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Grow, prune or select data: which technique allows the most energy-efficient neural network training?

Keywords: Neural networks, data selection, pruning, growing, energy efficiency

The training energy efficiency of deep neural networks became an extensively studied research topic in the last years. Some of the existing approaches seek to reduce the size of the architecture by either starting the training with a large network and pruning it, or by beginning with a seed architecture and then growing it. Instead of compressing the architecture, other approaches aim to reduce the number of training examples through data selection.

While various approaches belonging to these two categories have been proposed, only a few works actually conduct energy measurements. Others merely mention potential gains in efficiency or rely on alternative evaluation metrics such as FLOPs. In this paper, we conduct a series of experiments both on a synthetic dataset and on image classification benchmarks in order to compare the impact of pruning, architecture growing and data selection on training energy consumption and prediction quality.

Our results show that growing maintains a high prediction quality but brings limited energy gains when the size of the resulting architecture is large. Pruning can offer high gains, but also impacts accuracy, making it more suited for large models. Data selection provides energy gains correlated with the selectivity rate but causes an accuracy loss. We find that the effectiveness of every technique depends on its hyperparameters and on the architecture size.

I. INTRODUCTION

Deep neural networks (DNNs) high prediction quality made them indispensable to many domains. However, their energy consumption, especially during the training phase, is an important obstacle to their integration to resource-constrained devices and has a worrying environmental impact [START_REF] Strubell | Energy and policy considerations for deep learning in nlp[END_REF], [START_REF] Patterson | Carbon emissions and large neural network training[END_REF]. Therefore, the energy efficiency of neural networks became an extensively studied topic as many approaches were proposed to optimize their energy consumption. The first work dealt mainly with the inference phase, but the number of studies that focus on training, the most energy-intensive step, is growing. These approaches act through different ways as designing accelerators [START_REF] Sze | Efficient processing of deep neural networks: A tutorial and survey[END_REF], building optimized architectures manually [START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF] or automatically through neural architecture search [START_REF] Dai | Chamnet: Towards efficient network design through platform-aware model adaptation[END_REF] or through growing that starts the training with a small architecture and increases its size progressively during training [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF], [START_REF] Wu | Firefly neural architecture descent: a general approach for growing neural networks[END_REF]. Some techniques aim to compress existing models, notably by pruning some parameters [START_REF] Tanaka | Pruning neural networks without any data by iteratively conserving synaptic flow[END_REF], [START_REF] Liu | Learning efficient convolutional networks through network slimming[END_REF]. Other approaches act on the data level and aim to train the network on fewer examples [START_REF] Coleman | Selection via proxy: Efficient data selection for deep learning[END_REF], [START_REF] Killamsetty | Grad-match: A gradient matching based data subset selection for efficient learning[END_REF].

Some techniques are more explored than others. For instance, pruning is deeply studied while growing, the opposite technique, is less explored. Data selection has mainly been used to reduce training time, and only few works [START_REF] Killamsetty | Grad-match: A gradient matching based data subset selection for efficient learning[END_REF] evaluate its impact on energy. Moreover, many studies use metrics such as FLOPs or MACs (multiply-accumulate) to evaluate efficiency. However, the latter don't provide the best approximation of energy consumption [START_REF] Bartoldson | Compute-efficient deep learning: Algorithmic trends and opportunities[END_REF], [START_REF] Heim | Measuring what really matters: Optimizing neural networks for tinyml[END_REF].

In this paper, we address DNNs training energy efficiency by providing a comparison between data selection, growing and pruning. We first review some of the existing work on the three approaches. Then, we implement representative methods from the literature for each approach and we study their impact on training energy consumption and prediction quality through two groups of experiments: tests on a synthetic dataset and tests on image classification benchmarks.

II. RELATED WORK

In this paper, we mainly target the enhancement of training energy efficiency, for which many approaches were proposed. Specifically, we study techniques that reduce the dataset size (data selection) or the architecture size (pruning and growing).

Data selection supports model training with fewer examples. It is mainly used to accelerate training [START_REF] Coleman | Selection via proxy: Efficient data selection for deep learning[END_REF], [START_REF] Jiang | Accelerating deep learning by focusing on the biggest losers[END_REF], [START_REF] Johnson | Training deep models faster with robust, approximate importance sampling[END_REF] which indirectly reduces energy consumption. Few works still apply it with the goal of saving energy [START_REF] Killamsetty | Grad-match: A gradient matching based data subset selection for efficient learning[END_REF], [START_REF] Wang | E2-train: Training state-of-the-art cnns with over 80% energy savings[END_REF]. In this paper, we are interested in adaptive data selection that renews the subset of selected examples after a certain number of epochs. Selection can rely on the model's loss [START_REF] Jiang | Accelerating deep learning by focusing on the biggest losers[END_REF] or gradients [START_REF] Killamsetty | Grad-match: A gradient matching based data subset selection for efficient learning[END_REF] or even be random. For instance, the work in [START_REF] Wang | E2-train: Training state-of-the-art cnns with over 80% energy savings[END_REF] shows that a random batch skipping with a probability of 50% keeps a high accuracy and reduces training energy consumption by half.

Pruning starts the training with a large model and aims to compress it by removing parameters. This approach is extensively studied in the literature and has first targeted the inference phase, as early techniques propose to prune the network after training [START_REF] Li | Pruning filters for efficient convnets[END_REF]. To generalize pruning benefits to training, it is necessary to prune early during the process or even before it, as done by pruning at initialization techniques [START_REF] Tanaka | Pruning neural networks without any data by iteratively conserving synaptic flow[END_REF], [START_REF] Lee | SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY[END_REF]. Moreover, pruning can be either unstructured when individual weights are removed [START_REF] Lee | SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY[END_REF], [START_REF] Yang | Designing energy-efficient convolutional neural networks using energy-aware pruning[END_REF] or structured when groups of weights such as filters/channels [START_REF] Liu | Learning efficient convolutional networks through network slimming[END_REF], [START_REF] Li | Pruning filters for efficient convnets[END_REF], [START_REF] Berthelier | Learning sparse filters in deep convolutional neural networks with a l 1/l 2 pseudo-norm[END_REF] or even layers [START_REF] Elkerdawy | To filter prune, or to layer prune, that is the question[END_REF] are removed.

Growing [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF], [START_REF] Wu | Firefly neural architecture descent: a general approach for growing neural networks[END_REF], [START_REF] Wu | Splitting steepest descent for growing neural architectures[END_REF], [START_REF] Yuan | Growing efficient deep networks by structured continuous sparsification[END_REF] consists in starting the training with a small seed architecture and then increasing its size by adding neurons. It can be seen as the opposite technique of pruning [START_REF] Wu | Splitting steepest descent for growing neural architectures[END_REF]. Growing approaches propose to jointly optimize the architecture and its weights [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF] during training. Among growing techniques, the work in [START_REF] Verbockhaven | Spotting expressivity bottlenecks and fixing them optimally[END_REF] proposes to detect expressivity bottlenecks and to fix them by adding neurons while GradMax [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF] initializes new neurons in a way that maximizes the gradient norm as it allows a higher loss decrease.

III. METHODOLOGY

In this section, we introduce the implemented approaches as well as the tasks on which we compare the different techniques.

A. Implemented approaches

We implement representative techniques from the literature for each studied approach. In order to cover multiple pruning types, we implement a structured approach that prunes during training and an unstructured approach that prunes at initialization.

1) Data selection through random batch skipping: For data selection, we implement the approach proposed in [START_REF] Wang | E2-train: Training state-of-the-art cnns with over 80% energy savings[END_REF]. This work presents a three-level framework with a low precision backpropagation, a selective layer update and data selection. We only consider the data level of the framework, which provides a very simple way to select examples. During an epoch, each batch is skipped, randomly, with a probability α (always set to 50% in the original paper). When a batch is skipped, we still perform a weight update with the gradients of the latest selected batch. This random selection can achieve a high accuracy and can reduce the training energy consumption by up to 50%. The reason behind this result is that skipping batches adds a sampling random noise, which can help to escape saddle points [START_REF] Wang | E2-train: Training state-of-the-art cnns with over 80% energy savings[END_REF]. We specifically implement the approach of [START_REF] Wang | E2-train: Training state-of-the-art cnns with over 80% energy savings[END_REF] because it has the lowest overhead, when other selection strategies based on more complex criteria perform additional computations and impose higher selection costs.

2) Growing through maximizing the gradient norm: For the growing technique, we implement the GradMax approach [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF] which provides a way to initialize new neurons. GradMax first preserves the previous information learned by the network by setting the incoming weights of the new neurons to zero 1 . Preserving the learned information is a desirable property for growing algorithms. The GradMax strategy also aims to maximize the gradient norm, since it allows a higher decrease of the training objective [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF]. To do so, the outgoing weights are initialized based on the Singular Value Decomposition (SVD) 2 .

GradMax starts the training with a small seed architecture (baseline small). The network architecture is updated periodically during training and neurons (or filters) are added to the layers. After a given number of growth steps, the size of the network reaches the size of a target model (baseline big) and the training continues. The GradMax work provides a simple and a fast growing strategy that achieves a high accuracy, which motivated us to further study this approach.

3) Unstructured pruning through random weight removal: For unstructured pruning, we opt for a strategy that removes weights before training. A recent approach [START_REF] Liu | The unreasonable effectiveness of random pruning: Return of the most naive baseline for sparse training[END_REF], proposes to use a random pruning technique. The latter was always seen as a baseline for comparison. The authors of [START_REF] Liu | The unreasonable effectiveness of random pruning: Return of the most naive baseline for sparse training[END_REF] however show that random pruning at initialization with specific layer-wise ratios (percentage of weights to prune from every layer) can be effective. We implement this approach and we apply the ER (Erdös-Rényi) ratio [START_REF] Mocanu | Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science[END_REF] which associates larger layers with bigger pruning rates. This pruning method achieves a high accuracy, especially when the network architecture is deep [START_REF] Liu | The unreasonable effectiveness of random pruning: Return of the most naive baseline for sparse training[END_REF]. Moreover, since the pruning is random, the technique should only add a small overhead.

4) Structured pruning through removing filters with lowest L1-norm: For structured pruning, we opt for a strategy that removes filters from a Convolutional Neural Network (CNN). We implement an adapted pruning algorithm to study its impact on training efficiency. The implemented strategy prunes the network during the first part of the training and makes the model thinner by removing filters. As in [START_REF] Li | Pruning filters for efficient convnets[END_REF], we prune the filters with the lowest l 1 norm.

In order to allow a fair comparison with GradMax [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF], we adopt the same architecture updating schedule. Thus, periodically, we remove a given number of neurons (or filters) from the layers. Implementing a pruning method which is exactly the opposite schedule of the GradMax technique allows us to find out if it is better, in terms of the accuracy/energy trade-off, to start with a large architecture and then prune it or to do the opposite.

B. Considered experiments

We study data selection, growing and pruning through two types of experiments: Teacher student tests that involve small fully connected networks and a synthetic dataset, as well as image classification tests on benchmark CNNs and datasets.

1) Teacher student experiments:

The teacher student test [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF], [START_REF] Lawrence | Lessons in neural network training: Overfitting may be harder than expected[END_REF] involves two neural networks. The first one is called the teacher network N t and is initialized randomly. This network is not trained and is only used to generate a synthetic dataset. Indeed, we generate n training data points X and we pass them through the teacher network to generate the target points Y [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF]. The second network, called student model N s , is trained in order to mimic the teacher's distribution by minimizing the squared loss between N s (X) and Y [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF].

For the teacher student test, we only consider fully connected networks containing n i input neurons, n h hidden neurons and n o output neurons that we denote n i : n h : n o as in [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF]. As the implemented structured pruning technique targets CNNs, we do not apply it for the teacher student test. We use a 100:50:10 architecture for the teacher network and for the data selection student model. For GradMax, we start with a 100:25:10 architecture for the student that is grown to match the size of the teacher network. For unstructured pruning, we start with a 100:100:10 architecture for the student model. We prune 50% of the weights through masking in order to obtain an equivalent size to 100:50:10 in terms of non-zero weights. We start the training with a bigger network for pruning in order to obtain a similar final network size (in terms of the number of non-zero weights) between growing and pruning.

As in [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF], we sample n = 1000 training points from a Gaussian distribution with mean 0 and unit variance. We use a learning rate of 0.01, a batch size of 100, Stochastic Gradient Descent (SGD) as an optimizer and we train the student network for 3500 iterations [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF]. For GradMax, we keep the same settings as in [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF]. The network growing starts at iteration 500. We have 5 growth steps every 500 iterations. After the last growth, 1000 iterations are performed.

2) Image classification experiments: In addition to the teacher student experiments, we also compare the studied approaches on image classification benchmarks. We use the datasets CIFAR-10 and CIFAR-100 and we consider the Wide-ResNet (WRN) [START_REF] Zagoruyko | Wide residual networks[END_REF] and VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] architectures. Specifically, we use the implementations of [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF] of the VGG-11 and WRN-28-1 variants (with this implementation of WRN, the second batch normalization layer of the block is removed). This choice of architectures allows us to cover two types of Convolutional Networks, namely CNNs with and without residual connections. For the hyperparameters, we use the same settings as [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF]. We train all networks for 200 epochs with SGD and a 0.9-momentum. We use a batch size of 128. We use a learning rate of 0.1 for WRN-28-1. For VGG-11, we had to tune the learning rate and we found that the best value is 0.01 for data selection and 0.05 for the other approaches. For both models, we decay the learning rate with a cosine schedule. For the GradMax approach, we follow [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF] and we set the number of filters of the seed architecture to β = 1/4 of the number of filters of baseline big. We shrink the dimensions of all the layers of the VGG-11 model, but we only shrink the first layer of every block in WRN-28-1 model to keep correct dimensions for the skip connections, as done in [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF]. We use the same settings for the filter pruning approach but with an opposite network size evolution. The growing/pruning starts at iteration 10000 and we then have 12 grow/prune steps with an interval of 2500 iterations [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF]. Growing/pruning finishes by the middle of training. For data selection, we set α = 50% as in the original work [START_REF] Wang | E2-train: Training state-of-the-art cnns with over 80% energy savings[END_REF] but we also study the performances of lower selectivity ratios.

C. Experimental settings

We use TensorFlow to implement all the studied approaches. Our code will be available after publication. We perform our experiments on a MacBook Pro with an Apple M2 Max processor and 64 GB of RAM. All the trainings were executed on CPU. To measure energy consumption, we used the "powermetrics"3 command. The latter is a pre-installed tool on macOS that gathers many statistics as CPU usage and power consumption.

IV. TEACHER STUDENT EXPERIMENTAL RESULTS

In this section, we analyze the results of the teacher student experiments averaged over 300 runs. We plot the training curves in Figure 1. Dividing the train set into batches gave curves with some variations. For more clarity, we plot a smoothed version of the curves in Figure 2 obtained with the SciPy implementation of the Savitzky-Golay algorithm [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF]. We observe that all the approaches outperform baseline small. We mainly notice a very similar evolution between baseline big and the data selection with 50% and 40% rates. We notice a small loss increase with a ratio of 30%. Meanwhile, ratios of 20% and 10% can't be considered for this task as they cause an important increase in loss and harm the learning process.

For the growing technique, the number of neurons increases as the training progresses and the resulting training loss gradually decreases until it becomes lower than that of pruning. After iteration 2500 (last growth step), GradMax outperforms pruning, which gives the highest final training loss among all the studied approaches despite starting the training with a bigger model. This can be related to the small size of the network. Indeed, it is well known that pruning works better on over-parameterized architectures.

Table I contains the average training energy consumption for all approaches. We observe that data selection offers the highest energy gains and that the lower the selection rate, the lower the energy consumption. GradMax offers a smaller energy consumption when compared to baseline big but the savings brought by the approach are limited. Indeed, even the energy consumption of baseline small and baseline big are close due to the small size of the networks used in experiments. Pruning provides a higher energy consumption than baseline big as it starts with a larger model and consumes energy for executing the pruning step at initialization. Moreover, unstructured pruning only sets pruned weights to zero and doesn't shrink dimensions. Therefore, it is necessary to use specialized hardware or libraries to optimize the sparse matrices generated by unstructured pruning to obtain energy savings.

V. IMAGE CLASSIFICATION EXPERIMENTAL RESULTS

As in [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF], we consider three combinations of datasets and CNNs: (WRN-28-1, CIFAR-10), (WRN-28-1, CIFAR-100) and (VGG-11, CIFAR-10) [START_REF] Zagoruyko | Wide residual networks[END_REF], [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], [START_REF] Krizhevsky | The cifar-10 dataset[END_REF]. All the results that we provide in this section are averaged over 3 runs. As unstructured pruning requires specialized hardware or libraries to take advantage of sparse matrices to show energy gains [START_REF] Bartoldson | Compute-efficient deep learning: Algorithmic trends and opportunities[END_REF], we do not consider this approach in the following tests. We focus on the structured technique presented in section III-A4.

A. Results on WRN-28-1

We compare the final test accuracy, the training time and training energy consumption for all the studied approaches, as well as baseline big and baseline small. We plot the training and test loss curves respectively in Figure 3 and 4 for (WRN-28-1, CIFAR-10). We also summarize the results in Table II for the configuration (WRN-28-1, CIFAR-10) and in Table III for the configuration (WRN-28-1, CIFAR-100).

We observe that the data selection technique brings the highest energy gains as it reduces the costs by half. Moreover, since the random selection has a negligible overhead, the energy gain is almost equal to the selectivity ratio. We observe that data selection causes an accuracy decrease and presents higher train and test losses than the other approaches. It however leads to a lower test loss by the end of training (Figure 4). We tried smaller selectivity ratios to find out how low it could be. We observed that using a rate of 40% increases the loss. A ratio of 30% leads to an even higher loss and harms the learning process. It is thus better to keep the selectivity above 50% for this configuration.

GradMax provides the closest accuracy to baseline big on both datasets with the WRN architecture. In terms of energy consumption, it provides limited gains because of the growing schedule. Indeed, the growing stops in the middle of training and thus the second half of the process is done with the size of baseline big.

Pruning allows higher energy gains than GradMax as half the training is done with the size of baseline small. Restricting the prunable layers due to the skip connections of WRN however limits the gains. Pruning achieves a limited accuracy improvement when compared with baseline small, which is consistent with the results of [START_REF] Liu | Rethinking the value of network pruning[END_REF]. The accuracy achieved by pruning is higher, but we might have hoped that it would have taken better advantage of the weights inherited from the bigger architecture. We also observe that the training curve of pruning (Figure 3) is very similar to baseline big at the beginning of training but as filters are removed, it gradually follows the curve of baseline small.

B. Results on VGG-11

We provide for each technique, the final test accuracy, the training time and training energy consumption in Table IV. As for the previous network, data selection allows to reduce the costs by half, as we use a selectivity rate of 50%. In terms of accuracy, the data selection technique performs worse on VGG-11 and provides the lowest accuracy among studied approaches.

GradMax provides a close accuracy to baseline big. Since we shrink all the layers of the VGG network, the impact of growing on energy is higher. The gains remain limited because the growing schedule provided in the original paper [START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF] uses an architecture with the baseline big size for half the training.

Pruning allows the highest energy gains that are about 68% since we reduce the dimensions of all layers. It achieves a close test accuracy to baseline big and thus performs better on VGG-11. This suggests that the size of the model has an important impact on the effectiveness of the approach. Since VGG-11 contains more parameters, the pruning approach works better.

VI. CONCLUSION

In this work, we compared the impact of data selection, pruning and growing on the training energy consumption and on the prediction quality. We first studied the behavior of the three techniques on a synthetic dataset before performing experiments on image classification benchmarks.

We observed that data selection through random batch skipping achieves high energy savings, as it provides gains correlated with the selectivity ratio. It however causes an accuracy degradation. Growing through the GradMax technique allows to keep a high accuracy but provides limited energy gains as the network reaches the size of baseline big. To make this technique more efficient, it would be interesting to adapt the growing schedule. Since unstructured pruning requires specialized hardware or libraries to show energy gains, we mainly focused on the structured type for the image classification experiments. We observed that structured pruning allows significant energy gains, but that its impact on accuracy varies from an architecture to another. It is indeed more suited for larger models.

The effectiveness of each technique varies according to the architecture size and to the hyperparameters of the method itself, as we observed with the growing schedule and the data selection ratio. Moreover, looking for higher energy gains generally leads to a higher accuracy loss. The applicability of each technique depends on the requirements of the task. If keeping a high prediction quality is more necessary than having high energy saving, growing can be a good choice. Data selection is a good alternative when a decrease in accuracy is allowed to obtain high energy gains, while pruning is more suited for large architectures for which its impact on accuracy remains small. In our future work, it would be interesting to compare the three techniques on a larger set of architectures and datasets. 
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 1 Fig. 1. Training curves averaged over 300 runs of the teacher student test before smoothing.
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 2 Fig. 2. Training curves averaged over 300 runs of the teacher student test after smoothing.
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 3 Fig. 3. Training loss curves for (WRN-28-1, CIFAR-10).
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 4 Fig. 4. Test loss curves for (WRN-28-1, CIFAR-10).

TABLE I ENERGY

 I MEASUREMENTS FOR THE TEACHER STUDENT TESTS

	Approach	Energy consumption (joule)
	Baseline small	17.94
	Data selection 30%	6.03
	Data selection 40%	8.85
	Data selection 50%	10.21
	GradMax	18.41
	Unstructured pruning	20.58
	Baseline big	18.47

TABLE II FINAL

 II TEST ACCURACY AND ENERGY CONSUMPTION OF THE DIFFERENT APPROACHES FOR (WRN-28-1, CIFAR-10)

		Final	Test	Training	Training	Energy gains
	Approach	Test accuracy	accuracy loss	time	energy consumption	
				(minutes)	(Joule)	
	Baseline small	90.02%	3.09%	202	234844.92	49.87%
	Data selection 50%	90.41%	2.67%	178	245385.68	47.62%
	GradMax	91.25%	1.77%	305.33	398728.29	14.89%
	Filter pruning	90.36%	2.72%	280	323517.64	30.94%
	Baseline big	92.89%	/	345	468462.06	/
			TABLE III		
	FINAL TEST ACCURACY AND ENERGY CONSUMPTION OF THE DIFFERENT APPROACHES FOR (WRN-28-1, CIFAR-100)
		Final	Test	Training	Training	Energy gains
	Approach	Test accuracy	accuracy loss	time	energy consumption	
				(minutes)	(Joule)	
	Baseline small	63.66%	8.22%	197.67	234298.18	50.03%
	Data selection 50%	65.63%	5.38%	178.33	242617.88	48.25%
	GradMax	66.53%	4.08%	310.67	404455.93	13.74%
	Filter pruning	64.35%	7.22%	264.67	319291.57	31.90%
	Baseline big	69.36%	/	338.33	468855.34	/

TABLE IV FINAL

 IV TEST ACCURACY AND ENERGY CONSUMPTION OF THE DIFFERENT APPROACHES FOR (VGG-11, CIFAR-10)

		Final	Test	Training	Training	Energy gains
	Approach	Test accuracy	accuracy loss	time	energy consumption	
				(minutes)	(Joule)	
	Baseline small	83.16%	4.04%	65.67	81540.14	92.10%
	Data selection 50%	82.48%	4.82%	321	516966.34	49.91%
	GradMax	84.17%	2.87%	456.67	705663.49	31.63%
	Filter pruning	84.99%	1.93%	225	333287.40	67.71%
	Baseline big	86.66%	/	633.67	1032068.47	/

The original paper[START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF] also provides a variant where the outgoing weights are set to zero.

The original paper[START_REF] Evci | Gradmax: Growing neural networks using gradient information[END_REF] also provides a variant where weights are initialized with an iterative method such as projected gradient descent.

https://www.unix.com/man-page/osx/1/powermetrics/
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