

Exploring the fluxotype of the E. coli Y-ome using high-resolution fluxomics

Cécilia Bergès, Edern Cahoreau, Pierre Millard, Brice Enjalbert, Mickael Dinclaux, Maud Heuillet, Hanna Kulyk, Lara Gales, Noémie Butin, Maxime Chazalviel, et al.

► To cite this version:

Cécilia Bergès, Edern Cahoreau, Pierre Millard, Brice Enjalbert, Mickael Dinclaux, et al.. Exploring the fluxotype of the E. coli Y-ome using high-resolution fluxomics. Séminaire TBI Toulouse, Mar 2023, Toulouse (31000), France. hal-04282012

HAL Id: hal-04282012 https://hal.science/hal-04282012v1

Submitted on 13 Nov 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Exploring the fluxotype of the *E. coli* Y-ome using high-resolution fluxomics

@metatou

A robust and integrated workflow to measure high-resolution fluxotypes

Cécilia Bergès & <u>Edern Cahoreau</u>, Pierre Millard, Brice Enjalbert, Mickael Dinclaux, Maud Heuillet, Hanna Kulyk, Lara Gales, Noémie Butin, Maxime Chazalviel, Tony Palama, Matthieu Guionnet, Sergueï Sokol, Lindsay Peyriga, Floriant Bellvert, Stéphanie Heux and Jean-Charles Portais.

INTRODUCTION : Fluxomics and fluxotypes

Fluxomics :

Measures the actual rates of biochemical reactions in metabolic networks (i.e. the **Fluxome**). It measures the actual output of the integrated response of the gene-protein-metabolite interaction network and provides direct access to the cellular phenotype in a quantitative manner.

A number of applications :

- Microorganisms, plant cells & tissues, animal cells
- \cdot Systems biology
- Biotechnology
- \cdot Health, drug targeting

Fluxotype = Metabolic flux phenotype : the particular distribution of metabolic fluxes measured for a given strain under given physiological conditions

INTRODUCTION : ¹³C fluxomic analyses

¹³C targeted fluxomics example

¹³C targeted fluxomics example

INTRODUCTION : ¹³C fluxomic analyses

Different ¹³C exploitation approaches : Different levels of information and throughput :

How to go faster, deeper, stronger...

2. ¹³C-LABELING EXPERIMENT What do we need to improve : **Cells cultivation** Automated harvesting and sample preparation **1. EXPERIMENTAL DESIGN** ÷ Throughput • Optimization of : internal STD Supernatant NMR tubes Isotopic composition Robustness lsotopic measurements Cultivation & sampling protocols Interactivity (data <-> results <-> brain) Cell pellet Proteinogenic LC-MS vials Isodesign % label 1 amino acids Macrokinetics 🐛 data recording 6. STATISTICAL ANALYSIS W4M R **3. ISOTOPIC AND** PCA CLUSTERING Needs for a developpment of an Sample tracking METABOLOMICS Data storage intagrated fluxomics workflow : ANALYSES Í 4. DATA PC1 **5. FLUX CALCULATION** M₀ M₁ M₂ M₃ **Ouantification** of PROCESSING Carbon extracellular Flux map Data matrix isotopologues Corrected CIDs compounds Isocor ¹H-NMR MS Extracellular fluxes 1,06 1,13 1,07 0,78 0,76 0,76 Influx si Metexplore Viz Physiofit Model of the A->B+C B+C->D D+B->E+F metabolic . network (FTBL format

٠

۲

Application to the Fluxotyping of E.coli Y-ome

- 4 624 857 pdb
- 4 487 genes
- 4 234 protein-encoding genes
- 122 RNA genes
- 131 pseudogenes
- Unknown function protein encoding genes ?
 -> The Y-ome

- Does Y-ome genes have a role in metabolism activity ?
- Does they affect flux phenotype ?
- If yes, can we affect a potential role to these Y-genes ?

Databases used for selection and curation of y-genes : *Ecocyc, Uniprot*

High-resolution fluxotyping of the E. coli Y-ome

Robotic platforms

Cultivation, monitoring, sampling and preparation

IsoCor MS isotopic data correction

Physiofit Calculation of in/output fluxes from NMR data

A huge amount of data to process

- 198 fully controlled cultivations (pH, O2, growth)
- 1074 growth measurements points(OD)
- 1248 samples collected
- more than 20000 isotopic data measured
- 18612 fluxes were calculated for 198 flux maps

Targeted LC-MS/MS

Thermo LTQ Orbitrap

Targeted analysis on 15 Proteinogenic Amino acids ¹³C isotopic profiling

Bruker Ascend 800MHz – 5mm QPCI cryoprobe

Analysis of exometabolome Quantification of substrates and products and ¹³C enrichments

Influx_si Serial flux calculation

from a unique starting metabolic network model

Heux *et al.* Metab. Eng. 2014 , Millard *et al.* Bioinformatics 2019 Peiro *et al.* Appl. Environ. Microbiol. 2019, Sokol *et al.* Bioinformatics 2012

How to evaluate fluxotype results of the *E. coli* Y-ome?

How to evaluate this big data set ?

Data curation

- Statistical analyses (HC, PCA)
- Removal of outliers

-> Replication of strains of interest and control strains

Comparison of growth parameters between the *E. coli* Y-ome strains and the WT strain

	$\mu (h^{-1})$	qglc (mmol.gDW ⁻¹ .h ⁻¹)	Biomass yield (gDW ⁻¹ .mmol ⁻¹)	qace (mmol.gDW ⁻¹ .h ⁻¹)	
BW25113 (n = 4)	0.66 ±0.02	-6.41 ± 0.30	0.10 ± 0.01	2.29 ±0.24	
E. coli Y_ome (average of 180 strains)	0.57 ±0.06	-5.81 ±1.02	0.10 ±0.02	2.79 ±0.65	

Comparison of fluxotypes of y-ome strains with those of their parental strain

 \rightarrow For a large majority of mutant strains the flux data clustered with those of the WT strains

 \rightarrow Most of the deleted y-genes has a limited impact on the distribution of intracellular metabolic fluxes

Two mutant strains did not cluster with the WT strains : $\Delta ybjP \& \Delta ydcS$

Biological conclusion : Metabolic fluxes of Δ ydcS and Δ ybjP strains

Distribution of metabolic fluxes in Δ ydcS and Δ ybjP strains

- Modification of glycolysis/PPP partition
- Alteration in TCA cycle and related pathways (pdh, acetate / lactate excretion)
- ydcS : decrease in PPP utilization
- ybjP : rerouting around TCA/ malic enzyme, lactate production
- Overall increase in acetate production metabolism

Specific pathways? more a global rearrangement of flux distribution?

No direct link to a potential function... yet

12

Biological conclusion : Metabolic fluxes of Δ ydcS and Δ ybjP strains

Production of NADPH, NADH/FADH2 and ATP from the central carbon metabolism

ydcS : NADPH production rate
ATP production rate
ybjP : production rate of ATP
NADPH production

13

Evaluation of data size and quality in HT fluxomics investigations

HR fluxotyping workflow comparison :

	Leighty et al., 2013 [37]	Crown et al., 2015 [38]	Long & Antoniewicz 2019 [35]	Millard et al., 2014 [30]	Long et al., 2016 [39]	Heux et al., 2014 [22]	Haverkorn van Rijsewijk et al., 2011 [31]	This Paper		
E. coli strains	MG1655	MG1655	BW25113 ∆tpiA mutant	MG1655	BW25113	MG1655	BW25113 + Keio mutants	MG1655 + BW25113 + keio mutants		
Number of measured fluxotypes	1	1	1	1	1	20	190	198		
Number of different label input(s) by strain or condition	6	14	2	1	1	2	2	1		
Fluxome resolution = number of (net) fluxes by fluxotype	71	71	75	84	71	23	23	94		
Isotopic resolutive power = number of isotopic data/number of calculated fluxes	7.52	17.55	5.07	1.4	1.94	2.57	1.61	1	.13	
Total flux dimension = number of fluxes per fluxotype × number of fluxotypes	71	71	75	84	142	460	4370	18	,612	
Global flux precision = median RSD over the global dataset	12%	15%	7.80%	19%	23%	285%	14%	32%		
Global pathway precision = median RSD within specific pathways	S.A. (<i>n</i> = 1)	S.A. (<i>n</i> = 1)	S.A. (<i>n</i> = 1)	S.A. (<i>n</i> = 1)	S.A. (<i>n</i> = 1)	S.A. (<i>n</i> = 23)	S.A. (<i>n</i> = 23)	S.A. (<i>n</i> = 198)	biological replicates $(n = 20)$	
Glycolysis	1%	2%	4.20%	3%	3.50%	553%	7%	3%	1%	
ppp + edp	14%	11%	17%	131%	10%	41%	25%	24%	7%	
tca + gs	11%	19%	4.90%	20%	31%	795%	19%	40%	21%	
anaplerosis	122%	144%	87%	13%	1822%	7%	15%	42%	20%	
output fluxes	12%	25%	4.7%	15%	42.4%	426%	0%	10%	14%	

198 isotopically-resolved flux maps generated in 33 days 194 hrs of human time ~ 1hr / flux map

Resolution Information leve Throughput Nb of conditions/strains

New metrics introduced :

- **Isotopic resolutive power** = 1.13
- Total flux dimension = 18612

 \rightarrow HT and HR character of this workflow

•

ightarrow Compromise resolution / throughput

Conclusions - Persectives

HT & HR fluxotyping workflow :

- Significant improvements in the parallelization, automation and implementation of fluxomics in large-scale investigations
- Good level of flux precision / number of isotopic data collected

Y-ome investigation :

- The vast majority of the 180 mutations investigated has a fluxotype similar to the WT strain
- 2 interesting fluxotypes identified : Ydcs & Ybjp
- help annotation of gene functions -> EcoCyc referenced

Perspectives of developpements and applications

- Expending capacities of fluxotyping on other environment / carbon sources
- Opening to other organisms: Yeasts, other microorganisms, mammalian cells
- Opening to untargeted fluxomics and unknown organisms
- Integration of fluxomics workflow in an improved and integrated and ¹³C fluxomics workflow

Thanks for your attention

Article

Exploring the Glucose Fluxotype of the E. coli y-ome Using **High-Resolution Fluxomics**

Cécilia Bergès ^{1,2,†}, Edern Cahoreau ^{1,2,†}, Pierre Millard ¹, Brice Enjalbert ¹, Mickael Dinclaux ¹, Maud Heuillet ^{1,2}, Hanna Kulyk ^{1,2}, Lara Gales ^{1,2}, Noémie Butin ^{1,2,3}, Maxime Chazalviel ⁴, Tony Palama ^{1,2}, Matthieu Guionnet ^{1,2}, Sergueï Sokol ¹, Lindsay Peyriga ^{1,2}, Floriant Bellvert ^{1,2}, Stéphanie Heux ¹ and Jean-Charles Portais ^{1,2,3,*}

tbi insa Institut Nation Des Sciences Toulouses Toulouses

etaSys,

MDPI

Toulouse Biotechnology

INRA