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Abstract 23 

The Mangodara district (South West of Burkina Faso, West African Craton) consists of a 24 

regional-scale Eburnean dome cored by granitoid-gneisses comprising rafts of migmatitic 25 

paragneisses and amphibolites of the Paleoproterozoic Birimian series. The occurrence of 26 

rare-metal-bearing pegmatites in diffuse contact with these migmatitic and granitoid gneisses 27 

suggests that they originated from segregation of a residual melt of these partially molten 28 

hosts. In this paper, we constrain the petrogenetic link between pegmatites and their hosts, 29 

and the mechanisms of rare metal fractionation in LCT vs NYF petrogenetic signatures by the 30 

geochemistry of micas, apatite, columbite-group minerals, garnet and zircon. 31 

Titanite-allanite type pegmatites (containing titanite, allanite, epidote, zircon and apatite as 32 

accessory minerals) and their evolved equivalent, apatite-zircon type pegmatites (richer in 33 

apatite, lower K/Rb and Fe/Mn ratio in biotite but Li-depleted) are poorly enriched 34 

metaluminous pegmatites. They display a continuous evolution trend in K/Rb and Fe/Mn in 35 

biotite and similar REE pattern in apatite, which favor an origin by segregation of residual 36 

melt within tonalitic-trondhjemitic gneiss in the core of the Mangodara dome. 37 

Garnet-columbite type pegmatites (hosting REE-bearing phosphates and Zr-U-Th-bearing 38 

metamict minerals) are mixed LCT+NYF pegmatites. Their micas slightly enriched in Li, 39 

LREE-rich apatite and Nb-Ta-U-rich garnet are consistent with an origin by partial melting of 40 

a metasedimentary source, with dehydration of biotite (reservoir of Li, Rb, Nb) and 41 

dissolution of apatite-monazite (reservoir of REE). Apatite crystals in one garnet-columbite 42 

pegmatite reveal an inherited REE signature typical of apatite-zircon pegmatites, which 43 

suggests mingling of the LCT-pegmatite-forming melt with the residual melt derived from 44 

crystallization of the metaluminous pegmatites. 45 
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Garnet-REE type pegmatites are NYF pegmatites (ilmenite-pyrophanite, euxenite-46 

aeschynite), which points to an origin by melt segregation within granodioritic gneiss 47 

associated with breakdown/entrainment of amphibole (reservoir of REE, Y) and LREE 48 

segregation by allanite and phosphates in the source. 49 

These data show that the LCT vs NYF signature of pegmatites of the Mangodara district 50 

results primarily from the chemical composition of the partially-molten source and the 51 

minerals involved in the partial melting reactions, which vary as a function of depth (micas, 52 

phosphates, amphiboles, garnet). The trace-element signature of anatectic peraluminous 53 

pegmatite-forming melt might then be affected by mingling with residual Nb-enriched 54 

metaluminous melt. 55 

Keywords: Rare-metal-bearing pegmatite, West Africa Craton, geochemistry, micas, 56 

accessory minerals, mixed LCT+NYF pegmatites  57 

58 
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1. Introduction 59 

Granitic rare-metal-bearing pegmatites are classified in two petrogenetic families based on 60 

accessory phase mineralogy and their rare-metal enrichment trends (Černý 1991a, b; Fersman 61 

1940). The Lithium-Cesium-Tantalum (LCT) family is characterized by enrichment in alkali 62 

elements, Li, Cs, Ta over Nb, Be, P and F, typically hosted by spodumene/petalite, lepidolite, 63 

pollucite, and columbite-group minerals (CGM) (Černý 1991a). The pegmatites belonging to 64 

the LCT family typically show internal zoning of fabric and mineralogy, and regional zoning 65 

of mineralogy (Černý 1991a, b; Ercit et al. 2005). The Niobium-Yttrium-Fluorine (NYF) 66 

family is marked by enrichment in Nb > Ta, F, Y, rare earth elements (REE), Ti, Zr, Be and 67 

U. This group possess a more exotic mineralogy with rare-metal-bearing minerals like 68 

gadolinite, euxenite, aeschynite-Y, samarskite, or fergusonite (Černý 1991b; Černý and Ercit 69 

2005; Martin and De Vito 2005), and rarely exhibit a regional zoning pattern (Simmons et al. 70 

1987; Smeds 1994). A third family, the mixed LCT+NYF family, designates pegmatites that 71 

show composite properties of the two other families, but they are less frequently described in 72 

literature (Martin and De Vito 2005; Müller et al. 2017; Turlin et al. 2017). 73 

Despite a growing number of studies in recent years, the genesis of granitic rare-metal 74 

enriched pegmatites is still a subject of debate. Several authors have proposed an origin from 75 

extreme differentiation of a fertile (rare-metal-rich) magma (Černý 1991a; Černý et al. 2012; 76 

London 1996; Martin and De Vito 2005). For LCT pegmatites, differentiation of a granitic 77 

magma with a peraluminous signature derived from metasediments is invoked (e.g., Breiter et 78 

al. 2018; Černý 1991a; Icenhower and London 1996; Roda-Robles et al. 2012; Shearer et al. 79 

1987), whereas NYF pegmatites are interpreted as deriving from mantle-sourced anorogenic 80 

magmas with a peralkaline signature (e.g., Černý 1991a; Černý and Ercit 2005; Estrade et al. 81 

2014; Martin and De Vito 2005; Miller 1996; Schmitt et al. 2002). Mixing of magmas from 82 

different sources, or metasomatic overprinting might explain the geochemical features of 83 
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mixed LCT + NYF pegmatites (Martin and De Vito 2005; Müller et al. 2017). However, the 84 

origin of rare-metal-bearing pegmatites from granitic melt fractionation is challenged in case 85 

of (i) the absence of a fertile granitic pluton or the rare-metal deficiency of the magmatic 86 

source relative to the exposed pegmatites (Müller et al. 2017; Norton and Redden 1990; Shaw 87 

et al. 2016; Stewart 1978), (ii) a discontinuity or disparity of geochemical trend between 88 

identified plutonic source and pegmatites (Martins et al. 2012; Roda-Robles et al. 1999), and 89 

(iii) a temporal gap between the ages of granite and pegmatite crystallization (Goodenough et 90 

al. 2014; Melleton et al. 2012; Müller et al. 2017). 91 

Alternative propositions to the granite-related hypothesis are an origin of LCT pegmatites 92 

either by direct partial melting of metasediments, as supported by Roda-Robles et al. (1999), 93 

Shaw et al. (2016), and Müller et al. (2017), or by different degrees of fractionation of a 94 

magma that migrated from its partially molten source (Martin and De Vito 2005; Shearer et 95 

al. 1985; Stewart 1978). The major drawback of the anatectic model is that trace elements are 96 

expected to be diluted in an increasing volume of melt during partial melting (London et al. 97 

2012). Also, the strong partitioning dependence of rare-metals on residual and peritectic 98 

minerals might further contribute to rare-metals depletion in the anatectic melt (Bea 1996; 99 

Bea et al. 1994; Bea and Montero 1999; Brown et al. 2016). Despite these limitations, the 100 

anatectic model of pegmatite genesis has recently been invoked in several studies (Bonzi et al. 101 

2021; Müller et al. 2015, 2017; Shaw et al. 2016; Turlin et al. 2019). 102 

Petrogenetic studies of LCT and NYF pegmatites are mostly based on the chemical 103 

composition of their minerals, because these reflect the physical conditions of crystallization 104 

(pressure, temperature) and can record the chemical evolution of the pegmatite-forming melt 105 

(Barnes et al. 2012; Breiter et al. 2018; Deveaud et al. 2015; Müller et al. 2018; Novák et al. 106 

2011; Pichavant et al. 2016; Roda-Robles et al. 1999; Simmons et al. 1987; Thomas et al. 107 
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2000; Van Lichtervelde et al. 2008). The composition of micas is used to define enrichment 108 

trends in trace elements for evolved granites and pegmatites (Hulsbosch et al. 2016; Martins 109 

et al. 2012; Stepanov et al. 2014; Stepanov and Hermann 2013; Van Lichtervelde et al. 2008). 110 

The Nb/Ta and K/Rb ratios in micas are known to decrease with melt fractionation following 111 

a Rayleigh type fractionation model (Černý et al. 1985; Černý and Burt 1984; Foord et al. 112 

1995; Martins et al. 2012; Roda-Robles et al. 2006; Stepanov et al. 2014; Stepanov and 113 

Hermann 2013). Finally, trace elements in minerals such as phosphates, garnet or CGM are 114 

proven tracers of the petrogenetic environment of their parental rocks (Belousova et al. 2002; 115 

Graupner et al. 2010; Groulier et al. 2020; Linnen and Cuney 2005; Melcher et al. 2015, 116 

2017; Samadi et al. 2014; Turlin et al. 2017; Van Lichtervelde et al. 2010; Villaros et al. 117 

2009). 118 

In the Paleoproterozoic West African Craton, previously described rare-metal-bearing 119 

pegmatites of Saraya in Senegal, Winneba in Ghana, Issia in Ivory Coast and Goulamina in 120 

Mali consist of LCT pegmatites mineralized in spodumene and CGM (Allou 2005; Allou et 121 

al. 2005; Dampare et al. 2005; Ndiaye et al. 1997; Nude et al. 2011; Wilde et al. 2021). In a 122 

previous paper (Bonzi et al. 2021), we have presented the geological context of the rare-123 

metal-bearing pegmatites of the Mangodara district (southwestern Burkina Faso). Based on 124 

structural, petrological, geochemical and geochronological data on the pegmatites and their 125 

hosts, we have proposed an origin by partial melting of paragneiss/amphibolite and melt 126 

segregation in tonalitic-trondhjemitic-granodioritic gneisses. In order to test this hypothesis, 127 

in this new contribution, we further describe both mixed (LCT+NYF) features for the 128 

pegmatite field of the Mangodara district and document mineralogy and geochemical 129 

composition of micas and accessory minerals from pegmatites and host rocks. These data are 130 

used to identify the petrogenetic family of the pegmatites, as well as to discuss the sources of 131 

rare-metals and their behavior during crystallization. 132 
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 133 

2. Geological background of the Mangodara district 134 

2.1. Regional setting of the Paleoproterozoic West African Craton 135 

The Paleoproterozoic domain of the West African Craton (WAC), named Baoule-Mossi 136 

domain, was accreted to the Archean nucleus of the WAC during the Eburnean orogeny 137 

(Milési 1989; Vidal and Alric 1994; Kouamelan 1996; Tshibubudze et al. 2009; Wane et al. 138 

2018; Grenholm et al. 2019a, b; McFarlane et al. 2019) (Fig. 1). The Baoule-Mossi domain is 139 

composed of Birimian greenstone belts made of metavolcanic, metavolcano-sedimentary and 140 

metasedimentary rocks, emplaced between 2220 Ma and 2160 Ma (Baratoux et al. 2011; 141 

Giovenazzo et al. 2018; Hirdes et al. 1996; Hirdes and Davis 2002; Lüdtke et al. 1998), and 142 

Bandamian volcanic rocks aged between 2120 and 2080 Ma (Gasquet et al. 2003; Grenholm 143 

et al. 2019a; Hirdes et al. 1996; Hirdes and Davis 2002; Mériaud et al. 2020). The greenstone 144 

belts alternate with gneiss, migmatite and granitoids that are referred to as granitoid gneiss 145 

complexes. Greenstone belts are affected by greenschist grade metamorphism during the 146 

Eburnean orogeny, rising to amphibolite grade in granitoid gneiss complexes. The 147 

greenschist-amphibolite facies transition has been interpreted to represent metamorphic 148 

aureoles around intrusions (Debat et al. 2003; Doumbia et al. 1998; Feybesse et al. 2006; 149 

Ganne et al. 2014; Gueye et al. 2008; Pons et al. 1992), or regional metamorphic gradient 150 

(Bonzi et al. 2021; Vidal et al. 2009; Vidal and Alric 1994). Crystallization ages of magmatic 151 

zircon from volcanic and plutonic rocks of greenstone belts and granitoid gneiss complexes, 152 

in South-Western Burkina Faso and Northern Ivory Coast, range between 2200 Ma and 2000 153 

Ma (Baratoux et al. 2011; Gasquet et al. 2003; Hirdes et al. 1996; Metelka 2011; Parra-Avila 154 

et al. 2017, 2019). Two peaks of magmatic activity around 2150–2130 Ma and around 2100 155 

Ma are referred to respectively as ME1 and ME2 (Baratoux et al. 2011; Hirdes et al. 1996). 156 

These peaks are coeval with major deformation phases D1 and D2 that are expressed by folds 157 
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and penetrative foliation in greenstones, synmigmatitic foliation in migmatites and magmatic 158 

layering in granitoids (Baratoux et al. 2011; Bonzi et al. 2021; Metelka 2011). These features 159 

have been interpreted as recording a combination of gravitational instabilities with diapirs 160 

cored by granitoid gneiss complexes deformed during lateral flow of the orogenic crust in a 161 

context of transpression (Allibone et al. 2002; Baratoux et al. 2011; Bonzi et al. 2021; 162 

Chardon et al. 2020; Feybesse and Milési 1994; Ganne et al. 2012; Lompo 2009, 2010; Milési 163 

1989; Milési et al. 1992; Vidal et al. 2009). 164 

 165 

2.2. Geology of the Mangodara district 166 

The Mangodara district is situated in the 100 km wide and 500 km long Sideradougou Gneiss 167 

and Granitoid Complex (SGGC), located between the Banfora greenstone belt and the 168 

Houndé-Ouango Fitini greenstone belt (Fig. 1). The SGGC is dominantly composed of 169 

hornblende and biotite-bearing gneiss and granitoids, which contain rafts of amphibolites and 170 

schists (Castaing et al. 2003; Gasquet et al. 2003; Giovenazzo et al. 2018; Hirdes et al. 1996).  171 

The Mangodara district displays a dome structure mantled by a granodioritic gneiss and cored 172 

by a tonalitic-trondhjemitic gneiss (Fig. 2, Bonzi et al. 2021). These gneisses contain rafts of 173 

amphibolite, schist, and paragneiss that are variably migmatitic. In the eastern part of the 174 

district, some potassic hornblende and biotite granitoids (named GG-granitoids) form plutons 175 

in gradual contact with the granodioritic gneiss (Fig. 2). The gneisses and granitoids, 176 

subdivided into a Na-rich series (tonalitic-trondhjemitic gneiss and two-mica trondhjemite) 177 

and a K-rich series (granodioritic gneiss, hornblende-biotite granodiorite with mica-rich 178 

enclaves, monzogabbro, GG-granitoids), are interpreted to result from partial melting of the 179 

Birimian series (supplementary Fig. S1). Granodioritic gneiss is interpreted as a diatexite 180 

resulting from partial melting dominantly of paragneisses whereas the tonalitic-trondhjemitic 181 
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gneiss is interpreted as a plagioclase-rich mush originating from partial melting of 182 

amphibolite. The mineral-geochemical composition and texture of the tonalitic-trondhjemitic 183 

gneiss and its intrusive contact relative to the mantling granodioritic gneiss, suggests that the 184 

magma has migrated out of its source and has left a residue of garnet and pyroxene at depth 185 

(Bonzi et al. 2021). Rafts of amphibolite and paragneiss, preserved within the migmatitic 186 

gneiss, attest for a MP-HT metamorphism (sillimanite-garnet/staurolite +/- melt assemblage 187 

in paragneiss and plagioclase-rich leucosome in amphibolites) delineating a solid-state to 188 

synmigmatitic foliation resulting from progressive D1-D2 deformation. The presence of 189 

magmatic epidote, and the estimated pressure of crystallization of hornblende (4.0–6.6 kbar) 190 

point to a crystallization of gneiss-granitoids at a depth of about 12 to 20 km (Bonzi et al. 191 

2021).  192 

Four distinct types of pegmatites are identified in the Mangodara district, based on their 193 

regional distribution (Fig. 3a), mineralogy (Fig. 3b, Fig. 4) and petrological-structural 194 

relationships with their host rocks (see Bonzi et al. 2021 for a more detailed description). 195 

(1) Titanite-allanite pegmatites occur exclusively in tonalitic-trondhjemitic gneiss (Fig. 3). 196 

They form veins that are mostly inferior to 2 meters in thickness and are locally folded, with 197 

diffuse contacts concordant to sharply discordant to the magmatic foliation of the gneiss (Fig. 198 

S2. The veins are interpreted to originate from syntectonic segregation of residual melt within 199 

the tonalitic-trondhjemitic gneiss. 200 

(2) Apatite-zircon pegmatites are less common (4 dykes formally identified); they form veins 201 

of less than one meter thickness that display diffuse contacts, concordant to discordant to the 202 

foliation of the granodioritic gneiss (Fig. S3). This pegmatite type is considered as a cogenetic 203 

facies of the titanite-allanite type based on their similar mineralogy and higher LILE and REE 204 

content. 205 
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(3) Garnet-columbite pegmatites are hosted in rafts of amphibolite and paragneiss, in 206 

granodioritic gneiss, hornblende-biotite granodiorite with mica-rich enclaves, and in two-mica 207 

trondhjemite (Fig. S4). They are thick dykes of several meters in thickness (can reach 300 m 208 

in apparent width). They are considered as the segregation product from an anatectic melt that 209 

migrated out of the partially molten paragneiss. 210 

(4) The garnet-REE pegmatites dykes have thicknesses of the order of one to several meters 211 

and are distributed around the interface between granodioritic gneiss and GG-granitoids (Fig. 212 

S5). They are interpreted as the product of melt segregation within the granodioritic gneiss 213 

during its crystallization. 214 

The regional distribution of the Mangodara pegmatites depicts a zonation evolving from the 215 

core of the Mangodara dome to the eastern part of the district (Fig. 3). The crystallization of 216 

titanite-allanite pegmatite is dated at 2094.3 ± 8 Ma using in situ U-Pb dating in zircon by 217 

laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS), which 218 

corresponds to the end of the ME2 (Bonzi et al. 2021). Apatite ages (in situ U-Pb LA-ICP-219 

MS) of 2094 ± 21 Ma on tonalitic-trondhjemitic gneiss, 2055 ± 20 Ma on apatite-zircon type 220 

pegmatite, and 2041 ± 33 Ma on granodioritic gneiss record the regional cooling under 500 221 

°C, which occurred after 2100 Ma (Bonzi et al. 2021). 222 

 223 
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3. Sampling and analytical methods 224 

Pegmatites and surrounding rocks of the Mangodara district were sampled to obtain 225 

representative thin sections of the different lithologies. Pegmatites were specifically 226 

sampled in internal parts of the dykes which exhibit fine (~0.5–2 mm) to medium-sized 227 

(2–5 mm) crystals and preferentially contain mica (see Tables 228 
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Table 1). Aplitic samples (grain size < 0.5 mm) were avoided to limit modal and 229 

geochemical biases linked with late-albitization (e.g., cleavelandite (Dewaele et al. 2011; 230 

Hulsbosch and Muchez 2020; Müller et al. 2018). Also, very coarse-grained samples 231 

(grain size > 0.5 mm) were avoided to guarantee a homogeneous representativity of the 232 

mineral phases existing in each sample. Micas, feldspars, garnet and accessory phases (< 233 

5% in modal composition) were identified in situ on thin section using optical 234 

microscopy, and backscattered electrons imaging (BSE) with a Scanning Electronic 235 

Microscope (SEM) Jeol 6360LV coupled with an energy dispersive X-ray spectroscope 236 

Silicon Drift Detector from Bruker (GET, Toulouse, France). The major element 237 

compositions of micas, apatite, CGM, garnet and zircon were obtained in situ on thin 238 

sections using an electron probe microanalyser (EPMA) Cameca SXFive at the Center 239 

Raimond Castaing (Toulouse, France), and a Cameca SX100 at GeoRessources (Nancy, 240 

France). Standards used are albite (Na), wollastonite (Si, Ca), Al2O3 (Al), sanidine (K), 241 

MnTiO3 (Mn,Ti), Fe2O3 (Fe), topaze (F), MgO (Mg), tugtupite (Cl), Cr2O3 (Cr), LaPO4 242 

(La), CePO4 (Ce), UO2 (U), zircon (Zr), HfZr (Hf), graftonite (P), Ta and Nb. 243 

Specifically for apatite analysis, a Durango apatite was used as standard for F and P. 244 

Detection limits for major element oxides are under 0.2 wt%. Detection limits for F, La 245 

and Ce oxides are under 0.5 wt%. Li content in micas was estimated by correlation with 246 

Mg content for biotite and Al content for muscovite following the empirical formulae 247 

compiled by Tischendorf et al. (2004), only for the purpose of mica identification and 248 

representation in Tischendorf diagram (Tischendorf et al. 1997, 1999, 2001). Structural 249 

formulae of micas, garnet, apatite, zircon and monazite were calculated based on 11, 12, 250 

13, 2 and 4 oxygen atoms, respectively. Mineral compositions of sampled rocks and 251 

analyzed mineral species are given in Tables 252 

Table 1). 253 
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Minor and trace elements (including Li) in micas, apatite, CGM, garnet and zircon were 254 

analyzed in situ on thin sections (30 µm thick) by laser ablation – inductively coupled plasma 255 

– mass spectrometry (LA-ICP-MS) using Geolas Pro coupled to an Agilent 7500 at 256 

GeoRessources (Nancy, France). Data were reduced using NIST-610 and NIST-612 as 257 

internal standard, and EPMA major element composition as external standard. 258 

 259 

4. Results 260 

4.1. Petrography of pegmatites 261 

4.1.1. Titanite-allanite pegmatites 262 

Titanite-allanite pegmatites are dominated by medium to coarse-grained plagioclase and 263 

quartz (crystal size from millimeter to decimeter), which commonly display graphic texture, 264 

particularly the coarser grains. These pegmatites are generally unzoned, but small dykes, 265 

discordant to the foliation of their host, show quartz-rich cores and margins with plagioclase 266 

crystals oriented perpendicular to the contacts. 267 

Major mineral phases in titanite-allanite pegmatites are oligoclase, quartz, rare to abundant 268 

biotite, whereas muscovite and microcline are rare (Fig. 4, supplementary Fig. S6). Muscovite 269 

occurs as secondary crystals, intercalated between biotite sheets, or as radiating acicular laths 270 

in inter-grain fractures, resulting in a miarolitic – like texture (supplementary Fig. S6a). 271 

Accessory minerals are magnetite, apatite, epidote, commonly metamict allanite, titanite, 272 

ilmenite and zircon. Apatite is found as inclusions in micas, plagioclase, quartz, and altered 273 

allanite (supplementary Fig. S6b). Zircon is frequently present as inclusions with size < 5 µm 274 

in biotite, plagioclase, apatite or titanite (Fig. 5a, supplementary Fig. S6b). SEM images of 275 

zircons reveal oscillatory zoning partially overprinted by patchy metamict zones. Titanite is 276 

subhedral and can be associated with allanite and zircon (Fig. 5). Euhedral epidote can host 277 
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exsolutions of titanite in fissures and crystal rims (Fig. S6c). Ilmenite is usually rimmed by a 278 

corona of late titanite, or late symplectitic epidote (supplementary Fig. S6d). 279 

 280 

4.1.2. Apatite-zircon pegmatites  281 

Apatite-zircon pegmatites are dominantly coarse-grained (centimeter scale) with 282 

hypidiomorphic to cumulatic texture marked by subhedral plagioclase and intergranular 283 

anhedral biotite (Fig. 5b, supplementary Fig. S7a). These pegmatites are rich in plagioclase, 284 

poor in quartz and K-feldspar, with biotite as the unique primary mica and the main 285 

ferromagnesian mineral, rare epidote, and euhedral magnetite (Fig. 5b, supplementary Fig. 286 

S7b). Apatite is abundant as millimeter sized euhedral prisms (supplementary Fig. S7a) that 287 

are locally aggregated in centimeter-wide masses. Zircon grains with size up to 200 μm occur 288 

in biotite, typified under SEM by a patchy texture that overprints the primary oscillatory 289 

zoning. 290 

 291 

4.1.3. Garnet-columbite pegmatites 292 

Garnet-columbite pegmatites are characterized by a diversity of textures such as decimeter-293 

scale coarse grained texture, graphic texture of K-feldspar-quartz, medium-grained texture 294 

with muscovite, quartz and feldspars (supplementary Fig. S8a), quartz-mica intergrowths, 295 

internal or margin-controlled directional growth of quartz-feldspar crystals, and rhythmic 296 

layering in cleavelandite-rich aplitic zones (supplementary Fig. S4b). Muscovite is the 297 

dominant mica, which ranges from millimetric interstitial flakes to centimetric tabular stacks, 298 

and occasionally showing kink folds suggesting some deformation during pegmatite 299 

crystallization (supplementary Fig. S8b). Biotite and muscovite can coexist in the same 300 

pegmatite body, but biotite is rare to absent in garnet-rich sections (Fig. 4). 301 
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Garnet-columbite pegmatites have a richer variety of accessory minerals relative to the other 302 

pegmatite types (Fig. 4). Apatite is observed as millimetric euhedral grains, more common in 303 

pegmatites of the northern part of the studied zone (Mangodara and Farakorosso). Orange to 304 

reddish garnet forms clusters or strings of millimetric to centimetric euhedral grains (Fig. 305 

S8c), generally abundant in aplitic layers. This garnet frequently hosts inclusions (< 200 µm) 306 

of zircon, monazite (EPMA composition in supplementary Table S1), CGM and REE-307 

metamict minerals (Fig. 5c). Tourmaline occurs as prisms of several mm to cm in size, 308 

arranged in glomeromorphic or interstitial texture in some pegmatites. Monazite occurs as 309 

subhedral crystals inferior to 200 µm, included in feldspar or in muscovite, frequently cracked 310 

or altered. Xenotime is rarely present in feldspar and garnet, as xenomorph crystals 311 

intergrown with zircon (supplementary Fig. S8d), or subhedral minerals altered by 312 

metamictization, with size inferior to 100 µm. Columbite-group minerals occur as elongated 313 

to acicular subhedral to euhedral accessory crystals, with size inferior to 200 µm. It forms 314 

micro-inclusions in garnet, feldspar and muscovite of pegmatites near Farakorosso and at 315 

Massadeyirikoro-West (Fig. 2, Fig. 5c, supplementary Fig. S8c, e and f). Metamict thorite 316 

(Fig. S8g), and relict of altered minerals bearing Zr, U, Th and REE (possibly cheralite, Fig. 317 

S8e, f, g and h) are found in garnet, and rarely in plagioclase, sometimes associated with 318 

zircon, xenotime or CGM (Fig. 5c, supplementary Fig. S8d and f). Scanning electron 319 

microscopy reveals that they contain traces of Zr, U, Th, Hf, Ce, Ca. 320 

A dyke of garnet-columbite pegmatite subparallel to a dyke of apatite-zircon pegmatite shows 321 

an intrusive contact at a shallow angle. The contact between the two pegmatites is sharp at 322 

macroscale, but irregular at the microscopic scale and delineated by euhedral crystal borders 323 

depicting a continuous magmatic texture (illustrated in Bonzi et al. 2021). 324 

 325 
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4.1.4. Garnet-REE pegmatites 326 

Garnet-REE pegmatites are characterized by the alternation of aplitic and medium to coarse-327 

grained layers. Medium to coarse-grained layers (crystal size from millimeter to centimeter) 328 

are mostly unzoned, but locally display a graphic texture. They are mainly composed of 329 

feldspar, quartz (supplementary  330 

Fig. S9a and b), biotite as millimetric to centimetric layers, rare muscovite, and accessory 331 

garnet, epidote and magnetite (Fig. 4). Garnet occurs as euhedral centimetric minerals. 332 

Tourmaline is rare and was only identified in one dyke. Ilmenite-pyrophanite (Fe-Ti-Mn-333 

bearing oxide) is found as subhedral crystals included in quartz, feldspar, and garnet (Fig. 5d, 334 

supplementary  335 

Fig. S9b and c). Some pegmatite dykes contain altered metamict accessory minerals with 336 

elongated shapes that display a euxenite-aeschynite-like composition (supplementary  337 

Fig. S9a, d, e and f, data available in supplementary Table S2). These REE-oxides are 338 

replaced by clay-hematite assemblages (supplementary  339 

Fig. S9d, e and f). Garnet-REE pegmatites do not contain apatite nor monazite. Epidote grains 340 

are common in the pegmatite veins linked with leucosomes of a granodioritic gneiss (Bonzi et 341 

al. 2021). Garnet is rare in these leucosome-related pegmatite veins. 342 

 343 

4.2. Rare-metal-bearing accessory minerals in pegmatite host rocks 344 

Paragneiss and metatexitic paragneiss 345 

Garnet from paragneiss and metatexitic paragneiss occurs as synkinematic porphyroblasts of 346 

up to 2 cm size containing numerous inclusions of lobate quartz-feldspar, retrograde biotite, 347 



17 
 

and rare opaque minerals (supplementary Fig. S10). Contrarily to their inclusion-rich cores, 348 

their rims are quite homogeneous. Garnet in metatexite is homogeneous in texture, and is 349 

interpreted as a peritectic phase in equilibrium with the melt segregated into leucosome veins 350 

(Bonzi et al. 2021). Zircon is found as small inclusions (< 40 µm) in biotite from paragneiss, 351 

mostly identified by dark aureoles of metamict alteration. In a micaschist enclave enclosed in 352 

garnet-columbite pegmatite (station BMS6, Fig. 2), larger zircon (up to 200 µm) is 353 

characterized by regular oscillatory zoning, and hosts multiple solid inclusions, which is in 354 

favor of its metamorphic origin. Zircon is also identified in metatexitic paragneiss as small 355 

inclusions (< 40 µm) hosted by biotite, garnet or ilmenite (supplementary Fig. S10a). Apatite 356 

is widespread in this micaschist enclave, as anhedral and lumpy crystals in micas, whereas it 357 

is not present in paragneiss. Monazite is found in the metatexitic paragneiss, as inclusions (< 358 

50 µm) in micas, quartz and garnet (supplementary Fig. S10a). 359 

 360 

Gneiss and plutonic rocks of Na-rich and K-rich Mangodara series 361 

Allanite-epidote, apatite, zircon and magnetite are ubiquist minerals in both granodioritic 362 

gneiss, tonalitic-trondhjemitic gneiss, and the plutonic rocks attributed to the Na-rich and K-363 

rich series of Mangodara district. Allanite can be found as non-altered crystals rimmed by 364 

epidote, or altered metamict grains replaced by amorphous epidote or subhedral apatite (e.g., 365 

supplementary Fig. S10b). Subhedral to euhedral epidote is associated with biotite, 366 

plagioclase, and can exhibit concentric internal zonation in GG-granitoids. Zircon mostly 367 

occurs as small haloed inclusions in biotite (< 40 µm). Apatite forms subhedral to euhedral 368 

crystals with size up to 300 µm, intersecting biotite and amphibole, or barely included in 369 

altered allanite (supplementary Fig. S10b). Magnetite occurs as euhedral to anhedral crystals 370 

that reach up to 1 cm in size in the tonalitic-trondhjemitic gneiss. In granodioritic gneiss and 371 
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plutonic rocks, it is mostly associated with mafic minerals (biotite, amphibole) as opaque 372 

inclusions (< 200 µm). Titanite is commonly seen in units of the K-rich series (granodioritic 373 

gneiss, GG-granitoids), as lozenge-shaped euhedral crystals, with size up to 1 cm in length. 374 

 375 

4.3. Mineral geochemistry 376 

4.3.1. Geochemical signatures of micas 377 

Major element compositions (supplementary Table S3 and Table S4) and trace element 378 

compositions (supplementary Table S5 and Table S6) were collected in muscovite and biotite 379 

from paragneiss, metatexitic paragneiss, two-mica trondhjemite, pegmatites, and a micaschist 380 

enclave enclosed in garnet-columbite pegmatite (supplementary Fig. S8a). In the Tischendorf 381 

diagram (Tischendorf et al. 1997, 2004), muscovite composition corresponds to muscovite 382 

sensu stricto whereas biotite plots in the annite-phlogopite domain (Fig. 6). The lowest values 383 

of mgli parameter (Mg - Li) in this diagram indicate the enrichment in Li (and F), which is 384 

observed in muscovite from garnet-columbite pegmatite, and biotite from garnet-REE and 385 

garnet-muscovite pegmatite. 386 

 387 

Major element composition 388 

Muscovite composition evolves through the following substitution: Al[VI] <-> Si +Mg + Fe2+ 389 

+ Ti (Fig. 7a). Muscovite in biotite-bearing pegmatites (titanite-allanite pegmatites and some 390 

garnet-columbite pegmatites) are richer in Fe+Mg than muscovite-only-bearing samples 391 

(higher mgli parameter in Fig. 6, Fe + Mg > 0.3 apfu in Fig. 7a and c). Muscovite from the 392 

micaschist enclave is particularly enriched in F (Fig. 7e). 393 
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Correlations of major elements suggest that biotite follows the substitution Si + Al[VI] + Mg 394 

<-> Al[IV] + Fe + Li (Fig. 7b) with negligible Li contribution. Manganese in biotite follows a 395 

general Rayleigh differentiation trend relative to Fe (Fig. 7g), which is continuous between 396 

titanite-allanite and apatite-zircon pegmatites, and also between garnet-columbite pegmatites 397 

and the two-mica trondhjemite. 398 

Titanite-allanite and apatite-zircon pegmatites host the most Mg-rich biotite among 399 

pegmatites (0.43 < Mg# < 0.54, Fig. 7d, Tables 400 

Table 1). Biotite is richer in F in apatite-zircon pegmatites (< 0.3 wt%) than in titanite-allanite 401 

pegmatites (F < 0.2 wt%, Fig. 7f). Iron-magnesium-poor biotite outliers from apatite-zircon 402 

pegmatites originate from the dyke crosscut by a garnet-columbite pegmatite (Fig. 7d). 403 

Biotite of garnet-columbite pegmatites overlaps that of the two-mica trondhjemite, with 404 

intermediary Mg content (0.38 < Mg# < 0.43), but higher Ti, Mn and Fe content than in other 405 

pegmatites (Fig. 6, Fig. 7d and g). Fe-rich biotite outliers of garnet-columbite pegmatites 406 

(sample BMS139B, Fig. 2) correspond to a dyke containing coexisting biotite and garnet (Fig. 407 

7b, d and g). Biotite from the micaschist enclave differs from biotite of paragneiss, granitoids 408 

and pegmatites by its low Fe+Mg (Fig. 7d) and its remarkably high F content (0.26–0.79 409 

wt%, see Fig. 7f). Biotite of garnet-REE pegmatites has low Mg# (around 0.31), F content 410 

below detection limits, and plots out of the Fe/Mn Rayleigh trend drawn by biotite from other 411 

pegmatites (Fig. 7g).  412 

 413 

Trace element composition  414 

Muscovite of garnet-columbite pegmatites follows a Rayleigh-type K/Rb fractionation trend, 415 

with high K/Rb ratios (84–41) and high Rb contents (1034–2203 ppm) relative to some LCT 416 
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and NYF pegmatites occurrences (see Fig. 8a). Its Li content (65–580 ppm) is uncorrelated 417 

with the K/Rb ratio (Fig. 8c). Niobium and Ta are the richest in muscovite of garnet-418 

columbite pegmatites (97–438 ppm Nb, Nb/Ta > 5). Nb/Ta ratios do not show a particular 419 

Rayleigh fractionation trend, and rather seem to be controlled by CGM crystallization, as 420 

spots corresponding to constant Nb/Ta ratios belong to muscovite that is spatially close to 421 

CGM (found in the same thin section), or contains inclusions of garnet and CGM (example in 422 

supplementary Fig. S8c and e). 423 

Muscovite from paragneiss is depleted in Nb and Ta, with high Nb/Ta ratio (19–26). 424 

However, muscovite from the micaschist enclave is particularly rich in Li (860–996 ppm), Nb 425 

(138–173 ppm) and Ta (20–44 ppm). 426 

Biotite of tonalitic-trondhjemitic gneiss and related pegmatites follows a K/Rb Rayleigh-type 427 

trend characterized by high K/Rb ratios (81–600) and high Rb (<858 ppm), which is topped 428 

by titanite-allanite pegmatites and bottomed by apatite-zircon pegmatites (Fig. 8b). Biotite 429 

from titanite-allanite pegmatites is rich in Li (485–1281 ppm) but poor in Nb (< 32 ppm) and 430 

strongly depleted in Ta (< 2.7 ppm). Biotite in apatite-zircon pegmatites is poorer in Li (~360 431 

ppm) than in titanite-allanite pegmatites and tonalitic-trondhjemitic gneiss (~450 ppm, Fig. 432 

8d). It has average content in Ta (2.4–14.4 ppm) and Nb (30.4–75.7 ppm), whereas its Nb/Ta 433 

ratio vs Ta follows an apparent Rayleigh-type fractionation trend. 434 

Biotite of paragneiss and metatexitic paragneiss has a low Nb content (~20 ppm) and a high 435 

Nb/Ta ratio. On the contrary, biotite of the micaschist enclave is extremely enriched in Li 436 

(1313–2274 ppm), Rb (1530–2544 ppm), with a very low K/Rb ratio. It is also enriched in Nb 437 

and Ta (123–142 ppm Nb, 50–61 ppm Ta). 438 

 439 
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4.3.2. Geochemical signatures of apatite 440 

Apatite from granodioritic gneiss, tonalitic-trondhjemitic gneiss, two-mica trondhjemite, 441 

titanite-allanite pegmatites, apatite-zircon pegmatites and garnet-columbite pegmatites 442 

consists of fluorapatite, with an F content ranging from 2.1 to 3.7 wt% (Fig. 9a, 443 

supplementary Table S7). In apatite-zircon pegmatites, in the micaschist enclave and in the 444 

two-mica trondhjemite, the MnO content of apatite is below 0.72 wt%. The highest Mn 445 

contents (MnO~2.5 wt%) are reached in F-rich apatite from a garnet-columbite pegmatite. 446 

Distinctions between apatite from different host rocks can be established based on trace 447 

element composition (supplementary Table S8). Titanite-allanite and apatite-zircon apatite 448 

have identical REE enrichment trends (Fig. 9b). They are depleted in light rare earth elements 449 

(LREE) over a large magnitude, whereas medium rare earth elements (MREE) and heavy rare 450 

earth elements (HREE) follow a slight negative slope. Europium anomaly is very pronounced 451 

(0.18 < Eu/Eu* < 0.05, Fig. 9b). 452 

Chondrite-normalized REE patterns (McDonough and Sun 1995) of apatite in garnet-453 

columbite pegmatites is characterized by a general negative slope from LREE to HREE, a 454 

relative peak in MREE (from Sm to Tb), and a weak Eu anomaly (Eu/Eu*, 0.57–0.96), (Fig. 455 

9c). The HREE, Sr and Y are strongly depleted and Mn and Pb are higher relative to the other 456 

pegmatites. Apatite from the micaschist enclosed in garnet-columbite pegmatite has a 457 

negative shallow dipping REE pattern with a weak Eu anomaly, but higher REE content than 458 

apatite from garnet-columbite pegmatites (Fig. 9c). It is also depleted in Ti compared to 459 

pegmatitic apatite. Apatite from two- mica trondhjemite is depleted in REE and other trace 460 

elements as Mn, Pb, Sr and Y, with a pronounced negative Eu anomaly (Eu/Eu*, 0.25–0.31). 461 

 462 
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4.3.3. Geochemical signatures of CGM 463 

Nb-Ta-oxides are exclusively observed in garnet-columbite pegmatites, in the central and in 464 

the south-western parts of the district (Fig. 3b). Their composition plots mainly in the 465 

ferrocolumbite domain, but very close to the mid-limit of the Mn/(Mn +Fe) ratio (Mn#) of 0.5 466 

(Fig. 10a). The highest Ta concentrations are found in a pegmatite situated in the central part 467 

of the district, (sample BMN13, Fig. 2), with a Ta# =Ta/(Ta + Nb) ratio up to 0.6, whereas in 468 

other samples, Ta# is inferior to 0.2 (supplementary Table S9). 469 

Columbite-group minerals in SEM imagery generally reveal homogeneous cores surrounded 470 

by sharp or corroding overgrowths, with oscillatory and patchy textures related to variations 471 

in Ta# and Mn# (supplementary Fig. S11). The cores represent the primary magmatic stage of 472 

crystallization, and have a higher Fe content relative to Mn. Overgrowths are characterized by 473 

higher Nb contents (Ta# < 0.28), a slight Ta decrease, and a sharp Mn# increase. These 474 

fractionation paths reflect complex chemical fractionation or late-stage processes that leads to 475 

reverse and oscillatory zoning in most pegmatitic CGM (Fosso Tchunte et al. 2018; Fuchsloch 476 

et al. 2019; Neiva et al. 2015; Van Lichtervelde et al. 2007, 2018). 477 

The total REE content in CGM ranges from 160 ppm to 2079 ppm (supplementary Table 478 

S10). Chondrite-normalized patterns (McDonough and Sun 1995) are characterized by a 479 

relative enrichment in HREE compared to LREE (Fig. 10b). Lanthanum, Ce, Pr and Nd cover 480 

a large range (two orders of magnitude) of compositions, inferior to 1 ppm up to 311 ppm, 481 

whereas the HREE range from 10 ppm to 208 ppm. The REE patterns have very strong 482 

negative Eu anomalies. Compared with the global columbite group minerals (CGM) average 483 

of Melcher et al. (2015), our columbite-tantalite are strongly enriched in Mg, Sc, Y, Yb and 484 

Th, and depleted in Sn (Fig. 10c). 485 

 486 
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4.3.4. Geochemical signatures of garnet 487 

Garnet from paragneiss and metatexitic paragneiss has a composition of metamorphic garnet 488 

from metapelitic rocks (Aubrecht et al. 2009; Krippner et al. 2014; Mange and Morton 2007; 489 

Suggate and Hall 2014), with almandine (Alm) component between 74% and 80%, pyrope 490 

(Pyr) component between 9% and 20%, grossular (Grs) component inferior to 7%, and 491 

spessartine (Sps) component between 2.9% and 9.0% (supplementary Table S11). This garnet 492 

is depleted in LREE, Rb, U, Th, Nb and U, and shows a slight negative Eu anomaly (Fig. 11b, 493 

supplementary Table S12). Its budget in HREE is inferior to the average REE content of 494 

pegmatitic garnet (Fig. 11b). 495 

Garnet from garnet-columbite pegmatites is dominated by Sps (43–73%) whereas Alm 496 

component ranges between 22% and 49%. Pyrope and Grs components remain low (Pyr < 497 

5.8%, Grs < 4.3%). Internal Fe/Mn zoning is noticed, with a decrease of Mn compared to Fe 498 

from core to rim, which is referred to as “normal zoning” (Dahlquist et al. 2007; Leake 1967; 499 

Manning 1983; Miller and Stoddard 1981). This garnet is depleted in LREE, and contains 500 

high contents in MREE and HREE, but HREE are depleted relative to MREE (Dy to Lu). It is 501 

relatively rich in U (< 21 ppm), Nb (< 237 ppm), Ta (<124 ppm), Zr (< 118 ppm) and Hf (< 502 

20 ppm) and has a strong negative anomaly in Eu (Eu/Eu* < 0.9 for garnet-columbite 503 

pegmatite garnet). Garnet in sample BMS139B (Fig. 2) shows a different feature as it is more 504 

Mn-depleted and Fe-rich (51%< Alm < 53%, 35%< Sps < 38%). It has a Grs component 505 

around 4% and a slightly higher Mg content (7% < Pyr < 8%). Also, it shows a flat pattern for 506 

MREE and HREE, which distinguishes it from common garnet-columbite pegmatite trends. 507 

Garnet from garnet-REE pegmatites mainly differs from that of garnet-columbite pegmatites 508 

by its higher Ca content (2.9 wt% < CaO < 3.7 wt% in garnet-REE pegmatites, while CaO < 509 

1.48 wt% in garnet-columbite pegmatites, see Fig. 11a and supplementary Table S11). 510 
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Grossular component ranges between 8% and 11%. Its REE content is depicted by strong 511 

depletion in LREE, a positive pattern toward HREE, and a strong Eu anomaly (0.05 < Eu/Eu* 512 

< 0.1). Yttrium, Ti and Li are higher in garnet-REE pegmatites (2903–17240 ppm, up to 3930 513 

ppm and 113–518 ppm, respectively) than in garnet-columbite pegmatites (18–9910 ppm Y, 514 

Ti <= 1380 ppm, 49–292 ppm Li, supplementary Table S12). 515 

Overall, Nb, Ta, U, Zr and Hf concentrations in garnet are higher in garnet-columbite 516 

pegmatites whereas Li, Y, Ti, Rb and REE contents are higher in garnet from garnet-REE 517 

pegmatites (Fig. 11d). 518 

 519 

4.3.5. Geochemical signatures of zircon 520 

Chondrite-normalized REE patterns of zircon from titanite-allanite and apatite-zircon 521 

pegmatites, as well as micaschist enclave in garnet-columbite pegmatite, have a positive 522 

slope, which is shallow for LREE, and steep for HREE, with a slight negative Eu anomaly 523 

and a slight positive Ce anomaly (Fig. 12). Other trace elements in zircon attain 1.9 wt.% Hf, 524 

62 ppm Nb, 7450 ppm U, and 2980 ppm Y (supplementary Table S13). Interestingly, the 525 

highest Nb, Ta, Th and Be contents are observed in zircon from a micaschist enclave (Fig. 12 526 

and supplementary Table S13). Titanium (992–2220 ppm) is exceptionally elevated compared 527 

to available data on magmatic zircon (Fu et al. 2008). Such high Ti content in zircon has been 528 

attributed to contamination along cracks (Harrison and Schmitt 2007). 529 

Some zircon analyses in a titanite-allanite sample (BMN28, Fig. 2) show low LREE and Th 530 

contents (Fig. 12), accompanied by low contents in Al, Fe, Ba, Sr, Y, and Bi. These spots are 531 

located in non-metamict zones in the core or internal part of zircons, with homogeneous to 532 

oscillatory texture according to contrast of SEM imaging. 533 
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Zircon from apatite-zircon pegmatites has higher content in HREE, Y, U and Th than that of 534 

titanite-allanite pegmatites (Fig. 12, supplementary Table S13 and Table S14). Zircon 535 

metamictization in apatite-zircon pegmatites induced loss of major elements like Zr and Si, 536 

and an increase in Ca. 537 

 538 

5. Discussion  539 

5.1. Classification of the Mangodara pegmatites 540 

5.1.1. Titanite-allanite and apatite-zircon pegmatites 541 

Titanite-allanite and apatite-zircon pegmatites are very similar in mineralogy, except that in 542 

the latter type, ilmenite and titanite are absent, and apatite is more abundant (Fig. 4). The 543 

profusion of minerals rich in Fe-Mg-Ti-Ca (biotite, magnetite, ilmenite, oligoclase, titanite) 544 

indicates a metaluminous composition of the pegmatite, and a low differentiation degree 545 

(Broska et al. 2000; Gieré and Sorensen 2004; Neiva et al. 2002; Villaros and Pichavant 546 

2019). Allanite, an accessory phase in titanite-allanite pegmatites, is typically found in NYF 547 

pegmatites related to metaluminous granites, defined as an allanite-subtype (enrichment in 548 

LREE, Nb over Ta, Ti and Zr, Wise 1999). Apatite, which is common in LCT pegmatites but 549 

is also reported as a primary phosphate in NYF pegmatites (Nizamoff et al. 1999), constitutes 550 

a LREE-host in addition to allanite in titanite-allanite, and the main REE host in apatite-551 

zircon pegmatites. 552 

Titanite-allanite and apatite-zircon pegmatites lack the characteristic complex 553 

mineralogy of mineralized pegmatites, and do not exhibit mineralization in Li, Nb or Ta 554 

(Tables 555 

Table 1). Accordingly, they are classified as poorly enriched metaluminous pegmatites, with 556 

apatite-zircon pegmatite as the most differentiated member of the group. 557 
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 558 

5.1.2. Garnet-columbite pegmatites 559 

Garnet-columbite pegmatites exhibit a typical mineralogy for peraluminous LCT 560 

pegmatites (muscovite > biotite, garnet, tourmaline, apatite, see Fig. 4), but both LCT 561 

and NYF signatures are revealed by the geochemistry of their minerals (Nb > Ta in 562 

micas, CGM and garnet, REE-rich accessory minerals …), (Tables 563 

Table 1). The high Nb contents in muscovite (up to 438 ppm Nb), are typical of white micas 564 

from LCT pegmatites (up to 490 ppm, Alfonso et al. 2003, Viana et al. 2007). Remarkably 565 

high Nb contents are recorded in garnet. Although experiments show that Nb is incompatible 566 

in garnet (Fulmer et al. 2010, and references therein), Nb-rich garnet has also been reported in 567 

CGM-bearing LCT pegmatites (e.g., Samadi et al. 2014). Columbite-group minerals has 568 

intermediate Mn# and Ta# compositions (Fig. 10) that are typical of the beryl-columbite 569 

pegmatite subtype (Černý 1989; Novák et al. 2003; Uher et al. 2010), or NYF pegmatites 570 

(Melcher et al. 2017). Although beryl is missing in garnet-columbite type pegmatites, Be is 571 

contained in micas up to 10 ppm (supplementary Table S5 and Table S6). 572 

The occurrence of REE-bearing minerals such as monazite, xenotime, and relicts of 573 

metamict minerals rich in U, Th and Y (thorite/cheralite) is evidence of a moderate 574 

enrichment in REE of this pegmatite type (Tables 575 

Table 1). Columbite composition compared with average global CGM (Melcher et al. 2015) is 576 

enriched in Y, HREE, Th and Sc, and depleted in Sn (Fig. 10c), which is typical for CGM 577 

from NYF and mixed LCT+NYF pegmatites. Its high REE content and its medium to low 578 

U/Th ratio also match the CGM composition of NYF and mixed LCT+NYF families 579 

(Melcher et al. 2017). Only the depletion in W is incoherent with general tendencies observed 580 

in the NYF type (Melcher et al. 2017). 581 
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Although garnet-columbite pegmatites do not host Ta, Cs or Sn mineralization typical of 582 

LCT pegmatites, geochemical features like Nb>Ta and REE-U-Th enrichment trend in 583 

accessory minerals (Tables 584 

Table 1) allow classifying them in the mixed LCT+NYF family. 585 

 586 

5.1.3. Garnet-REE pegmatites 587 

Garnet and tourmaline, which occur in our garnet-REE pegmatites, are characteristic of 588 

LCT pegmatites But such minerals are also reported from numerous NYF pegmatites, 589 

where they are stabilized by high Ca, Fe and Ti contents in the rock (Čopjaková et al. 590 

2013; Hönig et al. 2014; Novák et al. 2011). Metamict Nb-Ti-Th-Y-bearing minerals of 591 

composition close to euxenite-aeschynite coexist with Ti-oxides (ilmenite-pyrophanite), 592 

which are typical mineral species of NYF pegmatites (Černý 1991b; Černý et al. 2005; 593 

Ercit et al. 2005). The high Y and REE contents of garnet are similar to existing data of 594 

garnet from NYF pegmatites in Sveconorwegian province (Hönig et al. 2010, 2014; 595 

Müller et al. 2012). High Ca content of garnet is also comparable with the garnet Ca 596 

content of some NYF pegmatites, mixed LCT+NYF pegmatites or A-type pegmatites 597 

(Fig. 11a). The Ca-rich garnet, the exotic REE-mineral species and geochemical 598 

enrichment trend in REE, Y and Ti (Tables 599 

Table 1) are mostly described from NYF pegmatites (Černý et al. 1985; Müller et al. 2012, 600 

2018; Novák et al. 2011, 2012; Pieczka et al. 2013). Hence, garnet-REE pegmatites can be 601 

classified as NYF pegmatites, more specifically, those of the euxenite subtype (Wise 1999). 602 

 603 
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5.2. Origin of the geochemical diversity of Mangodara pegmatites 604 

5.2.1. Petrogenesis of metaluminous pegmatites by melt segregation within the tonalitic 605 

gneiss 606 

Titanite-allanite and apatite-zircon pegmatites were proposed to derive from a residual melt 607 

segregated during syntectonic crystallization of the tonalitic-trondhjemitic gneiss, based on 608 

field relationships. Indeed, titanite-allanite type pegmatites occur as a network of veins 609 

concordant to discordant relative to the foliation of the tonalitic-trondhjemitic gneiss and in 610 

continuity with quartz-feldspar veins with a magmatic texture interpreted as syntectonic 611 

segregated melts (Bonzi et al. 2021). The apatite-zircon type of pegmatites is characterized by 612 

a very similar mineralogy to that of the titanite-allanite type, and was interpreted as an 613 

equivalent that crystallized out of the tonalitic-trondhjemitic gneiss. (Bonzi et al. 2021). The 614 

mineral chemistry results presented in this work, particularly the overlapping biotite 615 

compositions (Fig. 6, Fig. 7), the continuity in the K/Rb fractionation trend of biotite (Fig. 8b) 616 

and the unique REE profiles of apatite (Fig. 9b) from tonalitic-trondhjemitic gneiss, titanite-617 

allanite and apatite-zircon pegmatites corroborate this hypothesis (Hulsbosch et al. 2014; 618 

Villaros and Pichavant 2019). 619 

In titanite-allanite pegmatites, allanite crystallization precedes the stabilization of other 620 

LREE-bearing phases such as titanite and apatite. Titanite or epidote coronae around ilmenite 621 

nuclei and crystallization of apatite on allanite crystal borders could reflect late reactions 622 

induced by a late P- and Ca-rich pegmatitic melt or fluid, which remobilized Fe (Angiboust 623 

and Harlov 2017; Broska et al. 2007) and Ti, leading to the reaction: ilmenite (Fe, Ti) + 624 

Allanite (Fe, REE) + Ca + P → Titanite (Ti, Ca) + Epidote (Fe, Ca) + apatite (Ca, REE). 625 

Zircon from titanite-allanite pegmatites is characterized by LREE-depleted cores that could be 626 

attributed to metamict alteration, as suggested by the increase in Ca, Al, Fe, Ba and LREE of 627 

the rims compared to the nuclei (Geisler et al. 2003; Hoskin and Schaltegger 2003), or 628 
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alternatively by concurrent segregation of LREE in allanite. The metaluminous pegmatite-629 

forming melt firstly evolved through primary segregation of REE in allanite and zircon, and 630 

then evolved toward phosphorus saturation materialized by late crystallization of apatite. 631 

From titanite-allanite to apatite-zircon pegmatites, the increase in F, Mn and Rb in biotite as 632 

well as the continuous K/Rb, Nb/Ta and Fe/Mn fractionation trends in micas (Fig. 6, Fig. 7g, 633 

and Fig. 8b and f) can be explained by fractional crystallization. However, the decreasing Li 634 

trend from titanite-allanite to apatite-zircon biotite suggests the exsolution of a Li (+ minor 635 

F)-rich aqueous fluid early during apatite-zircon pegmatite crystallization. Apatite tends to be 636 

richer in F and Mn in apatite-zircon pegmatites compared to titanite-allanite pegmatites (Fig. 637 

9a). This behavior could reflect magmatic differentiation coupled to a lower content of mafic 638 

minerals in apatite-zircon pegmatite (Belousova et al. 2001), and/or increasing aluminosity in 639 

the residual melt during fractional crystallization (Chu et al. 2009; Miles et al. 2014). 640 

 641 

5.2.2. Petrogenesis of mixed NYF-LCT garnet-columbite pegmatites 642 

Partial melting of metasediments 643 

Garnet-columbite pegmatites have been proposed as the product of partial melting of 644 

metasediments, based on field relationships. Indeed, garnet-columbite type pegmatite dykes 645 

are in textural continuity with leucosome veins of metatexitic paragneiss (Bonzi et al. 2021). 646 

Their peraluminous composition is typical of S-type granites and supports a metasedimentary 647 

source (Chappell and White 2001; Clemens 2003). Biotite and muscovite from paragneiss and 648 

metatexitic paragneiss, despite their minor content in Nb and trace contents in Li and Ta, 649 

could be the sources of Nb, Li, fluxing elements such as F and H2O, and LILE such as Rb 650 

(Neves 1997; Stepanov et al. 2014; Stepanov and Hermann 2013). Apatite and monazite 651 

(reservoirs for REE, U and Th) are found in paragneiss, and more abundantly in the 652 
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micaschist enclave enclosed in garnet-columbite pegmatite and in the metatexitic paragneiss 653 

(supplementary Fig. S10). These phosphates are likely to be consumed by partial melting 654 

reactions in the presence of Al-rich silicate melt, during heating and/or retrograde 655 

metamorphic paths (Bea et al. 1992; Harrison and Watson 1984; Pichavant et al. 1992; Rapp 656 

and Watson 1986; Watson 1980; Watson and Capobianco 1981; Wolf and London 1995; 657 

Yakymchuk 2017). Garnet of paragneiss and metatexitic paragneiss, which has high contents 658 

in HREE and Y but is depleted in LREE (Fig. 9c), would act, together with ilmenite, as a 659 

HREE sink during prograde metamorphism of paragneiss, but can supply the anatectic melt 660 

with HREE and Y during the retrograde path. 661 

A possible alternative granitic source for the peraluminous garnet-columbite pegmatites is the 662 

two-mica trondhjemite. The two-mica trondhjemite is interpreted as the product of melt 663 

accumulation in the upper part of the tonalitic-trondhjemitic gneiss, formed by fractionation 664 

of plagioclase, biotite and amphibole within the crystallizing gneiss that enhanced its 665 

aluminosity (Bonzi et al. 2021). Its mineral geochemistry reveals high Li and Nb (Bonzi et al. 666 

2021), moderate K/Rb in micas (Fig. 8b and c), and F-rich apatite. However, one would 667 

expect a gradational evolution in texture of the two-mica trondhjemite into a pegmatitic 668 

texture, as documented for the apical parts of some granitic intrusions (Černý 1991a, c; Černý 669 

et al. 2005), and this was not observed in the field at Mangodara. Also in this case, micas 670 

from garnet-columbite pegmatites should be richer in Li, and at least follow a geochemical 671 

continuity such as the K/Rb or Nb/Ta Rayleigh trend (Černý et al. 1985; Černý and Burt 672 

1984; Foord et al. 1995; Martins et al. 2012; Roda-Robles et al. 2006; Stepanov et al. 2014; 673 

Stepanov and Hermann 2013), or a compositional evolution path in major elements 674 

(Tischendorf et al. 2004) with the micas from the two-mica trondhjemite. Likely, garnet-675 

columbite pegmatite essentially derives from partial melting of the paragneiss, preferably 676 
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during the retrograde decompression path associated with exhumation, implying breakdown 677 

of micas and entrainment of phosphates and garnet in the melt. 678 

 679 

Mixing of peraluminous and metaluminous melt 680 

Interaction between apatite-zircon and garnet-columbite pegmatites is suggested by the 681 

observation of a garnet-columbite pegmatite cross-cutting at a shallow angle an apatite-zircon 682 

pegmatite, showing continuous magmatic texture at the microscale (station BMS99A, Fig. 2, 683 

see Bonzi et al. 2021). At the contact with garnet-columbite pegmatite, apatite-zircon 684 

pegmatite displays biotite with higher Mn, F, and lower Fe + Mg contents than the average 685 

biotite in any apatite-zircon pegmatite (Fig. 7d, f, and g), which might represent an overprint 686 

by the garnet-columbite pegmatite-forming melt. Likewise, apatite crystals of a garnet-687 

columbite pegmatite (sample BMN13, Fig. 2) reveal a typical signature of apatite from 688 

apatite-zircon pegmatite (Fig. 9b). These crystals would represent an early magmatic phase 689 

inherited from an apatite-zircon pegmatite and assimilated into the peraluminous LCT-690 

affiliated melt, but which conserved its REE geochemical signature. Given the continuous 691 

textural relation between the two pegmatite types, their interaction might have occurred 692 

before the end of crystallization of the apatite-zircon pegmatite, implying mingling of residual 693 

metaluminous pegmatite-forming melt with LCT pegmatite-forming melt. Then, 694 

crystallization of the garnet-columbite occurred almost synchronously, or shortly after the 695 

apatite-zircon pegmatite crystallization. 696 

In this situation, the incompatible elements (i.e., Nb and REE) accumulated in the residual 697 

metaluminous pegmatite-forming melt might have been incorporated in the LCT pegmatite-698 

forming melt during magma mixing. Alternatively, dissolution of biotite and apatite from 699 

apatite-zircon pegmatite could have liberated Nb and REE (together with P) into the LCT 700 
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pegmatite-forming melt. In any case, CGM, which has a higher solubility in NYF-type (i.e., 701 

peralkaline) melts than in peraluminous melts (Chevychelov et al. 2010, 2020; Linnen and 702 

Keppler 1997), attained its saturation in the peraluminous LCT-type melt, hence provoking 703 

the crystallization of low-Ta# and REE-rich columbite. 704 

 705 

Magmatic fractionation of rare-metals 706 

The occurrence of tourmaline and the high Li and Rb contents in micas are evidence for 707 

concentration of volatile elements in the pegmatite-forming melt (e.g., Černý et al. 1985; 708 

Hulsbosch et al. 2014; Jolliff et al. 1987, 1992; London 2011; Viana et al. 2007; Villaros and 709 

Pichavant 2019). Occurrence of phosphates indicates that P saturation is reached during 710 

pegmatite crystallization (Duc-Tin and Keppler 2015; Van Lichtervelde et al. 2021). The 711 

steeply increasing HREE trend in chondrite-normalized patterns of zircon confirms the early 712 

removal of HREE from the melt by zircon crystallization. Early segregation of HREE and Y 713 

in zircon and xenotime is indicated by their depletion in garnet, CGM and apatite (Fig. 11.c). 714 

The presence of CGM as inclusions in major minerals (quartz, feldspar, muscovite) shows 715 

that saturation in Nb-Ta minerals was reached in the early stage of crystallization. The 716 

absence of Rayleigh type fractionation between Nb and Ta in muscovite suggests that the Nb-717 

Ta content was buffered by CGM crystallization, which is in agreement with the spatial 718 

association between CGM and muscovite (Fig. 8e). Nb-rich rims of CGM crystals reflect the 719 

late Nb enrichment in the pegmatite-forming melt. This enrichment could characterize the 720 

transition of the melt to critical fluxing-element-rich fluids (Kaeter et al. 2018; Van 721 

Lichtervelde et al. 2007; Zaraisky et al. 2010; Zhang et al. 2004) or the mixing with another 722 

rare-metal rich melt such as the residual metaluminous melt at the origin of the apatite-zircon 723 

pegmatites. 724 
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The crystallization of garnet-columbite pegmatites obeys the trend of sequential rare-metal 725 

saturation, i.e., Zr (zircon), REE-U-Th (xenotime, monazite, apatite, thorite) and Nb-Ta 726 

(CGM). This sequence stands apart from the regular differentiation trend of peraluminous 727 

melts, in which REE and Zr are rather segregated in cumulated crystals (zircon, phosphates, 728 

micas), leaving a residual melt with decreasing REE, Zr, and increasing Ta and Sn (Ballouard 729 

et al. 2016, 2020; Linnen and Cuney 2005). Instead, the primary enrichment in REE, U, Th 730 

and Zr might reflect the primitive composition of the anatectic pegmatite-forming melt, which 731 

crystallized close to its partially molten source without facing significant magmatic 732 

fractionation (Fuchsloch et al. 2018). In other words, the primary trace element geochemistry 733 

of garnet-columbite pegmatite is closer to the geochemistry of an undifferentiated melt than to 734 

a residual melt from magmatic fractionation. Other authors highlight multiple processes such 735 

as contamination by host rocks (e.g. with Fe, Mg, Ti, Sn, Ca…), or melt mixing (Galliski et 736 

al. 2008; Novák et al. 2012; Pieczka et al. 2013). Melt mixing might indeed affect the trace-737 

element geochemistry of the pegmatite-forming melt, but more investigation is needed to test 738 

contamination of pegmatite-forming melt by host rocks. 739 

 740 

The case of F-Li rich micas in micaschist enclosed in garnet-columbite pegmatite 741 

A micaschist enclave in a garnet-columbite pegmatite (station BMS99A) contains micas that 742 

are more enriched in F, Li, Rb, Nb and Ta, than the micas in the host pegmatite (Fig. 7e and f, 743 

Fig. 8). The compositional gap between micaschist micas and micas from paragneiss shows 744 

that the former micas underwent a specific enrichment in incompatible elements, unrelated to 745 

metamorphism. Two hypotheses might be formulated to explain the formation of these 746 

enriched micas. (1) The micaschist is a residue left after partial melting of an enriched 747 

paragneissic protolith. This proposal implies that high amounts of LILE (Li, Rb), fluxing 748 
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elements (F) and HFSE (Nb, Ta) are partitioned in residual micas, which would challenge 749 

their incompatible character. This proposition is consistent with the presence of paragneiss 750 

and migmatitic paragneiss as country rocks of the sampled pegmatites (e.g. BMS96, also 751 

BMS7B in Bonzi et al. 2021). (2) The micaschist is an enclave of paragneiss metasomatized 752 

by highly fractionated fluids exsolved from the host garnet-columbite pegmatite. In this case, 753 

the presence of Li-rich mica might reflect the metasomatism occurring in the rocks 754 

surrounding the pegmatite dyke. Exomorphic micas and hornblende formed during 755 

metasomatism, or by reaction of existing minerals to produce secondary minerals, are 756 

reported in some pegmatite wall rocks (Morgan and London 1987; Shearer et al. 1986). 757 

 758 

5.2.3. Petrogenesis of the NYF garnet-REE pegmatites by melt segregation within the 759 

granodioritic gneiss 760 

Bonzi et al. (2021) interpreted garnet-REE pegmatites to be a product of melt segregation 761 

within the granodioritic gneiss, based on textural continuity with leucosomes. The distinct 762 

composition of their micas compared to other pegmatites (higher Fe content, F-depletion; Fig. 763 

6 and Fig. 7) and the absence of phosphates confirm that their source is clearly different from 764 

that of the other pegmatite types. The whole-rock composition of garnet-REE pegmatites 765 

shows a depletion in LREE relative to the granodioritic gneiss, but a similar content in HREE, 766 

which is not consistent with extreme fractionation during crystallization. The genesis of such 767 

pegmatite-forming melts would require a selective segregation of LREE in the parental 768 

gneiss, whereas HREE and Y are released in the melt. The low P content in garnet-REE 769 

pegmatite excludes the dissolution of phosphates as a provider of REE to the melt. On the 770 

contrary, phosphates and allanite might retain LREE in the parental gneiss. Hornblende, by 771 

virtue of its high modal composition in the granodioritic gneiss, could supply the pegmatite-772 
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forming melt with Ti, Zr, REE and Y (Bea 1996; Bernard et al. 2020; Green 1994) if it is 773 

destabilized during melt segregation, for example through the replacement by biotite (low-774 

REE-bearing phases). 775 

Based on these considerations, we propose that the genesis of garnet-REE pegmatite parental 776 

melt corresponds to the segregation of residual melt within the granodioritic gneiss, enriched 777 

in HFSE, but depleted in LREE preferentially trapped in allanite and apatite that remained in 778 

the granodioritic gneiss. A probable explanation for the low P content in these pegmatites is 779 

the primary compatibility of phosphate in the high-Si granodioritic gneiss, which prevents the 780 

release of P in the residual melt (Bea et al. 1992; Broska and Petrík 2008). In the absence of 781 

P, REE and Y are incorporated in euxenite-aeschynite-like minerals and garnet (Fig. 11c). 782 

The source of the Li enriched in garnet-REE pegmatites is unclear. The most probable 783 

reservoir in the granodioritic gneiss might be hornblende (Shaw et al. 1988) that we expect to 784 

be destabilized during the pegmatite-forming melt segregation. However, Li is generally 785 

concentrated in calcic amphibole from peralkaline magmatism (e.g., Bernard et al. 2020; 786 

Hawthorne et al. 2001; Oberti et al. 2003; Tiepolo et al. 2007), but it might also be hosted by 787 

biotite which is a constituent of granodioritic gneiss. Li enrichment in garnet may be 788 

explained by a preferential partitioning in this pegmatite type induced by limited amount of 789 

micas which are the main Li host (Dutrow et al. 1986), or by preferential substitution with Y 790 

in the garnet structure (Cahalan et al. 2014). 791 

 792 

5.3. Petrogenetic model of LCT+NYF Mangodara pegmatite formation  793 

It has been proposed in several studies of Precambrian terranes that the generation of REE-794 

rich LCT and NYF pegmatites was related to partial melting in the middle crust occurring at 795 

different stages of the orogenic cycle (Müller et al. 2012; Turlin et al. 2018, 2019). It has been 796 
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highlighted that the petrogenetic family of a rare-metal-bearing pegmatite is linked to the 797 

metamorphic grade of its source, supracrustal for LCT pegmatites (metasediments, P < 15 798 

km), deeper for NYF pegmatites (amphibolite/granulite domains, P > 15 km) (Müller et al. 799 

2017). 800 

The Mangodara pegmatite field displays a different succession of petrogenetic families of 801 

pegmatites. At the lowest structural level (tonalitic-trondhjemitic gneiss), titanite-allanite 802 

pegmatites are interpreted to represent a residual melt segregated during crystallization of the 803 

tonalitic-trondhjemitic gneiss coring the Mangodara dome and intruding the granodioritic 804 

gneiss. The plagioclase-rich assemblage of this gneiss and its relatively low Fe, Mg, Nb, Ta 805 

and REE contents are attributed to accumulation of residual pyroxene and garnet in its deeper 806 

source (Bonzi et al. 2021) (Fig. 13). This unit represents a LREE-depleted section of the 807 

middle crust (Laurent et al. 2020; Moyen 2011), deriving from HP/HT conditions of partial 808 

melting, in which melt segregation resulted in poorly enriched metaluminous pegmatites. 809 

The intermediate structural level (granodioritic gneiss, deriving from LP/HT conditions of 810 

partial melting) hosts apatite-zircon pegmatites that crystallized from the metaluminous melt 811 

that migrated out of the tonalitic gneiss and intruded at higher structural level. This level also 812 

hosts garnet-columbite pegmatites deriving from partial melting of a mica-rich source, which 813 

might correspond to the paragneiss rafts included in the granodioritic diatexite (Bonzi et al. 814 

2021). Partial melting can be achieved in these rafts by dehydration of micas (mainly biotite) 815 

(Fig. 13). Additional REE and Nb are supplied to these pegmatites by the mingling of 816 

metaluminous pegmatite-forming melt with peraluminous pegmatite-forming melt. 817 

Segregation of residual melt within the granodioritic diatexite, protolith of the granodioritic 818 

gneiss, resulted in the generation of NYF pegmatite-forming melt that intruded plutonic rocks 819 

crystallized at a higher structural level (Fig. 13). We explain the distinct geochemistry of 820 
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garnet-REE pegmatites by LREE segregation by allanite and apatite within the gneiss (Fig. 821 

13) and amphibole breakdown that supplied the melt in HFSE. Consequently, garnet-REE 822 

pegmatites are not the end-members of a regional zoning related to the other pegmatite types, 823 

but the differentiated member of the K-rich magmatic series. 824 

Overall, the petrogenesis of Mangodara pegmatites is related to the mineral composition of 825 

the partially molten source that is in turn controlled by (i) the chemical composition of the 826 

protoliths (ii) the PT conditions of partial melting and the minerals involved in the melting 827 

reactions and (iii) the degree of partial melting and fractional crystallization of the partially 828 

molten rock. The varying composition of the protolith between paragneiss and amphibolite is 829 

reflected by the abundance of micas and amphiboles, respectively, which are sources of 830 

fluxing elements (Li, F, H2O) favoring growth of pegmatitic crystals (London 2018; London 831 

and Morgan 2017; Sirbescu et al. 2017; Webber et al. 1999). Micas, prevalent in 832 

metasediments, are reservoirs for LCT-affiliated rare elements (Rb, Nb, Ta) whereas 833 

amphiboles, prevalent in amphibolites, are reservoirs for NYF-affiliated rare elements (REE, 834 

Zr, Ti). Entrainment of garnet and phosphates in melt during partial melting/segregation 835 

would provide REE, Y, U, Th, and P shifting the melt composition toward a mixed 836 

LCT+NYF signature. Moreover, the hybrid LCT+NYF signature is enhanced by the poor 837 

differentiation of the melt fraction that directly crystallized after leaving its source, and by the 838 

mingling of the residual metaluminous melt with the peraluminous melt. 839 

 840 

6. Conclusions 841 

The mineralogy and the geochemical signatures of micas, garnet and accessory minerals from 842 

Mangodara pegmatites permit to define their petrogenetic families, discuss their sources by 843 
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partial melting of paragneiss/amphibolite and segregation within granitoid gneiss, and identify 844 

fractionation of rare-metals during crystallization. 845 

(1) Poorly enriched titanite-allanite pegmatites correspond to residual metaluminous melt 846 

segregated within the tonalitic-trondhjemitic gneiss. Their rare-metal content is 847 

initially controlled by allanite, then by zircon and apatite. Residual melt migrated out 848 

of the tonalitic-trondhjemitic massif and intruded at higher structural level in the 849 

granodioritic gneiss, forming apatite-zircon pegmatites, which are slightly richer in P 850 

and REE, but poorer in Li. 851 

(2) Garnet-columbite type pegmatites are classified in the LCT+NYF family, with 852 

enrichment in Li, Nb > Ta, Th, U and REE. It derives from partial melting of 853 

paragneiss, in which micas are sinks of Li, Nb and Ta, phosphates are sinks of REE, U 854 

and Th, and garnet is a sink of REE. The mingling of the garnet-columbite parental 855 

melt with residual melt originating from the crystallization of metaluminous 856 

pegmatites is suggested by field relationships and the inherited signature of apatite in a 857 

garnet-columbite pegmatite. Locally, strong melt fractionation led to the exsolution of 858 

a Li-bearing fluid, as suggested by the presence of micas highly enriched in rare-859 

metals in an enclave of metasediment in garnet-columbite pegmatite. 860 

(3) Garnet-REE-bearing pegmatites are NYF pegmatites showing enrichment trends in Li, 861 

Ti, Y and HREE, and strong depletion in P. Their origin by melt segregation within 862 

the granodioritic gneiss requires that P and LREE are segregated in the parental rocks 863 

by allanite and apatite, whereas HFSE are supplied by breakdown/replacement of 864 

hornblende. 865 

(4) The LCT versus NYF nature of rare-metal-bearing pegmatites is explained by the 866 

mineral composition of their partially molten source, which is in turn controlled by 867 
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lithology-chemistry of the protoliths and by PT conditions of partial melting: mica-868 

rich for LCT pegmatites (metasediments), and amphibole-rich for NYF pegmatites 869 

(e.g., a granodioritic gneiss in Mangodara). The mixed LCT + NYF signature of 870 

garnet-columbite pegmatites reflects the poor differentiation of anatectic pegmatite-871 

forming melt after extraction from the source, and also the mingling with residual 872 

metaluminous melt coming from the deeper tonalitic-trondhjemitic gneiss. Then, 873 

partial melting and melt segregation in the middle to lower crust could generate 874 

pegmatite-forming melt, whose rare metals content depends on the composition of the 875 

rock involved in these processes. 876 
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Figure captions 1524 

 1525 

Fig. 1. Geological map of the West African Craton, modified from Block et al. (2015), Milési 1526 

et al. (2004). Abbreviations: Ba= Banfora greenstone belt, Di = Diebougou gneiss-granitoid 1527 

complex, Ho= Hounde-Ouango Fitini greenstone belt, KT = Koudougou-Tumu gneiss-1528 

granitoid complex, Si= Sideradougou gneiss-granitoid complex, OFSZ: Ouango-Fitini shear 1529 

zone. The area investigated in this study is indicated by the red rectangle. 1530 

 1531 

Fig. 2. Lithostructural map of the Mangodara district; lithofabrics are compiled after aerial 1532 

photographs and measures of fabrics in the field. Interpreted shear zones were identified from 1533 

aeromagnetic data, using the method proposed by Chardon et al. (2020). Sample location is 1534 

indicated in the map. 1535 

 1536 

Fig. 3. (a) Regional distribution of pegmatite dykes in the Mangodara district. The symbols 1537 

are oriented parallel to strike, black arrows indicate plunge dips. Size is not to scale. (b) 1538 

Regional distribution of occurrence of some accessory minerals in pegmatite dykes. Large 1539 

white contours delineate the delimited zone of pegmatite types or mineral occurrences. 1540 

Internal white contours delineate subzone with abundant outcrops of pegmatite. 1541 

 1542 

Fig. 4. Abundance of selected major minerals and accessory minerals in Mangodara 1543 

pegmatites and their host rocks. Mineral abundance ranges from rare (thinnest line) to minor 1544 

(> 5 vol.%, thickest line). Affinity of minerals with metaluminous magma, peraluminous 1545 

magmas or NYF-style magma are indicated by a background color. 1546 
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 1547 

Fig. 5. Scanning electron microscope back-scattered electron (SEM-BSE) images of 1548 

Mangodara pegmatites. (a) Image of the sample BMN43 showing the association of accessory 1549 

minerals (allanite, zircon, titanite, epidote, apatite, magnetite). (b) Textural association of 1550 

apatite and magnetite with biotite folia in apatite-zircon type pegmatite (sample BMN82B). 1551 

(c) Inclusion of columbite and Zr-metamict crystals in garnet (sample BMS1). (d) Inclusion of 1552 

ilmenite-pyrophanite in garnet, with metamict Ti-Ca-Nb-bearing mineral (sample BB18). 1553 

Abbreviations as in Table 1. 1554 

 1555 

Fig. 6. Composition of micas from pegmatites and host rocks in the Tischendorf diagram 1556 

(Tischendorf et al. 2007). Li contents in the calculation of the Tischendorf parameters were 1557 

obtained with the formulas of Tischendorf (2004). 1558 

 1559 

Fig. 7. Major element composition of muscovite and biotite of pegmatites and host rocks. 1560 

Values are given in atom per formula unit, calculated based on 11 oxygen atoms. 1561 

 1562 

Fig. 8. K/Rb and Nb/Ta ratios compared with Rb, Li, Nb and Ta contents in muscovite and 1563 

biotite of pegmatites and various host rocks. Data from different pegmatite families are 1564 

plotted for comparison: representative compositions of micas from Li-rich LCT pegmatites 1565 

from the Fregeneda area, Spain (Roda-Robles et al. 1999), representative compositions of 1566 

micas from the LCT Tanco pegmatite, Canada (Van Lichtervelde et al. 2008), and average 1567 

composition of Li-rich micas and siderophyllite/phlogopite from the NYF Evje-Iveland 1568 

pegmatites, Sweden (Rosing-Schow et al. 2018). 1569 



59 
 

 1570 

Fig. 9. (a) Fluorine versus MnO content in apatite from pegmatites and their host rocks. (b) 1571 

REE spectra of apatite from titanite-allanite pegmatite and apatite-zircon pegmatite 1572 

normalized to chondrite (McDonough and Sun 1995). (c) REE spectra of apatite from two-1573 

mica trondhjemite, garnet-columbite pegmatite and enclosed micaschist, normalized to 1574 

chondrite (McDonough and Sun 1995). 1575 

 1576 

Fig. 10. (a) Composition of CGM from garnet-columbite pegmatites in the columbite 1577 

quadrilateral Ta# = Ta/(Nb+Ta) vs Mn# = Mn/(Fe + Mn). Filled symbols correspond to 1578 

crystal cores. Enrichment trends of Nb and Ta are extracted from Černý (1989). (b) REE 1579 

spider diagram of CGM normalized to chondrite (McDonough and Sun 1995). Black arrows 1580 

indicate HREE depletion. (c) Trace elements composition of CGM, normalized to world 1581 

median CGM composition (Melcher et al. 2015). 1582 

 1583 

Fig. 11. (a) MnO versus CaO contents of garnet from paragneiss, metatexitic paragneiss and 1584 

pegmatites. Compositional fields are reproduced from Samadi et al. (2014). Data from 1585 

different pegmatite families and rare-metal granites are plotted for comparison (Breiter et al. 1586 

2018; Dahlquist et al. 2007; Feng et al. 2017; Hönig et al. 2014; Müller et al. 2012, 2018; 1587 

Pieczka et al. 2013). (b) REE distribution in garnet from pegmatites, normalized to chondrites 1588 

(McDonough and Sun 1995). (c) REE distribution in garnet from paragneiss and garnet-1589 

bearing migmatitic gneiss, normalized to chondrites (McDonough and Sun 1995). Brown and 1590 

green arrows indicate the trace element enrichments in garnet from garnet-columbite type 1591 
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pegmatites and garnet-REE type pegmatites, respectively. (d) Multi-element spider diagram 1592 

of garnet, normalized to chondrites (McDonough and Sun 1995). 1593 

 1594 

Fig. 12. REE spider diagram of zircon from titanite-allanite pegmatite, apatite-zircon 1595 

pegmatite and enclave of micaschist in garnet-columbite pegmatite, normalized to chondrite 1596 

(McDonough and Sun 1995). 1597 

 1598 

Fig. 13. Conceptual cross-section showing the source of Mangodara pegmatites (modified 1599 

from Bonzi et al. 2021): late melt segregation within gneisses for titanite-allanite pegmatite 1600 

(blue arrows), apatite-zircon pegmatite (red arrows) and garnet-REE pegmatite (green 1601 

arrows), and partial melting of paragneiss for garnet-columbite pegmatite (yellow arrow). 1602 

BGB = Banfora greenstone belt, SGGC = Sidéradougou gneiss and granitoid complex. 1603 

 1604 
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Tables 1605 

Table 1. Mineralogy of pegmatite samples and their host rocks investigated using scanning 1606 

electronic microscopy (SEM), electron probe microanalyser (EPMA) and (laser ablation – 1607 

inductively coupled plasma – mass spectrometry) LA-ICP-MS. 1608 

  
Mineralogy 

Analyzed minerals 

(EPMA) 

Analyzed minerals 

(LA-ICP-MS) 

Paragneiss 

BMS49 Bt-Mu-Grt-St-Sil-Chl Bt-Mu-Grt Bt-Mu-Grt 

BMS96 Bt-Mu-Grt-Sil-Chl Bt-Mu-Grt Bt-Mu-Grt 

Metatexitic paragneiss 

BMN21 Bt-Grt-Sil-Chl-Ilm-Mnz-Zrn Bt-Grt-Zrn Bt-Grt 

Micaschist enclave in garnet-columbite pegmatite 

BMS6 Bt-Mu-Ap-Zrn-Mnz-Rt Bt-Mu-Ap Bt-Mu-Ap 

Granodioritic gneiss  

BMN24 Bt-Hbl-Mag-Aln-Ep-Ttn-Ap-Zrn Bt-Ap Bt 

Tonalitic-trondhjemitic gneiss     

BMN11 Bt-Mag-Ep-Ap-Zrn Bt  

BMN27 Bt-Mag-Ep-Ap-Zrn Bt-Ap Bt 

BMN164H (hornblende 

tonalite vein) 

Bt-Hbl-Mag Bt Bt 

Hornblende-biotite granodiorite with mica-rich enclaves   

BMS46 Bt-Hbl-Mag-Aln-Ep-Ttn-Ap Bt   

Two-mica trondhjemite  

BMS104 Mu-Bt-Mag-Ep-Ap Bt-Mu-Ap Bt-Mu-Ap 

Titanite-allanite type pegmatite (2 samples investigated on 63 stations) 

BMN28 Bt-Mu-Mag-Ep-Zrn-Ap Mu-Bt-Ap-Zrn Mu-Bt-Ap-Zrn 

BMN43 Bt-Mag-Ilm-Aln-Ep-Ttn-Zrn-Ap Bt-Ap-Kfs-Pl Bt-Ap 

Apatite-zircon type pegmatite (3 samples investigated on 4 stations) 

BMN20 Bt-Mag-Ap-Zrn Bt-Ap-Zrn Bt-Ap-Zrn 

BMN82B Bt-Mag-Ap-Zr   

BMS99A Bt Bt  

Garnet-columbite type pegmatite (15 samples investigated on 254 stations) 

BMN8 (coarse-grained, 

devoid of mica) 

Grt-Ap-(P, Th, Ca, U, REE)   

BMN13 (fine to medium-

grained) 

Mu-Ap-Mnz-Xtm-Grt-CGM-(U, 

Th, Zr) 

Mu-Grt-Mnz-CGM Mu-Grt-CGM 
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BMN47 Mu-Grt-Zrn-Xtm-Ttn   

BMN86 (aplite) Bt-Mu-Mag-Grt-CGM-(U, Th, Zr) CGM  

BMN131 (hosting large 

apatite crystals, polished 

section) 

Mu-Ap-Grt-Tur Ap Ap 

BMS1 (fine to medium-

grained) 

Mu-Grt-Mnz-CGM-Zrn-(U, Th, Zr) Mu-Grt-CGM Mu-Grt-CGM 

BMS5B Mu-Grt-CGM-Zrn-Mnz Mu-Grt-CGM-Kfs-

Pl 

Mu-Grt-CGM 

BMS6 Mu-Ap-Grt-Tur Mu-Ap Mu 

BMS12 Mu-Grt-Zrn-CGM CGM  

BMS15 Bt-Mu-Grt Grt  

BMS48 Mu-Grt-CGM Mu-Grt-CGM  

BMS90B (mica-rich) Mu Mu  

BMS99A Mu-Grt Mu-Grt  

BMS136 Bt-Mu-Mag-Ap-Zrn-Grt-Thr Mu-Bt  

BMS139B Bt-Mu-Grt Bt-Grt Grt 

Garnet-REE type pegmatite (4 samples investigated on 36 stations) 

BB6A Bt-Ilm/Pph-Ep-Eux/Aes-(REE, Y, 

Th) 

Pl  

BB15 Bt-Grt-Ilm/Pph-Eux/Aes Eux/Aes  

BB18 Bt-Grt-Eux/Aes-Pph Grt Grt 

BB24C Bt-Mu-Ep-Grt Mu-Bt Mu-Bt 

Abbreviations: Aes = aeschynite, Aln = allanite, Ap = apatite, Bt = biotite, Chl = chlorite, 1609 

CGM = columbite-group mineral, Ep = epidote, Eux = euxenite, Grt = garnet, Hbl = 1610 

hornblende, Ilm = ilmenite, Kfs = K-feldspar, Mag = magnetite, Mnz = monazite, Mu = 1611 

Muscovite, Mu2 = secondary muscovite, Pl = plagioclase, Pph = pyrophanite, Qz = quartz, Sil 1612 

= sillimanite, Rt = rutile, St = staurolite, Ttn = titanite, Thr = thorite, Tur = tourmaline, Zrn = 1613 

zircon, Xtm = xenotime (principally after Whitney and Evans 2010). 1614 
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Table 2. Geochemical features of mineral phases in pegmatite, tonalitic-trondhjemitic gneiss, and micaschist enclave in garnet-columbite 1615 

pegmatite. 1616 

Host rock Tonalitic-
trondhjemitic 
gneiss 

Titanite-allanite type 
pegmatite 

Apatite-
zircon type 
pegmatite 

Garnet-columbite type pegmatite Micaschist in garnet-
columbite type pegmatite 

Garnet-REE 
type pegmatite 

Biotite 0.48 < Mg# < 
0.57 

0.46 < Mg# < 0.54 0.43 < Mg# < 
0.49 

0.26 < Mg# < 0.42 0.43 < Mg# < 0.48 0.31 < Mg# < 
0.32 

Medium K/Rb High to medium K/Rb Medium K/Rb  (no data) Low K/Rb, low Nb/Ta,  
Ta fractionation 

Medium K/Rb 

(Ta, Nb)-- 
Li-- 

(Ta , Nb)-- 
Li- 

(Ta, Nb)- 
Li-- 

 (no data) (Ta, Nb)+,  
Li+++, Be 

 
Li+ 

Muscovite  0.42 < Mg# < 0.55 
(secondary) 

 0.11 < Mg# < 0.40 0.34 < Mg# < 0.39 0.32 < Mg# < 
0.33 

 High K/Rb  Low K/Rb Low K/Rb Medium K/Rb 
 Nb-Ta depleted  Medium to low K/Rb High Nb/Ta,  

Ta fractionation 
High Nb/Ta 

     Li+ Li++ Li+ 
Apatite   LREE depleted LREE 

depleted 
High LREE, HREE depleted (zircon-
monazite-xenotime fractionation) 

 High REE  

  Sr+, Y+    F, Mn-rich  Ti-  
Garnet      LREE-, Nb, Ta, U, Zr 

HREE relatively depleted 
(zircon-monazite-xenotime fractionation) 

  Ca, Ti, Li, Y, 
HREE 

Zircon   LREE-poor core 
(allanite fractionation)  
HREE, Y, Nb, U, Th 

HREE, Y, Nb, 
U, Th 

  Nb, Ta, Th, Be  

Columbite-
group 
minerals 

   Columbite-tantalite 
Mn# ~0.5, Ta#< 0.6 
Enriched in Mg, Sc, Y, Yb, Th, U, 
depleted in Sn, W 

 Euxenite-
aeschynite  
Ti, Nb> Ta, 
REE, Y, Th, U 

Else    B (tourmaline), Th (thorite)  Low B 
(tourmaline) 

 1617 
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The relative elements enrichment in minerals are indicated by + and – symbols. 1618 

 − − / −: Highly depleted / depleted. + / ++ / +++ : Enriched / highly enriched / very highly enriched 1619 
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Electronic Supplementary Material 1 1620 

 1621 

Fig. S1. Petrogenetic relationships between rafts of amphibolites, schist, paragneiss, 1622 

gneiss/granitoids of Na-rich and K-rich series and pegmatites of Mangodara district (Bonzi et 1623 

al. 2021). 1624 

 1625 

Fig. S2. Field photographs of titanite-allanite type pegmatites. (a) Titanite-allanite type 1626 

pegmatite veins in continuity with segregation veins in the tonalitic-trondhjemitic gneiss. (b) 1627 

Folded titanite-allanite type pegmatite with a margin in grading contact with the tonalitic-1628 

trondhjemitic gneiss. (c) Titanite-allanite type pegmatite in the tonalitic-trondhjemitic gneiss 1629 

with sharp contacts. 1630 

 1631 

Fig. S3. Field photographs of apatite-zircon type pegmatites. (a) Garnet-columbite type 1632 

pegmatite cross-cutting an apatite-zircon type pegmatite in the granodioritic gneiss (station 1633 

BMS99, see Bonzi et al. 2021). (b) Delimitation of an apatite-zircon type pegmatite intrusive 1634 

in the granodioritic gneiss (station BMN20). (c) Small vein of apatite-zircon type pegmatite in 1635 

the granodioritic gneiss, with larger sheets of biotite. 1636 

 1637 

Fig. S4. Field photographs of garnet-columbite pegmatites. (a) Outcrop of a garnet-columbite 1638 

type pegmatite. (b) Complex texture in a garnet-columbite type pegmatite: aplitic 1639 

cleavelandite-rich layers alternating of coarse-grained layers. (c) Pinched garnet-columbite 1640 

type pegmatite in garnet-staurolite paragneiss. (c) Pinched garnet-columbite type pegmatite in 1641 

the granodioritic gneiss (see Bonzi et al. 2021). 1642 
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 1643 

Fig. S5. Field photographs of garnet-REE type pegmatites. (a) Garnet-REE type pegmatite 1644 

intrusive in a GG-granitoid. (b) Garnet-REE type pegmatite showing scattered crystals of 1645 

garnet. (c) Garnet-REE type pegmatites connected with leucocratic layers in a banded 1646 

granodioritic gneiss. (d) Stretched dykes of garnet-REE type pegmatite in the granodioritic 1647 

gneiss. 1648 

 1649 

Fig. S6. Photomicrograph (a) and Scanning electron microscope back-scattered electron 1650 

(SEM-BSE) images (b to d) of mineral assemblages from titanite-allanite type pegmatites. (a) 1651 

Quartz, plagioclase and biotite hosting zircons. Secondary muscovite forms interlayers in 1652 

biotite, or crystals interjoin with miarolitic-like structure (sample BMN28). (b) BSE image of 1653 

altered allanite with overgrowths of apatite and zircon crystals (sample BMN43). (c) 1654 

Exsolutions of titanite in a subhedral epidote (sample BMN43). (d) BSE image of sample 1655 

BMN43 showing a symplectitic-like corona of epidote around ilmenite nuclei, at the contact 1656 

between two large plagioclase crystals. 1657 

 1658 

Fig. S7. (a) Photomicrograph of mineral assemblages in apatite-zircon type pegmatite (sample 1659 

BMN82B), showing cumulatic texture, made of accumulation of plagioclase surrounded by 1660 

biotite crystals, containing euhedral apatite and magnetite. (b) Subhedral magnetite 1661 

surrounded by sheets of secondary muscovite (sample BMN82B). 1662 

 1663 

Fig. S8. Photomicrographs (a, b) and BSE images (c to h) of mineral assemblages from 1664 

garnet-columbite type pegmatites. (a) Contact (blue line) between a garnet-columbite 1665 
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pegmatite to the right and a micaschist enclave to the left. In the micaschist, subhedral 1666 

muscovite contains lobate quartz and subhedral apatite, and crosscuts biotite (sample BMS6). 1667 

(b) Folded to kinked muscovite in garnet-columbite pegmatite, bordered in the upper part of 1668 

the image by dynamically recrystallized quartz (sample BMS6). (c) Inclusions of CGM in 1669 

muscovite, and quartz-feldspar, in a garnet-rich portion of a garnet-columbite pegmatite 1670 

(sample BMS1). (d) Assemblage of xenotime and zircon (sample BMN47), illustrative of the 1671 

zircon-xenotime substitution (Grimes et al. 2015; Hoskin and Schaltegger 2003). (e) 1672 

Columbite needle in muscovite and quartz, and Zr-bearing metamict mineral next to a 1673 

muscovite sheet (sample BMS1). (f) Inclusion of metamict zircon and columbite in a garnet 1674 

(sample BMN13). (g) Zircon crystal associated with metamict thorite (sample BMS136). (h) 1675 

Metamict mineral, showing traces of P, Ca, U, REE, and an aureole of Fe-rich oxide (sample 1676 

BMN8). In parenthesis are chemical elements detected under SEM. 1677 

 1678 

Fig. S9. Photomicrographs (a, b) and BSE images (c to f) of mineral assemblages in garnet-1679 

REE pegmatites. (a) Inclusion in graphic plagioclase-quartz of a REE-bearing mineral (traces 1680 

of Th, Ce, Gd, Si, Y, Al identified with SEM), framed by radial cracks indicating damages by 1681 

radioactive irradiation (sample BB6A). (b and c) Euhedral ilmenite-pyrophanite included in 1682 

graphic plagioclase-quartz (sample BB6A). (d) Altered minerals with relicts containing P, Th, 1683 

Y and REE (sample BB6A). (e) and (f) Typical elongated and altered metamict minerals, 1684 

bearing Ti, Ca, Nb, Y, Th, P and REE (sample BB18 for e, and sample BB15 for f). They are 1685 

associated with phyllite alteration, and surrounded by an aureole of iron-oxide also filling 1686 

cracks. In parenthesis are chemical elements detected under SEM. 1687 

 1688 
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Fig. S10. Backscattered electron images of accessory minerals in (a) garnet-bearing 1689 

metatexitic paragneiss (sample BMN21), and (b) granodioritic gneiss (sample BMN24). 1690 

 1691 

Fig. S11. Backscattered electronic imagery of CGM in garnet-columbite type samples 1692 

BMN13 (a) and BMS1 (b). Spots indicate EPMA analysis points. Related Ta# and Nb# are 1693 

outlined. 1694 

 1695 

Fig. S12. Backscattered electronic images of zircon in a titanite-allanite pegmatite sample 1696 

(BMN28). Circles indicate crater of LA-ICP-MS analyses. Concentrations in two LREE (La, 1697 

Ce) and a HREE (Yb) are displayed for every spot. 1698 

 1699 
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Table S1. EPMA compositions of monazite in garnet-columbite type pegmatite (sample 1701 

BMN13). 1702 

 1703 

Table S2. EPMA compositions of euxenite-aeschynite like minerals in garnet-REE type 1704 

pegmatites (sample BB15). 1705 

 1706 

Table S3. EPMA compositions of muscovite in pegmatite types and some host rocks. 1707 

 1708 

Table S4. EPMA compositions of biotite in pegmatite types, and some host rocks. 1709 
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 1710 

Table S5. LA-ICP-MS compositions of muscovite in pegmatites type, micaschist enclave in 1711 

garnet-columbite pegmatite and tonalitic-trondhjemitic gneiss. 1712 

 1713 

Table S6. LA-ICP-MS compositions of biotite in pegmatites type, micaschist enclave in 1714 

garnet-columbite pegmatite and tonalitic-trondhjemitic gneiss. 1715 

 1716 

Table S7. EPMA compositions of apatite in pegmatites and host rocks. 1717 

 1718 

Table S8. LA-ICP-MS compositions of apatite in pegmatites garnet-columbite type and 1719 

garnet-REE type pegmatite. 1720 

 1721 

Table S9. EPMA compositions of CGM in garnet-columbite type pegmatite. 1722 

 1723 

Table S10. LA-ICP-MS compositions of CGM in garnet-columbite type pegmatite. 1724 

 1725 

Table S11. Representative EPMA compositions of garnet in garnet-columbite and garnet-REE 1726 

type pegmatite. 1727 

 1728 
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Table S12. Representative LA-ICP-MS compositions of garnet in garnet-columbite and 1729 

garnet-REE type pegmatite. 1730 

 1731 

Table S13. LA-ICP-MS compositions of zircon in titanite-allanite type pegmatite, apatite-1732 

zircon type pegmatite and in micaschist enclave in garnet-columbite type pegmatite. 1733 

 1734 

Table S14. Representative EPMA compositions of zircon in titanite-allanite type pegmatite, 1735 

apatite-zircon type pegmatite and in micaschist enclave in garnet-columbite type pegmatite. 1736 


