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Abstract

In this paper, from the Born-Green-Yvon equations of the liquid-state theory, we formulate

two equivalent approaches for the calculation of the charge and density profiles of ionic fluids near

charged nonplanar surfaces. The contact theorems for the density and charge profiles are formulated

by the direct integration of this system of equations. Both theorems have nonlocal character. It

is shown that the contact value of the density profile for noncharged surfaces is characterized by

the bulk pressure and the surface tension. The obtained results are applied to spherical and and

cylindrical surfaces. It is shown that the contact theorem for the density profile coincides with the

recent results obtained by W. Silvester-Alcantara, D. Henderson and L.B. Bhuiyan (Mol. Phys.,

113, 3403, 2015)
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The contact theorems are one of the few exact results in the theory of the electrical double15

layer. They establish the exact expressions for the contact values of the density and of the16

charge profiles in the interface between an electrolyte and a charged electrode. The first17

contact theorem was formulated more than fourty years ago by D. Henderson, L. Blum and18

J.L. Lebowitz [1, 2] for the density profile in a planar electrical double layer formed by a19

primitive model of electrolyte and a uniformly charged planar hard electrode. According to20

their results, the contact value of the density profile is given by the sum of the bulk osmotic21

pressure P of the electrolyte and the Maxwell stress tensor contribution22

ρct =
∑
α

ρα

(
dα
2

)
= βP + β

εE2

8π
(1)

where ρα(z) are the density distribution functions for ions of type α at a normal distance z23

from the wall, dα are the ion diameters, β = 1/(kBT ) with kB the Boltzmann constant, T24

the absolute temperature, ε is the dielectric constant of the solvent, where E is the electric25

field and
εE

4π
= qs is the surface charge density per unit area on the wall.26

We note that in order to avoid the problem of electrostatic image effects between the27

electrode and the electrolyte, identical dielectric constant ε in the electrode and in the28

electrolyte was assumed. A little later, it was shown in [3] that a formal derivation of the29

contact theorem for the density profile can be obtained by the direct integration of the30

Born-Yvon-Green (BGY) [4, 5] equation between singlet and pair distribution functions31

for electrolytes in the presence of a charged electrode. In our previous papers [6–8], in32

the framework, of a similar approach based on the integration of the BGY equation, the33

contact theorem for the charge profile was formulated for the planar electrical double layer.34

In contrast to the contact theorem for the density profile, the contact value of the charge35

profile has a non local character and can be presented in the following form36

qct =
∑
α

eαρα

(
dα
2

)
= β

∑
α

e2α

∫ ∞

dα/2

ρα(z)
∂ψ(z)

∂z
dz + β

∑
α

eαPα (2)

where eα is the charge of the ion of type α, ψ(z) is the electrical potential defined as37

ψ(z) = −4π

ε

∫ ∞

z

q(z1)(z1 − z)dz1 (3)

where38

q(z) =
∑
α

eαρα(z) (4)
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is the charge profile, Pα is the bulk partial pressure for the ions of type α.39

For the symmetrical electrolyte with d+ = d− = d and e+ = −e− = e, the first term in40

Eq. (2) equals zero due to the electroneutrality condition. As a result, the contact theorem41

Eq. (2) reduces to the more simple form42

q

(
d

2

)
= βe2

∫ ∞

d/2

ρ(z)
∂ψ(z)

∂z
dz (5)

where ρ(z) is the density profile.43

From the analysis of the effects of the ionic size on the properties of the diffuse double44

layer, using experimental and computer simulations results for symmetrical electrolytes for45

small charge at the wall, the semi empirical local expression for the contact value q(d/2),46

the so called Fawcett-Henderson-Boda conjecture [9, 10] has been proposed. According to47

this expression48

q

(
d

2

)
= βe2

1

χ
PE (6)

where χ is the inverse Debye length.49

The connection between expressions (5) and (6) was the subject of discussions in [11, 12].50

In particular, it was shown that for a symmetrical electrolyte at small surface charge both51

expressions give similar results which are in good agreement with computer simulation data52

[11]. In [12], it has been established that expression (6) can be obtained from Eq. (5) as a53

result of two approximations. The first approximation is connected with the replacement in54

the integral in Eq. (5) of the density profile ρ(z) by its contact value Eq. (1). As a result55

qct
(
d

2

)
= βe2ρct

(
d

2

)
ψ

(
d

2

)
(7)

where ψ(d/2) is the potential at the surface. The second approximation is connected with56

the use of the linear Gouy–Chapman theory [13, 14] for the description of ψ(d/2).57

The generalization of the contact theorems for charged non planar surfaces is one of the58

challenges in the theory of the electrical double layer. In particular, after the formulation of59

the contact theorem for the density profile in the case of the planar double layer, relation (1),60

significant efforts have been focused on the generalization of this contact theorem for the61

double layers with spherical, cylindrical and more complex non planar geometries. We note62

that according to the Henderson-Abraham-Barker approach [15] the surface in the fluid can63

be considered as an additional particle in the infinite radius and infinite dilution limit. As64
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a consequence, the density profile can be obtained as the pair distribution function between65

this particle representing the wall in the limit and a fluid particle. It was also shown in66

[16, 17] that in order to take into account the surface curvature effect, a surface term should67

be added to the pressure in expression (1). This means that the excess chemical potential68

for the particle created can be presented in the form69

µex
i = PVi + γi

(
d

2
+Ri

)
Si (8)

where γi(r) is the surface tension defined as the surface part of the chemical potential, Vi is70

the volume accessible to the system, Si is the surface area of the curved wall. The subscript71

i = s or c denotes the spherical or cylindrical wall with the radius Ri = Rs or Ri = Rc72

respectively.73

We note that an expression similar to (8) was also used in the scaled particle theory74

(SPT) [18–20] for the description of the chemical potential of the scaled particle in the hard75

sphere fluid. As for the SPT, γi(d/2 + Ri) can be expanded around (d/2)/(d/2 + Ri). In76

a similar way, in the case of the hard sphere fluid near a spherical surface, Bryk et al. [21]77

obtained the following expression for the contact value of the density profile near a non78

charged wall (E = 0)79

ρE=0
s

(
d

2
+Rs

)
= ρHS

s

(
d

2
+Rs

)
= βPHS − 9η2

4π(1 − η)3(d/2)3

{
(1 + η)

d/2

Rs + d/2
− η

(d/2)2

(Rs + d/2)2

}
(9)

where is ρs is the total density distribution in the case of the spherical surface, where80

η = 1
6
πρd3 is the packing fraction of hard sphere fluid. As usual, in the SPT approach81

[18–20], the hard sphere pressure is given by the Percus-Yevick compressibility.82

Comparably to [21], the expression for the contact value of the density profile for the83

hard sphere fluid near a non charged cylindrical wall was obtained in the following form84

ρE=0
c

(
d

2
+Rc

)
= ρHS

c

(
d

2
+Rc

)
= βPHS − 9η2

4π(1 − η)3(d/2)3

{
1

2
(1 + η)

d/2

Rc + d/2

}
(10)

where is ρc is the total density distribution in the case of the cylindrical surface,85

We should note that in the case of ionic fluids near a non charged wall, the pressure P86

and the surface tension γi(r) will include also the corresponding Coulombic contributions.87
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The second aspect of the generalization of the contact theorem eq. (8) for the non planar88

case is associated to detailing the second term in the expression (8). So far, the activity in89

such direction was focused on the generalization of the Maxwell tensor for the double layer90

with charged spherical and cylindrical surfaces, charged membranes and charged surfaces91

with more complex geometries [22–26]. However, in these publications, the ionic sizes were92

not taken into account neither explicitly nor implicitly in the calculation of the Maxwell93

stress tensor. It was shown that for electrolytes with point ions, the Maxwell stress tensor94

contribution to the contact values of the density profile for walls with different geometries95

has a similar form as in the case of the planar wall.96

The exact formulation of the contact theorem for the density profile for electric double97

layers in spherical and cylindrical geometries was obtained by Silvestre-Alcantara, Henderson98

and Bhuiyan [27]. According to their results, the contact theorem for the density profile for99

the surface of nonplanar geometry can be presented in the form100

ρi

(
Ri +

d

2

)
= ρE=0

i

(
Ri +

d

2

)
− βE

∫ ∞

Ri+d/2

q(r)dr (11)

where q(r) =
∑

α eαρα(r) is the charge profile, ρE=0
i (Ri + d/2) is the contact value of the101

density profile near the non charged surface. The hard sphere contribution to the contact102

value of the density profile is given by expressions (9) and (10) for spherical and cylindrical103

surfaces respectively. As we can see the second term in (11) has a nonlocal character and is104

more universal than the first term.105

In [27], it was shown that in the limit Ri → ∞, the contact theorem (11) reduces to106

ρ

(
d

2

)
= βP +

βE2ε

4π
(12)

which differs from the expression (1) by the second term which has a missing factor 1/2107

compared to expression (1). The authors explained this difference by the fact that in the108

planar case one must assume a second parallel electrode of opposite charge at infinite109

separation from the first electrode.110

111

In this note, we will show that the contact theorem for the density profile in the form (11)112

can be obtained from the BGY equation. Starting from the BGY equation, we will also113

obtain the exact relation for the charge profile. For convenience, we present the BGY114
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relation in the following form115

∇1ρα(1) = −β∇1Vα(1)ρα(1) − βρα(1)
∑
γ

∫
ργ(2)gαγ(12)∇1uαγ(r12)d2 (13)

where 1 and 2 stand for the position of the corresponding particles, Vα(1) = eαV
coul
α (1) +116

V sh
α (1) is the external potential, uαγ(r12) = eαeγu

coul(r12) + ushαγ(r12) is the interaction pair117

potential. The subscripts α and γ stand for ions having charges eα and eγ, the superscripts118

coul and sh indicate the electrostatic and non electrostatic short-range contributions. ρα(1)119

is the density distribution of the particle of type α at point 1, gαγ(12) is the pair distribution120

function between particles of type α and γ.121

We consider here two equivalent approaches, where in both cases, we start from the BGY122

equation. In the first approach, we start from the BGY equation in the form123

∇1ρα(1) = −βeαρα(1)∇1V
coul(1) − βρα(1)∇1V

sh
α (1) − βρα(1)∇1Wα(1) (14)

where124

∇1Wα(1) =
∑
γ

∫
d2ργ(2)gαγ(12)

[
eαeγ∇1u

coul(r12) + ∇1u
sh
αγ(r12)

]
(15)

corresponds to the average force on a particle of type α at point 1.125

In the second approach, in a similar way as in [3, 6], we introduce the standard mean126

electrostatic potential ψ(1) defined by127

∇1ψ(1) = ∇1V
coul(1) +

∫ ∑
γ

eγργ(2)∇1u
coul(12)d2 (16)

In this case, as in [6], we can rewrite the BGY equation in the following form128

∇1ρα(1) = −βeαρα(1)∇1ψ(1) − βρα(1)∇1V
sh
α (1) − βρα(1)∇1Wα(1) (17)

where129

∇1Wα(1) =
∑
γ

∫
d2ργ(2)

[
eαeγhαγ(12)∇1u

coul(r12) + gαγ(12)∇1u
sh
αγ(r12)

]
(18)

corresponds to the average force on a particle of type α at point 1 with the exception of130

the contribution from the mean electrical potential and hαγ(12) = gαγ(12) − 1 is the pair131

correlation function.132
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Now we will formulate the equations for the density and the charge profiles133

ρ(1) =
∑
α

ρα(1) and q(1) =
∑
α

eαρα(1). (19)

To continue, we can use the BGY equation in the standard form (14) which includes the134

Coulomb interaction between wall and ions, V coul(1), or in the form (17) which includes the135

mean electrostatic potential ψ(1). We note that in both cases, we can omit the term related136

to the external potential V sh
α (1) which we consider as equivalent to a hard wall. As a result137

from equation (14), we can formulate the following system of equations for the density and138

charge profiles139

∇1ρα(1) = −β∇1V
coul(1)q(1) − β

∑
α

ρα(1)∇1Wα(1) (20)

∇1q(1) = −β∇1V
coul(1)ρ̂(1) − β

∑
α

eαρα(1)∇1Wα(1) (21)

where140

ρ̂(1) =
∑
α

e2αρα(1) (22)

After integration of relations (20) and (21), we obtain the contact theorem for the density141

and charge profiles generalizing the corresponding relations we obtained in [6] for the planar142

case. We note that the first term in relations (20) and (21), the Coulomb potential reads143

V coul
s (1) ∝ 1

εr
Qs for spherical surfaces, and V coul

c (1) ∝ −1

ε
Qc ln(r/rc) for cylindrical surfaces,144

where Qs and Qc are the charge of the corresponding surfaces. Since ∇1V
coul
s (1) ∝ − 1

εr2
Qs145

and ∇1V
coul
c (1) ∝ − 1

εr
Qc after integration of equations (20) and (21), we can present the146

generalization of the contact theorems for the density and charge profiles near a nonplanar147

wall. For simplicity, we assume d+ = d− = d and we obtain the contact theorems in the148

following form149

ρi

(
Ri +

d

2

)
= ρE=0

i,α

(
Ri +

d

2

)
− βE

∑
α

∫ ∞

Ri+d/2

qi(r)dr (23)

qi

(
Ri +

d

2

)
=

∑
α

eαρ
E=0
i,α

(
Ri +

d

2

)
− βE

∑
α

∫ ∞

Ri+d/2

ρ̂α(r)dr (24)

where ρE=0
i,α (Ri + dα/2) is the contact value of the density profile for the noncharged surface150

of type i (=c or s) and particle of type α, ρE=0
i,α (Ri + dα/2) is the partial contact value of151

the density profile for the ion of type α near non charged surface type i.152
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We note that the contact theorem (23) for the density profile is identical to the rela-153

tion (11) obtained by Silvester-Alcantara, Henderson and Bhuiyan [27].154

Starting from the BGY equation in the form (17), which includes the mean electrostatic155

potential ψ(1) instead of the Coulombic potential V coul(1), we can write the equations (20)156

and (21) for the density and charge profiles in the following equivalent form157

∇1ρα(1) = −βq(1)∇1ψ(1) − β
∑
α

ρα(1)∇1Wα(1) (25)

∇1q(1) = −βρ̂(1)∇1ψ(1) − β
∑
α

eαρα(1)∇1Wα(1) (26)

Now after integration of these equations, we can present the contact theorems for the158

density and charge profiles near a nonplanar wall in in the following form159

ρi

(
Ri +

d

2

)
= ρE=0

i

(
Ri +

d

2

)
− β

∫ ∞

Ri+d/2

qi(r)
∂ψ(r)

∂r
rδidr (27)

qi

(
Ri +

d

2

)
=

∑
α

eαρ
E=0
i,α

(
Ri +

d

2

)
− β

∫ ∞

Ri+d/2

ρ̂(r)
∂ψ(r)

∂r
rδidr (28)

where δi = 2 for spherical wall and δi = 1 for cylindrical wall.160

For charge symmetric electrolytes e+ = −e− = e and the first term in the contact theorem161

for the charge profile in the form (24) or (28) vanishes. Moreover ρ̂(1) is proportional to the162

density profile163

ρ̂(1) = e2ρ(1) (29)

and we have a simple nonlocal relation between the contact value of the charge profile and164

the density profile165

qi

(
Ri +

d

2

)
= − βe2E

∫ ∞

Ri+d/2

ρ(r) dr (30)

or in the form166

qi

(
Ri +

d

2

)
= − βe2

∫ ∞

Ri+d/2

ρ(r)
∂ψ

∂r
rδi dr (31)

In the limit Rs → ∞ for the spherical surface or in the limit Rc → ∞ for the cylindrical167

surface, the contact theorems for the charge and the density profiles reduce to the planar168

case. In particular in [27], it was shown that due to the local electroneutrality condition169

−
∫ ∞

d/2

q(z)dz =
εE

4π
, (32)
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the last term in expression (23) for the contact value of the density profile can be presented,170

in this limit, in the following form171

−βE
∫ ∞

Ri+d/2

q(r)dr −−−−→
Ri→∞

−βE
∫ ∞

d/2

q(z)dz = β
εE2

4π
(33)

which differs from the corresponding term in relation (1) by a factor 1/2.172

In [27], it was noted that the electroneutrality condition for the spherical and the cylin-173

drical double layers has respectively the following forms174

−
∫ ∞

Rs+d/2

qs(r)r
2dr =

R2
sεE

2

4π
, (34)

−
∫ ∞

Rc+d/2

qc(r)rdr =
RcεE

2

4π
. (35)

Due to this, for the nonplanar case, the contact theorem for the density profile cannot be175

presented in simple local forms as for the planar case.176

We should note that the last term in the contact theorem in the form (27) due to the177

Poisson equation178

∇2
1ψ(1) = −4π

ε
q(1) (36)

can be presented also in the form179

− β

∫ ∞

Ri+d/2

qi(r)
∂ψ

∂r
rδidr = β

ε

4π

∫ ∞

Ri+d/2

∇2
1ψi(1)∇1ψi(1)rδidr (37)

Since180

∇2ψi(1) =
∂2ψ(1)

∂r2
+
δi
r

∂ψi(1)

∂r
(38)

we see that the integral in (37) cannot give the simple Maxwell stress term as in the case181

of the planar wall [6].182

183

Thus in this paper starting from the BGY equation between the singlet and pair distribu-184

tion functions of ionic fluids near a noncharged planar surface, we formulated two equivalent185

approaches to calculate the charge and the density ionic profiles. The first one includes the186

direct Coulomb interaction between ions and surface. In the second approach, this direct187

ion-surface interaction is transformed through the Poisson equation into the mean electrical188

potential. The contact theorems for the density and charge profiles are then formulated189

9



for nonplanar surfaces by direct integration of this system of equations. The results are190

presented then applied to spherical and cylindrical surfaces. Both theorems have nonlocal191

character. It is shown that the contact value of the density profile for noncharged surfaces is192

characterized by bulk pressure and surface tension. The expressions of the contact theorem193

for the density profile are identical to the result recently formulated by Silvestre-Alcantara,194

Henderson and Bhuiyan [27]. By using our previous result for the contact theorems for195

anisotropic fluids near a hard planar wall [28], we can also generalize the obtained results196

for the orientationally ordered charged dispersions case.197
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