On data selection for the energy efficiency of neural networks: Towards a new solution based on a dynamic selectivity ratio
Résumé
In this paper, we address the energy efficiency of neural networks training through data selection techniques. We first study the impact of a random data selection approach that renews the selected examples periodically during training. We find that random selection should be considered as a serious option as it allows high energy gains with small accuracy losses. Unexpectedly, it even outperforms a more elaborate approach in some cases.
Our study of the random approach conducted us to observe that low selectivity ratios allow important energy savings, but also cause a significant accuracy decrease. To mitigate the effect of such ratios on the prediction quality, we propose to use a dynamic selectivity ratio with a decreasing schedule, that can be integrated to any selection approach. Our first results show that using such a schedule provides around 60% energy gains on the CIFAR-10 dataset with less than 1% accuracy decrease. It also improves the convergence when compared to a fixed ratio.
Origine | Fichiers produits par l'(les) auteur(s) |
---|