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Abstract—The training energy efficiency of deep neural net-
works became an extensively studied research topic in the last
years. Some of the existing approaches seek to reduce the size
of the architecture by either starting the training with a large
network and pruning it, or by beginning with a seed architecture
and then growing it. Instead of compressing the architecture,
other approaches aim to reduce the number of training examples
through data selection.

While various approaches belonging to these two categories
have been proposed, only a few works actually conduct energy
measurements. Others merely mention potential gains in effi-
ciency or rely on alternative evaluation metrics such as FLOPs.
In this paper, we conduct a series of experiments both on a
synthetic dataset and on image classification benchmarks in order
to compare the impact of pruning, architecture growing and data
selection on training energy consumption and prediction quality.

Our results show that growing maintains a high prediction
quality but brings limited energy gains when the size of the
resulting architecture is large. Pruning can offer high gains,
but also impacts accuracy, making it more suited for large
models. Data selection provides energy gains correlated with the
selectivity rate but causes an accuracy loss. We find that the
effectiveness of every technique depends on its hyperparameters
and on the architecture size.

Index Terms—Neural networks, data selection, pruning, grow-
ing, energy efficiency.

I. INTRODUCTION

Deep neural networks (DNNs) high prediction quality made
them indispensable to many domains. However, their energy
consumption, especially during the training phase, is an im-
portant obstacle to their integration to resource-constrained
devices and has a worrying environmental impact [1], [2].
Therefore, the energy efficiency of neural networks became an
extensively studied topic as many approaches were proposed
to optimize their energy consumption. The first work dealt
mainly with the inference phase, but the number of studies that
focus on training, the most energy-intensive step, is growing.
These approaches act through different ways as designing
accelerators [3], building optimized architectures manually
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[4] or automatically through neural architecture search [5]
or through growing that starts the training with a small
architecture and increases its size progressively during training
[6], [7]. Some techniques aim to compress existing models,
notably by pruning some parameters [8], [9]. Other approaches
act on the data level and aim to train the network on fewer
examples [10], [11].

Some techniques are more explored than others. For in-
stance, pruning is deeply studied while growing, the opposite
technique, is less explored. Data selection has mainly been
used to reduce training time, and only few works [11] evaluate
its impact on energy. Moreover, many studies use metrics
such as FLOPs or MACs (multiply-accumulate) to evaluate
efficiency. However, the latter don’t provide the best approxi-
mation of energy consumption [12], [13].

In this paper, we address DNNs training energy efficiency
by providing a comparison between data selection, growing
and pruning. We first review some of the existing work on the
three approaches. Then, we implement representative methods
from the literature for each approach and we study their impact
on training energy consumption and prediction quality through
two groups of experiments: tests on a synthetic dataset and
tests on image classification benchmarks.

II. RELATED WORK

In this paper, we mainly target the enhancement of training
energy efficiency, for which many approaches were proposed.
Specifically, we study techniques that reduce the dataset size
(data selection) or the architecture size (pruning and growing).

Data selection supports model training with fewer examples.
It is mainly used to accelerate training [10], [14], [15] which
indirectly reduces energy consumption. Few works still apply
it with the goal of saving energy [11], [16]. In this paper,
we are interested in adaptive data selection that renews the
subset of selected examples after a certain number of epochs.
Selection can rely on the model’s loss [14] or gradients [11]



or even be random. For instance, the work in [16] shows that a
random batch skipping with a probability of 50% keeps a high
accuracy and reduces training energy consumption by half.

Pruning starts the training with a large model and aims
to compress it by removing parameters. This approach is
extensively studied in the literature and has first targeted the
inference phase, as early techniques propose to prune the
network after training [17]. To generalize pruning benefits to
training, it is necessary to prune early during the process or
even before it, as done by pruning at initialization techniques
[8], [18]. Moreover, pruning can be either unstructured when
individual weights are removed [18], [19] or structured when
groups of weights such as filters/channels [9], [17], [20] or
even layers [21] are removed.

Growing [6], [7], [22], [23] consists in starting the training
with a small seed architecture and then increasing its size by
adding neurons. It can be seen as the opposite technique of
pruning [22]. Growing approaches propose to jointly optimize
the architecture and its weights [6] during training. Among
growing techniques, the work in [24] proposes to detect ex-
pressivity bottlenecks and to fix them by adding neurons while
GradMax [6] initializes new neurons in a way that maximizes
the gradient norm as it allows a higher loss decrease.

III. METHODOLOGY

In this section, we introduce the implemented approaches
as well as the tasks on which we compare the different
techniques.

A. Implemented approaches

We implement representative techniques from the literature
for each studied approach. In order to cover multiple pruning
types, we implement a structured approach that prunes during
training and an unstructured approach that prunes at initializa-
tion.

1) Data selection through random batch skipping: For data
selection, we implement the approach proposed in [16]. This
work presents a three-level framework with a low precision
backpropagation, a selective layer update and data selection.
We only consider the data level of the framework, which
provides a very simple way to select examples. During an
epoch, each batch is skipped, randomly, with a probability
« (always set to 50% in the original paper). When a batch is
skipped, we still perform a weight update with the gradients of
the latest selected batch. This random selection can achieve a
high accuracy and can reduce the training energy consumption
by up to 50%. The reason behind this result is that skipping
batches adds a sampling random noise, which can help to
escape saddle points [16]. We specifically implement the
approach of [16] because it has the lowest overhead, when
other selection strategies based on more complex criteria
perform additional computations and impose higher selection
costs.

2) Growing through maximizing the gradient norm: For the
growing technique, we implement the GradMax approach [6]
which provides a way to initialize new neurons. GradMax first

preserves the previous information learned by the network by
setting the incoming weights of the new neurons to zero'.
Preserving the learned information is a desirable property
for growing algorithms. The GradMax strategy also aims to
maximize the gradient norm, since it allows a higher decrease
of the training objective [6]. To do so, the outgoing weights
are initialized based on the Singular Value Decomposition
(SVD)~.

GradMax starts the training with a small seed architecture
(baseline small). The network architecture is updated periodi-
cally during training and neurons (or filters) are added to the
layers. After a given number of growth steps, the size of the
network reaches the size of a target model (baseline big) and
the training continues. The GradMax work provides a simple
and a fast growing strategy that achieves a high accuracy,
which motivated us to further study this approach.

3) Unstructured pruning through random weight removal:
For unstructured pruning, we opt for a strategy that removes
weights before training. A recent approach [25], proposes to
use a random pruning technique. The latter was always seen as
a baseline for comparison. The authors of [25] however show
that random pruning at initialization with specific layer-wise
ratios (percentage of weights to prune from every layer) can be
effective. We implement this approach and we apply the ER
(Erdos-Rényi) ratio [26] which associates larger layers with
bigger pruning rates. This pruning method achieves a high
accuracy, especially when the network architecture is deep
[25]. Moreover, since the pruning is random, the technique
should only add a small overhead.

4) Structured pruning through removing filters with lowest
LI-norm: For structured pruning, we opt for a strategy that
removes filters from a Convolutional Neural Network (CNN).
We implement an adapted pruning algorithm to study its
impact on training efficiency. The implemented strategy prunes
the network during the first part of the training and makes the
model thinner by removing filters. As in [17], we prune the
filters with the lowest [; norm.

In order to allow a fair comparison with GradMax [6],
we adopt the same architecture updating schedule. Thus,
periodically, we remove a given number of neurons (or filters)
from the layers. Implementing a pruning method which is
exactly the opposite schedule of the GradMax technique allows
us to find out if it is better, in terms of the accuracy/energy
trade-off, to start with a large architecture and then prune it
or to do the opposite.

B. Considered experiments

We study data selection, growing and pruning through two
types of experiments: Teacher student tests that involve small
fully connected networks and a synthetic dataset, as well as
image classification tests on benchmark CNNs and datasets.

I'The original paper [6] also provides a variant where the outgoing weights
are set to zero.

2The original paper [6] also provides a variant where weights are initialized
with an iterative method such as projected gradient descent.



1) Teacher student experiments: The teacher student test
[6], [27] involves two neural networks. The first one is called
the teacher network NN, and is initialized randomly. This
network is not trained and is only used to generate a synthetic
dataset. Indeed, we generate n training data points X and
we pass them through the teacher network to generate the
target points Y [6]. The second network, called student model
N, is trained in order to mimic the teacher’s distribution by
minimizing the squared loss between Ng(X) and Y [6].

For the teacher student test, we only consider fully con-
nected networks containing n; input neurons, ny hidden neu-
rons and n, output neurons that we denote n; : ny : n, as in
[6]. As the implemented structured pruning technique targets
CNNSs, we do not apply it for the teacher student test. We use
a 100:50:10 architecture for the teacher network and for the
data selection student model. For GradMax, we start with a
100:25:10 architecture for the student that is grown to match
the size of the teacher network. For unstructured pruning, we
start with a 100:100:10 architecture for the student model. We
prune 50% of the weights through masking in order to obtain
an equivalent size to 100:50:10 in terms of non-zero weights.
We start the training with a bigger network for pruning in
order to obtain a similar final network size (in terms of the
number of non-zero weights) between growing and pruning.

As in [6], we sample n = 1000 training points from a
Gaussian distribution with mean O and unit variance. We use
a learning rate of 0.01, a batch size of 100, Stochastic Gradient
Descent (SGD) as an optimizer and we train the student
network for 3500 iterations [6]. For GradMax, we keep the
same settings as in [6]. The network growing starts at iteration
500. We have 5 growth steps every 500 iterations. After the
last growth, 1000 iterations are performed.

2) Image classification experiments: In addition to the
teacher student experiments, we also compare the studied
approaches on image classification benchmarks. We use the
datasets CIFAR-10 and CIFAR-100 and we consider the Wide-
ResNet (WRN) [28] and VGG [29] architectures. Specifically,
we use the implementations of [6] of the VGG-11 and WRN-
28-1 variants (with this implementation of WRN, the second
batch normalization layer of the block is removed). This choice
of architectures allows us to cover two types of Convolutional
Networks, namely CNNs with and without residual connec-
tions. For the hyperparameters, we use the same settings as
[6]. We train all networks for 200 epochs with SGD and a
0.9-momentum. We use a batch size of 128. We use a learning
rate of 0.1 for WRN-28-1. For VGG-11, we had to tune the
learning rate and we found that the best value is 0.01 for
data selection and 0.05 for the other approaches. For both
models, we decay the learning rate with a cosine schedule.
For the GradMax approach, we follow [6] and we set the
number of filters of the seed architecture to 5 = 1/4 of the
number of filters of baseline big. We shrink the dimensions of
all the layers of the VGG-11 model, but we only shrink the
first layer of every block in WRN-28-1 model to keep correct
dimensions for the skip connections, as done in [6]. We use
the same settings for the filter pruning approach but with an

opposite network size evolution. The growing/pruning starts
at iteration 10000 and we then have 12 grow/prune steps with
an interval of 2500 iterations [6]. Growing/pruning finishes by
the middle of training. For data selection, we set o = 50% as
in the original work [16] but we also study the performances
of lower selectivity ratios.

C. Experimental settings

We use TensorFlow to implement all the studied approaches.
Our code will be available after publication. We perform
our experiments on a MacBook Pro with an Apple M2
Max processor and 64 GB of RAM. All the trainings were
executed on CPU. To measure energy consumption, we used
the “powermetrics”™® command. The latter is a pre-installed
tool on macOS that gathers many statistics as CPU usage and
power consumption.

IV. TEACHER STUDENT EXPERIMENTAL RESULTS

In this section, we analyze the results of the teacher student
experiments averaged over 300 runs. We plot the training
curves in Figure 1. Dividing the train set into batches gave
curves with some variations. For more clarity, we plot a
smoothed version of the curves in Figure 2 obtained with the
SciPy implementation of the Savitzky-Golay algorithm [30].

— Baseline big
GradMax
—— Data selection 50%
—— Pruning with ER
— Baseline small
\ —— Data selection 40%
\ Data selection 30%

Train loss
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Fig. 1. Training curves averaged over 300 runs of the teacher student test
before smoothing.

= ' Baseline big
| GradMax
‘ —— Data selection 50%
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| — Baseline small
{ —— Data selection 40%
Data selection 30%
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Fig. 2. Training curves averaged over 300 runs of the teacher student test
after smoothing.

3https://www.unix.com/man-page/osx/1/powermetrics/



TABLE I
ENERGY MEASUREMENTS FOR THE TEACHER STUDENT TESTS

Approach Energy consumption (joule)
Baseline small 17.94
Data selection 30% 6.03
Data selection 40% 8.85
Data selection 50% 10.21
GradMax 18.41
Unstructured pruning 20.58
Baseline big 18.47

We observe that all the approaches outperform baseline
small. We mainly notice a very similar evolution between
baseline big and the data selection with 50% and 40% rates.
We notice a small loss increase with a ratio of 30%. Mean-
while, ratios of 20% and 10% can’t be considered for this
task as they cause an important increase in loss and harm the
learning process.

For the growing technique, the number of neurons increases
as the training progresses and the resulting training loss grad-
vally decreases until it becomes lower than that of pruning.
After iteration 2500 (last growth step), GradMax outperforms
pruning, which gives the highest final training loss among
all the studied approaches despite starting the training with
a bigger model. This can be related to the small size of the
network. Indeed, it is well known that pruning works better
on over-parameterized architectures.

Table I contains the average training energy consumption
for all approaches. We observe that data selection offers the
highest energy gains and that the lower the selection rate,
the lower the energy consumption. GradMax offers a smaller
energy consumption when compared to baseline big but the
savings brought by the approach are limited. Indeed, even the
energy consumption of baseline small and baseline big are
close due to the small size of the networks used in experiments.
Pruning provides a higher energy consumption than baseline
big as it starts with a larger model and consumes energy for
executing the pruning step at initialization. Moreover, unstruc-
tured pruning only sets pruned weights to zero and doesn’t
shrink dimensions. Therefore, it is necessary to use specialized
hardware or libraries to optimize the sparse matrices generated
by unstructured pruning to obtain energy savings.

V. IMAGE CLASSIFICATION EXPERIMENTAL RESULTS

As in [6], we consider three combinations of datasets and
CNNs: (WRN-28-1, CIFAR-10), (WRN-28-1, CIFAR-100)
and (VGG-11, CIFAR-10) [28], [29], [31]. All the results
that we provide in this section are averaged over 3 runs. As
unstructured pruning requires specialized hardware or libraries
to take advantage of sparse matrices to show energy gains [12],
we do not consider this approach in the following tests. We
focus on the structured technique presented in section I1I-A4.

A. Results on WRN-28-1

We compare the final test accuracy, the training time and
training energy consumption for all the studied approaches, as
well as baseline big and baseline small.

— Baseline big
GradMax

— Data selection 50%

= Filter pruning

10° —— Baseline small

Train loss

0 10000 20000 30000 40000 50000 60000 70000 80000
Iterations

Fig. 3. Training loss curves for (WRN-28-1, CIFAR-10).

—— Baseline big
GradMax
— Data selection 50%
— Filter pruning
— Baseline small

Test loss

Fig. 4. Test loss curves for (WRN-28-1, CIFAR-10).

We plot the training and test loss curves respectively in
Figure 3 and 4 for (WRN-28-1, CIFAR-10). We also summa-
rize the results in Table II for the configuration (WRN-28-1,
CIFAR-10) and in Table III for the configuration (WRN-28-1,
CIFAR-100).

We observe that the data selection technique brings the
highest energy gains as it reduces the costs by half. Moreover,
since the random selection has a negligible overhead, the
energy gain is almost equal to the selectivity ratio. We observe
that data selection causes an accuracy decrease and presents
higher train and test losses than the other approaches. It
however leads to a lower test loss by the end of training (Figure
4). We tried smaller selectivity ratios to find out how low it
could be. We observed that using a rate of 40% increases the
loss. A ratio of 30% leads to an even higher loss and harms
the learning process. It is thus better to keep the selectivity
above 50% for this configuration.

GradMax provides the closest accuracy to baseline big on
both datasets with the WRN architecture. In terms of energy
consumption, it provides limited gains because of the growing
schedule. Indeed, the growing stops in the middle of training



TABLE II
FINAL TEST ACCURACY AND ENERGY CONSUMPTION OF THE DIFFERENT APPROACHES FOR (WRN-28-1, CIFAR-10)

Final Test Training Training Energy gains
Approach Test accuracy | accuracy loss time energy consumption
(minutes) (Joule)
Baseline small 90.02% 3.09% 202 234844.92 49.87%
Data selection 50% 90.41% 2.67% 178 245385.68 47.62%
GradMax 91.25% 1.77% 305.33 398728.29 14.89%
Filter pruning 90.36% 2.72% 280 323517.64 30.94%
Baseline big 92.89% / 345 468462.06 /
TABLE III
FINAL TEST ACCURACY AND ENERGY CONSUMPTION OF THE DIFFERENT APPROACHES FOR (WRN-28-1, CIFAR-100)
Final Test Training Training Energy gains
Approach Test accuracy | accuracy loss time energy consumption
(minutes) (Joule)
Baseline small 63.66% 8.22% 197.67 234298.18 50.03%
Data selection 50% 65.63% 5.38% 178.33 242617.88 48.25%
GradMax 66.53% 4.08% 310.67 404455.93 13.74%
Filter pruning 64.35% 7.22% 264.67 319291.57 31.90%
Baseline big 69.36% / 338.33 468855.34 /

and thus the second half of the process is done with the size
of baseline big.

Pruning allows higher energy gains than GradMax as half
the training is done with the size of baseline small. Restricting
the prunable layers due to the skip connections of WRN
however limits the gains. Pruning achieves a limited accuracy
improvement when compared with baseline small, which is
consistent with the results of [32]. The accuracy achieved by
pruning is higher, but we might have hoped that it would have
taken better advantage of the weights inherited from the bigger
architecture. We also observe that the training curve of pruning
(Figure 3) is very similar to baseline big at the beginning of
training but as filters are removed, it gradually follows the
curve of baseline small.

B. Results on VGG-11

We provide for each technique, the final test accuracy, the
training time and training energy consumption in Table IV.
As for the previous network, data selection allows to reduce
the costs by half, as we use a selectivity rate of 50%. In
terms of accuracy, the data selection technique performs worse
on VGG-11 and provides the lowest accuracy among studied
approaches.

GradMax provides a close accuracy to baseline big. Since
we shrink all the layers of the VGG network, the impact of
growing on energy is higher. The gains remain limited because
the growing schedule provided in the original paper [6] uses
an architecture with the baseline big size for half the training.

Pruning allows the highest energy gains that are about 68%
since we reduce the dimensions of all layers. It achieves a close
test accuracy to baseline big and thus performs better on VGG-
11. This suggests that the size of the model has an important
impact on the effectiveness of the approach. Since VGG-11
contains more parameters, the pruning approach works better.

VI. CONCLUSION

In this work, we compared the impact of data selection,
pruning and growing on the training energy consumption and
on the prediction quality. We first studied the behavior of
the three techniques on a synthetic dataset before performing
experiments on image classification benchmarks.

We observed that data selection through random batch
skipping achieves high energy savings, as it provides gains
correlated with the selectivity ratio. It however causes an ac-
curacy degradation. Growing through the GradMax technique
allows to keep a high accuracy but provides limited energy
gains as the network reaches the size of baseline big. To
make this technique more efficient, it would be interesting
to adapt the growing schedule. Since unstructured pruning
requires specialized hardware or libraries to show energy
gains, we mainly focused on the structured type for the
image classification experiments. We observed that structured
pruning allows significant energy gains, but that its impact on
accuracy varies from an architecture to another. It is indeed
more suited for larger models.

The effectiveness of each technique varies according to the
architecture size and to the hyperparameters of the method
itself, as we observed with the growing schedule and the
data selection ratio. Moreover, looking for higher energy gains
generally leads to a higher accuracy loss. The applicability
of each technique depends on the requirements of the task.
If keeping a high prediction quality is more necessary than
having high energy saving, growing can be a good choice. Data
selection is a good alternative when a decrease in accuracy is
allowed to obtain high energy gains, while pruning is more
suited for large architectures for which its impact on accuracy
remains small. In our future work, it would be interesting to
compare the three techniques on a larger set of architectures
and datasets.
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