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Weakly nonlinear versus semi-linear models of the nonlinear evolution of the centrifugal instability

. The asymptotic analysis assumes that the Reynolds number is close to the instability threshold so that the perturbation is only marginally unstable. This leads to two coupled equations which govern the evolutions of the amplitude of the perturbation and of the mean flow under the effect of the Reynolds stresses due to the perturbation. These equations differ from the Stuart-Landau amplitude equation or coupled amplitude equations involving a mean field that have been previously derived. In particular, the amplitude does not saturate to a constant like in the supercritical Stuart-Landau equation but decays afterwards reflecting the instability disappearance when the mean flow tends toward a neutrally stable profile in the DNS. These equations resemble those of the semi-linear model except that the perturbation in the weakly nonlinear model keeps at leading order the structure of the eigenmode of the unperturbed base flow. The predictions of the weakly nonlinear equations are compared to those of the semi-linear model and to DNS for the Rossby number Ro = -4 and various Reynolds numbers and wavenumbers. They are in good agreement with the DNS when the growth rate is sufficiently small. However, the agreement deteriorates and becomes only qualitative for parameters away from the marginal values whereas the semi-linear model continues to be in better agreement with the DNS.

Introduction

Simplified models in hydrodynamics are generally useful to understand the underlying physics or to obtain first results without spending large computational costs as for direct numerical simulations (DNS). To derive such models, two methods are generally available: either by deriving a rigorous model by asymptotic analyses when one parameter is small or by obtaining an empiric model based on heuristic assumptions [START_REF] Mantič-Lugo | Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake[END_REF][START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF].

By adopting the second approach, [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF] have recently proposed a semilinear model of the non-linear evolution of a spatially periodic instability. The idea consists in taking into account only the dynamics of the most unstable perturbation and the spatially averaged mean flow whereas higher harmonics are neglected. Hence, the semi-linear model is made of two coupled equations governing the evolution of the most unstable perturbation on the spatially averaged mean flow and the mean flow under the effect of the spatially averaged Reynolds stresses due to the perturbation. The only difference compared to pure linear equations is the evolution of the mean flow.

Such semi-linear model turns out to be similar to the early method proposed by [START_REF] Stuart | On the non-linear mechanics of hydrodynamic stability[END_REF] to describe the saturation of supercritical spatially periodic instabilities. A difference, however, is that [START_REF] Stuart | On the non-linear mechanics of hydrodynamic stability[END_REF] has neglected the time derivative in the mean flow equation by arguing that it should be negligible at large times. He has then obtained an approximate Stuart-Landau amplitude equation from the integral equation of energy balance for the disturbance by assuming that the latter remains identical in shape to the fundamental eigenmode given by the unperturbed base flow. Later, rigorous weakly nonlinear derivations for the supercritical instabilities observed in the plane Poiseuille or Taylor-Couette flows [START_REF] Stuart | On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part 1. the basic behaviour in plane poiseuille flow[END_REF][START_REF] Watson | On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part 2. the development of a solution for plane poiseuille flow and for plane couette flow[END_REF][START_REF] Davey | The growth of taylor vortices in flow between rotating cylinders[END_REF] have shown that the generation of harmonics and distortion of the fundamental mode should be taken into account in these cases.

Although general, the semi-linear model has been developed by [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF] in the specific case of the centrifugal instability of a columnar vortex in a rotating fluid. A very good agreement between the semi-linear model and the DNS has been found for the Rossby number Ro = -4 and up to the highest Reynolds number investigated: Re = 2000. The results show that the nonlinear evolution of the centrifugal instability redistributes the mean absolute angular momentum towards a profile which is stable according to the Rayleigh criterion [START_REF] Kloosterziel | Inertial instability in rotating and stratified fluids: barotropic vortices[END_REF][START_REF] Carnevale | Predicting the aftermath of vortex breakup in rotating flow[END_REF][START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF]. Subsequently, the perturbations decay, i.e. the centrifugal instability ceases.

Here, we derive rigorously weakly nonlinear equations for the same instability and we compare their predictions to those of the empirical semi-linear model as well as to DNS. The asymptotic analysis assumes that the Reynolds number is close to the critical value for instability so that the perturbations are only marginally unstable.

The paper is organized as follows. The problem is formulated in §2. The governing equations are given in §2.1 and then rewritten in a convenient form in §2.2. The linear stability of the flow is recalled in §3.3. The weakly nonlinear analysis is conducted in §3. The semi-linear model is briefly summarized in §4 and the numerical methods are described in §5. The results of the weakly nonlinear model, semi-linear model and DNS are mutually compared in §6, before conclusions are drawn in §7.

Problem formulation

Governing equations

As in [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF], we consider an axisymmetric vortex with initial nondimensional velocity u 0 = (u 0 , v 0 , w 0 ) = (0, r exp(-r 2 ), 0) in cylindrical coordinates (r, θ, z). The time and length have been chosen so that the vortex radius and the maximum angular velocity are unity. The fluid is incompressible and rotating about the z axis:

∂u ∂t + u • ∇u + 2Ro -1 e z × u = -ρ -1 ∇p + Re -1 ∇ 2 u, (2.1) ∇ • u = 0, (2.2)
where e z is the unit vector in the z direction, p the pressure, ρ the constant density, Ro = 2Ω c /f the Rossby number and Re = Ω c R 2 0 /ν the Reynolds number, with f the Coriolis parameter, Ω c and R 0 the dimensional maximum angular velocity and radius of the vortex and ν the viscosity. [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF] studied the particular value Ro = -4 for several Reynolds numbers and showed that the dynamics remains always purely axisymmetric. For this reason, axisymmetry will be here assumed from the outset. The boundary conditions are therefore u = v = 0 at r = 0 and u → 0 as r → ∞ [START_REF] Batchelor | Analysis of the stability of axisymmetric jets[END_REF]. The Rossby number will be also set to Ro = -4 throughout the paper like in [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF].
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Mean and fluctuation equations

Following [START_REF] Stuart | On the non-linear mechanics of hydrodynamic stability[END_REF]; [START_REF] Davey | The growth of taylor vortices in flow between rotating cylinders[END_REF]; [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF], it is first convenient to decompose the velocity and pressure as

[u, p](r, z, t) = [U, P ](r, t) + [û, p](r, z, t), (2.3) 
where

U = z -1 max zmax 0 udz, P = z -1 max zmax 0
pdz are the axially averaged mean quantities over the domain height z max . Averaging (2.1-2.2) in z shows that the mean flow is purely azimuthal U = V (r, t)e θ and governed by

- V 2 r - 2 Ro V = -ρ -1 ∂P ∂r -N (û, û) • e r , (2.4 
)

∂V ∂t = 1 Re D 2 V -N (û, û) • e θ , (2.5) 
where

D 2 • = ∂ ∂r 1 r ∂ ∂r (r•) , (2.6) N (a, b) = a • ∇b=       a r ∂b r ∂r + a z ∂b r ∂z - a θ b θ r a r ∂b θ ∂r + a z ∂b θ ∂z + a θ b r r a r ∂b z ∂r + a z ∂b z ∂z       . (2.7)
It is convenient to further decompose the mean flow as

V (r, t) = v 0 (r) + v(r, t), (2.8)
where v 0 is the initial flow, so that (2.5) becomes

∂v ∂t = 1 Re D 2 (v + v 0 ) -N (û, û) • e θ .
(2.9) Substracting (2.4) and (2.9) from (2.1) yields the equation for the perturbation û, (2.11) where u = ve θ and (2.12) with Ω 0 = v 0 /r and ζ 0 = 2Ω 0 + rΩ 0 . We emphasize that (2.9-2.11) are only a convenient rewriting of (2.1-2.2) and no approximation has been done so far. In the absence of perturbation û = 0, the total mean flow V is governed by the diffusion equation (2.5) and there is a cyclostrophic balance along the radial direction (2.4).

∂ û ∂t + L(û) = -N (u, û) -N (û, u) -N (û, û) + N (û, û), (2.10) ∇ • û = 0,
L(û) = -2Ω 0 ve r + ζ 0 ûe θ + 2Ro -1 e z × û + ρ -1 ∇p -Re -1 ∇ 2 û,

Linear stability

When (2.10-2.11) are linearized and the viscous diffusion of the base flow is neglected so that v = 0, they reduce to the stability problem

∂ û ∂t = -L(û), (2.13) ∇ • û = 0. (2.14)
Here, we will consider the weakly nonlinear evolution of the most unstable perturbation of (2.13) for a given axial wavenumber k

[û, p] = [ũ, p](r) exp(σt + ikz) + c.c., (2.15) 
where σ is the growth rate and c.c. denotes the complex conjugate.

When the Rossby number is in the range Ro < -1 or Ro > exp(2), a vortex with Gaussian angular velocity is unstable in the inviscid limit to the centrifugal instability according to the Rayleigh criterion, i.e. there exists some radius where φ < 0 with φ = 2 (Ω 0 + 1/Ro) (ζ 0 + 2/Ro), the Rayleigh discriminant. The inviscid growth rate is given by σ i = -φ(r 0 ), where r 0 is the radius where φ is minimum [START_REF] Smyth | Instability of an axisymmetric vortex in a stably stratified, rotating environment[END_REF][START_REF] Billant | Generalized rayleigh criterion for non-axisymmetric centrifugal instabilities[END_REF]) (r 0 = 0.93 and σ i = 0.3635 for Ro = -4) and is reached in the limit of infinite axial wavenumber. When the Reynolds number is finite, the maximum growth rate and the most amplified wavenumber k m decreases as the Reynolds number is reduced as illustrated in figure 1a for Ro = -4. The instability is totally stabilized when Re ∼ 100. Since viscous effects scale like k 2 /Re at leading order for large axial wavenumber, they become active for wavenumbers typically such that k 2 = O(Re).

Figure 1b displays the eigenmodes for Re = 2000 for two wavenumbers: k = 8.6 and k = 23. As in [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF], the eigenmode is normalized so that the maximum absolute vertical velocity is unity: max(| w|) = 1. It can be seen that the eigenmode tends to be more localized as k increases and the amplitudes of the horizontal velocity components increase with k.

Weakly nonlinear analysis

Formulation

The first task in order to carry out a weakly nonlinear analysis is to identify some conditions under which the instability is only marginally unstable. There are several possible configurations: first, the Rossby number can be considered close to the critical Rossby numbers Ro c = -1 or Ro c = exp(2), second, Ro can be considered arbitrary but Re close to the critical Reynolds number Re c (figure 1), or, third, Ro and Re can be considered arbitrary but the axial wavenumber k can be assumed to be close to the viscous cut-off k c where the growth rate vanishes (figure 1). Since the Rossby number investigated in [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF], Ro = -4, is relatively far from Ro c = -1, we will consider herein the second configuration, i.e. the Reynolds number Re is assumed to be close to Re c so that the eigenmode at the most unstable wavenumber k for this Reynolds number Re is marginally unstable. However, we will see later that the following analysis will also apply to the third configuration, i.e. near the viscous wavenumber cut-off. Accordingly, the order of magnitude of the growth rate can be used as a small parameter, i.e. , meaning that the growth of the perturbation has to be slow but not too slow compared to the viscous diffusion. A paradoxical implication is that, as the Reynolds decreases (figure 1a), our approach will be no longer valid below a certain Reynolds number even if the growth rate is small because the condition 1/ √ Re σ will be no longer fulfilled. For the same reason, if the Rossby number is increased from below towards the critical value Ro c = -1 for a fixed large Reynolds number, the present analysis will cease to be valid when σ will be typically smaller than 1/ √ Re. In summary, we expect the scaling hypotheses (3.1) and (3.2) to be met only in an intermediate range of growth rate for given Reynolds and Rossby numbers. This will be confirmed in §6 when the predictions of the weakly nonlinear analysis will be compared to DNS.

The scaling (3.2) together with the assumption of being close to the viscous threshold, i.e. σ σ ik 2 /Re 1 implies that k 2 /Re = O(1) since the maximum growth rate in the inviscid limit σ i is of order unity for Ro = -4. In this way, viscous effects act on the perturbation despite the large Reynolds number limit considered in (3.2).This implies that the wavenumber is large:

k = k , (3.3) 
where k = O(1). An unstable eigenmode is always accompanied by a stable counterpart with opposite growth rate in the inviscid limit due to time reversibility. Hence, if the unstable eigenmode is marginally unstable, the stable counterpart is also marginally stable and it needs to be taken into account in a weakly nonlinear analysis. However, (3.2) and (3.3) imply that such stable mode is here strongly damped and does not need to be considered since its growth rate is σ -σ ik 2 /Re which is typically O(1) and negative. For that reason, the resulting amplitude equations will be first order in time and dissipative while similar inviscid instabilities, in nature, such as the baroclinic instability or the Kelvin-Helmholtz instability have been described by amplitude equations that are second order in time and thus reversible [START_REF] Gibbon | Amplitude equations at the critical points of unstable dispersive physical systems[END_REF][START_REF] Pedlosky | Finite-amplitude baroclinic waves[END_REF][START_REF] Drazin | Kelvin-helmholtz instability of finite amplitude[END_REF]).

In turn, the fact that the wavenumber is large implies that the eigenmode [ũ, p](r) is strongly localized in a region of width O(k -1/2 ) = O( 1/2 ) around a particular radius r 0 as shown by [START_REF] Bayly | Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows[END_REF]. Hence, the radial derivative is large (3.4) meaning that each term of (2.10) need first to be appropriately scaled before performing a weakly nonlinear analysis. We emphasize that the scaling (3.4) applies only to the perturbation û and not to the initial mean flow v 0 . Since the eigenmode is normalized such that max(| w|) = 1, the different velocity components and pressure of the disturbance then scale as [START_REF] Bayly | Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows[END_REF])

∂ ∂r = O k 1/2 ,
û = O k 1/2 , v = O k 1/2 , ŵ = O (1) , p = O k -1 . (3.5)
Again, we stress that this scaling does not apply to the mean flow v. In order to illustrate this scaling, the eigenmodes for k = 8.6 and k = 23 are rescaled according to (3.5) and plotted as a function of (rr 0 ) √ k in figure 1c. The velocity components for the two wavenumbers collapse although this is only approximate since k is not so large.

We shall use the scaling (3.5) only to obtain the leading order magnitude of each operator in (2.10) since the linear problem will be solved numerically and not analytically as done by [START_REF] Bayly | Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows[END_REF]. Using (3.4) and (3.5), we have

L = O(1), N = O(k), D 2 = O(k), ∇ = O(k).
(3.6)

Hence, we define the following rescaled variable and operators

r = r -r 0 1/2 , Ñ = N , D2 = D 2 , ∇ = ∇, (3.7)
where the operators with a tilde are of order unity at leading order. These operators could be splitted into different orders: e.g. Ñ = Ñ0 + 1/2 Ñ1 + . . .. However, this will not be done to avoid long algebra. In addition, this is not necessary because the problem will be solved numerically as already mentioned.

Then, the governing equations for the perturbation become

∂ û ∂t = -L(û) --1 Ñ (u, û) --1 Ñ (û, u) --1 Ñ (û, û) + -1 Ñ (û, û), (3.8) ∇ • û = 0, (3.9)
The important feature in (3.8) is that the nonlinear terms scale at leading order as 1/ because the axial wavenumber is large. Similarly, the equation for the mean flow (2.9) becomes

∂v ∂t = Re D2 v + 2 Re D 2 v 0 --1 Ñ (û, û) • e θ .
(3.10)

We can remark that the viscous diffusion of the mean flows v and v 0 are not of the same order because the former varies over r according to (3.4) in contrast to the latter which varies over r. Nevertheless, (3.8-3.10) can be rewritten in a form close to the original equations (2.9-2.11) by simply rescaling the variables as follows:

v = v and [û, p] = [û , p ]. This leads to ∂ û ∂t = -L(û ) -Ñ (u , û ) -Ñ (û , u ) -Ñ (û , û ) + Ñ (û , û ), (3.11) ∇ • û = 0, (3.12) ∂v ∂t = Re D2 v + Re D 2 v 0 -Ñ (û , û ) • e θ .
(3.13)

The governing equations are now in a suitable form to carry out the weakly nonlinear analysis. To do so, we expand the time, the mean flow and the perturbation as follows

∂ ∂t = ∂ ∂t 0 + ∂ ∂t 1 + 2 ∂ ∂t 2 + • • • , (3.14) v = v 1 + 2 v 2 + • • • , (3.15) [û , p ] = [û 1 , p1 ] + 2 [û 2 , p2 ] + • • • . (3.16)
In the following, the first order mean flow will be further decomposed into two parts:

v 1 = v 11 (r, t 1 ) + v 10 (r, t 0 ), (3.17)
where v 10 will vary over r due to the viscous diffusion of the base flow whereas v 11 will vary over r due to its own viscous diffusion and the Reynolds stresses due to the perturbation.

Finally, we stress that we will consider a single axial wavenumber, i.e. no spatial modulation will be taken into account in the present analysis. The DNS performed by [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF] for Ro = -4 and Re = 2000 initialized by the eigenmode of the most amplified wavenumber has indeed demonstrated the absence of spatial modulation. This will be shown again for Re = 500 in §6.

Order

At order , (3.11-3.13) reduce to

∂ û1 ∂t 0 = -L(û 1 ), (3.18) ∇ • û1 = 0, (3.19) ∂v 10 ∂t 0 = 1 Re D 2 v 0 . (3.20)
The solution of (3.18-3.19) is taken as the most unstable eigenmode at the given k,

û1 = ũ1 (r) exp(ikz + σt 0 ) + c.c.. (3.21)
However, since the growth rate is assumed to be small σ = σ, we can rewrite (3.21) as

û1 = A(t 1 )ũ 1 (r) exp(ikz) + c.c., (3.22)
where A is an amplitude varying over the slow time t 1 . By defining the shift-operator [START_REF] Meliga | Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion[END_REF])

L = L -σ, (3.23)
we can approximate L in (3.18) by L while the complementary O( ) term will only appear at next order. In other words, (3.18) becomes

∂ û1 ∂t 0 = -L(û 1 ) + O( ) = 0. (3.24)
Hence, the eigenvalues of the operator L correspond to those of L shifted by σ whereas the eigenmodes remain identical. Instead of using the shift-operator L, one could alternatively expand the operator L around the critical Reynolds number Re c (k) for a given wavenumber k, i.e. L(Re) = L(Re c )+(Re-Re c )∂L/∂Re+. . . and assume Re-Re c = O( ). Then, the truly marginally stable operator L(Re c ) would arise at leading order. The predictions of the amplitude equations derived by these two different methods have been compared by [START_REF] Gallaire | Pushing amplitude equations far from threshold: application to the supercritical hopf bifurcation in the cylinder wake[END_REF] in the case of the supercritical Hopf bifurcation in the cylinder wake. They agree in the weakly nonlinear regime but differ when the control parameter is far from threshold. Here, we have preferred the shift-operator method because it does not require to compute additional operators such as ∂L/∂Re. In addition, the choice of a particular marginally unstable point is implicit and virtual when using a shift-operator since, in practice, it does not appear explicitly in the calculations. Therefore, the same weakly nonlinear analysis applies by considering another neutral point as long as the characteristics of the eigenvalue spectrum and the magnitudes of the parameters are similar. In particular, we will see that the resulting amplitude equations are also valid when the wavenumber k is close to the viscous cut-off k c but Re far from Re c .

Finally, the solution of (3.20) is simply v 10 = 4(r 2 -2)r exp(-r 2 )t 0 / Re. The other component of the mean flow, v 11 , remains free at this order and will be determined only at next order.

Order 2

At order 2 , (3.11-3.13) become where (3.29) where Ñ (n) corresponds to Ñ with ∂/∂z replaced by ink, with n an integer number. The nonlinear terms in the r.h.s of (3.25) comprise first and second harmonics. Hence, the solution û2 is sought in the form û2 = ũ21 (r, t 1 ) exp(ikz) + ũ22 (r, t 1 ) exp(2ikz) + c.c.,

∂ û2 ∂t 0 + L(û 2 ) = -Ñ (v 11 e θ , û1 ) -Ñ (û 1 , v 11 e θ ) -Ñ (û 1 , û1 ) + Ñ (û 1 , û1 ) + σ û1 - ∂ û1 ∂t 1 , (3.25) ∇ • û2 = 0, (3.26) ∂v 11 ∂t 1 = 1 Re D2 v 11 -Ñ (û 1 , û1 ) • e θ . ( 3 
f 11 = -Ñ (-1) (ũ 1 , ũ * 1 ) + Ñ (1) (ũ * 1 , ũ1 ) • e θ ,
(3.30)

giving for each component

L(1) (ũ 21 ) = σAũ 1 - ∂A ∂t 1 ũ1 -A Ñ (1) (v 11 e θ , ũ1 ) + Ñ (0) (ũ 1 , v 11 e θ ) , (3.31) L(2) (ũ 22 ) = -A 2 Ñ (1) (ũ 1 , ũ1 ), (3.32)
where L(n) corresponds to L with ∂/∂z replaced by ink. The compatibility condition to find a solution to (3.31) gives [START_REF] Manneville | Dissipative Structures and Weak Turbulence[END_REF][START_REF] Sipp | Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows[END_REF][START_REF] Meliga | Global mode interaction and pattern selection in the wake of a disk: a weakly nonlinear expansion[END_REF],

∂A ∂t 1 = σA -BA, (3.33)
where

B(t 1 ) = ũ † 1 , Ñ (1) (v 11 e θ , ũ1 ) + Ñ (0) (ũ 1 , v 11 e θ ) ũ † 1 , ũ1 , (3.34)
where ũ † 1 is the solution of the adjoint operator L(1) † defined by

u † , L(1) (u) = u, L(1) † u † * , (3.35)
where the star denotes the complex conjugate and the scalar product is given by

u † , u = ∞ 0 (u † u * + v † v * + w † w * )rdr. (3.36)
The adjoint operator reads L † = L †σ where

L † (û † ) = ζ 0 + 2Ro -1 v † e r -2 Ω 0 + Ro -1 û † e θ + ρ -1 ∇p † -Re -1 ∇ 2 û † , (3.37)
with ∇ • û † = 0 and the same boundary conditions as for the direct problem. The amplitude equation (3.33) shows that the leading non-linear effect comes from the first order mean-flow correction v 11 through B whereas a nonlinear term due to harmonics would be obtained only at the next order in from the interaction between ũ22 and û1 . In contrast to the Stuart-Landau equation, the nonlinear effects due to the mean flow and harmonics operate here at different orders because the mean flow correction v 11 is of order O( ) like the leading order perturbation û1 (see 3.15-3.17). Such scaling comes from the fact that the mean flow correction v 11 is neutral at leading order due to the assumption of a large Reynolds number. The existence of such neutral mode is related to the fact that the growth rate nearly vanishes for k = 0 (figure 1a). In fact, a close-up would show that the growth rate is slightly negative for k = 0. In the usual derivation of the Stuart-Landau equation, viscous effects are not considered small so that the Reynolds stresses in the mean flow equation are equilibrated at leading order by viscous effects. This implies that the mean flow correction is then not neutral and is of order O( 2 ), i.e. one order smaller than the perturbation. This will be further discussed in the next subsection.

In summary, the evolution of the amplitude A can be determined from (3.33) together with (3.28) and (3.34). The mean flow also evolves because of the viscous diffusion of the initial flow according to (3.20). However, this evolution does not affect the evolution of A at leading order.

Final amplitude equations

In practice, the equations (3.20), (3.28), (3.33) and (3.34) can now be rescaled and expressed in terms of the time t and the original operators N , D 2 . For simplicity, the equations (3.20) and (3.28) can be also merged into a single equation giving the following system

∂v 1 ∂t = |A| 2 f 1 + 1 Re D 2 (v 1 + v 0 ), (3.38) ∂A ∂t = σA -BA, (3.39) 
where

f 1 = -N (-1) (ũ 1 , ũ * 1 ) + N (1) (ũ * 1 , ũ1 ) • e θ , (3.40) B = ũ † 1 , N (1) (v 1 e θ , ũ1 ) + N (0) (ũ 1 , v 1 e θ ) ũ † 1 , ũ1 . 
(3.41)

We emphasize that almost the same equations as (3.38-3.39) would have been obtained if the fact that the perturbation varies rapidly over the radial coordinate would not have been taken into account. The only difference is that the viscous diffusion of v 1 would not be present in (3.38). When this term is neglected, the problem can be further reduced to only two coupled amplitude equations by deriving B with respect to t

∂B ∂t = µ 0 |A| 2 + µ Re , (3.42) 
∂A ∂t = σA -BA, (3.43) 
where 

µ 0 = ũ † 1 , N (1) (f 1 e θ , ũ1 ) + N (0) (ũ 1 , f 1 e θ ) ũ † 1 , ũ1 , (3.44) µ = ũ † 1 , N (1) (D 2 v 0 e θ , ũ1 ) + N (0) (ũ 1 , D 2 v 0 e θ ũ † 1 , ũ1 . ( 3 
v 1 = B µ 0 f 1 + t Re D 2 v 0 - µ µ 0 f 1 . (3.46)
The amplitude equations (3.42-3.43) involve an amplitude B in addition to A like the AB equations for non-dissipative instabilities [START_REF] Pedlosky | Finite-amplitude baroclinic waves[END_REF][START_REF] Gibbon | Amplitude equations at the critical points of unstable dispersive physical systems[END_REF] or like the Ginzburg-Landau equation coupled to a mean field in dissipative systems [START_REF] Siggia | Pattern selection in rayleigh-bénard convection near threshold[END_REF][START_REF] Coullet | Propagative phase dynamics for systems with galilean invariance[END_REF][START_REF] Renardy | Derivation of amplitude equations and analysis of sideband instabilities in two-layer flows[END_REF][START_REF] Barthelet | Benjamin-feir and eckhaus instabilities with galilean invariance: the case of interfacial waves in viscous shear flows[END_REF][START_REF] Charru | Hydrodynamic instabilities[END_REF]). In the first case, the amplitude B is also a measure of the mean flow correction resulting from nonlinear effects like in (3.42-3.43) but the equations are second-order in time and reversible. In the second case, the equations are first-order in time like in (3.42-3.43) but the amplitude B originates from Galilean invariance and is measuring a slowly modulated mean drift in the direction along which the pattern is periodic. Both cases are therefore different from (3.42-3.43) and, to our knowledge, these equations, although simple, do not seem to have been derived before.

The particular form of the equations (3.38-3.39), or the simplified ones (3.42-3.43), is closely related to the fact that the viscous dissipation of the mean flow, which is by essence only due to horizontal shear, is weak since Re is large. In contrast, the viscous dissipation of the three-dimensional perturbation, which is mostly due to vertical shear, is of order unity thanks to the assumption k 2 /Re = O(1) (see §3.1). For this reason, we have at the same time a three-dimensional perturbation with a small growth rate and a mean-flow correction which is also nearly neutral. This differs, for example, from the primary instability of the Taylor-Couette flow [START_REF] Davey | The growth of taylor vortices in flow between rotating cylinders[END_REF] where the viscous dissipation of the mean-flow correction is not weak when the perturbation is marginally unstable because the axial wavenumber k and the Reynolds number are considered is of order unity. As already mentioned in §3.3, this is equivalent to the case where the term ∂v 1 /∂t would be negligible compared to the viscous term in (3.38). Then, an approximation of v 1 could be directly obtained by equating the right-hand side of (3.38) to zero. In other words, the mean-flow correction would be slaved to the three-dimensional perturbation [START_REF] Manneville | Dissipative Structures and Weak Turbulence[END_REF]). The amplitude B would be then linearly related to |A| 2 and (3.39) would become a classical Stuart-Landau equation [START_REF] Stuart | On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part 1. the basic behaviour in plane poiseuille flow[END_REF]. Actually, this is exactly one of the approximations used by [START_REF] Stuart | On the non-linear mechanics of hydrodynamic stability[END_REF] in his first approach to describe weakly nonlinear saturation of instabilities.

The values of the coefficients µ 0 and µ are given in table 1 for several values of the wavenumber and Reynolds number for Ro = -4. They are always both positive meaning that B is positive so that the nonlinear term of (3.43) is stabilizing. The evolution predicted by (3.38-3.39) or (3.42-3.43) for these parameters will be seen in details later in §6. In appendix B, an analytic solution of (3.42-3.43) is derived when the viscous term of (3.42) is neglected. In table 1, it can be also remarked that µ 0 increases with k approximately like k 2 when k 4 in agreement with the scaling (3.6) since the operator N is applied twice in its definition (see (3.44) and (3.40)).

Semi-linear model

The semi-linear model with a single harmonic (denoted SL-1k) proposed by [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF] consists simply in assuming û = u 1 (r, t) exp(ikz)+c.c. in (2.9-2.11) and neglecting the nonlinear term N (û, û) + N (û, û) in (2.10) since it involves second harmonics. In other words, the semi-linear equations are

∂v ∂t = 1 Re D 2 (v + v 0 ) -N (-1) (u 1 , u * 1 ) • e θ -N (1) (u * 1 , u 1 ) • e θ .
(4.1)

∂u 1 ∂t + L (1) (u 1 ) = -N (1) (ve θ , u 1 ) -N (0) (u 1 , ve θ ), (4.2) ∇ (1) • u 1 = 0, (4.3)
where ∇ (1) is the operator ∇ with ∂/∂z replaced by ik.

The difference between the weakly non-linear equations (3.38-3.39) and (4.1-4.3) is that the radial profile of the perturbation u 1 is free to evolve and is not imposed to always keep the shape of the most unstable eigenmode. The shortcoming is that the computational cost to integrate (4.2-4.3) is higher than for (3.39).

Numerical methods

The numerical methods are identical to those in [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF] for both DNS and SL-1k model. Since three-dimensional DNS [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF] have shown that the vortex always remains axisymmetric throughout its evolution, only axisymmetric DNS have been conducted herein. These DNS have been performed with the FreeFEM++ software [START_REF] Hecht | New development in freefem++[END_REF]) in axisymmetric cylindrical coordinates (r > 0, z). The velocity and pressure are discretized with Taylor-Hood P2 and P1 elements, respectively. The mesh is refined around the vortex and the mesh size varies from 0.001 to 0.045 with ∼ 32000 degrees of freedom. To avoid the singularity at r = 0, the equations (2.1)-(2.2) are multiplied with r 2 . The first order backward Euler time-scheme is used. The axial domain is chosen to fit several or a single axial wavelength with periodic boundary conditions at each ends. Solid boundaries would generate Ekman layers that would affect the evolution of the centrifugal instability as shown by [START_REF] Orlandi | Evolution of isolated vortices in a rotating fluid of finite depth[END_REF]. The radial domain is chosen to be r = [0, r max ] with r max = 6. The boundary conditions at r = 0 are u = v = 0 since the flow is axisymmetric [START_REF] Batchelor | Analysis of the stability of axisymmetric jets[END_REF]. At r = r max , all perturbations are enforced to vanish.

The perturbations u 1 in the SL-1k model and û in the DNS are initialized by the most unstable perturbation for the wavenumber k

u 1 (r, t = 0) = A 0 ũ1 (r), û(r, z, t = 0) = A 0 ũ1 (r)e ikz + c.c., (5.1) 
where A 0 is the initial amplitude and ũ1 the dominant eigenmode computed from a linear stability analysis based on Chebyshev pseudo-spectral collocation method [START_REF] Antkowiak | Transient energy growth for the lamb-oseen vortex[END_REF]. The initial mean flow correction is set to zero: v(r, t = 0) = 0. Similarly, the weakly non-linear equations (3.38-3.39) and (3.42-3.43) are integrated using an explicit Runge-Kutta formula with initial conditions A(t = 0) = A 0 with v 1 (r, t = 0) = 0 or B(t = 0) = 0.

6. Comparison between the DNS and the weakly nonlinear and semi-linear models 6.1. Validation of the weakly nonlinear analysis for Re = 500

Figure 2 shows the time evolution of the azimuthal velocity field in a DNS for Re = 500, Ro = -4 and initialized by the eigenmode of the most amplified wavenumber k = 4.68 with an amplitude A 0 = 0.001. The growth rate for these parameters is relatively small σ = 0.1436 and approaches the condition (3.1) assumed to derive the weakly nonlinear model. In addition, the Reynolds number is not too small so that the condition (3.2) is reasonably satisfied as well. For the smaller Reynolds number Re = 150 (figure 1a), the growth rate and the Reynolds number are smaller so that the condition 1/ √ Re σ is not fully satisfied. Conversely, for the higher Reynolds number Re = 1000, the growth rate is larger so that the condition σ 1 is less well satisfied. Hence, the Reynolds number Re = 500 is a good compromise to test the weakly nonlinear model. As an aside, we note that the conditions 1/ √ Re σ 1 will be satisfied only for higher and higher Reynolds number when the Rossby number tends to Ro c = -1 since the maximum growth rate decreases to zero.

Coming back to figure 2, we see that the perturbations grow and redistribute the In the latter flow, the mean azimuthal flow is continuously forced and maintained by the rotation of the cylinders so that, if the flow is unstable for a given wavenumber, spatial modulation and interactions between harmonics have plenty of time to develop.

In the case of a free vortex, the centrifugal instability is transient and quite quickly ceases leaving little time for the development of spatial modulation or for interaction with harmonics. This is the main reason why the weakly nonlinear analysis §3 and the semi-linear model SL-1k consider a single axial wavenumber without spatial modulation in contrast to similar analyses performed for the Taylor-Couette flow.

In order to compare quantitatively this evolution to those predicted by the weakly nonlinear (WNL) and semi-linear (SL-1k) models, three different amplitudes are defined from different velocity components A r should therefore enable a more comprehensive comparison between the models and the DNS than by just considering A. The third amplitude, B v , is a measure of the kinetic energy associated to the mean flow correction. As seen in figure 3 and already observed by [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF], the amplitudes A and A r first grow exponentially, then saturate and decay. In contrast, B v grows continuously because of . From the amplitude equation (3.39), it can be deduced that A is maximum in the WNL model at the time when B = σ. The evolution of the amplitudes in the WNL model (solid green lines) are in very good agreement with those in the DNS (dashed red lines) and SL-1k model (black dasheddotted lines). This validates the asymptotic analysis carried out in §4. In addition, the dashed green lines show the predictions of the simplified WNL model (3.42-3.43), i.e. when the viscous diffusion of the mean flow correction is not taken into account. We remind that this term would have been neglected in the asymptotic analysis if the fact that the wavenumber k is large for Re 1 had not been taken into account. We see that this simplified WNL model departs from the DNS in contrast to the full WNL model (solid green lines).

A = max(|w|), A r = max(|u|), B v = r 0 (V -v 0 ) 2 rdr, ( 6 
Figure 4 further compares the models to the DNS by showing the evolution of the mean azimuthal velocity profiles. The WNL mean flow V is in very good agreement with the DNS (figure 4a) as well as the one in the SL-1k model (figure 4b). After t = 40, a slight difference between the WNL model and the DNS is however visible.

Comparison for Re = 2000

Having validated the WNL and SL-1k models for the most amplified wavenumber for Re = 500, we now investigate the evolutions of various wavenumbers for a stronger unstable case Re = 2000 still for the same Rossby number Ro = -4. Figures 5 and6 show the time evolution of the azimuthal velocity field in DNS for two different axial wavenumbers: k = 8.6 and k = 2. The first value corresponds to the most amplified wavenumber for Re = 2000 (figure 1). For these simulations, an axial domain corresponding to a single wavelength has been chosen since [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF] and figure 2 showed the absence of significant spatial modulation during the evolution of the centrifugal instability. For both wavenumbers, mushroom-shaped perturbations grow and redistribute the azimuthal velocity before decaying. As expected, this occurs more slowly for k = 2 (figure 6) than for k = 8.6 (figure 5). In addition, for k = 2, the mushrooms deform into chevrons at t = 60 indicating the significant growth of higher axial harmonics. Figure 7 shows the evolution of the amplitudes A, A r and B for two axial wavenumbers k = 8.6, k = 2 and also for k = 23. The latter wavenumber is close to the viscous cut-off for Re = 2000 and has a small growth rate σ = 0.0386 (figure 1a). The time evolution of the azimuthal velocity field in this DNS exhibits only weak vertical modulations (at most, like for t = 20 in figure 6) and is therefore not shown. The purpose of this simulation is to test again the weakly nonlinear analysis. Actually, it is much easier to fulfill the assumptions (3.1) and (3.2) near the viscous wavenumber cut-off for large Reynolds number. Indeed, the Reynolds number being fixed to a large value, the particular wavenumber studied can be simply chosen so that its growth rate satisfies 1/ √ Re σ 1. As can be seen in figure 7a-c, the evolution of the amplitudes in the WNL model (solid green lines) are in excellent agreement with those in the DNS (dashed red lines) and SL-1k model (black dashed-dotted lines). Hence, the asymptotic analysis carried out in §4 is also valid close to the viscous cut-off wavenumber for Re far from Re c . In addition, the dashed green lines show that the predictions of the simplified WNL model (3.42-3.43) depart slightly from the DNS in contrast to the full WNL model (solid green lines). Note that a DNS with an axial size corresponding to several wavelengths for this wavenumber would certainly exhibit the growth of lower wavenumbers since they are more unstable.

For the most amplified wavenumber k = 8.6 (figure 7d-f), there exists more significant differences between the WNL and SL-1k models and the DNS. The WNL model (3.38-3.39) predicts that the mean flow amplitude grows and then saturates, in good qualitative agreement with the DNS, but it underestimates the maximum value of B v (figure 7f) and the peaks of the amplitudes A and A r (figures 7d,e). Such departure is not surprising since the assumption of a small growth rate used in the asymptotic analysis is no longer satisfied for k = 8.6. In contrast, the SL-1k model is in better quantitative agreement with the DNS in terms of the three amplitudes although some differences are also visible after t = 20. The greater ability of the SL-1k model comes from the fact that the spatial structure of the perturbation is not frozen unlike in the WNL model.

Surprisingly, we can notice that A and A r are maximum around t = 20 for both k = 8.6 and k = 23, even though the growth rate varies by almost a factor 6 (figure 7). Since A is maximum when σ = B in the WNL model, it can be deduced that the corresponding time t = t m depends not only on the growth rate but also on the speed at which B grows. The analytical solution derived in appendix B when the viscous decay of the mean flow is neglected shows that the time t m depends only on σ and µ 0 A 2 0 . When A 0 = 0.001 as in figure 7, we have approximately σ 2 µ 0 A 2 0 so that t m ln 4σ 2 /(µ 0 A 2 0 ) /(2σ). The variations of the growth rate σ and the parameter 4σ 2 /(µ 0 A 2 0 ) tend to compensate when k is varied from k = 8.6 to k = 23 (table 1) so that t m varies very little.

For k = 2 (figure 7g-i), the amplitude A of the WNL model predicts surprisingly well the first peak of the DNS. The mean flow amplitude B v is also reasonably well predicted by the WNL model (3.38-3.39) but the peak of A r is underestimated. For this value of k, we see that the predictions of the SL-1k model are close to those of the WNL model and not particularly better. In addition, we can notice the presence of several peaks in the DNS for both A and A r . In the appendix A, they are shown to originate from the growth of higher harmonics whereas, by essence, the SL-1k and WNL models take into account a single harmonic.

Finally, it can be remarked that that the amplitudes A and A r in the simplified WNL model (3.42-3.43) are very close to the complete WNL model (3.38-3.39) for all the three wavenumbers for Re = 2000 (figure 7). In contrast, there exist differences between the two models regarding B v for k = 8.6 and k = 2 with, paradoxically, a better agreement of the simplified model with the DNS for k = 8.6. However, we do not have any particular explanation for this and, any case, we will see below that even if B v is close in the DNS and WNL model, the profiles of the mean flow V strongly differ.

Figure 8 further compares the models to the DNS by showing the evolution of the mean azimuthal velocity profiles for Re = 2000 for the three wavenumbers. For k = 23, the WNL mean flow is in very good agreement with the DNS (figure 8a) as well as the SL-1k model (figure 8b). In contrast, we can see in figure 8c,e that the mean flow profiles predicted by the WNL model differ largely from the DNS for both k = 8.6 and k = 2. The predictions of the SL-1k model are in much better agreement with the DNS (figure 8d,f). This is due to the fact that the spatial structure of the growing unstable perturbation is free to evolve in the SL-1k model and can adapt to the change of the mean flow whereas, in the WNL model, the perturbation at leading order always keeps the spatial structure of the eigenmode of the initial mean flow. As an illustration, figure 9 shows that the radial profiles of the vertical velocity in the WNL and SL-1k models, i.e. A w1 and w 1 respectively, remains always very close for k = 23 but differs for k = 8.6 for t 20.

The evolutions of the three amplitudes A, A r , B v of the WNL model for Re = 2000 are summarized in figure 10a,b,c for various wavenumbers. The time at which the amplitudes decrease with k when k 2 in contrast to the WNL and SL-1k models. For k of order unity, the evolution of A exhibits several peaks in the DNS as seen in figure 7a and for k 2, the overall maximum is reached by the second peak. Since this second peak is due to the growth of higher harmonics (see appendix A), it can not be captured by the WNL and SL-1k models which takes into account a single harmonic.

The agreement between the WNL model and the DNS is not very good regarding A r when k 15 (figure 10e). Nevertheless, the maximum amplitude A r max is reached around k ∼ 3 -5 for both the DNS, WNL and SL-1k models. The amplitude A r of the SL-1k model agrees much better to the DNS. Finally, figure 10f shows that the amplitude of the mean flow at t = t end = 100 is almost independent of k for 1 k 10, meaning that the global effect of the instability on the mean vortex profile is the same even if A max and A r max vary with k. Again, we can see that the SL-1k model is in better agreement with the DNS than the WNL model for k 10. Note that the amplitude B v is considered at the particular time t end = 100, because, in addition to the rapid evolution towards saturation due to the centrifugal instability, it slowly evolves due to the viscous diffusion of the mean flow. At the time t end = 100, the instability has grown and just ceased for most wavenumbers. Hence, it measures mostly the effect of the centrifugal instability and not the diffusion of the mean flow.

Figure 11 displays similar comparisons when the wavenumber is fixed to k = 23, but the initial amplitude A 0 varies. As can be seen, the maximum amplitudes A max and A r max increase with A 0 . However, B v (t end ) is almost independent of A 0 . We can see that the agreement is very good for this case as expected since the perturbations are marginally unstable for k = 23 as assumed in the weakly nonlinear analysis.

Conclusions

We have developed a weakly nonlinear analysis of the centrifugal instability for a vortex with Gaussian angular velocity in a rotating fluid for large Reynolds number. The Rossby number has been considered far from the threshold Ro c = -1 but the Reynolds number has been assumed to be close to the critical value for a given wavenumber so that the perturbations are marginally unstable. This leads to an equation for the amplitude A of the disturbances whose leading non-linear term comes from the stabilizing correction of the mean flow. In turn, the mean flow evolves under the Reynolds stresses of the perturbations, which are quadratic in amplitude (i.e. |A| 2 ), and also under its own viscous dissipation. Since the Reynolds number is assumed to be large, the latter viscous effects for the mean flow correction are weak implying that it is not slaved to the perturbations as usual for other systems like, for example, the Taylor vortices in the Taylor-Couette flow. This feature is the main reason why the present equations differ from the Stuart-Landau equation [START_REF] Stuart | On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part 1. the basic behaviour in plane poiseuille flow[END_REF][START_REF] Manneville | Dissipative Structures and Weak Turbulence[END_REF] or from other types of amplitude equations involving a mean field [START_REF] Coullet | Propagative phase dynamics for systems with galilean invariance[END_REF][START_REF] Barthelet | Benjamin-feir and eckhaus instabilities with galilean invariance: the case of interfacial waves in viscous shear flows[END_REF][START_REF] Gibbon | Amplitude equations at the critical points of unstable dispersive physical systems[END_REF]. This difference is reflected in the qualitative behavior of the amplitude A which does not tend to a constant like in the Stuart-Landau equation for supercritical instabilities but decays after a certain time. This comes from the fact that the mean flow saturates towards a neutrally stable profile in the DNS. A similar behavior (growth and subsequent decay of the amplitude A) is observed for dispersive systems like for the Kelvin-Helmholtz or baroclinic instabilities [START_REF] Drazin | Kelvin-helmholtz instability of finite amplitude[END_REF][START_REF] Pedlosky | Finite-amplitude baroclinic waves[END_REF][START_REF] Gibbon | Amplitude equations at the critical points of unstable dispersive physical systems[END_REF]. However, in the latter cases, the growth and decay of the amplitude A repeats periodically with time since the amplitude equations are second order in time and reversible. Here, the growth of A is observed only one time as in the DNS because the system is dissipative and the equations first order in time.

Quantitative comparisons between the weakly nonlinear model, DNS and the empiric semi-linear model SL-1k [START_REF] Yim | Nonlinear evolution of the centrifugal instability using a semilinear model[END_REF]) have been presented. In order to quantify precisely the evolution of the perturbations, two amplitudes have been defined in addition to the amplitude A which is defined as the maximum axial velocity in the weakly nonlinear analysis. The amplitude A r measures the maximum radial velocity, while B v quantifies the mean flow correction. The amplitudes A and A r are linearly related in the WNL model but not in the nonlinear regime of the SL-1k model and in the DNS. The two models and the DNS agree very well in terms of the three amplitudes and the mean flow profiles for the most amplified wavenumber when the Reynolds number is moderate, i.e. when it is both not too large and not too far from the critical value. Indeed, the condition of validity of the weakly nonlinear analysis is not only that the growth rate should be small, it should be also of the same order or larger than 1/ √ Re. Otherwise, the viscous diffusion of the mean flow is too fast compared to the slow growth of the perturbation. The agreement between the weakly nonlinear model and the DNS is also very good when the axial wavenumber is close to the viscous wavenumber cut-off for arbitrary Reynolds number. However, like for time-periodic instabilities [START_REF] Mantič-Lugo | Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake[END_REF][START_REF] Meliga | Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description[END_REF], the accuracy of the predictions of the weakly non-linear equations for the present spatially periodic instability deteriorates as one significantly departs from the marginal value. In contrast, the predictions of the semi-linear model, although empiric, are more quantitatively robust and accurate. The main difference between the two models is that the spatial structure of the growing unstable mode at leading order is fixed by the unperturbed base flow in the WNL model while it is free to evolve under the change of the mean flow in the SL-1k model. Nevertheless, it is worth pointing out that the agreement between the weakly nonlinear and semi-linear models close to the critical Reynolds number or viscous wavenumber cutoff provides a rigorous justification of the empiric semi-linear model and, in particular, the fact that harmonics can be then legitimately neglected. Indeed, while this approximation is not valid for the primary instabilities of the plane Poiseuille or Taylor-Couette flows near the marginal value of the control parameter [START_REF] Stuart | On the non-linear mechanics of hydrodynamic stability[END_REF][START_REF] Stuart | On the non-linear mechanics of wave disturbances in stable and unstable parallel flows part 1. the basic behaviour in plane poiseuille flow[END_REF][START_REF] Davey | The growth of taylor vortices in flow between rotating cylinders[END_REF], the present weakly nonlinear analysis of the centrifugal instability shows that the effect of higher harmonics is one order of magnitude smaller than the interaction between the mean flow and the fundamental mode.

In the future, it could be interesting to perform a weakly nonlinear analysis of the centrifugal instability in the inviscid limit for Rossby numbers close to the critical Rossby number Ro c = -1. In this case, the distance 1/Ro -1/Ro c can be used as a small parameter. The resulting amplitude equations will differ from those derived herein because the instability then arises under the form of a pair of marginally stable/unstable eigenmodes. They should be closer to those derived previously for other inviscid instabilities [START_REF] Drazin | Kelvin-helmholtz instability of finite amplitude[END_REF][START_REF] Pedlosky | Finite-amplitude baroclinic waves[END_REF][START_REF] Gibbon | Amplitude equations at the critical points of unstable dispersive physical systems[END_REF].
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Figure 1 .

 1 Figure 1. (a) Linear growth rate σ as a function of the axial wavenumber k for Ro = -4 and different Reynolds numbers: Re = 150, 500, 1000, 2000 and 3000. The red circles indicate the maximum growth rate and corresponding most amplified axial wavenumber k. (b)Velocity components (ũ, ṽ, w) of the eigenmodes as a function of r for k = 8.6 (blue lines) and k = 23 (black lines) for Re = 2000 and Ro = -4. (c) Same as (b) but the velocity components are rescaled: (ũ/ √ k, ṽ/ √ k, w), and plotted as a function of r = (r -r0) √ k.

  .45) By combining (3.42) and (3.38) without the viscous diffusion of v 1 , one can eliminate A and then integrate (3.38) to obtain explicitly the mean flow correction

Figure 2 .

 2 Figure 2. Evolution of the azimuthal velocity field v(r, z, t) in a DNS for Ro = -4, k = 4.68, A0 = 0.001 and Re = 500. The axial length corresponds to ten most amplified wavelengths.

Figure 3 .

 3 Figure 3. Comparison of the evolution of the amplitudes: (a) A, (b) Ar, (c) Bv, between the different models and the DNS for k = 4.68, A0 = 0.001, Re = 500 and Ro = -4. The different lines correspond to the pure linear growth A0 exp(σt) (light green dotted lines), WNL model (3.38-3.39) (solid green lines), simplified WNL model (3.42-3.43) (dashed green lines), semi-linear model SL-1k (black dashed dotted lines) and DNS (red dashed lines).

Figure 4 .

 4 Figure 4. Radial profiles of mean azimuthal velocity v at different times for k = 4.68, A0 = 0.001, Re = 500 and Ro = -4. (a) Comparison between the DNS (solid lines) and WNL model (3.38-3.39) (dashed lines). (b) Comparison between the DNS (solid lines) and SL-1k model (dash dotted lines).

Figure 5 .

 5 Figure 5. Evolution of the azimuthal velocity field v(r, z, t) in a DNS for Ro = -4, k = 8.6, A0 = 0.001 and Re = 2000. Two wavelengths are displayed although the DNS is actually performed over only one wavelength.

Figure 6 .

 6 Figure 6. Similar to figure 5 but for k = 2.

Figure 7 .

 7 Figure 7. Comparison of the evolution of the amplitudes: (a,d,g) A, (b,e,h) Ar, (c,f,i) Bv, between the different models and the DNS for different axial wavenumbers: (a,b,c) k = 23, (d,e,f), k = 8.6, (g,h,i) k = 2 for A0 = 0.001, Re = 2000 and Ro = -4. The different lines correspond to the pure linear growth A0 exp(σt) (light green dotted lines), WNL model (3.38-3.39) (solid green lines), simplified WNL model (3.42-3.43) (dashed green lines), semi-linear model SL-1k (black dashed dotted lines) and DNS (red dashed lines).

Figure 8 .

 8 Figure 8. Radial profiles of mean azimuthal velocity v at different times for different wavenumbers: (a,b) k = 23, (c,d) k = 8.6, (e,f) k = 2 for Re = 2000 and Ro = -4. (a,c,e) Comparison between the DNS (solid lines) and WNL model (3.38-3.39) (dashed lines). (b,d,f) Comparison between the DNS (solid lines) and SL-1k model (dash dotted lines).

Figure 11 .

 11 Figure 11. (a,b,c) Evolution of the amplitudes (a) A, (b) Ar and (c) Bv in the WNL model (3.38-3.39) as a function of time for different initial amplitudes A0 = [0.0005 : 0.001 : 0.0045] for k = 23, Re = 2000 and Ro = -4. (d,e,f) Maximum of the amplitudes (d) A, (e) Ar and (f) Bv(t end ) as a function of A0, with t end = 100. The symbols correspond to: green crosses (WNL model (3.38-3.39)), red circles (DNS), plus symbols (SL-1k model).

Figure 12 .

 12 Figure 12. Contributions of the first sixth harmonics (colored lines with circle symbols) to the amplitude A (black bold line) for k = 1.5, Re = 2000, A0 = 0.001 and Ro = -4.

  .27) It should be pointed out that only the mean flow component v 11 e θ appears in (3.25) because v 10 varies over r, i.e. more slowly than v 11 , since it originates from the viscous diffusion of v 0 .

	Using (3.22), the equation (3.27) can be rewritten	
	∂v 11 ∂t 1	= |A| 2 f 11 +	1 Re	D2 v 11 ,	(3.28)

Table 1 .

 1 Values of the coefficients of the amplitude equation (3.42-3.43) for different wavenumbers and Reynolds numbers for Ro = -4 .

	Re	k	σ	µ0	µ
	500 4.68 0.1436 17.23 2.10
	2000 2 0.1216 2.45 1.34
	2000 8.6 0.2240 74.74 2.51
	2000 23 0.0386 634.34 2.87
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A and A r reach their maxima is minimum around the most amplified wavenumber k max = 8.6. Interestingly, the overall value of the maximum amplitude is not reached when k = k max but for a lower wavenumber which depends on the amplitude considered. For A, the maximum value is reached for k = 2 while for A r , it is around k = 5. Such difference is possible because the ratio max( w1 )/ max(ũ 1 ) = A max /A r max is different for each eigenmode and thus, each value of k.

The maximum values of the amplitudes for each k are compared to the DNS and SL-1k model in figure 10d,e,f. We can see that there is a good agreement with the DNS and SL-1k model regarding A max (figure 10d). In the DNS, the amplitude A max does not Appendix A. Contributions of higher harmonics for low wavenumber in the DNS

In order to understand why several peaks are observed in the evolution of the amplitude A in the DNS when the wavenumber is around unity (figure 7g), we investigate here in more details a DNS performed for k = 1.5, Re = 2000, A 0 = 0.001 and Ro = -4. As can be seen by the black line in figure 12, the amplitude A exhibits two peaks, the second one being dominant. The decomposition of the contributions of each harmonic to A shows that the second harmonic becomes larger than the first one for 60 < t 70 while higher harmonics grow also significantly. Hence, the growth of higher harmonics explains the occurrence of several peaks. The deformation of the azimuthal velocity perturbations into chevrons seen in figure 6 is also a signature of the emergence of higher harmonics.

Appendix B. Exact solution of (3.42-3.43) when µ = 0 Here, we show that the amplitude equations (3.42-3.43) can be integrated analytically when the viscous term of (3.42) is neglected (i.e. µ = 0). We first add together (3.43) multiplied by A * and its complex conjugate multiplied by A. By combining the resulting equation with (3.42) and integrating, we obtain

where it has been imposed that B(0) = 0 and assumed that σ and µ 0 are real. Hence, (3.42) can be written solely in terms of

The solution can be found in the form

where α = σ 2 + µ 0 |A 0 | 2 . Then, the solution for A can be found from (3.42):

When µ 0 > 0, the solutions (B 3-B 4) show clearly that A vanishes for t → ∞ while B tends to the constant µ 0 |A 0 | 2 /(ασ). The maximum value of A is α/ √ µ 0 and is reached for t = t m ≡ln ((ασ)/(α + σ)) /(2α). When µ is non-zero and positive, an analytic solution of (3.42-3.43) does not seem to exist but the behavior of the amplitude A is qualitatively similar as seen in §6. A slow linear increase of the amplitude B is mixed with the solution (B 3).