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Abstract—In this paper, we address the energy efficiency of
neural networks training through data selection techniques. We
first study the impact of a random data selection approach that
renews the selected examples periodically during training. We
find that random selection should be considered as a serious
option as it allows high energy gains with small accuracy losses.
Unexpectedly, it even outperforms a more elaborate approach in
some cases.

Our study of the random approach conducted us to observe
that low selectivity ratios allow important energy savings, but
also cause a significant accuracy decrease. To mitigate the effect
of such ratios on the prediction quality, we propose to use a
dynamic selectivity ratio with a decreasing schedule, that can be
integrated to any selection approach. Our first results show that
using such a schedule provides around 60% energy gains on the
CIFAR-10 dataset with less than 1% accuracy decrease. It also
improves the convergence when compared to a fixed ratio.

Index Terms—Neural networks, random data selection, dy-
namic selectivity ratio, energy efficiency.

I. INTRODUCTION

Deep neural networks (DNNs) bring state-of-the-art perfor-
mances in many domains as computer vision [1]–[4] and natu-
ral language processing [5]–[8]. Two main reasons are behind
this high level of DNNs: the increasing number of parameters
and the availability of large datasets. These two factors that
contribute to the improvement of DNNs performances are also
the two main reasons behind their high energy consumption.
The latter has a worrying environmental impact [9], [10] and
is a major obstacle to neural network integration to resource-
constrained devices. Such an integration would be beneficial
as it would avoid the use of Cloud [11], [12] and as it would
also allow on-device training [13].

Many studies are conducted to enhance the energy efficiency
of neural networks, mostly by optimizing the model size.
For instance, pruning approaches aim to reduce the model
size by removing non-important parameters [14]–[18] while
quantization methods seek to reduce the precision by rep-
resenting the weights, activations or gradients on a smaller

number of bits [19]–[22]. Other approaches build efficient
models from scratch [23]–[25] and even automate the process
through Neural Architecture Search (NAS) [26]–[28].

Instead of optimizing the model size, it is possible to reduce
the number of training examples through data selection. The
latter has been quite studied in the literature [29]–[34] but most
works use this approach to accelerate training. Few studies
[13], [35] however show that data selection can allow high
energy savings during the training phase.

Most data selection techniques are based on algorithms
aiming to find informative examples. If such techniques can
be beneficial to keep a high accuracy, they impose additional
computations which can limit energy gains. On the other hand,
random selection brings the smallest overhead but is usually
seen as a naive baseline that any selection strategy should
outperform. The work in [13] shows the opposite, as it proves
that skipping batches randomly can achieve a high accuracy
and that it provides a random sampling noise that can be
helpful to escape saddle points.

The result of [13] and parallel studies on randomness
positive effects on learning [36], [37] motivated us to further
study the random data selection. Instead of skipping batches,
we use a finer granularity by selecting individual examples.
We compare the random approach to an informative selection
based on loss history [38], both in terms of accuracy and
training energy consumption, that we measure on the Nvidia
Jetson Nano platform [39].

For both the random and loss-based techniques, we explore
in detail the effect of the selectivity ratio or the percentage
of examples to keep. We find that smaller ratios allow con-
siderable energy gains, but also lead to lower accuracies. To
mitigate the negative effect of small ratios on accuracy and
to take advantage of their ability to reduce training costs, we
propose to use a dynamic selectivity ratio to progressively
decrease the number of examples used for training. This new
schedule is an alternative to the usual static ratio. It can be



combined with any data selection technique with only few
changes. With such a dynamic ratio, we use more examples
in early epochs to allow quick accuracy gains before progres-
sively reducing the subset size to maximize energy savings. We
implement an exponential schedule and we present the results
of our preliminary experiments. The latter show that using a
dynamic ratio improves the convergence when compared with
a fixed rate and also provides a high accuracy and significant
energy savings.

Our paper is organized as follows: we first review some
of the previous work on data selection in Section II. Then
we discuss the first part of our work, namely the study of the
random data selection approach. We describe the implemented
random technique and the loss-based method [38] that we use
for comparison in Section III. We also introduce the results
of both approaches in terms of accuracy and training energy
consumption. Afterward, we move to the second part of our
work on the dynamic selectivity ratio. In Section IV, we
describe the decreasing schedule approach that we propose,
as well as the results of our preliminary tests. We summarize
our findings, and we discuss future work in Section V.

II. RELATED WORK

Many work in the literature [29]–[35], [40], [41] studied the
possibility of training neural networks using only a part of the
dataset. Indeed, all examples don’t have the same importance
and impact on learning. A data selection approach allows to
choose on which examples the training is performed. It can
be either adaptive or non-adaptive. We describe both types in
this section, but we focus on the adaptive selection in the rest
of the paper.

Non-adaptive approaches use the same subset of examples
during all the training. Since the selection is performed only
once before training, non-adaptive techniques only add a small
overhead but need to perform a very careful selection since
no example renewal is allowed and excluding important data
can harm accuracy. Among non-adaptive selection strategies,
the approach of [32] provides two scores to evaluate the
importance of examples: the expected loss gradient norm that
can be used at initialization and the norm of the error vector,
an approximation of the first score, that can be used after few
epochs. The authors of [30] don’t provide a new selection
criteria, but rather a new framework to select data. They use a
small model as a proxy to select a training subset (by applying
existing data selection methods) for a bigger model in order
to lower selection costs.

Adaptive data selection renews the subset of selected ex-
amples periodically during training. The selection process can
involve importance sampling [29], [31] or gradient computing,
as in the work of [35] that provides a technique to select
the subset that matches best the gradients of the full training
or validation set. Adaptive data selection allows to adapt the
selected examples according to the model’s prediction quality
but imposes higher selection costs as it is repeated multiple
times during training.

Data selection has been mainly used to accelerate training
[29], [30], [38]. Only few approaches measured its impact on
energy [13], [35]. Specifically, the work in [13] shows that a
random data selection, through a 50% random batch skipping,
allows to reduce training energy consumption by half while
keeping a high accuracy. This result is very interesting as
the random selection imposes the smallest selection overhead,
which is beneficial for energy. In this paper, we further study
the possibility of applying a random approach and its impact
on the energy/accuracy trade-off. We use a finer granularity
than [13] as we select individual examples instead of batches
and we study various selectivity ratios (percentage of examples
to keep) while the previous work only uses a value of 50%.

The work in [13] is not the only study that highlights
the usefulness of randomness for neural networks training.
For instance, the randomness of Stochastic Gradient Descent
(SGD) helps the algorithm to escape saddle points [36].
The work in [37] shows that pre-training a neural network
with random labels often accelerates its training (in terms of
convergence) on another task with random or real labels and
rarely causes the opposite effect. Finally, a recent study [42]
shows that a random weight pruning at initialization, also seen
as a naive baseline, achieves close performances to the dense
equivalent model when appropriate layer-wise sparsity ratios
(percentage of weights to keep in every layer) are used. In the
first part of our paper, we study another aspect of randomness,
namely the effects of a random choice of a subset of training
examples.

All the works that we studied on data selection use a fixed
value for the selectivity ratio. The authors of [35] propose a
warm-up mechanism which consist in performing the training
on the full dataset for a given number of epochs and then apply
data selection for the rest of the training. They observed that
such a warm-up improves convergence. The selectivity ratio is
thus applied later in training but is not modified dynamically.

A dynamic size of the training set size has been explored
in parallel work on curriculum learning, where examples
are ordered according to their difficulty [43]. Increasing or
decreasing, or even cyclical training set sizes [44] can be
used in curriculum learning. The authors of [45] highlight
the benefits of an increasing training set size, even with
random curriculum (examples ordered randomly). We further
investigate the dynamic training set size in the second part of
our paper, where we combine it with data selection and we
formulate it within a decreasing schedule.

III. RANDOM VS LOSS-BASED DATA SELECTION

Through this section, we study the impact of random
data selection both in terms of accuracy and training energy
consumption. In what follows, we first describe the random se-
lection method as well as the loss-based informative approach
[38] that we use for comparison. Then, we conduct a series
of experiments to study the behavior of the random selection
strategy.



TABLE I
FINAL TEST ACCURACY AND TRAINING ENERGY CONSUMPTION ON CIFAR-10

Selectivity Final Test Training Training Energy gains
Approach ratio Test accuracy accuracy decrease time energy consumption

(Joule)
Random selection 20% 87.22% 4.52% 1 h 56 48954.84 77.56%

40% 89.7% 1.81% 3 h 37 92018.34 57.83%
60% 90.39% 1.05% 5 h 26 136184.40 37.58%
80% 90.61% 0.81% 7 h 17 180286.38 17.37%

Loss-based selection 20% 89.27% 2.28% 2 h 55 68613.12 68.55%
40% 90% 1.48% 4 h 34 111174.9 49.05%
60% 90.94% 0.45% 6 h 14 150146.76 31.18%
80% 90.83% 0.57% 7 h 44 185740.14 14.87%

All dataset 100% 91.35% / 8 h 46 218184.78 /

A. Solutions description

To train a DNN, the dataset is divided into batches. In
every training epoch, a forward phase and a backward phase
are performed on each batch before updating the model’s
weights. In a usual training, all the examples of the batch
are considered. We study a random selection strategy where
only a subset of the batch, selected randomly, is considered
for the forward and backward phases. This strategy involves
two hyperparameters: the selectivity ratio S that defines the
percentage of examples to keep and the selection frequency R
that defines after how many epochs the selected examples are
renewed. Indeed, we mainly study the random selection in an
adaptive scheme.

Throughout the paper, we compare the random approach
to an informative technique, based on loss history to select
examples [38]. The latter aims to accelerate training by only
applying the backward phases on examples with a high loss.
To do so, additional forward phases (selection forward phases)
are performed to compute the loss of every example. This
technique keeps a history of the last losses and computes
for every example the percentile that its loss represents with
respect to the loss history. The selection probability of an
example is its corresponding percentile raised to a power β,
representing the selectivity. We also renew the subset every R
epochs.

We specifically compare the random approach to the loss-
based one [38] as both techniques perform the selection with
simple criteria. Moreover, the loss-based technique is not
very costly as it only performs additional forward phases and
doesn’t require further computations as gradients.

B. Experimental settings

Architectures and datasets: We conduct our experiments
on the ResNet-20 architecture [4]. We consider the CIFAR-
10 and CIFAR-100 datasets [46]. Both contain 50000 training
examples and 10000 examples in the test set. They contain
images with a size of 32x32. CIFAR-10 contains 10 classes,
while CIFAR-100 gathers 100 classes.

In terms of hyperparameters, we follow the configuration
in [4]. We set the number of epochs to 160, the batch size
to 128 and we use the SGD optimizer with a 0.9 momentum
and a weight decay of 1e-4. For the learning rate, we set

it at 0.1 at the beginning of the training and we divide it
by 10 at the epochs 80 and 120 as recommended by [4].
Moreover, we follow [13] for the preprocessing of the two
datasets. We apply two data augmentation techniques: random
crop and random horizontal flip before normalizing. Finally,
as in the implementation of [47], we use the Kaiming Normal
initialization [48].

We use the PyTorch Framework [49] to implement all the
studied approaches. Our code will be shared after publication.

Evaluation metrics and training environment: To eval-
uate the performances of the selection approaches, we first
consider their test accuracy. We also measure the training
time and the training energy consumption. For the hardware
platform, we use the Nvidia Jetson Nano with 4GB of RAM
[39], to simulate a resource-constrained environment. We use
the Tegrastats command, included in the device system, to
measure energy. The overall energy consumption is hence
deduced based on the training time and the average power
consumption given by the Tegrastats command. For the ex-
periments targeting hyperparameter tuning, measuring energy
is not necessary. Therefore, we use a server, instead of the
Jetson Nano to accelerate training. The server contains an Intel
Xeon Gold CPU, 64 GB of RAM and uses Ubuntu 20.04 as
an operating system.

C. Experimental results

We present in the following the results of our experiments
on CIFAR-10 and CIFAR-100. Through our tests, we vary the
value of the selectivity ratio S to find out how low it can be.
For the update frequency R, the values 1, 2 and 3 were studied
in the original work of the loss-based approach [38]. The
results show that setting R to 3 is a good option as it allows
to keep a high accuracy and it brings a significant training
speed up. Therefore, we set R to 3 in our first experiments.
We study the usage of other values further in the section.

1) Results on CIFAR-10: On the CIFAR-10 dataset, we
apply 4 selectivity ratios: 20%, 40%, 60% and 80% for both
the random and loss-based [38] approaches. We use an update
frequency R = 3 as in [38]. We report the final test accuracy,
training time and training energy consumption in Table I where
we compare both approaches to a standard training on the
entire dataset.



TABLE II
FINAL TEST ACCURACY AND TRAINING ENERGY CONSUMPTION ON CIFAR-100

Selectivity Final Test Training Training Energy gains
Approach ratio Test accuracy accuracy decrease Time energy consumption

(Joule)
Random selection 20% 59.92% 11.15% 1 h 54 47855.28 78.04%

50% 65.02% 3.59% 4 h 31 112013.64 48.60%
Loss-based selection 20% 59.01% 12.5% 2 h 54 68312.46 68.65%

50% 64.86% 3.83% 5 h 37 134360.34 38.34%
All dataset 100% 67.44% / 8 h 42 217918.20 /

For both approaches, we observe that as the selectivity ratio
increases, the energy gains become smaller while the final test
accuracy generally improves. We also notice that the ability
of data selection to reduce the training time leads to a smaller
energy consumption.

Moreover, we observe that the loss-based selection
outperforms the random strategy in terms of final accuracy.
However, for ratios higher than 20%, the accuracies of both
techniques remain close. The energy gains brought by the
random approach are higher than those of the loss-based one,
as the random strategy only imposes a very small selection
overhead while the loss-based one performs additional
forward phases to select examples. Particularly, for 40%
ratios, the difference in energy gains between the two
approaches is around 10% while the final test accuracies of
the two approaches are very close, which suggests that the
random strategy can bring an interesting trade-off. When the
selectivity ratio is above 60%, the energy gains are smaller,
as most examples are considered for training.

2) Results on CIFAR-100: On the CIFAR-100 dataset, we
apply 2 selectivity ratios: 20% and 50% for both the random
and loss-based approaches. We set the update frequency to
R = 3, as for the previous dataset. We report the final test
accuracy, training time and training energy consumption in
Table II.

On CIFAR-100, we observe that the random strategy out-
performs the loss-based technique with the considered hyper-
parameters. Indeed, the loss-based strategy performs better on
datasets with higher redundancies, as CIFAR-10 [38]. Since
CIFAR-100 contains fewer examples per class, it is a harder
task for this approach [38]. The random selection also causes
a higher accuracy loss on CIFAR-100, but it remains less
sensitive than the loss-based strategy.

We notice that the accuracy decrease when a 20% ratio
is applied is higher than the one observed with CIFAR-10.
Therefore, it is better to keep the selectivity ratio higher on
CIFAR-100 to limit the impact of data selection on accuracy,
as it is a more challenging dataset. With a 50% ratio,
the accuracy is close to an entire dataset training and the
energy gains brought by the random approach are around 50%.

3) Impact of update frequency: In the previous experi-
ments, we set the update frequency R to 3, a value that allows
significant energy gains and moderate accuracy decrease. We

perform additional experiments on CIFAR-10 and CIFAR-
100 with R set to 5 or 10 to study the impact of less
frequent updates. We also perform experiments with non-
adaptive versions of the loss-based and random approaches,
in which we select a subset at the first epoch that we keep
unchanged for the rest of the training (R > number of epochs).
For all these tests, we use a selectivity ratio of 20%. We report
the final test accuracy in Table III.

We find that increasing the values of R leads to higher
accuracy losses. Moreover, we notice an important accuracy
degradation when the two techniques are applied in non-
adaptive setting. For the loss-based approach, the original
work [38] mentions that the loss varies through training. If
an example gives a low loss at a given time in training and is
then ignored for many epochs, its loss will increase [38], [50].
Therefore, it is necessary to recompute the loss frequently in
order to obtain accurate selection probabilities with the loss-
based approach.

This result also suggests that the effectiveness of the
random approach can be related to the frequent subset
update. Indeed, the results of Table III show that a random
non-adaptive technique is not an option to consider, as it
leads to an important accuracy deterioration. Therefore, the
frequent updates of selected examples is a key element behind
the effectiveness of the random approach.

4) Impact of low selectivity ratios: We observed in the pre-
vious experiments that it is possible to keep the accuracy loss
moderate despite using small selectivity ratios. On CIFAR-
100, the accuracy decrease is more important for a 20% ratio,
but the model is still able to learn with these settings. In the
following, we perform additional experiments to find out how
low the selectivity ratio can be.

We apply selectivity ratios of 5% and 10% with an update
frequency of R = 3 on both dataset. We summarize the results
in Table IV.

We observe that the 5% and 10% selectivity ratios lead to an
important accuracy loss. Interestingly, the loss-based technique
is much more sensitive than the random selection. The random
approach achieves higher accuracies, which shows that the
model still learns under these settings. On the other hand, the
loss-based technique provides very small accuracies that are
around 10% which shows that using this approach with such
small ratios harms the learning process.



TABLE III
IMPACT OF UPDATE FREQUENCY

Dataset Approach Update Frequency Final Test accuracy
CIFAR-10 Random R=3 87.77%

Random R=5 85.77%
Random R=10 82.12%
Random R > number of epochs 68.65%

CIFAR-10 loss-based R=3 89.09%
loss-based R=5 87.68%
loss-based R=10 85.6%
loss-based R > number of epochs 66.85%

CIFAR-100 Random R=3 60.13%
Random R=5 57.62%
Random R=10 48.91%
Random R > number of epochs 27.39%

CIFAR-100 loss-based R=3 57.55%
loss-based R=5 55.73%
loss-based R=10 50.09%
loss-based R > number of epochs 24.61%

TABLE IV
IMPACT OF LOW SELECTIVITY RATIOS

Dataset Approach Selectivity ratio Final Test accuracy
CIFAR-10 Random 5% 78.08%

Loss-based 5% 10%
CIFAR-100 Random 10% 52.73%

Loss-based 10% 13.69%

IV. TOWARDS A NEW DATA SELECTION APPROACH BASED
ON A DYNAMIC SELECTIVITY RATIO

In the previous section, we observed that using small
selectivity ratios leads to high accuracy drops. Therefore, such
ratios can’t be considered despite allowing important energy
gains during training.

To mitigate the accuracy loss caused by small ratios, we
propose a simple yet efficient technique that can be inte-
grated with any adaptive data selection method with only few
additional lines of code. This technique consists in using a
decreasing selectivity ratio in order to perform training on
large subsets in early epochs and use very small selectivity
ratios later in training. In what follows, we present one
possible implementation of this decreasing schedule, as well
as our first experiments.

A. Proposed solution for the dynamic selectivity ratio

We propose to replace the fixed selectivity ratio by the usage
of a formula allowing to decrease the size of the selected
subset all along training. Since bigger ratios lead to higher
accuracies, we propose to use these values in first epochs to
improve prediction quality and give a good start to training.
In the later epochs, we propose to decrease the subset size in
order to maximize the energy gains.

This decreasing selectivity ratio allows to divide the training
process into two phases. The first phase aims to maximize ac-
curacy gains through the usage of high ratios but brings limited
energy gains. The second phase targets higher efficiency by
using small subset sizes. The accuracy loss that such sizes

can cause is mitigated by the good start given by the first
phase.

The dynamic selectivity ratio can be implemented through
different decreasing schedule. We present an example using
an exponential evolution:

St = S0 × e−α⌊ t
R ⌋ (1)

where t is the current epoch, S0 is the initial selectivity ratio
and R is the update frequency. The selectivity ratio is only
decreased when the subset is updated (every R epochs). The
parameter α defines how fast the selectivity ratio is decreased.
The value of α can be chosen either by fixing the target
average selectivity or by fixing the target final selectivity ratio
SN (value that the schedule should lead to at the end of
training).

We summarize the few modifications to make to the usual
training procedure to integrate an adaptive selection approach
with a decreasing selectivity ratio in Algorithm 1. As in a
usual training, the neural network is trained for N epochs on
a dataset D. Every R epochs, the selectivity ratio St is updated
and a new subset of examples is selected according to a given
approach. We perform the forward and backward phases on
the selected examples before updating the model.

B. Experimental Results

In this section, we present the results of our first tests of
the decreasing selectivity ratio. We use the experiment settings
and the training environment described in Section III-B. As
we observed in Section III-C4 that the loss-based approach is
more sensitive to small selectivity ratios, we consider it for the



TABLE V
FINAL TEST ACCURACY AND ENERGY CONSUMPTION OF THE DECREASING SELECTIVITY RATIO ON CIFAR-10

Approach Test accuracy Test Accuracy Training energy Energy gains
decrease consumption (joule)

Loss-based with decreasing selectivity ratio 90.56% 0.86% 88248.06 59.55%
S0 = 80% and α = 0.05

R = 3
Loss-based with fixed equivalent average selectivity ratio 89.63% 1.88% 86900.16 60.17%

S = 28.34% and R = 3
All dataset 91.35% / 218184.78 /

Fig. 1. Comparing the test accuracy evolution according to epochs for a
training with a decreasing selectivity ratio to training with a fixed average
ratio and to training on all the dataset.

Fig. 2. Comparing the test accuracy evolution according to minutes for a
training with a decreasing selectivity ratio to training with a fixed average
ratio and to training on all the dataset.

Algorithm 1 Training procedure with adaptive data selection
and decreasing selectivity ratio

Inputs: Dataset D, Number of epochs N , Update frequency
R, Initial selectivity ratio S0, α
for t=1 to N do

if t % R == 0 then
update selectivity ratio St = S0 × e−α⌊ t

R ⌋

renew the subset: subset = selection approach (D, St)
end if
perform forward propagation on subset
perform backward propagation
update weights

end for

next experiments to evaluate the effectiveness of the dynamic
selectivity ratio. The proposed schedule remains general and
applicable to any other selection technique.

On the CIFAR-10 dataset, we use an initial selectivity ratio
S0 = 80% and we set α = 0.05 which leads to a final
selectivity ratio of SN = 5.65%. These settings provide
an average selectivity of Savg = 28.34% (average of all
selectivities generated by the schedule). We compare a training
using the decreasing ratio to training on the entire dataset
and to the usage of a fixed selectivity ratio set to Savg . We
plot test accuracy evolution according to epochs and minutes
respectively in Figure 1 and Figure 2. We summarize the
energy consumption measured on the Nvidia Jetson Nano
platform and final test accuracies in Table V.

We observe that the dynamic selectivity ratio schedule
reaches a higher final test accuracy than the fixed ratio. The
gap between the two techniques remains small as they use
the same amount of data but distribute it differently during
training. However, using a decreasing ratio allows a faster
convergence and mitigates the accuracy loss caused by the
small selectivity ratios used in later epochs. In terms of energy
consumption, using the loss-based strategy with a decreasing
schedule allows high energy gains that are around 60%. Since
the accuracy loss is less than 1%, this technique provides
an interesting trade-off. The energy gains remains similar
with the loss-based technique with a fixed average ratio, as
both techniques use the same amount of data. Furthermore,
we observe from Figure 2 that the loss-based selection with
a dynamic ratio leads to a higher accuracy in a smaller



training time when compared with a standard training on all
the dataset. This approach is therefore interesting when the
training resource budget is limited, which is the case in power-
constrained devices.

V. CONCLUSION

In this paper, we first studied the impact of random data
selection on both accuracy and training energy consumption.
We observed that a random adaptive approach allows signif-
icant energy savings while keeping a high accuracy when
appropriate selectivity ratios are applied. We showed that
the effectiveness of random selection is due to the frequent
update of the selected subset. Our work shows that the most
naive baseline can be competitive when it is employed in
the correct settings. In our future work, we aim to explore
the combination of this random technique with informative
selection approaches to further limit the accuracy decrease.

In the second part of our paper, we proposed a new
dynamic selectivity ratio with a decreasing schedule. Our first
results show that this simple technique provides an interesting
accuracy/energy trade-off and improves the convergence when
compared with a fixed ratio. We aim to further study this
promising approach by exploring other schedules and various
values for the initial and target selectivity ratios. We also plan
to perform a larger number of experiments on different datasets
to better understand the behavior of this approach.
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