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Abstract New generations of X-ray sources based on carbon nan-
otubes (CNT) enable the design of multi-sources computed tomog-
raphy (CT) scanners. CT scanners with CNT often use a limited
number of stationary sources and corresponding projections. Three-
dimensional CT theory evaluates whether a given continuous source
trajectory provides sufficient data for stable reconstruction of an im-
aged object. This paper extends a local incompleteness metric to derive
a three-dimensional map and quantify tomographic incompleteness
for a finite set of sources. We illustrate this incompleteness with a
dedicated phantom. The reconstructed CT images of the phantom
match the results predicted by the incompleteness map.

Keywords X-ray cone-beam CT; Stationary architecture; Tomo-
graphic incompleteness

1 Introduction

Computed tomography (CT) is one of the most commonly
used imaging modality for three-dimensional (3D) recon-
struction in the medical and industrial fields. In the past few
years, new X-ray sources have been developed based on car-
bon nanotube (CNT) cathodes [1]. Their small size enables
the design of a new generation of CT scanners. It would ben-
efit both industry with cheaper and motionless systems and
medical applications with light-weight and mobile scanners
which could be brought to emergency sites.

In a 3D context, CT scanners can be split into two categories:
non-stationary architectures with mobile source(s) and sta-
tionary architectures with static source(s). Non-stationary
architectures are the most common ones with source trajec-
tories such as the conventional helix path or the circle-line
path [2] which is adapted to C-arm scanners. Micro CNTs
have opened new horizons for CT scanners with stationary
architectures. The idea is to place several stationary sources
around the scanned area. Gonzales et al. [3] and Vogtmeier et
al. [4] have proposed two stationary designs for controlling
luggage at airports.

3D CT theory has a few tools to help with the geometrical
design of a CT scanner. Assuming non-truncated projections,
Tuy [5] gave a condition to verify if a continuous source
trajectory is sufficient to reconstruct an open region Q. The
condition can be stated as: every plane that intersects the
imaged region Q must intersect the scanning trajectory at
least once. In practice, all scanners are limited by a finite set
of source locations instead of a continuous curve and Tuy’s
condition is never strictly satisfied. However, it is known
that discrete sampling of a helical trajectory allows stable

reconstruction.

Several metrics have been studied to quantify the impact of
tomographic incompleteness, i.e. when Tuy’s condition is
not met. Metzler et al. [6] and Lin and Meikle [7] calculate
a voxel-based percentage considering the unit sphere by lo-
cally linking Orlov’s and Tuy’s conditions [6]. Their metric
is similar to that of Liu et al. [8] which was derived from
the theory of the 3D Radon transform. They numerically
evaluate the fraction of planes which are intersected by the
source trajectory by sampling the unit sphere. This kind of
measure is only possible for continuous source trajectories
and the authors indicate that it is difficult to predict the re-
construction quality from this metric as, for example, 99%
may lead to poorer image quality than 96%. Clackdoyle and
Noo [9] quantify tomographic incompleteness to measure
how far a voxel is from locally satisfying Tuy’s condition
in a given direction. Stopp et al. [10] proposed to average a
similar measure in all directions. These last two criteria can
be applied to both continuous and discrete source trajectories.
Our work aims at evaluating tomographic incompleteness for
the design of new CT scanners assuming (first) non-truncated
projections. We build on the quantification of tomographic
incompleteness [9] to predict the worst direction in each spa-
tial position of a 3D map. For four selected geometries, we
demonstrate the relevance of this quantification by recon-
structing a phantom made of three parallel cylinders placed
at the worst location and oriented in the worst direction ac-
cording to the incompleteness map.

2 Materials and Methods

2.1 Source trajectories

The incompleteness map is computed for a given source
trajectory. We have chosen to compute it for four discrete ge-
ometries assuming that the imaged object is contained in the
same 256> mm? cube for all geometries. Fig. 1 illustrates the
trajectories from the object point of view and Tab. 1 provides
key parameters of each geometry. The first two architectures
are conventional non-stationary architectures: circle-line and
helix. The circle only satisfies Tuy’s condition in the trajec-
tory plane. We have selected the circle-line among several
variants to extend the reconstructible region [2]. Here, we
study the discrete form of this geometry and place the line
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Figure 1: The four geometries studied in the object’s coordinate
system. a) combines a circle, which allows stable reconstruction
only in its plane, with an orthogonal line above to complete data in
the superior half of the object. The imaged object translates in the
z direction for the b), c) and d) geometries. b) consists of a source
with a circle path which makes it a helix when the object translates
axially. c¢) has an L shape with sources placed on two orthogonal
segments which are repeated when the imaged object moves. In d),
sources are located on a helix arc and are duplicated in the axial
direction.

Table 1: Key parameters of the four source trajectories.

Object translation Sources Radius Special attributes
(mm/cycle) (mm) (mm)
Circle-line None 120 (C) + 60 (L) 240 (360°) line height: 240
Helix [0,0,24] 120 x 20 cycles 240 (360°)
L [0,0,24] 120 x 21 cycles 240 (straight)
Helix arc [0,0,24] 120 x 18 cycles 240 (245°) helical pitch: 120

above the circle only. In this context, Tuy’s condition is not
satisfied below the circle and the incompleteness should be
lower above it. The helix source path is the geometry of most
diagnostic CT scanners. It is composed of a source follow-
ing a circle path while the imaged object translates axially
through the circle which results in a helix in the coordinate
system of the scanned object. For a continuous source curve,
Tuy’s condition is satisfied, and we anticipate a very low
incompleteness for a finite set of source points.

The other two architectures are stationary: L and helix arc.
The L geometry was one of the first stationary architecture
commercialized for airport security [3]. It is made of two
segments of sources which leaves space for detectors on the
opposite side. The helix arc places sources along an arc of
helix. For these two geometries, the imaged object is trans-
lated through the gantry. From the object’s point of view, the
pattern of sources is repeated according to the object motion

in several identical cycles.

2.2 Tomographic incompleteness

Clackdoyle and Noo [9] defined their local directional incom-
pleteness criterion I(x, n) € Rt atx € Q C R’ in the
direction n € S°, where S? is the unit sphere, for a source
trajectory {s1,8s,...,s,} € R¥*" as following:

I(X,n):min{|S"_p"||:i=1,2,...,n} (1)
|[x—pill

where p; € R3 is the projection of the source s; onto the plane
Iy n passing through the point x and of normal direction n:

pi=s;i—((s; —X)-n)n. 2)

This criterion evaluates the minimum tangent of the angles
defined by the plane Ily ,, and the X-ray lines, i.e. the lines
passing through the point x and the source positions along the
trajectory. If I(x,n) = 0, the plane cuts the source trajectory.
Therefore, if I(x,n) = 0 for all n € $2, the point x satisfies
Tuy’s condition and can be reconstructed if the acquired
projections are not truncated. If I(x,n) > 0, the plane with
co-direction n does not intersect the source trajectory and the
point x does not satisfy Tuy’s condition.

We use this criterion to evaluate the 3D spatial distribution
of the tomographic incompleteness in the imaged region Q.
Since we aim at identifying the less complete location and
direction, we only record the maps of the worst directions
n.: Q — §?

n..(x) = argmax{I(x,n)} Vx € Q 3)

nes?

and the corresponding incompleteness I, : Q@ — R™

L.(x) =I(x,n.(x)) Vx € Q. 4)

In practice, n. and L. are computed numerically by dis-
cretizing both the unit sphere S? and the object space Q. A
unit hemisphere is sufficient due to the symmetry I(x, —n) =
I(x,n). We sampled 3000 directions using Fibonacci lattice
method [11]. Fibonacci lattice arranges points along a spher-
ical spiral homogeneously. Iteratively, each new point is
placed evenly between the largest gap of the previous points.

2.3 Simulation phantom

To verify the incompleteness map, we simulated noiseless
and untruncated projections for each geometry with a ded-
icated phantom. The phantom was made of three parallel
cylinders with a 24 mm radius, a 6 mm height and a center-
to-center distance of 6 mm. According to the incompleteness
result of each geometry, the phantom’s center was placed at
the worst position in the subregion @ C Q which can fully
contain the phantom

x" = argmax{L.(x)} 3)

xeQ
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and in the worst direction n* € §2
n" =n.(x"). (6)

CT images were reconstructed with RTK [12] using a least-
squares iterative reconstruction with conjugate gradient mini-
mization without regularization. We used 60 iterations which
was visually deemed a good compromise between conver-
gence, overfitting and image quality.

3 Results

3.1 Tomographic incompleteness map

Fig. 2 shows the incompleteness map of each studied geome-
try. It is a combination of the result of Eq. 3 and Eq. 4 for a
given imaged region and source trajectory. In each position x
of the imaged region, the value I.(x) and the worst direction
associated n.(x) are calculated. The map illustrates both
information using colors and 3D cones respectively.

The incompleteness maps of the circle-line and helix trajec-
tories confirm the well known theory. For the circle-line
trajectory, the incompleteness is low in the convex hull of the
trajectory, min{L.(x)} ~ 0.016. However, below the circle
plane, the imaged region is not reconstructible which trans-
lates into high incompleteness values max{l.(x)} ~ 0.675.
The worst direction n* at the bottom is almost orthogonal to
the circle plane, as expected since the plane Iy« p+ is parallel
to the trajectory circle and is not intersecting it nor the trajec-
tory line. The helix’s map displays a small incompleteness
everywhere, 0.005 < I.(x) < 0.016. The residual incom-
pleteness stems from the helix sampling.

For stationary architectures, the L trajectory is incom-
plete at the opposite of the two rectangles of sources with
max{l.(x)} ~ 0.456. In this case, the worst direction n*
defines a plane parallel to the convex hull of the trajec-
tory, which is consistent with Tuy’s criterion. Near the
sources, the incompleteness is small min{L.(x)} ~ 0.006,
as expected, and the direction depends on the source sam-
pling. Finally, the incompleteness map of the helix arc is
similar to the non-stationary helix due to their similar tra-
jectories: 0.005 < L.(x) < 0.030. It proves that a stationary
design can compete with non-stationary architectures if a
similar number of source locations is used.

3.2 Simulation & Reconstruction

The simulated 3D phantom of three parallel cylinders is
placed at the worst position x* (Eq. 5) and in the worst direc-
tion n* (Eq. 6) in Q for each geometry. The reconstructed
images are shown in Fig. 3 such that the phantom is centered
with n* vertical.

The helix and helix arc trajectories have good image quality
as predicted by their respective incompleteness maps. The
circle-line trajectory has the worst image quality, and it is dif-
ficult to separate the cylinders. Finally, the L reconstruction
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Figure 2: Tomographic incompleteness maps of the four studied
geometries. Each map is centered on the imaged region Q (ratio
1/2 in each direction with respect to Fig. 1 and the same camera
angle). The direction and the color of each cone represent the worst
direction n..(x) (Eq. 3) and the corresponding incompleteness
L.(x) (Eq. 4), respectively. The bigger cone shows the worst
position x* (Eq. 5) in the worst direction n* (Eq. 6) in Q.

has a slightly better image quality than the circle-line trajec-
tory, but it is also difficult to distinguish the three cylinders.

4 Discussion

The incompleteness map presented in this work accurately
predicts image quality of a dedicated phantom. The incom-
pleteness map is based on Tuy’s theory and assumes un-
trucated projections. Accounting for the truncation of the
projections was beyond the scope of this work.

The computation of the worst directions n., was done numer-
ically by sampling the unit sphere. The sampling pattern [11]
was selected because it homogeneously samples the sphere.
We took about 3000 points on the hemisphere which does
not warrant to find the worst direction. However, the incom-
pleteness maps I, and n., are quite smooth, at least for larger
values which are not influenced by the trajectory sampling,
and this discretization of the unit sphere may be sufficient
to have a good estimate of n.. Finally, it is common for
stationary architectures to use iterative reconstruction algo-
rithms. We have chosen to use the same iterative algorithm,
without regularization but a fixed number of iterations, which
provides a quite fair comparison of all geometries.
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Figure 3: Least squares reconstruction of the same phantom for
each geometry. The phantom is composed of three parallel cylin-
ders and, for each geometry, it is placed at the worst position x*
(provided by Eq. 5) and in the worst direction n* (provided by
Eq. 6) in Q, as shown with a bigger cone in Fig 2. For comparison
purposes, we have registered the reconstructed images to place the
phantom in the center and such that n* is vertical.

5 Conclusion

Our work defines the tomographic incompleteness map
which was computed on four architectures: two non-
stationary and two stationary. We have chosen a similar
number of sources, radius and other characteristics to make
them comparable. The results show that the incompleteness
map is in agreement with Tuy’s theory (on which it is based).
These maps adequately predict the image quality of a dedi-
cated disk phantom scanned at the worst location and in the
worst direction provided by the incompleteness map. The
incompleteness map may be used to design a compact geom-
etry scanner with a limited number of sources by minimizing
the incompleteness value in a scanned region.
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