High Reynolds number unsteadiness assessment using 3D and 2D computational fluid dynamics simulations of a thick aerofoil equipped with a spoiler - Archive ouverte HAL
Article Dans Une Revue Wind Energy Année : 2023

High Reynolds number unsteadiness assessment using 3D and 2D computational fluid dynamics simulations of a thick aerofoil equipped with a spoiler

Résumé

Abstract An operating 2‐MW wind turbine has been scanned and analysed using 2D computational fluid dynamics (CFD) and blade element momentum (BEM) analysis. The current work illustrates using full‐scale 3D CFD simulations the differences between 2D and 3D simulations and its impact on the local aerofoil vortex shedding frequency. The outcome shows that despite a pressure redistribution and lift change introduced by the blade span and rotation, the vortex shedding frequency remains similar between 2D and 3D thereby validating the novel fatigue calculation method previously proposed.
Fichier principal
Vignette du fichier
blade_2D-3D_WE_2023.pdf (11.18 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04281929 , version 1 (14-11-2023)

Identifiants

Citer

Thomas Potentier, Emmanuel Guilmineau, Arthur Finez, Colin Le Bourdat, Caroline Braud. High Reynolds number unsteadiness assessment using 3D and 2D computational fluid dynamics simulations of a thick aerofoil equipped with a spoiler. Wind Energy, 2023, 26 (7), pp.668-690. ⟨10.1002/we.2823⟩. ⟨hal-04281929⟩
44 Consultations
12 Téléchargements

Altmetric

Partager

More