRh), while the elementary cell volumes V are obtained using a square or
an equilateral triangle base. Applying the above considerations, one can obtained the mfp around
holes as (with subscripts A and S for aligned and staggered PNC configurations respectively):

Λoutp−A−PNC =

[
2a2 − πR2

]
πR

Λoutp−S−PNC =

[√
3a2 − πR2

]
πR

(13)

On this basis the dimensionless thermal conductivities in both geometries are given below. How-
ever, it shall be noted that bulk mfp is no longer the relevant parameter in the case of a PNC
membrane that has a small thickness, hence Λf is considered for film.

κoutp−A−PNC =

{
1 +

ΛfπR

(1− φ) [2a2 − πR2]

}−1

κoutp−S−PNC =

{
1 +

ΛfπR

(1− φ)
[√

3a2 − πR2
]}−1

(14)
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Figure 3: Thermal conductivity of aligned spherical pores versus material porosity. Comparison
to analytic modelling based on phonon mfp evaluation.

These models (Eq. 12 and Eq. 14 ) will be used, in the next section, to evaluate thermal transport
properties obtained using the stochastic model based on the combined use of Monte Carlo modelling
of phonon transport and Green-Kubo phonon heat flux autocorrelation. Besides, in appendice
section we provide complementary information about the reliability of the pore boundary scattering
mfp models depicted by Eq. 11 and Eq. 13 through direct evaluation of the latter by using Monte
Carlo ray-tracing techniques as it was done in former studies [25, 16].

3 Results

Results section is divided in three parts. The first one is related to porous systems with spherical
pores that are organized along a 3D-Cartesian grid (this is our theoretical model). The second and
the third parts deal with PNC membranes where the pores are hollow cylinders that can be aligned
(section 3.2) or staggered (section 3.3). In both cases, our numerical simulations aim at reproducing
experimental characterization of the thermal conductivity in Si PNC membranes elaborated in
the group of M. Nomura and which were investigated in a former work using “classical” MC
method[26, 27].

3.1 Organized spherical pores

Thermal conductivity of devices with spherical pores is given on Fig. 3. In this work, both number
of pores Np and their radius are changed. The simulation domain is a cube of 1 µm length with
periodic reflections on its faces (“bulk”-like system). For such boundary condition, a phonon that
leaves the domain through a given plane defined by external normal nx, ny or nz reenters the
domain through the plane defined by opposite normal vector. Such boundary condition allows us
to preserve the heat flux propagation direction. On the other hand, reflection on the edges of the
pore is purely diffuse and back-scattering propagation direction, after a collision event, is randomly
sampled from the collision point. Three cases are considered in order to investigate porosity and
mean free path impact in such systems with an isotropic pore’s distribution. In this study, Np is set
to: 5×5×5, 8×8×8 and 10×10×10 pores distributed regularly along x, y and z directions. The
porosity varies in the range 1% < φ < 50%, meaning that the pore radius is adjusted accordingly
with respect to Np (from 6 nm to 98 nm according to Np and φ values).

First, the model given by Eq. 12 is used to recover bulk mean free path Λb as it is the only
unknown parameter in this equation. A regression analysis of the MC-GK thermal conductivity
data, with kb=127.8 W m−1 K−1 (obtained with MC-GK simulation on bulk case) leads to an
average bulk mean free path of Λb=376 nm. The latter is coherent with usually observed value
of 300 nm at room temperature. The “overestimation” compared to the literature of Λb can be
reduced while considering porosities larger than 10%. As a matter of fact, when the pore radius
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Figure 4: Thermal conductivity versus phonon scattering surface per unit volume (Sscat/V ) in
porous silicon with aligned spherical pores. Power law fit for large pore diameters (red line).

becomes small, Λoutp−sph becomes large (see Eq. 11) and does not verify the assumption of “closed
domain” where phonons are confined. Yet, in this formalism, the dimensionless κsph(φ = 0) is
set to 1 and thus ensures a correct fitting of MC-GK data. When Λb is evaluated with porosities
φ > 10%, we obtain Λb=350 nm; which is close to commonly admitted value for silicon.

As expected, it can be seen, that increasing the number of spheres decreases the thermal
conductivity for each tested porosities. This is logical and can be simply explained as reducing
the pore size for a given porosity increases the scattering surface per unit volume ratio Sscat/V ,
leading to enhance the phonon scattering and thus to a thermal conductivity reduction. Here, the
material volume V is the volume of the box minus the volume of the pore. In the case of organized
spherical pores, this ratio can be expressed considering the unit cell defined in Fig. 2-(left).

Sscat
V

=
3φ

R(1− φ)
(15)

Porous samples thermal conductivity can be plot in this frame. Such representation can help
to understand when the pore scattering becomes dominant in the thermal transport process. In
Fig. 4, for all the considered MC-GK simulations where the porosity is larger than 10%, thermal
conductivity decrease, according to a power-law with the surface per unit volume ratio. Here, when
φ > 10% k ∝ (Sscat/V )α with α = −0.6. Below this “threshold” porosity, thermal conductivity
is weakly modified by pore occurrence. Such observation is consistent with the one done for the
bulk mfp evaluation validity range. Such behaviour was previously reported for MD simulations in
porous silicon where the length scales of the elementary cell where much smaller[28] (side length
a = 10 × a0 = 5.43nm and 3.3 < φ < 52.5%). In the latter calculation, power-law dependence
was also noted with similar α exponent close to -0.5. More recently, in MD based study on porous
silicon, similar trends were observed and express in the framework of Santaló’s formula[29].

In addition to the classic porosity or scattering surface to volume dependence of thermal con-
ductivity, one can wonder about the phonon “mean free path” (or interaction length) distribution
in porous systems. Here, we take advantage of phonon tracking all along the simulation duration to
evaluate such mfp distribution. In all our simulations, a set of selected particles (phonons) are fol-
lowed from their initial location up to their the final location and their “jumping length” properties
are calculated each time a phonon undergoes a scattering event changing its propagation direction
(resistive event). The latter can be scattering with a pore, umklapp scattering or lattice defect
scattering. From the thermal transport viewpoint, it corresponds to interactions which decrease
energy packet correlation.

In the inset of Fig. 5 is plotted a typical mfp distribution histogram in silicon at room tempera-
ture for φ = 5%. It shows a continuously decreasing distribution with mfp that ranges between tens
and hundreds of nanometers. This kind of distribution can be adjusted according to a “Generalized
Pareto model” with two parameters: k which is the shape parameter and σ the scale parameter.
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Figure 5: Mean free path probability plot according to generalized Pareto model for φ = 5%,
Np=1000 and R=22.85 nm ; the inset shows mfp distribution.

Increasing k enlarge the tail of the distribution (i.e. more events characterized by long mfp), while
increasing σ shift the maximum of distribution toward larger mfp. In the present case we use a
probability plot to show the good agreement between the model and the MC-GK extracted data.
In this case, less than 1% of the computed mfp deviate from the Pareto distribution due to the
finite size of the domain; i.e. simulation box of 1 × 1 × 1 µm3. With the generalized Pareto
formalism, one can extract mean mfp and median M(mfp) mean free paths for the considered
distribution knowing k and σ.

mfp = θ +
σ

1− k
(16)

M(mfp) = θ +
σ
(
2k − 1

)
k

(17)

In previous expression, θ parameter is the location parameter always equal to 0 in our adjustments.
With this formalism the mfp is found to be close to 114 nm in this system made of 1000 spherical
pores with a radius of 22.85 nm (φ = 5%). Depending on the porosity of the system the mfp range
from 130 nm to less than 70 nm when porosity reach 50% in this silicon cubic domain. The above
discussion describes the fitting procedure applied to all the simulation data set, i.e. for Np=125,
512 and 1000 pores, considering 10 distinct porosities in the range 0 < φ < 50%. This allows
to plot the evolution of porous sample thermal conductivity’s versus mfp (see Fig. 6). From the
log-scale plot given in Fig. 6, one can see that thermal conductivity scales with the mfp derived
from Pareto fitting of phonon “jumping length” between resistive scattering events giving a general
trend k ∝ (mfp)β . Here, β = 2.84, close to 3 which can make sense in this ideal case where the
symmetry is respected along the three Cartesian coordinates.

3.2 Aligned phononic membranes

In the case of PNC membranes, we consider silicon thin membranes with the following characteristic
dimensions (length Lz=25 µm, width Ly=5 µm and height Lx=145 nm. Here, a schematic view
of such PNC membrane corresponds to the “center case” given in Fig. 1. For all simulations and
in the corresponding experiments, the membranes characteristic lengths (Lx, Ly, and Lz) remain
constant. The only parameters that change are: the pitch of the membrane a (which is the same
in y and z directions) and the radius of the holes. Five distinct pitches were considered in aligned
PNC membranes ([160, 200, 300, 350, 500] nm). the hole radius vary in the range of 15 nm to more
than 200 nm, depending on the considered pitch. It allows to tune the porosity of the membranes
between 0% (plain membrane) and roughly 60%.

8

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

01
55

58
2



80 100 12070 90
mfp (nm)

30

60

90

120
150

20

40
50

70
80

k 
(W

/m
.K
)

Np = 125
Np = 512
Np = 1000

Figure 6: Thermal conductivity as a function of the average phonon mean free path in porous
system made of spherical organized pores. The red line corresponds to a power law fit.

In those devices, the MC-GK simulation method was applied to evaluate the thermal con-
ductvity tensor as a function of the membrane’s patterns as well as the characteristic phonon
mean free path. A typical example of phonon energy carrier tracking with such calculation’s pro-
cedure is given in Appendices in Figs. 14 and 15. In the latter, five distinct phonon tracks are
plotted. In x and y directions phonon packet reflections are diffuse while in z direction, we assume
“periodic” boundary conditions which allow a free flow of phonons. The z direction in our calcu-
lation is the heat flow propagation direction considered in micro-TDTR experiments achieved by
R. Anufriev[26, 27].

First, the thermal conductivity tensor of a typical PNC membrane with a pitch a=300 nm is
given in Fig. 7. Autocorrelation of the heat flux is computed along the three main directions. As
expected, in x direction TC value kx is much smaller than bulk value appraised with Si Callaway-
Debye lifetimes (kb=127.8 W m−1 K−1 ). Here kx=20 W m−1 K−1 for all considered porosities.
This makes sense as hollow cylinder axis is along x direction and the thickness of the membrane
(Lx=145 nm) is smaller than average phonon mean free path at room temperature. Here, the
kx component is only limited by the film thickness. Along z direction, the energy carriers are
free to flow (periodic BC) but their paths are limited by cylindrical pore occurrence. As the
pore radius gets larger, the “neck” between pores is reduced as well as the phonon flow. The
thermal conductivity value in this direction kz, computed with the MC-GK method, is in good
agreement with micro-TDTR measurements carried out on membranes with the same geometric
features, giving a additional confirmation of the methodology reliability. Eventually, the TC in
y direction remains lower than kz as the system width is smaller and finite (Ly=5 µm). For the
largest pore diameter (here R=135 nm), the neck is equal to 30 nm and phonon confinement is even
more pronounced than in the film thickness direction leading to ky values below 20 W m−1 K−1 .
Similar calculations were performed for the four other pore spacing’s, showing similar trends.

On this general ground, thermal conductivity of PNC aligned membranes can be calculated
as a function of porosity for the five distinct pitch values and, as it was done for spherical pores,
compared to the above established models (see Eq. 14. Here a values and pore radii R are prescribed
and set to correspond to the experimental values reported in [27], except for the smallest pore
radius (R < 40 nm) that were only numerically considered to assess thermal continuous modelling
of thermal properties from pristine membranes to highly porous ones. All those calculations (66
different cases) are plotted in Fig. 8.

Hereafter, only z-component of the thermal conductivity tensor is discussed; it corresponds to
the one experimentally measured. A first observation is the continuous decrease of the membrane
TC’s as the porosity increases. In this case, a three-time reduction of kz is observed between
pristine Si membrane (kf=63.18 W m−1 K−1 ) and the PNC-membrane with highest porosities.
A second remark concerns the impact of the PNC-membrane’s pitch size a on the variation of
TC. As expected, for a given porosity, reducing the pitch a implies to reduce pore diameter and
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Figure 7: Thermal conductivity tensor in a PNC membrane as a function of the pore radius ; Mem-
brane geometric characteristics Lx=145 nm, Ly=5 µm, Lz=25 µm, pitch of the PNC a=300 nm,
T=300 nm. Experimental value are taken from M. Verdier et al.[27]
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Figure 8: Thermal conductivity of PNC membranes with aligned cylindrical pores versus porosity.
Comparison to analytic modelling based on phonon mfp evaluation in thin films.
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Figure 9: Thermal conductivity of PNC membranes with aligned cylindrical pores, comparison of
MC-GK calculations to micro-TDTR measurements [27]

thus to increase the number of pores in the membrane. As an example, when a=160 nm there
are 30 × 155 cylindrical holes in the membrane with radius up to 63 nm, while when a=500 nm
there are 9× 49 holes in the membrane with radius up to 213 nm. Increasing the number of inner
phonon scattering boundaries with large surface to volume ratio naturally (small a case) improve
phonon scattering efficiency and thus lead to a thermal conductivity lowering. Finally, we can
notice that the proposed model for k evolution with respect to geometrical parameters (a and R)
and phonon mfp in the membrane Λf is consistent. It leads to an average Λf=243 nm, which is
logically smaller than the Λb computed before in the case of bulk system with spherical organized
pores. We will show in the next section that similar value is found for staggered PNC membranes.

To conclude on this first set of calculations, we have compared our MC-GK simulations to
micro-TDTR measurements. Results are reported in Fig. 9. In such a plot, perfect agreement
supposes that all data-points are aligned on the first bisector line. Such agreement is good for
pitches in the range 200 < a < 350 nm, while light overestimation is found for the smallest pitch
(a = 160 nm) and a light underestimation is observed for the largest one (a = 500 nm). Such
trends were already observed in our former work based on the used of classical MC simulations
(based on Fourier’s formalism) with a temperature difference set along thr z direction [27].

Eventually, it was shown that the mfp distribution can be extracted from the MC simulation
of phonon packet transport and, in the case of porous systems, the distribution can be fitted by
generalized Pareto model. For PNC membranes, such approach is still valid and is used to evaluate
the mfp related to intrinsic and boundary scattering events. Computing the average phonon mean
free path for the 66 different simulation cases, we provide variation of simulated TC’s with respect
to their assessed mfp, see Fig. 10. From log-scale plot given in Fig. 10, one can see that the
thermal conductivity also scales with the mfp derived from Pareto fitting of phonon “jumping
length” between each scattering events. The general trend is also k ∝ (mfp)β with β = 2.57, close
to 2.5, which is smaller than the previously considered test case (bulk with spherical pore). This
variation can be related to the strong downsizing of the structure along x-direction (Lx << Ly, Lz).

3.3 Staggered phononic membranes

Before concluding, we demonstrate the ability of the method to deal with other types of geometry,
staggered PNC membranes have been considered. Thin film characteristic remain similar to the
previously investigated membrane (Lz=25 µm, Ly=5 µm and Lx=145 nm). Pitches for hollow
cylinders spacing are also similar ([160, 200, 350, 500] nm), but they are organized in staggered
mode with a unit cell characterized by an equilateral triangle (see Fig. 2-right). For this kind of
membranes, 52 distinct cases were investigated with the MC-GK method at room temperature and
compared to micro-TDTR experimental data reported in [26, 27].

In Fig. 11 are plotted the TC values calculated with MC-GK method for all the considered
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Figure 10: Thermal conductivity as a function of average phonon mean free path in PNC mem-
branes with aligned cylindrical pores. Power law fit for large pore diameters (red line).

samples. Like in the case of the aligned PNC membrane kz values are decreasing as the porosity
increases and this effect is more pronounced in membranes with smallest pitches. This is consistent
with theory, experimental observations and our former calculations (see Fig. 8). In addition, the
modelling procedure, detailed in section 2.2.2, has been also used to evaluate the phonon mfp in
this membrane. Here, the average value of the thin film mfp is Λf=240 nm, a value close to the
one obtained previously for aligned PNC.

In Fig. 12 are reported the kz values numerically predicted as a function of their experimental
counterparts. Agreement between both approaches is reasonably good, except for the largest
pitch (a=500 nm) where the simulation globally underestimates the experimental measurement.
This trend was also noticed in the case of aligned PNC membranes and therefore probably need
other simulations and experiments to assess possible limitation of the modelling and/or of the
measurement techniques.

4 Conclusion

This work aims at demonstrating the ability of a new modelling procedure (Monte Carlo-Green
Kubo) to assess thermal properties of complex porous systems. In comparison to former studies
also based on the Monte Carlo solution of the Boltzmann transport equation developed in the
group [16, 27], this method proposes improvements at different levels that are useful for nano
and microscale thermal engineering. Among them, we can cite: the possibility to directly extract
thermal conductivity tensor of complex systems, the ability to perform calculations at a prescribed
temperature, the modelling efficiency in systems where phonon scattering is dominant. The latter
point is a major advantage compared to classical MC simulations; i.e. calculations where thermal
properties are extracted from steady state behaviour of a differentially heated structure. In classical
MC approach, highly porous membranes are scarcely considered as convergence calculations, even
on computing grids, are long to achieve. In addition to that, these techniques based on “quanta”
tracking into the system of interest allow to extract other parameters like energy carriers mean
free path or angular distribution of the latter. Here, generalized Pareto distribution of mfp fits the
phonon travelling distance between resistive scattering events. It thus brings insights about phonon
engineering in nanosystems. In this work, we also try to provide analytical models which can be
used to evaluate thermal transport properties in “organized porous systems”. Those models based
on geometrical considerations and phonon boundary scattering allow to catch general tendencies
and are consistent with phonon mean free path evaluation carried on bulk or thin films. Further
developments of the simulation tool are currently in progress. Among them, the implementation
of methods to deals with multi-component materials is considered in order to study sample with
nanoinclusions that are also of big interest (e.g. superlattices, quantum dots, ...).
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Figure 11: Thermal conductivity of PNC membranes with staggered cylindrical pores versus poros-
ity. Comparison to analytic modelling based on phonon mfp evaluation in thin films.
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Figure 12: Thermal conductivity of PNC membrane with staggered cylindrical pores, comparison
of MC-GK calculations to micro-TDTR measurements [27]
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Table 1: Data used to fit Si dispersion curves.

units Si

cTA ×10−7(m2s−1) -2.28
vTA ×103(m s−1) 5.24
cLA ×10−7(m2s−1) -2.22
vLA ×103(m s−1) 9.26
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A Appendices

Dispersion properties

Parabolic fits ω = cpK
2 + vpK are used to describe the dispersion properties of Si, for LA and

TA polarizations, as suggested by E. Pop et al [30]. Here, isotropic dispersion properties are
considered. Parameters cp and vp are detailed in Tab. (1).

Relaxation times

Relaxation time formulations are given below (Eq. A.1); each scattering process has its own ex-
pression which depends on the frequency and the temperature [31]. Bi constants are adjusted
to fit the experimental TC curve of bulk material conductivity as a function of the temperature
k = f(T ), we cannot directly derive them from analytical expressions as phonon group velocities
are not constant and calculated from phonon dispersion properties (quadratic fit). Tab. (2) lists
them for “Normal”, “Umklapp” and “Impurity” scattering.

(τI)
−1 = BiIω

4 = V0Γ
4πv3g,i

ω4,

(τLN )−1 = BLNω
2T 3,

(τTN )−1 = BTNωT
4,

(τ iU )−1 = BiUω
2Te−θi/(3T )

(A.1)

Table 2: Relaxation time parameters for Si, Ge, GaN and C (diamond) for the Debye-Callaway
model.

units Si

BTN ×10−13(s K−3) 2.0
BTU ×10−20(s) 8.3
BLN ×10−24(K−4) 0.8
BLU ×10−20(K−4) 3.0
Γ ×10−5(-) 7.3
V0 ×10−30(m3) 40.9
θT K 230.0
θL K 583.8

Analytic model of mfp, evaluation with ray-tracing methodology

Here, in addition to the comparison to available experimental data, we wanted to see if the pro-
posed analytic modeling can be expected from direct considerations about phonon collision with
boundaries. The proposed models given by equations (Eq. 11 & Eq. 13) only take into account the
geometrical features of the porous media (pitch a and pore radius R) through a “porous mfp” (la-
belled Λp). Such mean free path does not depend on the phonon spectral properties as it is purely
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Figure 13: Pore scattering mean free path; comparison of MC evaluation (Eq. A.2) with analytic
models (Eq. 11 and Eq. 13).

geometric considerations that have been used to evaluate it. In order to demonstrate this, we have
performed similar calculations to the ones presented in references [25, 16]. In these studies, the
boundary scattering probability is calculated as the number of phonon packets that collide with a
pore boundary Npore divided by the total number of phonon packets launched in the system Ntot.
This collision probability can be related to a boundary lifetime and thus to a boundary mfp. It
reads (see Eq. 2 in [25]):

Pscat(ω, p) = 1− exp

[
−δt

τpores(ω, p)

]
=
Npore(ω, p)

Ntot(ω, p)
(A.2)

In the present work simulations parameters were: 107 launched phonon packets, sampled over 500
frequency bands over the whole phonon spectra of silicon. Here, only one time step of δt = 10 ps
is used. All calculations were performed for the organized spherical pore sample and for the two
PNC membrane cases studied in the manuscript. Geometrical parameters of these cases were: i)
125 spheres in 1µm3 square box, ii) aligned PNC with pitch a=300nm, iii) staggered PNC with
pitch a=350 nm. In both PNC cases pore radius was varied between 20 nm (smallest porosity,
φ=1.2%) and 135 nm (φ = 59%) or 150 nm (φ=65%) respectively for case ii) and iii). In case i)
porosity range between 1% and 50%.

Hereafter,in Fig. 13, is plotted the pore boundary mfp for case i), ii) and iii) discussed above.
On x axis is reported the theoretical Λp computed with Eq. 11 and Eq. 13 (as a function of the
pitch a, the radius R and the pore organization, organized, aligned or staggered), while on y axis
is plotted the MC evaluated mfp Λp obtained with Eq. A.2 which does not involve any adjustment
parameter.

In Fig. 13 blue squares stand for spherical pore system, while orange diamond represent aligned
PnC and green circle staggered one. In all cases MC calculation uncertainties are reported also.
Perfect matching between model and MC simulations would result in all points aligned along the
black dashed line (x = y). Naturally, this is not the case, especially for large porosities (small Λ
values), however the agreement between both approaches used to evaluate pore collision mfp is
very good. This confirms the adequacy of the model to evaluate mfp due to pore scattering.

In addition, when porosity becomes large, the analytic model reaches its limit as pores are
getting closer and thus the mathematical model based on a convex inclusion in a convex body
(Λ = 4V/S) should take into account possible reflection at inner convex body boundary. In such
case, surface scattering in the analytic model increases and thus theoretical collision mfp decreases.
Such trend is consistent with our MC simulations that show smaller ΛpMC than Λpth for large
porosities. Those calculations confirm adequacy of the analytic modelling and give insights about
its limitations.
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Phonon trajectories in PNC membranes
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Figure 14: Phonon paths in an aligned PNC membrane, trajectories of 5 distinct energy car-
riers; Membrane geometric characteristics Lx=145 nm, Ly=5 µm, Lz=25 µm, pitch of the PNC
a=500 nm, hole radius r=110 nm.
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Figure 15: Phonon paths in an staggered PNC membrane, trajectories of 5 distinct energy
carriers; Membrane geometric characteristics Lx=145 nm, Ly=5 µm, Lz=25 µm, pitch of the
PNC a=500 nm, hole radius r=110 nm.
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